
Leakage-Resilient Cryptography with Key Derived
from Sensitive Data

Konrad Durnoga?, Tomasz Kazana??, Michał Zając? ? ?, and Maciej Zdanowicz†

Abstract. In this paper we address the problem of large space consumption
for protocols in the Bounded Retrieval Model (BRM), which require users to
store large secret keys subject to adversarial leakage. We propose a method
to derive keys for such protocols on-the-fly from weakly random private data
(like text documents or photos, users keep on their disks anyway for non-
cryptographic purposes) in such a way that no extra storage is needed. We
prove that any leakage-resilient protocol (belonging to a certain, arguably
quite broad class) when run with a key obtained this way retains a similar
level of security as the original protocol had. Additionally, we guarantee
privacy of the data the actual keys are derived from. That is, an adversary
can hardly gain any knowledge about the private data except that he could
otherwise obtain via leakage. Our reduction works in the Random Oracle
model.
As an important tool in the proof we use a newly established bound for
min-entropy, which can be of independent interest. It may be viewed as
an analogue of the chain rule – a weaker form of the well-known formula
H(X|Y) = H(X, Y) −H(Y) for random variables X, Y , and Shannon en-
tropy, which our result originates from. For min-entropy only a much more
limited version of this relation is known to hold. Namely, the min-entropy
of X may decrease by up to the bitlength of Y when X is conditioned on
Y , in short: H̃∞(X|Y) ≥ H∞(X)− |Y |. In many cases this inequality does
not offer tight bounds, and such significant entropy loss makes it inadequate
for our particular application. In the quasi chain rule we propose, we inject
some carefully crafted side information (spoiling knowledge) to show that
with large probability the average min-entropy of X conditioned on both: Y
and this side information can be almost lower bounded by the min-entropy
of (X, Y) decreased by the min-entropy of Y conditioned on the side infor-
mation.

? No affiliation. Email: kdr@mimuw.edu.pl.
?? New York University; Institute of Informatics, University of Warsaw. Email:

tkazana@mimuw.edu.pl.
? ? ? Institute of Informatics, University of Warsaw. Email: m.zajac@mimuw.edu.pl.

† Institute of Mathematics, University of Warsaw. Email: mez@mimuw.edu.pl.

1 Introduction

1.1 Key derivation from sensitive data

In this paper we make an attempt to adapt the problem of overcoming weak ex-
pectations, which recently has attracted considerable attention in the cryptographic
community [2,11,28], to yet another well-recognized setting – the Bounded Retrieval
Model (BRM) [7, 12]. Here, the term weak expectations refers to the (expected)
chances of breaking a cryptosystem when an imperfect source of randomness is
employed in places where uniformly random bits were supposed to be used. For
instance, one can quantify security of a system with semi-random keys used instead
of keys drawn from uniform distribution. What motivates such analysis is that the
standard assumption about unlimited availability of truly random bits turns out to
be overoptimistic in practice. On the other hand, cheap sources of weak randomness
can be easily found “in nature”. Suffice it to mention physical sources or biometric
data [4, 9], which remain somewhat unpredictable for adversaries.

In the conventional approach to cryptography, security of a scheme relies on pri-
vacy of cryptographic keys. The dawn of so called side channel attacks has influenced
this perspective significantly. There, an adversary may gain some partial knowledge
about the secret keys, e.g., by measuring timings [19], power consumption [20], elec-
tromagnetic radiation [24], or even sounds (acoustic cryptoanalysis) [15] emitted by
a device a cryptographic protocol is implemented on. Leakage-resilient cryptosys-
tems are meant to address attacks of this form and remain secure when the adversary
is allowed to adaptively learn arbitrary functions of the secret keys subject to only
one restriction – namely, the total length of information leaked in the process must
not exceed a leakage bound λ. There are in fact two slightly different models of
leakage considered in the literature. The relative leakage allows λ to be some frac-
tion of the length of a secret key. In the absolute leakage setting, also known as the
BRM [14], the parameter λ is fixed in the first place, and then the length of a key
may be chosen accordingly, depending on λ, to achieve the desired level of security.
It is important to note that this flexibility in increasing the key size does not af-
fect other parameters possibly present in a BRM protocol, such as computation or
communication complexity – these should only depend on a security parameter but
not on λ.

Space-efficient BRM The leakage bound λ and, consequently, the size of a key in
the BRM are typically very large, the latter being of order of gigabytes. Although
per-gigabyte storage cost is becoming lower every year, this downside of BRM pro-
tocols may still be an issue, e.g., for many mobile devices with quite limited size of
non-volatile memory available. When combined with the fact that keys used in these
protocols are required to be sufficiently random, it means that computers running
a BRM protocol are clogged with some huge blob of random and otherwise useless
data. In the solution we propose, BRM keys can be derived on-the-fly (that is, it
is not necessary to keep them on disk, and they may be computed when a relevant
portion of the key is requested) from data a user want to store on his disk for any
other reason. The private user data usable in this context may include: text docu-
ments, photos, audio files, or other media. This may lessen the problem of wasted
disk space however for a reduced space we trade in additional computations needed
to determine BRM keys.

1

An issue that arises here is that such data, when viewed as a source of ran-
domness, while being unpredictable, to a degree, for an adversary, is certainly not
uniformly random (e.g., note that certain segments in some file formats may be
fixed or come from a prescribed set of values). Here, the connection to the afore-
mentioned problem of overcoming weak expectations and, which is related, key
derivation, becomes apparent.

Overcoming weak expectations A study of cryptographic applications that
retain a comparable level of security when fed with weakly random sources instead
of ones having uniform distributions was initiated by Barak et al. [2]. There, the
authors explore the idea of applying universal hash functions to key derivation. The
renowned Leftover Hash Lemma (LHL) [17] states that families of such functions
constitute good randomness extractors. Specifically, when applied to a source of
min-entropy k, an extractor of this form produces m bits which are δ-close (in terms
of statistical distance) to uniform, as long as k ≥ m + 2 log (1/δ). A key obtained
this way can be then used in a cryptographic application. The min-entropy loss of
magnitude 2 log(1/δ) may be unacceptably large in some situations but, as shown
by Radhakrishnan and Ta-Shma [25], it cannot be prevented in general. However, as
argued by the authors, there exists a wide range of applications where the entropy
loss can be cut down by the factor of 2 for a price of some security loss in the
application using non-uniform keys. This line of research was continued by Dodis
and Yu [11].

Sensitive data Building a cryptographic protocol on top of randomness derived
from private data bears an obvious risk of compromising that data. One can imagine
an artificial protocol that simply publishes all accessible randomness. Also, a proto-
col in the BRM does not necessarily guarantee protection of its key. Some fragments
of a BRM key may be passed, as a part of normal operating procedure, to an honest
party that did not possess the key in the first place. To give an example illustrating
such a situation, one can conceive of an authentication protocol in the BRM, which
itself appears to be folklore, based on Merkle tree [21]. There, a hash tree is built
on an input BRM key and the resulting hash from the root is then forwarded to a
verifier (say, a bank). This way a user can commit to his key which, in its entirety,
is only stored on user’s side for efficiency reasons. On the other hand, the verifier
may learn parts of the key when the user attempts to authenticate himself. In order
to do that, the verifier demands to present hashes along some path of his choice in
the Merkle tree. Such a path includes data from the initial BRM key and thus its
fragment gets revealed to the verifier.

Now, if a BRM key used in this protocol is obtained from data stored on disk
then, clearly, the key derivation procedure should enjoy some kind of a one-wayness
property. If the procedure does not hide its input then a dishonest verifier may at-
tempt to recover the underlying data or, at least, he may gain some partial knowl-
edge. In this paper, we aim at a solution that allows a user to protect his private and
possibly sensitive data in this scenario. Namely, we require that an adversary can
hardly learn anything more about the data except that he could otherwise achieve
via leakage.

2

Overview of our solution Seemingly, the problem of extracting an almost ran-
dom key from sufficiently random data can be easily solved, even in presence of
leakage, using a well-known primitive – namely, an average-case strong randomness
extractor. Its definition requires that for any two random variables X and I (where
I can be viewed as side information about I, i.e., a leak) such that the (conditional)
min-entropy of X given I (see (1) for a precise definition of conditional min-entropy)
is high enough, then the output of the extractor Ext(X,R) is statistically close to
uniform even given a short random seed R and the side information I, in short:(
Ext(X,R), R, I

)
≈ (U,R, I). Dodis et al. [9] extend the LHL to show that univer-

sal hash functions constitute good aveon-rage-case extractors retaining nearly the
same parameters as in the original LHL. We also note that the definition of such
extractors is enough to cover the privacy requirement in our particular application
– if Ext(X,R) disclosed some information about private data X then by setting I to
be this information we would produce a correlation between Ext(X,R) and I, thus
violating the condition about Ext(X,R) being close to uniform and independent of
I. Overall, randomness extractors allows us to cover the two main properties we
aim at in this paper, i.e., the uniformity of keys and the privacy of underlying data.
However, such a construction would be downright impractical. From the computa-
tional point of view, extractors are not suited best to work on inputs as huge as in
our application. Also, they are inherently non-local in the sense that each bit of an
output should depend on almost every bit of an input. This means that in order to
compute even a small portion of the derived key on demand using an extractor, one
has to read and supply almost the whole input data which is not a viable option.

To address the issue related to efficiency and locality, we propose a different way
of deriving keys from private data. Our idea is quite straightforward – it boils down
to splitting all the data into consecutive blocks of the same fixed length n (say,
n = 4kB). A block could naturally correspond to the smallest allocation unit in a
filesystem present on a user’s device. Then, we use hashing to extract randomness
from blocks. The naïve method to implement it would be computing hashes block by
block. This approach, albeit simple, has a significant drawback. The only assumption
we make about the input data is that its joint min-entropy is not too small (this
measures the a priori knowledge of the adversary about the private data, before
leakage is taken into account). We do not demand however that the randomness
is equidistributed across all the blocks. Therefore, it may happen that even for
high overall min-entropy, e.g., 1

2`n where ` is the number of blocks, there exist `/2
blocks which, from the adversary’s point of view, are constant. Consequently, the
corresponding parts of a derived key carry no randomness at all and are known to
the adversary.

