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Abstract. A new method for reducing the internal state size of stream cipher
registers has been proposed in FSE 2015, allowing to reduce the area in hardware
implementations. Along with it, an instantiated proposal of a cipher was also
proposed: Sprout. In this paper, we analyze the security of Sprout, and we propose
an attack that recovers the whole key more than 210 times faster than exhaustive
search and has very low data complexity. The attack can be seen as a divide-and-
conquer evolved technique, that exploits the non-linear influence of the key bits on
the update function. We have implemented the attack on a toy version of Sprout,
that conserves the main properties exploited in the attack. The attack completely
matches the expected complexities predicted by our theoretical cryptanalysis,
which proves its validity. We believe that our attack raises legitimate questions
regarding the security of the proposed design method.
Keywords: Stream cipher, Cryptanalysis, Lightweight, Sprout.

1 Introduction

The need of low-cost cryptosystems for several emerging applications like RFID tags and
sensor networks has drawn considerable attention to the area of lightweight primitives
over the last years. Indeed, those new applications have very limited resources and
necessitate specific algorithms that ensure a perfect balance between security, power
consumption, area size and memory needed. The strong demand from the community
(for instance, [6]) and from the industry has led to the design of an enormous amount
of promising such primitives, with different implementation features. Some examples
are PRESENT [7], CLEFIA [27], KATAN/KTANTAN [12], LBlock [29], TWINE [28],
LED [18], PRINCE [8], KLEIN [17], Trivium [11] and Grain [19].

The need for clearly recommended lightweight ciphers requires that the large number
of these potential candidates be narrowed down. In this context, the need for a significant
cryptanalysis effort is obvious. This has been proved by the big number of security
analyses of the previous primitives that has appeared (to cite a few: [21, 1, 20, 22, 26, 14,
25, 16]).

Stream ciphers are good candidates for lightweight applications. One of the most
important limitations to their lightweight properties is the fact that to resist time-
memory-data trade-off attacks, the size of their internal state must be at least twice the
security parameter.

In FSE 2015, Armknecht et al. proposed [5, 3] a new family of stream ciphers designed
to scale down the area required in hardware. The main intention of their paper is to
revisit the common rule to resist against time-memory-data trade-off attacks, and reduce
the minimal internal state of stream ciphers. To achieve this goal, the authors decided
to involve the secret key not only in the initialization process but also in the keystream
generation phase. To support this idea, an instance of this new stream cipher family is
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specified. This instance is based on the well studied stream cipher Grain128a [2] and as
such has been named Sprout. In this paper we analyze the security of this cipher, and
present an attack on the full version that allows the attacker to recover the whole 80-bit
key with a time complexity of 269.36, that is 210 times faster than exhaustive search and
needs very few bits of keystream. Our attack exploits an evolved divide-and-conquer
idea.

In order to verify our theoretical estimation of the attack, we have implemented it
on a toy version of Sprout that maintains all the properties that we exploit during the
attack, and we have corroborated our predicted complexities, being able then to validate
our cryptanalysis. We believe that our attack questions the whole design principle.

This paper is organised as follows: we first recall the specifications of the stream
cipher Sprout in Section 2, and then describe our attack in Section 3. We provide the
details of the implementation that has verified the validity of our attack in Section 4.
Section 5 provides a discussion on how the attack affects the particular instantiation
and the general idea.

2 Description of Sprout

In [5] the authors aim at reducing the size of the internal state used in stream ciphers
while resisting to time-data-memory trade-off (TMDTO) attacks. They propose to this
purpose a new family of stream ciphers such that the design paradigm of long states
can be avoided. This is done by introducing a state update function that depends on a
fixed secret key. The designers expect a minimum time effort equivalent to an exhaustive
search of the key for an attacker to lead an attack, since she has to determine the key
prior to realise the TMDTO.

Sprout is the concrete instantiation of this new family of stream ciphers developed
in [5]. It has an IV and a key size of 80 bits. Based on Grain128a, this keystream
generator is composed of two feedback shift registers of 40 bits, one linear (the LFSR)
and one non-linear (the NLFSR), an initialization function and an update function, both
key-dependent, and of an output function that produces the keystream (see Figure 1).
The maximal keystream length that can be produced under the same IV is 240.
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Fig. 1. Sprout KeyStream Generation

We first recall some notations that will be used in the following:

– t clock-cycle number



– Lt = (lt0, l
t
1, · · · , lt39) state of the LFSR at clock t

– N t = (nt0, n
t
1, · · · , nt39) state of the NLFSR at clock t

– iv = (iv0, iv1, · · · , iv69) initialisation vector
– k = (k0, k1, · · · , k79) secret key
– k∗t round key bit generated during the clock-cycle t
– zt keystream bit generated during the clock-cycle t
– ct round constant at clock t (generated by a counter)

A counter is set to determine the key bit to use at each clock and also to update the
non linear register. More specifically, the counter is made up of 9 bits that count until
320 in the initialisation phase, and then count in loop from 0 to 79 in the keystream
generation phase. The fourth bit (ct4) is used in the feedback bit computation of the
NLFSR.