We circumvent the problem caused by blocks with low min-entropy we increase
the number of blocks a single block of a derived key depends on. That is, each hash
is calculated by taking not one but d blocks of input. Additionally, we amplify the
likelihood of the event that there is at least one high min-entropy block among
the selected d-tuple. This step actually introduces a new flavor to the reasoning.
Namely, we argue the assumption on joint min-entropy of the input blocks with
large probability implies that there exists a large number of blocks each having
high min-entropy. This statement may seem rather natural and intuitive yet it
is somewhat tricky to prove. A related problem of extracting random blocks was
considered before by Nisan and Zuckerman [23] and Alwen, Dodis, and Wichs [1].

3

The fact that there should be plenty of sufficiently random blocks in the input
allows us to pick d-tuples of block randomly. However, to recreate portions of the
derived on-the-fly one would have to store the auxiliary randomness used to select
those tuples, which may not be acceptable. Instead, we suggest employing dispersers
– d-regular bipartite graphs with the property that any sufficiently large set of
vertices on the left side is connected to almost all vertices on the right side. Every
such a disperser induces a selection of d-tuples.

Clearly, increasing the degree of regularity d of a disperser reduces locality of
the key derivation method. This however comes as a trade-off. We use a simulation-
based argument to prove that any protocol using the derived key can be simulated
by a protocol operating on an original key with O(n`/d) of additional leakage.

1.2 Chain rule for min-entropy

Since the beginning of formal treatment of cryptography most works have heav-
ily relied on different flavours of entropy. Depending on the context, those no-
tions are used to measure compressibility, unpredictability or uncertainty of out-
comes of random processes. In his seminal work Shannon applied the simplest,
compressibility notion of entropy (called after his name), i.e., the one defined by
H(X) def= Ex log 1

Pr(X=x) to prove that in a perfectly secure symmetric key encryp-
tion scheme the length of the key is necessarily as large as the length of the message.
The notion which turned out to be even more useful in the area of cryptography is
min-entropy defined by the formula H∞(X) def= − log(maxx Pr(X = x)) and encom-
passing unpredictability properties of a random variable X.

Conditional entropy Shannon’s entropy possesses a natural generalization to its
conditional version H(X|Y) which satisfies the formula H(X,Y) = H(X|Y)+H(Y).
This corresponds to an intuitive interpretation stating that the information con-
tained in (X,Y) consists of the information in Y extended by the conditional infor-
mation in X given Y . Dodis et al. [9] provided an analogous notion for min-entropy.
Namely, for two random variables X,Y the conditional min-entropy H̃∞(X|Y) is
given by the formula:

H̃∞(X|Y) def= − log
(
Ey2−H∞(X|Y=y)

)
. (1)

This definition turns out to preserve the natural interpretation of min-entropy as
maximal probability of success in guessing X given Y , i.e., for any algorithm A we
have:

Pr(A(Y) = X) = Ey Pr(A(y) = X) ≤ Ey2−H∞(X|Y=y) = 2−H̃∞(X|Y).

Regrettably, the above definition possesses serious drawbacks explained in the
following example.

Example 1 (Cross distribution). Let X = (X1, X2) ∈ ({0, 1}n)2 be a random vari-
able distributed uniformly over ”the cross“, i.e., a set {0, 1}n × e ∪ e × {0, 1}n for
some fixed e ∈ {0, 1}n. Note that, we have H∞(X1, X2) = − log 1

2n+1−1 ∈ [n, n+ 1]
and H∞(Xi) = − log 2n

2n+1−1 < 1 and therefore, the sum property does not hold

4

without any further assumptions or conditions. Moreover, H̃∞(X2|X1) < H∞(X2)
and therefore H̃∞(X2|X1) + H∞(X1) < 2 which consequently means that the most
natural chain rule does not hold either.

The authors also prove the following result.

Lemma 1 (Lemma 2.2 in [9]). Let X,Y, Z be random variables. Then

a) For eny δ > 0, the conditional entropy H∞(X|Y = y) is at least H̃∞(X|Y) −
log(1/δ) with probability at least 1− δ over the choice of y.

b) If Y has at most 2λ possible values, then H̃∞(X|(Y, Z)) ≥ H̃∞((X,Y)|Z)−λ ≥
H̃∞(X|Z)− λ. In particular, H̃∞(X|Y) ≥ H∞(X,Y)− λ ≥ H∞(X)− λ.

The above item b) of Lemma 1 is treated as chain rule for min-entropy. Its
significant weakness is that the inequality does not depend on the random properties
of Y but its actual size λ. We illustrate this by a simple example.

Example 2 (Two blocks almost half entropy). Let X,Y be two random variables
distributed over {0, 1}n with joint distribution of min-entropy H∞(X,Y) = n.
Then, the above item b) gives us a trivial estimate H̃∞(X|Y) ≥ H∞(X,Y)−|Y | =
0.

Nevertheless, if we condition (X1, X2) given in Example 1 with a random variable
Hint defined by the formula

Hint = i ⇐⇒ Xi = e,

then the second variableX3−i has conditional min-entropy H∞(X3−i|Hint = i) = n.
Therefore, there exists a certain additional “knowledge” Hint which allows us to
extract almost whole min-entropy from the pair (X1, X2). Namely, the event

H∞(X1|Hint = i) + H∞(X2|Hint = i) ≥ H∞(X1, X2)− 1

holds with probability 1 over the choice of i. This suggests that the right way to
obtain the chain rule is additional conditioning. Similar approach was used in certain
different applications and is classically called spoiling knowledge.

Remark 1. We believe that our results might find a meaningful application in the
theory of extractors as we exhibit a certain (non-strict) block-wise structure of any
distribution of high min-entropy (cf. proof of the Claim inside Corollary 2). Block-
wise distributions are widely used in theory of extractors (see, e.g., [22]).

Previous results concerning chain rule. Previous research concerning (or some-
how related) to chain rule is not only mentioned in discussed above [9]. For example
authors of [1] and [23] prove that random (sufficiently large) subtuple of some set
of variables with high min-entropy must preserve some significant amount of this
entropy. Our result can be viewed as a generalization of this fact since from our
reasoning we get that some specific (not random) subtuple preserves some min-
entropy. (see Corollary 2.) Moreover in [23] authors try to deal with the problem
of chain rule for min-entropy but need to make big effort to get some complicated
workaround since they do not have any quasi chain rule for min-entropy in hand.

5

Moreover, they show a simplified version of their result and give a short brief proof
based on chain rule for Shannon entropy.

Another important previous result is Lemma A.1 (min-entropy split) from [5]
(and also other variants from [8, 27]). Here authors formulate a theorem that also
can be viewed as a quasi chain rule. As an example compare with the following:

Lemma 2 (Lemma 4.2 (Min-Entropy-Splitting Lemma) in [8]). Let ε ≥ 0
and let X0, X1 be random variables (over possibly different alphabets) with Hε

∞(X0X1) ≥
α. Then, there exists a binary random variable C over {0, 1} such that Hε

∞(X1−CC) ≥
α/2.

This is very interesting result that shows that it is possible to extract partial min-
entropy from a pair of variables. However authors justify high min-entropy of just
one viariable from the pair. In our result we get significantly more dealing with both
variables at once. See Lemma 3 for details.

2 Our contribution

The results of the paper are twofold.

Making BRM space efficient. In this paper, we give a new idea to overcome
a problem with large space requirements in the BRM model. As a reminder: BRM
uses huge private keys for purpose of leakage-resiliency. Here we describe an idea
to derive secret key from private data (this could include text documents, videos,
etc.). That content is supposed to have high enough min-entropy, however it raises
a problem with privacy: we do not want to reveal any sensitive data outside. Our
construction fulfills this expectation. So the private data remains undisclosed even
if the entire derived key is compromised.

The secret key is being computed on-the-fly from private data so that no extra
memory is used to store the key. Access to the key is fast so one does need to read
limited portion of private data to compute some part of the secret key.

The main result shows that any cryptographic protocol from well defined and
vast class (intuitively: game based protocols) is still secure if we use a key derived
from private data in place of a random key.

Chain rule through spoiling knowledge. The reasoning from Section 1.2 ex-
hibits a pair of random variables X,E such that H∞(X|E = e) + H∞(Y |E = e)�
H∞(X) + H∞(Y) with probability 1 over the choice of e. Analogous simplified sit-
uations were investigated by Bennett et al. [3] for collision entropy H2 and utilized
in privacy amplification. Furthermore, similar examples also exists for other Renyi
entropies Hα for α > 1 and were systematically analysed by Cachin in [6] in con-
text of smooth entropy. Our methods substantially generalize “profiling” method of
Cachin and Maurer and gives a precise spoiling knowledge sufficient to obtain chain
rule for min-entropy. Our main result in this part of the paper is the following (see
Lemma 3):

Chain rule. Let X,Y be random variables. Then, there exists a function Hint(y) ∈
{1, . . . ,K} for some K > 0 such that for any ε > 0 and N = H∞(X,Y) the

6

event:

∀y∈Hint−1(h)H∞
(
X|Y = y,Hint(Y) = h

)
+H∞

(
Y |Hint(Y) = h

)
>
(

1−ε− 1
K

)
·N

occurs with probability ≥ 1−K · 2−εN over the choice of h.

As a corollary, we significantly generalize this result in order to obtain the chain
rule for many variables (see Corollary 2). To the best of our knowledge, prior to this
work there was no efficient chain rule for min-entropy except Lemma 1 (see Dodis
et al. [9] or Cachin and Maurer [6] for similar results for Renyi entropy).

It is important to mention that in any cryptographic application supplementary
side information appears to be beneficial for the adversary and therefore using
Lemma 3 should facilitate any security proof requiring detailed treatment of min-
entropy (cf. Remark after proof of Lemma 5).

Usefulness of Chain rule. Our result seems to help to prove some facts that
often look trivial at very first sight. The typical problem with proving such "obvious
observations" comes from the fact that, in general, the chain rule for min-entropy
is false. For example one may go through the proof of Lemma 5.2 from [5] to see
how technical and delicate it is. We believe that using chain rule from this paper
could significantly simplify reasonings like that. The reason for that is that our
statement seems to work better then e.g. Lemma A.1 (min-entropy split) from [5]
that is key for proving Lemma 5.2. The technical cause for that raises from the fact
that Brakerski et al. split somehow the min-entropy of a pair but do not have full
control of min-entropy of one of the elements. That makes the proof much harder
in one case. Our techniques tend to follow the ideas from [5] and make them more
clean to use.

Another good example for usefulness for our chain rule is Lemma 4 from this
paper. Here we need the multivariate case of our result (Corollary 2) which was not
considered in previous works at all.

3 Preliminaries

We assume the existence of a random oracle, i.e., perfectly random functionH : {0, 1}∗ →
{0, 1}n which can be evaluated only by querying a certain oracle H . At the be-
ginning, all values of H are uniformly distributed, in particular, unpredictable.
Throughout the protocols operation, one can issue a query H(m) obtaining the
value of H(m) and gaining no other information.

In order to model leakage attacks, we introduce a restricted leakage oracle OD

parametrized by a random variable D ∈ {0, 1}|D|. A query OD(f), consists of a
function f : {0, 1}|D| → {0, 1}λ given as a Turing machine, and results in the value
f(D). A leakage oracle OD,H (also denoted by O(D,H)) is defined analogously but
with leakage functions containing apart from ordinary operations a black-box access
to a random oracle, which on an input x returns the value H(x). We say that the
total leakage is of at most λ bits if the sum

∑
i λi for all issued fi : {0, 1}|D| →

{0, 1}λi is bounded by λ.
We denote by TMO(D)

λ the class of all probabilistic Turing machines equipped
with an adaptive access to a restricted leakage oracle O with total leakage of at most

7

λ bits. Moreover, by TMO(M,H),H
λ,q we mean the subclass of TMO(M)

λ equipped with
an adaptive access to a leakage oracle OD,H together with additional q executions
of H.

We say that a function f is H-randomized (or simply randomized if no confusion
can arise) if it is result is dependent on a certain random oracle H. We denote a
H-randomized function by f(−,H).

4 Chain rule for min-entropy

4.1 Bivariate case

We first prove the following case for two random variables.

Lemma 3. Let X and Y be two (possibly dependent) random variables. Then, there
exists a function Hint(y) ∈ {1, . . . ,K} for some K > 0 such that for any ε > 0 and
N = H∞(X,Y) the event:

∀y∈Hint−1(h)H∞
(
X|Y = y,Hint(Y) = h

)
+ H∞

(
Y |Hint(Y) = h

)
>
(

1− ε− 1
K

)
·N

occurs with probability ≥ 1−K · 2−εN over the choice of h.

Proof. We begin with two straightforward facts concerning min-entropy. Firstly,
observe that for any random variable Z and an event E the conditional min-entropy

H∞(Z|E) def= min
z
{− log (Pr(Z = z|E))}

satisfies the inequality H∞(Z|E) ≥ H∞(Z)− log 1/Pr(E).
Secondly, using the formula for conditional probability we see that

Pr(X = x|Y = y) = Pr(X = x, Y = y)
Pr(Y = y) ≤ 2−H∞(X,Y)

Pr(Y = y) ,

which means that

Pr(Y = y) ≤ 2−H∞(X,Y)

maxx Pr(X = x|Y = y) = 2−H∞(X,Y)+H∞(X|Y=y).

This consequently implies that H∞(Y) ≥ H∞(X,Y)−maxy H∞(X | Y = y).
We now proceed to the proof of Lemma 3. We define a function Hint by the

condition:
Hint(y) = i ⇐⇒ H∞(X|Y = y) ∈ [i− 1

K
N,

i

K
N],

where N denotes the min-entropy H∞(X,Y) (we disregard the boundary cases).
By the definition of Hint we see that

∀y∈Hint−1(i)H∞(X|Hint = i, Y = y) ≥ i− 1
K

N. (2)

8

Moreover, using both of the above general observations, we get that

H∞(Y |Hint = i) ≥ H∞(X,Y |Hint = i)− i

K
N ≥ N − i

K
N − log 1/Pr(Hint=i).

By summing (2) and (4.1) up we obtain:

∀y∈Hint−1(i)H∞(X|Hint = i, Y = y) + H∞(Y |Hint = i) ≥ N − N

K
− log 1/Pr(Hint=i).

Now observe that for all values i of Hint that satisfy Pr(Hint = i) ≥ 2−εN we have:

∀y∈Hint−1(i)H∞(X|Hint = i, Y = y)+H∞(Y |Hint = i) ≥ N−N
K
−εN = (1− 1

K
−ε)·N.

There are at mostK other values of Hint which consequently occurs with probability
smaller than K · 2−εN . This finishes the proof. ut

Remark 2. For the sake of brevity, from now on we omit the ∀ quantifier and write
H∞(X;Y = y,Hint = h) to denote the fact that y is consistent with the value h of
a random variable Hint = Hint(Y). Then, with the same assumptions as above, we
have 1:

H̃∞(X|Y ; Hint = h) + H∞(Y |Hint = h) >
(

1− ε− 1
K

)
·H∞(X,Y) (3)

H∞(X|Hint = h,E) + H∞(Y |Hint = h) >
(

1− ε− 1
K

)
·H∞(X,Y) (4)

for any event E depending only on Y with probability ≥ 1 − K · 2−εN over the
choice of h. This follows from averaging over the choice of y. Note that the subtlety
of definition of conditional min-entropy given in [9] is not relevant as the formula
(4.1) works for any y such that Hint(y) = h.

As corollaries we obtain:

Corollary 1. Let X,Y be random variables satisfying H∞(X,Y) = mn. For every
∆ ∈ N such that there exists a random variable Hint such that:

H∞(X|Y = y,Hint = h) + H∞(Y |Hint = h) > (m− 2∆)n

occurs with probability ≥ 1− 2−(∆n−logm) over the choice of h.

Proof. Apply Lemma 3 for ε = ∆
m and K = dm∆ e.

4.2 Multivariate case

Moreover, by more involved inductive considerations we obtain:

1 By H̃∞(X|Y ; Hint = h) we mean the conditional min-entropy H̃∞(X|Y) computed
with respect to the distribution conditioned on the event Hint = h

9

Corollary 2. Let X1, . . . , X` be random variables satisfying H∞(X1, . . . , X`) = s`
for some s > 0. Then, for any D > 0 there exists a random variable Hint such that∑

1≤i≤`
H∞(Xi|Hint = h,Ei) ≥ s`(1−

1
D

) (5)

with probability 1 − 2D`(` − 1) · 2− s
2D over the choice of h, where Ei are events

depending on Hint and variables with smaller indices, i.e., X1, . . . , Xi.

Proof. We prove the following claim by descending induction with respect to k.

Claim. For any k ∈ [1, `] there exists a random variable Hintk such that:

H∞(X1, . . . , Xk|Hintk = h) +
∑

k+1≤i≤`
H∞(Xi|Hint = h) ≥ s(`− `− k

D
) (6)

with probability 1−2D`(`−k)·2− s
2D even if we additionally condition H∞(Xk+m; Hintk =

i) for m > 0 with any event Ek+m depending solely on Hintk and variables with
smaller indices, i.e., X1, . . . , Xk+m−1.

Proof (Proof of the claim). The base case k = ` is just the assumption H∞(X1, . . . , X`) =
s` for an empty variable Hint` (note that there is no additional assumption on fur-
ther conditioning). Now, assume that the claim is true for some k > 1 and that

H∞(X1, . . . , Xk|Hintk = i) = cis,

for some 0 < ci ≤ `. By Lemma 3 applied for ε = 1
2Dci , K = 2Ddcie, X = Xk,

and Y = (X1, . . . , Xk−1) conditioned on Hintk = i we obtain a random variable Hk
i

such that

H∞(Xk|Hintk = i,Hk
i = h′, E) + H∞(Y |Hintk = i,Hk

i = h′) ≥ cis(1−
1

2Dci
− 1

2Ddcie
)

(7)

≥ s(ci −
1
D

) = sci −
s

D
.

10

for any event E depending on Y with probability 1−2Ddcie·2−
s

2D ≥ 1−2D` ·2− s
2D

over the choice of h′. We now set Hintk−1 = (Hintk,Hk
Hintk) and compute that

H∞(X1, . . . , Xk−1|Hintk−1 = (h, g)) +
∑
k≤i≤`

H∞(Xi|Hintk−1 = (h, g))) ≥

H∞(Y ; Hintk−1 = (h, g)) + H∞(Xk|Hintk−1 = (h, g)) +
∑

k+1≤i≤`
H∞(Xi|Hintk−1 = (h, g)) ≥

(8)

H∞(X1, . . . , Xk|Hintk = h)− s

D
+

∑
k+1≤i≤`

H∞(Xi|Hintk−1 = (h, g)) ≥

(9)

H∞(X1, . . . , Xk|Hintk = h)− s

D
+

∑
k+1≤i≤`

H∞(Xi|Hintk = h) ≥

(10)

≥ s(`− `− k + 1
D

)

with probability

≥ (1− 2D`(`− k) · 2− s
2D)(1− 2D` · 2− s

2D) ≥ 1− 2`(`− k + 1) · 2− s
2D ,

where in (8) we used the definition of Y , in (9) we applied the formula (7) and
in (10) we removed additional conditioning on event Hk

Hintk = g which depends
only on variables with smaller indices (induction step) and is therefore harmless (cf.
hypothesis of the claim). The inductive claim concerning additional conditioning
follows along the same lines (just by adding further events in min-entropies), but is
a bit cumbersome to state succinctly.

Our corollary follows from the claim for k = 1 and the inequality `−1
` < 1, i.e., the

expected Hint equals Hint1.

Remark 3. The proof above shows that the size of Hint is in fact polynomial in `
and D.

We now state an elementary proposition which allows us to obtain a certain
bound on the number of high min-entropy blocks given H∞(X1, . . . , X`) ≥ β`n for
β ≤ 1.

Proposition 1. Let x1, . . . , x` be a sequence of numbers satisfying 0 ≤ xi ≤ n and
x1 + · · · + x` = β`n for some 0 < β ≤ 1. Then, for any 0 ≤ γ < β there are more
than bβ−γ1−γ `c numbers xi such that xi ≥ γn.

A proof of this fact appears in Appendix C. As a corollary we obtain:

Corollary 3 (High min-entropy blocks). Let X1, . . . , X` be random variables
distributed over {0, 1}n and satisfying H∞(X1, . . . , X`) ≥ β`n. Then, for any D
and γ < β(1 − 1

D) there exists a random variable Hint such that with probability
1− 2D`(`− 1) · 2−

βn
2D the number of blocks Xi satisfying H∞(Xi|Hint = h) ≥ γn is

greater than bβ(1− 1
D)−γ

1−γ `c. In particular, for D = 2 and γ = β
4 we obtain that there

11

exists a random variable Hint such that with probability 1 − 4`(` − 1) · 2−
βn
4 there

exists b β
4−β `c ≥ b

β`
4 c blocks of min-entropy H∞(Xi|Hint = h) ≥ βn

4 .

Proof. For the general case, we consequently use Corollary 2 and Proposition 1. We
obtain the special case by direct specialization.

5 Key derivation procedure based on sensitive data

In this chapter, we define formally a class of protocols whose security can be ex-
pressed in terms of a game with a certain probability of success. Consequently, we
define two properties, security and privacy, of a randomised transformation function
kdp(−,H) which makes it suitable for derivation of keys from sensitive disk data.

5.1 Security games
Definition 1 (Security game). Let K be a random variable. A security game
against an adversaryA based on randomnessK is a tuple Game = (C,KeyGen,SetupCh,SetupAdv,Execute)
consisting of an interactive algorithm C together with a randomized key generation
procedure KeyGen, a pair of setup procedures SetupCh, SetupAdv and an execution
procedure Execute which given an interactive algorithm A operates as described in
Fig. 1 below.

Execution procedure Execute of Game = (C,KeyGen,SetupCh,SetupAdv).

1. The key is initialized by key← KeyGen(K) and then the input tapes of A and
C are set to SetupAdv(key) and SetupCh(key) respectively.

Execution phase:
2. The following loop is conducted:

Algorithm 1: Main loop
1 msgA = ⊥ /* first message is empty */
2 while stateC 6∈ {Accept, Reject} do
3 A : (stateA, msgA) (state′

A, msgC)
4 C : (stateC, msgC) (state′

C , msgA)
5 end

3. When C transits to either Accept or Reject the execution terminates.

Output: The final state stateC ∈ {Accept, Reject} of the challenger C.

Fig. 1. Execution procedure

In lines 3 and 4 of the Main Loop we used the notation B : (state, msg)
(state′, msg′) which indicates that the interactive machines B resumes in state
state given an input message msg and transits to state state′ with an output
message msg′. Given all the parameters, we denote the execution of the game by
Game[A� C, key← KeyGen(K)].

12

Intuitively, the operation of Game[A � C, key ← KeyGen(K)] boils down to an
adaptive, sequential (numbered by round) exchange of messages between interac-
tive machines A and C initialized by the values SetupAdv(key) and SetupCh(key)
respectively, which ends up in the last state of the algorithm C.

Remark 4 (Complexity). We can require that C or A belong to a certain complexity
class TM which might be characterized by number of Turing machine steps allowed
to be taken, access to some oracle O (e.g., hash, leakage) or a memory bound. For
example, to describe an adversary which works in time polynomial in the size of
the key key and can access leakage oracle O(key) with a leakage bound λ, we write
that A ∈ TMO(key)

λ (poly(|key|). While computing any kind of complexity (e.g.
time, storage, leakage), as a final result we consider the total amount of resources
used during all transitions conducted (cf., e.g., line 3 and 4 above) in an interactive
algorithm. In particular, an adversary A belongs to TMO(key)

λ if the total amount
of leakage obtained during all transitions of A does not exceed λ bits.

Remark 5 (Relation to classical Interactive Turing Machines). In fact the definition
given above is a RAM-based analogue of interactive Turing machines. We resigned
from the formal approach based on common input tapes assumption in order to
emphasize the sequential nature of the computation, which we shall exploit in the
upcoming considerations.

The above security game is tailored to cover a broad range of security defini-
tions of various cryptographic protocols. We now state the description of a class of
cryptographic protocols whose security is grasped through game-based definition.

Definition 2 (Game security).We say that Game = (C,KeyGen,SetupCh,SetupAdv,Execute)
based on randomness K is (ε,TM)-secure iff for every A ∈ TM the probability that
execution ends in Accept satisfies

Pr(Game[A� C, key← KeyGen(K)] = Accept) 6 ε,

where the probability is taken over K and all random choices of C and A.

Example 3. The vast majority of cryptographic protocols are covered by the above
game-based definition. Good example is identification scheme in BRM from [1].
Another protocol that fits the definition is described in the introduction standard
Merkle-tree authentication protocol.

Note, that the notation ε for the security parameter might be confusing as we
do not distinguish the case of unpredictability and indistinguishability applications
(see [10] for precise definitions), i.e., the security definition above covers the case of
ε ≈ 0 and ε ≈ 1

2 .

5.2 Security and privacy of key derivation functions

After describing what security games are, we are ready to formulate precise def-
initions for intuitive requirements of privacy and security that we impose on our
key-derivation procedure. From now on, D is a random variable representing disk
data, λ denotes the number of bits adversary can leak, N is the maximal value of
min-entropy of disk data and p is the ratio of actual min-entropy H∞(D) and N .

13

Definition 3 (privacy of a key-derivation procedure). We say that a ran-
domized function kdp(−,H) : {0, 1}N → {0, 1}M is (p, λ,∆λ, q, ε)-private if there
exists a simulator S ∈ TMO(D)

λ+∆λ such that for every random variable D ∈ {0, 1}N

of min-entropy H∞(D) ≥ pN and every adversary A ∈ TMO(D,H),H
λ,q operating on

key = kdp(D,H), the output distributions satisfy:

(Output(A(key)), D) ≈ε (Output(S(A)), D).

The privacy definition tracks down the amount of additional leakage ∆λ that
is necessary to constructor S capable of simulating the behaviour of any adversary
AO,Hλ,q operating on the key generated by the dispersing procedure. Observe that
any algorithm A(key) ∈ TMO(D),H

λ,q (cf. Section 3 for the formal specification of
this complexity class) is provided with access to an oracle H, i.e., can test values
of a random function, and moreover issues a sequence of leakage queries OD,H(fi),
which may also depend on the random oracle H, i.e., can learn some information
concerning D depending on the same random function H.

Definition 4 (Security of a key-derivation procedure). We say that a ran-
domized function kdp(−,H) : {0, 1}N → {0, 1}M is (p, λ,∆λ, q, ε)-secure if for any
(ε′,TMO(key)

λ)-secure game Game = (C, id,SetupCh,SetupAdv,Execute)2 for random-
ness K ← UN , the game GameDisk = (C, kdp(D,H),SetupCh,SetupAdv,Execute)
based on randomness (D,H) is (ε′ + ε,TMO(D,H),H

λ−∆λ,q)-secure.

The general aim of the security definition is to grasp the intuitive expectation
that the an adversary playing against key derived from sensitive data should not
gain any advantage comparing to the case of using a redundant, truly random key.
Note that it suffices to give A the access to key = kdp(D,H) as the transcript of
any scheme’s execution can be generated based on key.

6 Disperse as a key derivation procedure

6.1 Disperse graph

Throughout the whole construction we shall make use of bipartite right M -regular
graphs identified with functions σ : [N1] × [M] → [N0] by the following recipe. By
Gσ we denote a bipartite graph G with the sets of vertices equal to two disjoint sets
[N0], [N1] and with edges going from n ∈ [N1] to σnm ∈ [N0] for any m ∈ [M]. The
following definition is crucial:

Definition 5. A bipartite graph G = (V 0 tV 1, E) is a right (K,L)-disperser if for
every set S ⊂ V 1 such that |S| = K the neighbourhood N(S) satisfies

|N(S)| > L,

i.e. the sets of size K expands into sets of size at least L.

2 for detailed description of Game see Definition 1

14

We often make use of explicit `d-regular (`e, (1 − η)`)-dispersers. We implicitly
assume that the numbers d, e satisfy d < 1, e < 1 and d + e > 1. For more details
on dispersers and further definitions see Appendix B.

In the Fig. 2, we describe function Disperse explicitly. For the sake of simplic-
ity, we identify vertices of graph with labels they contain. An exemplary Disperse
function is shown in Fig. 3.

Implementation of DisperseGσ (D,H).
Input: a bitstring D = D1 . . . D` for D1, . . . , D` ∈ {0, 1}n; Gσ a d-regular biparite
graph (D t D′, E), where D = (D1, . . . , D`) and D′ = (D′1, . . . , D′`), such that
N(D′i) = {Dσi1

, . . . , Dσi
d
}; function H : {0, 1}dn+log ` → {0, 1}n

Output: a bitstring D′.

Execution:

1. Assign values to the "upper" vertices of Gσ:
D′i ← H

(
i,Dσi1

, . . . , Dσi
d

)
, for i = 1, . . . , `.

2. Return D′ = D′1, . . . , D
′
`.

Fig. 2. Operation of dispersion function.

D1 D2 D3 D`−2 D`−1 D`

D′1 D′2 D′3 D′`−2 D′`−1 D′`

G
. . .

Fig. 3. An exemplary DisperseGσ (D,H)

We now state our main result that for an appropriately chosen graph Gσ the
function DisperseGσ is in fact private and secure for reasonable parameters.

Theorem 1. Let Gσ be a `d-regular (`e, (1− η)`)-right disperser and H a random
oracle. Then for any β satisfying p − λ

`n > β > 4η the function DisperseGσ (−,H) :
{0, 1}`n → {0, 1}`n is:

– (p, λ,∆λ = `e(log q + log `), q = 2o(`1−e)n, O(`2 · 2
−βn

4))-private
– (p, λ,∆λ = `e(log q + n), q = 2o(`1−e)n, ε = O(`2 · 2

−βn
4))-secure.

Since the proof of this theorem is long, it is divided into three parts – at the
beginning it is shown that even under the presence of leakage, function Disperse
effectively hides the data underneath; then, basing on this result, privacy property
is proven; next security is shown. At the end, we also shortly elaborate about the
efficiency of DisperseGσ .

Before proceeding to actual proofs we shortly elaborate about the bounds on
the parameters.

15

Remark 6 (Efficiency of DisperseGσ). It is important to note that in order to obtain
a single bit of a derived key one need process `d blocks of disk data. This therefore
constitutes a leakage-time trade-off for the operation of our function. Namely re-
duction of d allows to compute a single bit of key more efficiently with a cost of an
increased parameter ∆λ proportional to `e (recall that d+ e > 1).

Remark 7 (Bounds on parameters). The bounds p − λ
`n > β, resp. β > 4η express

natural requirements that leakage ratio λ
`n should not exceed the actual ratio p, resp.

the quality of disperser η should be superior to the entropy reserve represented by
p− λ

`n . The bound on q = 2o(`1−e)n corresponds to a robust, exponential bound on
the random oracle query-based complexity of an adversary.

6.2 One-wayness of Disperse

The Disperse procedure possesses a certain one-wayness property expressed in the
following lemma. We precede it with a necessary definition.

Definition 6 (Bad query). Given a random variable D, a bipartite right d-regular
graph Gσ and a random oracle H we say that a random oracle query H(b), submitted
by some Turing Machine A, is bad if the argument b equals (i,Dσi1

Dσi2
. . . Dσi

d
) for

some i ∈ {1, . . . , `}, i.e., the argument of random oracle query equals one of the
values defined by graph Gσ and a random variable D.

By BadA we denote the set of all bad queries. By indicesA we denote a list of all
pairs (k, ik) of indices k ∈ {1, . . . , q} and ik ∈ {1, . . . , `} such that k is the smallest
index of a bad random oracle query of A which is equal to (ik, Dσ

ik
1
. . . D

σ
ik
δ

). Since
the total number of queries is q and Gσ has 2` vertices, we can describe the list
indicesA using |indicesA| · (log `+ log q) bits.

Lemma 4 (One-wayness of Disperse). Let Gσ be a `d-regular (`e, (1− η)`)-right
disperser and D = (D1, . . . , D`) ∈ {0, 1}n` be a random variable of min-entropy
p`n. Then, the probability that an algorithm A(DisperseGσ (D,H)) ∈ TMO(D,H),H

λ,q
makes at least `e different bad queries satisfies:

Pr(|indicesA| ≥ `e) = O(`2 · 2
−βn

4)

for any β satisfying p− λ
`n > β > 4η and q = 2o(`1−e)n.

Proof. Due to technical nature the proof is deferred to Appendix A.2.

6.3 Privacy of Disperse

In this section we show that Disperse is in fact a private key-derivation procedure.
The bottom line of the proof is an application of one-wayness together with a
careful design of leakage query. It is important to note that we significantly use our
computational model, where we can submit potentially non-polynomial queries.

Theorem 2 (Privacy). Let Gσ be a `d-regular (`e, (1− η)`)-right disperser and
D = (D1, . . . , D`) ∈ {0, 1}n` be a random variable of min-entropy p`n. Then,

16

there exists a simulator S ∈ TMO(D)
λ+`e(log q+log `) such that for every adversary A ∈

TMO(D,H),H
λ,q operating on the key key = DisperseGσ (D,H), the output distributions

satisfy:
(Output(A(key)), D) ≈ε (Output(S(A)), D)

for ε = O(`2 · 2
−βn

4), q = 2o(`1−e)n and any β satisfying p− λ
`n > β > 4η.

In order to give a proof, we shall construct a machine S such that for any ad-
versary A(DisperseGσ (D,H)) ∈ TMO(D,H),H

λ,q the result of S(A) is indistinguishable
from A(K) conditioned on D. We precede the construction by an essential trans-
formation of random oracles and leakage functions, which plays a role of random
oracle re-programming.

Definition 7 (Twisted random oracle). Let H be a random oracle and L =
〈(arg1, v1), . . . , (argk, vk)〉 be a list of pairs of an argument argi together with a
potential value vi. We define a twisted random oracle H{L} to be an oracle whose
operation is described as follows:

H{L}(q) =
{
vi if q = argi for some i
H(q) otherwise.

In particular, given a random variable D, a random oracle H and a random vari-
able K = 〈K1, . . . ,K`〉 ∈ {0, 1}`n, by H{D

Gσ−−→ K} we denote a random oracle
H{〈(Dσ1

i
. . . D

σ
deg(G)
i

,Ki)〉i=1...`}. Observe that if K ∼ U`n is independent of H

then the distributions of H{D Gσ−−→ K} and H are the same.

Construction of the simulator The operation of S(A), based on the description
of A, consists of the following steps described in Fig. 4.

Before giving a formal proof of statistical indistinguishability of output distribu-
tions, we give some claryifing remarks about consecutive steps of the construction.
Firstly, we should emphasize that in Step (2) we crucially use the properties of our
leakage model by querying leakage oracle with potentially non-polynomial function
simulating whole behaviour of A. Secondly, observe that in Step (2) the simulator
leaks only the indices of queries, not their actual arguments as those can be observed
during Step (3) of simulation. Thirdly, note that in Step (3a) we need not perform
any additional leakage apart from the value of f , as f{D Gσ−−→ K} can be obtained
inside the leakage query as in Step (2). Therefore the leakage excess consists merely
of the list indicesA and consequently ∆λ = |indicesA|(log q + log `).

Proof (Proof of Theorem 2). We shall now argue that the simulator S constructed
above satisfies the requirements of Theorem 2 for any adversary A. Concretely,
we prove that S perfectly simulates the execution of any adversary A, unless
|indicesA| ≥ `e. Therefore, for any adversary A the output’s distribution of S(A)
satisfies:

(Output(A(K)), D) ≈ε (Output(S(A)), D),

17

Implementation of the simulator S.

1. S initializes a random oracle H, i.e., creates a table H of uniformly random
values associated to all inputs of H (or use OracleQueryList). Moreover, it
draws a random variable K ← U`n.

2. S initializes the random tape of A to a fixed sequence of uniformly random bits
and then queries the leakage oracle with the Turing machine ind : {0, 1}|D| →
{0, 1}∗ which operates as follows:

Operation of ind:

Description of the function Simulate the execution of A(K)
step by step with random oracle queries H substituted with
H{D Gσ−−→ K}. Every time the adversary A issues a leakage ora-
cle query given by a Turing machine f , the simulator S provides
her with a result of a twisted leakage function f{D Gσ−−→ K}, i.e.,
a Turing machine with all random oracle queries substituted
with H{D Gσ−−→ K}.

Result The list indicesA. Returns indicesA if its length satisfies
|indicesA| < `e, or ⊥ otherwise.

Complexity Leakage: |indicesA|(log q + log `)

3. S executes A(K) with a previously initialized (see Step (2)) random tape and
H sampled above (see Step (1)), and then runs it step by step with the following
exceptions:

(a) When A issues a leakage query given by a Turing machine f , the simulator
S substitutes it with a twisted leakage function f{D Gσ−−→ K}.

(b) S keeps track of the number k of random oracle queries issued to H and
every time it appears in a pair (k, ik) ∈ indicesA, replaces the value returned
by H with Kik . Moreover, it stores the arguments ak of queries appearing
in the list indicesA and substitutes the value of H with Kik every time ak
appears as an argument.

Fig. 4. Implementation of Simulator

where ε = Pr(|indicesA| ≥ `e). Firstly, note that the execution of A inside the
leakage function indu (see Step (2)) is perfectly equivalent to an honest execution of
A as H{D Gσ−−→ K} is distributed equally to H. Consequently, the actual simulation
given in Step (3) differs from a perfect simulation only by the condition on |indicesA|,
as its perfectly equivalent to the one performed during simulators leakage phase.
This condition forces the return of⊥ instead of appropriate indicesA with probability
Pr(|indicesA| ≥ `e) = ε. Consequently, we bound ε by a factor negligible (in a certain
sense) in the security parameters. Directly by applying Lemma 4 for an adversary
A we see that:

ε = Pr(|indicesA| ≥ `e) = O(`2 · 2
−βn

4).
This completes the proof.

18

6.4 Security of Disperse

Again, based on one-wanness of Disperse we prove that our function satisfies the
security requirements. We have the following:

Theorem 3 (Security). Let Game = (C, id,SetupCh,SetupAdv,Execute)3 be an ε-
secure game based on randomness K ∼ Un` for the class of adversaries TMO(K)

λ

then for every `d-regular (`e, (1− η)`)-disperser Gσ, β satisfying p − λ
`n > β > 4η

and q = 2o(`1−e)n, the game GameDisk = (C,DisperseGσ ,SetupCh,SetupAdv,Execute)
based on randomness (D,H) of min-entropy H∞(D) = p`n is ε+O(`2 ·2

−βn
4)-secure

for adversaries in TMO(D,H),H
λ−∆λ , where ∆λ = `e(log q + n).

Proof. Here, we omit the proof as it is technical and its main idea is analogous
to the one presented in the proof of privacy. For the details see Appendix A.3.
The high-level idea is to use reduction and apply Lemma 4 to bound the success
probability.

References

1. Alwen, J., Dodis, Y., Wichs, D.: Leakage-resilient public-key cryptography in the
bounded-retrieval model. In: Advances in Cryptology - CRYPTO 2009, 29th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2009.
Proceedings. pp. 36–54 (2009), http://dx.doi.org/10.1007/978-3-642-03356-8_3

2. Barak, B., Dodis, Y., Krawczyk, H., Pereira, O., Pietrzak, K., Standaert, F.X., Yu, Y.:
Leftover Hash Lemma, revisited. IACR Cryptology ePrint Archive 2011, 88 (2011),
http://dblp.uni-trier.de/db/journals/iacr/iacr2011.html#BarakDKPPSY11

3. Bennett, C., Brassard, G., Maurer, U.M.: Generalized privacy amplification. IEEE
Transactions on Information Theory 41, 1915–1923 (1995)

4. Boyen, X., Dodis, Y., Katz, J., Ostrovsky, R., Smith, A.: Secure remote authenti-
cation using biometric data. In: Cramer, R. (ed.) EUROCRYPT. Lecture Notes in
Computer Science, vol. 3494, pp. 147–163. Springer (2005), http://dblp.uni-trier.
de/db/conf/eurocrypt/eurocrypt2005.html#BoyenDKOS05

5. Brakerski, Z., Kalai, Y.T.: A parallel repetition theorem for leakage resilience. In:
Theory of Cryptography - 9th Theory of Cryptography Conference, TCC 2012,
Taormina, Sicily, Italy, March 19-21, 2012. Proceedings. pp. 248–265 (2012), http:
//dx.doi.org/10.1007/978-3-642-28914-9_14

6. Christian Cachin, U.M.: Entropy Measures and Unconditional Security in Cryptogra-
phy (1997)

7. Crescenzo, G.D., Lipton, R.J., Walfish, S.: Perfectly secure password protocols in the
bounded retrieval model. In: TCC. pp. 225–244 (2006)

8. Damgård, I., Fehr, S., Renner, R., Salvail, L., Schaffner, C.: A tight high-order en-
tropic quantum uncertainty relation with applications. In: Advances in Cryptology
- CRYPTO 2007, 27th Annual International Cryptology Conference, Santa Barbara,
CA, USA, August 19-23, 2007, Proceedings. pp. 360–378 (2007), http://dx.doi.org/
10.1007/978-3-540-74143-5_20

9. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: How to generate
strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1), 97–139
(2008)

10. Dodis, Y., Pietrzak, K., Wichs, D.: Key derivation without entropy waste. In: EURO-
CRYPT. pp. 93–110 (2014)

3 id denotes the identity mapping

19

http://dx.doi.org/10.1007/978-3-642-03356-8_3
http://dblp.uni-trier.de/db/journals/iacr/iacr2011.html#BarakDKPPSY11
http://dblp.uni-trier.de/db/conf/eurocrypt/eurocrypt2005.html#BoyenDKOS05
http://dblp.uni-trier.de/db/conf/eurocrypt/eurocrypt2005.html#BoyenDKOS05
http://dx.doi.org/10.1007/978-3-642-28914-9_14
http://dx.doi.org/10.1007/978-3-642-28914-9_14
http://dx.doi.org/10.1007/978-3-540-74143-5_20
http://dx.doi.org/10.1007/978-3-540-74143-5_20

11. Dodis, Y., Yu, Y.: Overcoming weak expectations. In: TCC. pp. 1–22 (2013), http:
//dblp.uni-trier.de/db/conf/tcc/tcc2013.html#DodisY13

12. Dziembowski, S.: Intrusion-resilience via the bounded-storage model. In: Halevi, S.,
Rabin, T. (eds.) TCC. Lecture Notes in Computer Science, vol. 3876, pp. 207–224.
Springer (2006)

13. Dziembowski, S., Kazana, T., Wichs, D.: Key-evolution schemes resilient to space-
bounded leakage. In: Rogaway, P. (ed.) CRYPTO. Lecture Notes in Computer Science,
vol. 6841, pp. 335–353. Springer (2011)

14. Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: FOCS. pp. 293–
302. IEEE Computer Society (2008), http://dblp.uni-trier.de/db/conf/focs/
focs2008.html#DziembowskiP08

15. Genkin, D., Shamir, A., Tromer, E.: Rsa key extraction via low-bandwidth acoustic
cryptanalysis. In: CRYPTO (1). pp. 444–461 (2014)

16. Guruswami, V., Umans, C., Vadhan, S.P.: Unbalanced expanders and randomness
extractors from Parvaresh–Vardy codes. J. ACM 56(4) (2009)

17. Håstad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator from
any one-way function. SIAM J. Comput. 28(4), 1364–1396 (Mar 1999), http://dx.
doi.org/10.1137/S0097539793244708

18. Hoory, S., Linial, N., Wigderson, A., Overview, A.: Expander graphs and their appli-
cations. Bull. Amer. Math. Soc. (N.S 43, 439–561 (2006)

19. Kocher, P.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other
systems. In: Proceedings of the 16th Annual International Cryptology Conference on
Advances in Cryptology. pp. 104–113. CRYPTO ’96, Springer-Verlag, London, UK,
UK (1996), http://dl.acm.org/citation.cfm?id=646761.706156

20. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. Lecture Notes in Computer
Science 1666, 388–397 (1999), citeseer.ist.psu.edu/kocher99differential.html

21. Merkle, R.C.: Secrecy, Authentication, and Public Key Systems. Ph.D. thesis, Stan-
ford, CA, USA (1979), aAI8001972

22. Nisan, N., Ta-Shma, A.: Extracting randomness: A survey and new constructions.
Journal of Computer and System Sciences 58(1), 148 – 173 (1999), http://www.
sciencedirect.com/science/article/pii/S0022000097915464

23. Nisan, N., Zuckerman, D.: Randomness is linear in space. J. Comput. Syst. Sci. 52(1),
43–52 (1996), http://dx.doi.org/10.1006/jcss.1996.0004

24. Quisquater, J.J., Samyde, D.: Electromagnetic analysis (ema): Measures and counter-
measures for smart cards. In: Attali, I., Jensen, T.P. (eds.) E-smart. Lecture Notes in
Computer Science, vol. 2140, pp. 200–210. Springer (2001), http://dblp.uni-trier.
de/db/conf/esmart/esmart2001.html#QuisquaterS01

25. Radhakrishnan, J., Ta-Shma, A.: Bounds for dispersers, extractors, and depth-two
superconcentrators. Siam Journal on Discrete Mathematics 13, 2000 (2000)

26. Vadhan, S.: Pseudorandomness. http: // people. seas. harvard. edu/ ~salil/
pseudorandomness/ (2012)

27. Wullschleger, J.: Oblivious-transfer amplification. In: Advances in Cryptology - EU-
ROCRYPT 2007, 26th Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques, Barcelona, Spain, May 20-24, 2007, Proceedings.
pp. 555–572 (2007), http: // dx. doi. org/ 10. 1007/ 978-3-540-72540-4_ 32

28. Yao, Y., Li, Z.: Overcoming weak expectations via the Rényi entropy and the ex-
panded computational entropy. In: Padró, C. (ed.) Information Theoretic Security
- 7th International Conference, ICITS 2013, Singapore, November 28-30, 2013, Pro-
ceedings. Lecture Notes in Computer Science, vol. 8317, pp. 162–178. Springer (2013),
http: // dx. doi. org/ 10. 1007/ 978-3-319-04268-8_ 10

20

http://dblp.uni-trier.de/db/conf/tcc/tcc2013.html#DodisY13
http://dblp.uni-trier.de/db/conf/tcc/tcc2013.html#DodisY13
http://dblp.uni-trier.de/db/conf/focs/focs2008.html#DziembowskiP08
http://dblp.uni-trier.de/db/conf/focs/focs2008.html#DziembowskiP08
http://dx.doi.org/10.1137/S0097539793244708
http://dx.doi.org/10.1137/S0097539793244708
http://dl.acm.org/citation.cfm?id=646761.706156
citeseer.ist.psu.edu/kocher99differential.html
http://www.sciencedirect.com/science/article/pii/S0022000097915464
http://www.sciencedirect.com/science/article/pii/S0022000097915464
http://dx.doi.org/10.1006/jcss.1996.0004
http://dblp.uni-trier.de/db/conf/esmart/esmart2001.html#QuisquaterS01
http://dblp.uni-trier.de/db/conf/esmart/esmart2001.html#QuisquaterS01
http://people.seas.harvard.edu/~salil/pseudorandomness/
http://people.seas.harvard.edu/~salil/pseudorandomness/
http://dx.doi.org/10.1007/978-3-540-72540-4_32
http://dx.doi.org/10.1007/978-3-319-04268-8_10

A Proofs of lemmata and theorems
A.1 Technical lemma
Here, we state a technical lemma that is a broad generalization of Lemma B.1 given
in the work by Dziembowski, Kazana, and Wichs [13] and leads us to the proof
of the main part of our work, i.e., Lemma 4 and its consequences. The statement
may not look very interesting on its own: it is rather a wrapper for Corollary 2 and
Corollary 3 stated in such a way that it will be directly used to prove Lemma 4.
Similar idea was originally used in [13].

We start with a definition of a Guessing game which is tailored to be used in
proof of Lemma 4 (intuitevely it describes exactly skills of adversary what we will
deal with later).
Definition 8. Let (X,H) be random variables. A Guessing game against adversary
A consists of the steps described in Fig. 5.

Guessing game for adversary A.

Input: random variables (X,H), where X = (X1, . . . , X`) and H = (Hv1 , . . . ,HvN)
for some parameters `,N and labels vi. a Furthermore we declare k1, k2, leakage
parameter λLeak and p such that X has min-entropy at least p` logN .

Leakage phase:
1. A issues a leakage query Leak(X1, . . . , X`,H) of length λLeak.

First phase:

2. A adaptively queries H by submitting a label v and receiving Hv.
3. A chooses a subset of indices S1 ⊂ [`] of size k1 along with the guesses for all

values (Xj |j ∈ S1).

Second phase:

4. A receives all values of {Xi|i /∈ S1}, i.e., all blocks that she did not try to guess.
5. A outputs a subset of labels S2 ⊂ {vi}i=1..N of size k2 which were not previously

(i.e., in the first phase) queried along with guesses for all values (Hv|v ∈ S2).

a The values of Xi should be considered as certain H labels.

Fig. 5. Definition of Guessing game
Lemma 5. Let (X1, . . . , X`,H) be a random variable such that:
1. (X1, . . . , X`) and H are independent,
2. H is a vector of random independent N = 2δn blocks of length n,
3. each Xi is n bits long,
4. H∞(X1, . . . , X`) = p`n for some 0 ≤ p ≤ 1.
Now let A be a randomized algorithm playing Guessing game with λLeak = λn. Then,
the probability that A outputs all correct guesses (in both phases) is at most

2−εn + 2−(δn−1) + 4`2 · 2−βn/4 + 2−n((p−β)`−λ−ε−4δ+k2)

if k1 > `− bβ4 `c and p` < N , for any ε > 0 and β < p.

21

Proof. Let X = (X1, . . . , X`) and E be the list of all answers to q queries made
by A in the first phase, and observe that |E| = qn. In this proof we deal with the
distribution:

(X,H|Leak(X,H) = l, E = e)
and apply the chain rule for it. Firstly, notice that by Lemma 1 with probability
not less than 1− 2−εn we have that:

H∞(X,H|Leak(X,H) = l, E = e) ≥ p`n+Nn−λLeak−|E|−εn = n (p`+N − λ− q − ε) .

By Corollary 1 for∆ = 2δ we get that (with probability at least 1−2−(∆n−log(p`+N−λ−q−ε)) ≥
1− 2−(∆n−log(N)−1) ≥ 1− 2−(δn−1) by the assumption p` < N):

H∞(X|Leak(X,H) = l, E = e,Hint = h) + H∞(H|X,Leak(X,H) = l, E = e,Hint = h) ≥
≥ n (p`+N − λ− q − ε− 4δ)

So, either:
H∞(X|Leak(X,H) = l, E = e,Hint = h) ≥ βln (11)

or:

H∞(H|X,Leak(X,H) = l, E = e,Hint = h) ≥ n (p`+N − λ− q − ε− 4δ − β`) .
(12)

Now, as k1 > `−bβ4 `c from Lemma 6 we know that the probability of all correct
guesses in the first phase in case (11) is less then 4`2 · 2−βn/4. On the other hand,
in case (12) we denote by w1, . . . , wq+k2 the labels of all queries conducted in the
first phase together with the list of k2 guesses from the second phase. Then, the
probability of all correct guesses in the second phase is less then

2−H∞(Hw1 ,Hw2 ,...,Hwq+k2
|Leak(X,H)=l,E=e,Hint=h)

.

After setting El,e,h to be the event (Leak(X,H) = l, E = e,Hint = h) and Ĥ to be
the complement of Hw1 ,Hw2 , . . . ,Hwq+k2

by Lemma 1 we see that:

H∞(Hw1 ,Hw2 , . . . ,Hwq+k2
|El,e,h) ≥ H̃∞(Hw1 ,Hw2 , . . . ,Hwq+k2

|Ĥ;El,e,h)

= H̃∞(H|Ĥ;El,e,h) ≥ H∞(H|El,e,h)− |Ĥ|
= H∞(H|El,e,h)− (N − q − k2)n
= n (p`+N − λ− q − ε− 4δ − β`−N + q + k2)
= n (p`− λ− ε− 4δ − β`+ k2) .

Therefore, by the union bound the final probability is bounded by:

2−εn + 2−(δn−1) + 4`2 · 2−βn/4 + 2−n((p−β)`−λ−ε−4δ+k2).

Remark 8. Note that in the above reasoning we assumed that A learns Leak(X,H),
E and Hint (cf. conditions in (11) and (12)). This might be confusing since in the
definition of Guessing game we assumed that only Leak(X,H) and E are learned.
However, any additional input may only increase the probability of winning in any
game. Therefore, the statement is proven. We believe that such reasoning (“addi-

22

tional information may only help”) is the major motivation for our definition of
spoiling knowledge chain rule for min-entropy.

Lemma 6. Let X = (X1, . . . , Xl) be a sequence of (possibly dependent) random
variables distributed over {0, 1}n. Now let A be a randomized algorithm that ob-
tains a leakage Leak(X) as an input and consequently outputs a subset of S ⊂
{1, . . . , l} along with guesses for all values {Xi|i ∈ S}. Now, if |S| > ` − bβ4 `c and
H̃∞(X|Leak(X)) > βln, then the probability that A outputs all correct guesses is
at most:

4`2 · 2−βn/4.

Proof. Here we just use Corollary 3: after learning Leak(X) and Hint(X) with
probability at least 1−4`(`−1)2−βn/4 there are at least bβ4 `c blocks of min-entropy
of at least βn/4. The algorithm A is supposed to guess more than `−bβ4 `c blocks so
at least one block with min-entropy βn/4 is supposed to be guessed. This happens
with probability at most 2−βn/4 and therefore by the union bound and the inequality
4`(`− 1) + 1 ≤ 4`2 we obtain the claim. As described in remark above, here we also
assume that A learns both Leak(X) and Hint(X).

A.2 Proof of one-wayness of Disperse

Here, we shall use the Guessing game defined in Appendix A.1. For a random oracle
query b ∈ {0, 1}`dn+log ` we denote by b[i] (for i > 0) an i-th n-elementary block of
b and by b[0] the (log `)-elementary block i.e. b = 〈b[0], b[1], . . . , b[`d]〉.

Lemma 7 (One-wayness of Disperse). Let Gσ be a `d-regular (`e, (1− η)`)-right
disperser and D = (D1, . . . , D`) ∈ {0, 1}n` be a random variable of min-entropy p`n.
Then, for any ` sufficiently large the probability that an algorithm A(DisperseGσ (D,H)) ∈
TMO(D,H),H

λ,q makes at least `e different bad queries satisfies Pr(|indicesA| ≥ `e) =
O(`22−βn/4) for any β satisfying p− λ

`n > β > 4η and q = 2o(`1−e)n.

Proof. Given an adversary A such that its associated list indicesA is longer or equal
to `e with probability ξ we construct a player PA in game Guessing 〈X1,...,X`〉,H (p, k1, k2, λLeak)
for

(X1, . . . , X`) = (D1, . . . , D`);

k1 = (1− η)` > `− bβ4 `c; satisfied for ` large enough by the assumption on β

k2 = `

λLeak = λ+ n`+ `e(log q + log `),

winning with probability ξ. Therefore, we conclude that

ξ < 2−εn + 2−(`dn+log `−1) + 4`2 · 2−βn/4 + 2−n
(
(p−β− λ

`n)`− `e(log q+log `)
n −ε−4(`d+ log `

n)
)

by Lemma 5 in Appendix A.1. The detailed construction of PA is described in
Fig. 6.

23

Implementation of a player PA.

Learning phase:

1. Player PA leaks ` values (D′1, . . . , D′`) =(
H(1, Dσ1

1
. . . Dσ1

`d
), . . . ,H(`,Dσ`1

. . . Dσ`
`d

)
)
from a leakage oracle O;

2. initializes adversary A ∈ TMO(D,H),H
λ,q ; feeds her with D′1, . . . , D′`, then submits

her to the leakage oracle Oa to get a hint Leak(D,H) containing:
– the results of all leakage queries by A;
– a list indices′ of at most `e first items of list indicesA

Game phase:

The adversary A is now executed with the following recipe for answering to leakage
and oracle queries:

1. The answers to leakage queries are obtained using Leak(D,H).
2. The random oracle queries are obtained using H with an exception of elements
H(j,Dσj1

. . . Dσj
`d

) given in Leak(D,H).

First phase 1. Everytime A issues a bad oracle query (ik, Dσ
ik
1
, . . . , D

σ
ik

`d

) whose

index k appears on the list indices′ the player PA adds elements D
σ
ik
j

to its
list of guesses.

Second phase 1. PA guesses random oracle queries leaked in the first item of
Learning phase.

a submitting A(D′
1, . . . , D′

`) to O means that O gets a description of Turing Machine
realising A along with input tape containing D′

1, . . . , D′
`.

Fig. 6. Implementation of a player PA

The first step is to show that a player PA follows the rules of the game:

Guessing 〈D1,...,D`〉,H (p, (1− η) · `, `, λ+ n`+ `e(log q + log `)) .

For this sake, we show that:

– Length of hint λLeak = |Leak(D1, . . . , D`,H)| is not greater than leakage λ of
the adversary A along with n` bits needed to feed the A and `e(log q+ log `) to
handle bad queries. Hence λLeak = λ+ n`+ `e(log q + log `).

– Rules of the game requires that k1 > `−
⌊
β`
4

⌋
, which follows from the assump-

tions on β.

Now, we need to show that PA: a) guesses at least k1 elements in the first phase
with probability ξ and b) guesses k2 = ` elements in the second phase. The claim
b) follows from directly from the definition of Leak(D,H). Namely, Leak(D,H)
contains the values ofH(i,Dσi1

. . . Dσi
`d

) for i = 1 . . . ` which are explicitly prohibited
from being queried (Item 2 of the Game phase) and therefore can be guessed in the
Second phase of operation of PA. In order to prove a) we use the fact that every

24

bad query leads to the capability of guessing `d associated Dσi
j
’s and apply the

properties of disperser graphs. More precisely, by the assumptions on A the length of
indices′ is equal to `e with probability ξ. In this case, the neighbourhood of vertices
labeled with indices′ = {i1, . . . , i`e} consists of at least (1 − η)` elements (using
basic property of disperser Gσ) and therefore the elements Dij

k for j ∈ {1, . . . , `e}
and k ∈ {1, . . . , `d} can be guessed in the First phase of operation of PA.

This leaves us with the proof that under our assumptions the value 2−εn +
2−(`dn+log `−1) + 4`2 · 2−βn/4 + 2−n

(
(p−β− λ

`n)`− `e(log q+log `)
n −ε−4(`d+ log `

n)
)
is in fact

equal to O(4`2 · 2−βn/4). This follows from simple observations that: ε is arbitrary,
`d > 1, `e(log q+log `)

n − ε − 4(`d + log `
n) = o(`) (here we use q = 2o(`1−e)n) and

p− β − λ
`n > 0.

ut

A.3 Proof of security of Disperse

Theorem 4 (Security). Let Game = (C, id,SetupCh,SetupAdv,Execute)4 be an ε-
secure game based on randomness K ∼ Un` for the class of adversaries TMO(K)

λ

then for every `d-regular (`e, (1− η)`)-disperser Gσ, β satisfying p − λ
`n > β > 4η

and q = 2o(`1−e)n, the game GameDisk = (C,DisperseGσ ,SetupCh,SetupAdv,Execute)
based on randomness (D,H) of min-entropy p`n is ε + O(`2 · 2

−βn
4)-secure for ad-

versaries in TMO(D,H),H
λ−∆λ , where ∆λ = `e(log q + n).

Proof. The proof will be based on reduction. For the sake of contradiction, we as-
sume that there exists (efficiently samplable) random distribution D of min-entropy
pn` and a GameDisk-adversary A ∈ TMO(D,H),H

λ−∆λ,q such that:

Pr
D←D

(GameDisk[A� C, key′ ← DisperseGσ (D,H)] = Accept) > ε′ = ε+Pr(|indicesAInternal | > `e).

Using A as a component, we construct an adversary A′ ∈ TMO(K)
λ contradicting

(ε,TMO(K))-security of Game based on randomness K. Its description is given in
Fig. 7. Note that we shall freely use the twisted random oracles defined in Defini-
tion 7.

To finish the proof we need the following claims.

Claim (Simulation). The execution of G′ := Game[A′ � C, key← K] based on ran-
domnessK is in fact a simulation of G := Game[AInternal � C, key′ ← DisperseGσ (D,H{D Gσ−−→
K})] executed on mock randomness (D,H).

Proof. Firstly, observe that the key K is equal to DisperseGσ (D,H{D Gσ−−→ K})
(by definition of H{D Gσ−−→ K}) and therefore the input of C in G′ is equal to
SetupCh(DisperseGσ (D,H{D Gσ−−→ K})) as in G. Moreover, all the messages send
by A′ are in fact produced by game G adversary AInternal and therefore the only
4 id denotes the identity mapping

25

difference is that the leakage and random oracle queries ofAInternal are not processed
honestly but simulated by means of leakage of A′ described in steps (3a) and (3b)
in Fig. 7.
Claim (Simulation’s correctness). The simulation above is faithful (i.e., A′ works
the same as corresponding AInternal) unless ⊥ is returned in part (3c) of simulation.
This occurs with probability ξ = Pr(|indices| > `e) and therefore

Pr(AInternal is faithfully simulated) = 1− Pr(|indices| > `e) = 1− ξ.

Proof. The first part concerning simulation correctness is clear from the construc-
tion. More precisely, the difference between messages of honest AInternal and A′
occurs only if the restriction λ on the size of leakage (see (3c)) intervenes. There-
fore we are left to prove that Pr(⊥ is returned in (3c)) = ξ. This follows directly by
applying Lemma 4 for AInternal.
Claim (Leakage bound). The total leakage of A′ during the execution of Game(A′ �
C, key← K) does not exceed λ bits and consequently A′ belongs to TMO(K)

λ .
Proof. Clear, as we have explicitly bounded the leakage inside A′ (see (3c) in Fig. 7).
All above claims prove that A′ is an efficient adversary for Game which succeeds
with probability:

Pr(G′ = Accept) > Pr(G = Accept and AInternal is correctly simulated) (13)
> Pr(G = Accept) + Pr(AInternal is correctly simulated)− 1

(14)
= ε′ + (1− ξ)− 1 = ε′ − ξ > ε, (15)

where in line (13) we used (Simulation) claim and in (15) we used the fact that the
distributions (D,H) and (D,H{D Gσ−−→ K}) are the same and therefore

Pr(G = Accept) = Pr(Game[A� C, key← DisperseGσ (D,H)] = Accept) = ε′,

and moreover that Pr(AInternal is correctly simulated) = 1 − ξ by Claim (Simula-
tion’s correctness).

This contradicts the (ε,TMO(K))-security of Game and consequently gives a
proof of the theorem as by Lemma 7 the probability Pr(|indicesAInternal | > `e) =
O(`2 · 2

−βn
4).

B Disperser graphs
Here, we present some structure theorems concerning so-called disperser graphs,
which allows us to amplify privacy and security properties of the above construc-
tions. We do not claim originality of the upcoming considerations. Similar argu-
ments appear for example in [18, 26]. Despite this, we were not able to find the
results of Corollary 4 in literature. Let G = (V,E) be an undirected graph with
the set of vertices V and edges E. For a subset S ⊂ V by N(S) we denote
{w ∈ V : ∃s∈S(s, w) ∈ E}, i.e. the set of all neighbours of S. We say that a
bipartite graph G = (V 0 t V 1, E) is right d-regular if all vertices in V 1 have the
same degree d.

26

Definition 9 ((k, ε)-extractor). We say that a function Ext : {0, 1}n×{0, 1}d →
{0, 1}m is an (k, ε)-extractor if for any random variable X of min-entropy H∞(X) ≥
k and S ∼ Ud we have ∆(Ext(X,S), Um) ≤ ε.

Definition 10. A bipartite graph G = (V 0 t V 1, E) is a right (K,L)-disperser if
for every set S ⊂ V 1 such that |S| = K the neighbourhood N(S) satisfies

|N(S)| > L,

i.e. the sets of size K expands into sets of size at least L.

We shall use the following simple lemma which describes expansion properties
of bipartite graphs.

Lemma 8. Let G = (V 0 t V 1, E) be a bipartite right (K,L)-disperser. Then for
every set S ⊂ V 1 such that |S| > K and every subset T ⊂ V 0 of size |T | < L the
set N(S) is not contained in T .

Proof. This is a direct counting. Take S′ ⊂ S of size equal to K. The size of N(S)
then satisfies:

|N(S)| > |N(S′)| = L.

which finishes the proof.

In order to instantiate the above considerations, we need the following correspon-
dence between dispersers and randomness extractors. Observe that every function
f : {0, 1}n × {0, 1}m → {0, 1}n corresponds to a right 2m-regular bipartite graph
Gf = (Vf , Ef) defined by:

Vf = V 0
f t V 1

f for V 0
f = V f1 = {0, 1}n (16)

Ef =
{

(v0, v1) : ∃e∈{0,1}mf(v1, e) = v0
}
. (17)

It turns out that randomness dispersing properties of f are closely related to the
vertex expansion of Gf . Namely, the following theorem holds.

Proposition 2. (see [26], Proposition 6.20) Let D : {0, 1}n×{0, 1}m → {0, 1}n be
a function such that for any random variable X ∈ {0, 1}n of min-entropy H∞(X) >
δn and E distributed uniformly on {0, 1}m, the statistical distance ∆(D(X,E), Un)
is less or equal to ε. Then for every S, a subset of right side of a bipartite graph
GD = (V 0

D t V 1
D, ED) of size 2δn the neighbourhood N(S) satisfies

|N(S)| > (1− ε) · 2n,

i.e. the graph GD is a right 2m-regular
(
2δn, (1− ε) · 2n

)
-disperser.

Proof. Take S a subset of {0, 1}n of size 2δn, XS a random variable distributed
uniformly on S and E distributed uniformly on {0, 1}m. Observe thatH∞(XS) > δn
and therefore, by assumptions concerning D, the inequality ∆(D(XS , E), Un) 6 ε
holds. Moreover, we see that Pr(D(XS , E) = s) 6= 0 exactly for s ∈ N(S), so
∆(D(X,S), Un) > (2n − |N(S)|) · 1

2n . Combining these two inequalities we obtain

ε > ∆(D(XS , E), Un) > (2n − |N(S)|) · 1
2n ,

27

which is equivalent to the proposition.

The existence of an efficiently computable function Ext (we require efficient
computability in order to instantiate GExt effectively), satisfying the assumptions of
Proposition 2 follows from the result proven in [16]:

Theorem 5 (see [16], Theorem 1.5). For every constant α > 0 and all positive
integers n, k and all ε > 0, there is an explicit construction of a (k, ε)-extractor
Ext : {0, 1}n × {0, 1}s → {0, 1}m with s = O(logn+ log(1/ε)) and m > (1− α)k.

More precisely, for any η > 0 we take an ((1+η), ε)-extractor Ext : {0, 1}(1+γ+η)n×
{0, 1}s → {0, 1}n which corresponds to the choice α = η

1+η in above Theorem 5, and
interpret it as a function Ẽxt : {0, 1}n×{0, 1}(γ+η)n+s → {0, 1}n. Then, taking X ∈
{0, 1}n of min-entropy H∞(X) ≥ (1−γ)n we see that∆(Ẽxt(X,U(γ+η)n+s), Un) ≤ ε
and therefore we may apply Proposition 2 to obtain a 2(γ+η)n+s-regular (2(1−γ)n, (1−
ε) · 2n)-disperser. As η might be chosen arbitrarily and s = O(logn+ log(1/ε)) we
obtain:

Corollary 4. For any ε > 0 and c > 0, there exists nc ∈ N such that for n > nc
and (d, k) such that d · k ≥ 2(1+c)n, there exists an effectively computable bipartite
right d-regular graph which is a right (k, (1 − ε) · 2n)-disperser. In particular, for
any α > 1

2 and ` = 2n sufficiently large there exists a bipartite right `α-regular
(
√
`, (1− ε) · `)-disperser.

Proof. Apply Proposition 2 and the above discussion after Theorem 5.

C Proofs of auxiliary facts

Proof (Proof of Proposition 1). Let uγ be a shorthand for bβ−γ1−γ `c. Assume the
opposite, i.e., there exist `− uγ numbers xi smaller than γn. Then,

x1+· · ·+x` < uγn+(`−uγ)γn =
(
(1−v)uγ+γ`)

)
·n ≤

(
(1−γ)β − γ1− γ +γ

)
·`n = β`n ,

which contradicts the fact that all xi sum up to β`n.

28

Implementation of A′.
Input: The adversarial data SetupAdv(K) on K sampled from ∼ Un` (cf. step (1)
in Fig. 1).

Setup phase:

1. A mock random variable D is sampled from the distribution D. An efficient
data structure OracleQueryList for the on-the-fly storage of random oracle
H queries is prepared.

2. An internal version AInternal of GameDisk adversary A is initialized and given

SetupAdv(K) = SetupAdv(DisperseGσ (D,H{D Gσ−−→ K}))

as input (as in Game[AInternal � C, key′ ← DisperseGσ (D,H{D Gσ−−→ K})]).

Execution phase:

3. Every time A′ is provided with a new message msgA′ (including the one initial-
ized with the 0-th message ⊥), she performs the following steps:
a) performs getIndices() leakage:

getIndices() leakage

Result The list indices containing pairs (i, vi) of an index i and a result vi of
AInternal’s bad random oracle query (cf. Definition 6) conducted during
its operation in Game[AInternal � C, key′ ← DisperseGσ (D,H{D Gσ−−→
K})] when provided with msgA′ before sending the next message.

Description of the function Just simulate the behaviour of AInternal and
check whether random oracle queries are bad or not.

Complexity Leakage: |indices| · (log q + n), time: the same as AInternal op-
eration

b) simulates the behaviour of AInternal with the following recipe for answering
leakage and random oracle queries:

How to reply to leakage and random oracle queries?

Random oracle queries If the index i appears in one of the pairs in the list
indices leaked above then return vi otherwise look up OracleQueryList
and answer with a value from there or a random element drawn from
Un. In any case, add the whole query to OracleQueryList.

Leakage queries We answer a leakage oracle query f described by a
circuit containing O(D,H) queries by the same circuit containing
O(D,H{D Gσ−−→ K}) instead. Note that in order to substitute all bad
queries of H by H{D Gσ−−→ K}), we just need to access D, H and O(K)
which are all given to A′.

Complexity Leakage: same as AInternal’s, time: same as AInternal’s up to
time necessary for OracleQueryList look ups. Bounded by λ−∆λ.

c) if the total leakage equal to λ − ∆λ + |indices| · (log q + n) exceeds λ then
terminate with ⊥;

d) returns the message prepared by AInternal.

Fig. 7. Implementation of A′

29

	Leakage-Resilient Cryptography with Key Derived from Sensitive Data