The 40-bit LFSR uses the following retroaction function, that ensures maximal
period: lt+1

39 = f(Lt) = lt0 + lt5 + lt15 + lt20 + lt25 + lt34.
The remaining state is updated as lt+1

i = lti+1 for i from 0 to 38.
The NLFSR is also 40-bit long and uses a feedback computed by:
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where k∗t is defined as:

k∗t = kt, 0 ≤ t ≤ 79

k∗t = (kt mod 80)(lt4 + lt21 + lt37 + nt9 + nt20 + nt29), t ≥ 80

The remaining state is updated as nt+1
i = nti+1 for i from 0 to 38.

In the following, we name by
∑
l the sum of the LFSR bits that intervene in k∗t when

t ≥ 80 (i.e.
∑
l , lt4 + lt21 + lt37) and by

∑
n , nt9 + nt20 + nt29 it NLFSR counterpart,

leading to the following equivalent definition of k∗t when t ≥ 80:

k∗t = (kt mod 80)(
∑

l +
∑

n)

Update and Output Function.- The output of the stream cipher is a boolean function
computed from bits of the LFSR and of the NLFSR. The nonlinear part of it is defined
as:
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And the output bit is given by:
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with B = {1, 6, 15, 17, 23, 28, 34}. Each time a keystream bit is generated, both feedback
registers are updated by their retroaction functions.

Initialization.- The IV is loaded in the initial state in the following way: n0i = ivi, 0 ≤
i ≤ 39, li = ivi+40, 0 ≤ i ≤ 29 and l0i = 1, 30 ≤ i ≤ 38, l039 = 0. The cipher is then clocked
320 times; instead of outputting the keystream bits, this ones are used as feedback in
the FSRs:

lt+1
39 = zt + f(Lt)

nt+1
39 = zt + k∗t + lt + ct4 + g(N t)



Keystream generation.- After the 320 initialisation clocks, the keystream starts being
generated according to the previously defined output function; one keystream bit per
state update.

3 Key-Recovery Attack on Full Sprout

The attack described in this section and that has allowed us to attack the full version
of Sprout, exploits the short sizes of the registers, the little dependency between them
when generating the keystream and the non-linear influence of the keybits in the update
function. We use an evolved divide-and-conquer attack, combined with a guess-and-
determine technique for recovering the key bits, that resembles the analysis applied to
the hash function Shabal from [23, 10]. It recovers the whole key much faster than an
exhaustive search and needs very little data.

Our attack is composed of three steps: in the first one, the attacker builds and
arranges two independent lists of possible internal states for the LFSR and for the
NLFSR at an instant r′ = 320 + r. For now on, we will refer to time with respect to the
state after initialization, being t = 0 the instant where the first keystream bit is output.
During the second step, we merge the previous lists with the help of some bits from the
keystream that will allow to perform a sieving in order to exclusively keep as candidates
the pairs of states that could have generated the known keystream bits. Finally, once
a reduced set of possible internal states is kept, we will recover the whole key by using
some additional keystream bits. Through all the attack, we consider r + ]z keystream
bits as known (z0, . . . , zr+]z−1). The last 1 + ]z bits are used in the second step of the
attack, for reducing the number of state candidates. The first r − 1 bits are used in the
last step of the attack, for recovering the only one correct state and the whole key. We
will use these bits in our attack, and therefore they represent the data complexity. As
we show in the following, the parameters r and ]z are the ones we adapt to optimize
the attack, and in order to mount the best possible attacks, we always have ]z ≥ 6 and
r ≥ 1.

We first describe some useful preliminary remarks. Next we describe the three steps
of the attack, and finally we provide a summary of the full attack along with the detailed
complexities of each step.

3.1 Preliminary remarks

We present in this subsection some observations on Sprout, that we use in the following
sections for mounting our attack.

Let us consider the internal state of the cipher at time t. If we guessed1 both registers
at time t, how could we discard some incorrect guesses by using some known keystream
bits?

Linear Register.- First of all, let us remark that the linear register state is totally
independent from the rest during the keystream generation phase. Then, once its 40-bit
value at time t are guessed, we can compute all of its future and past states during the
keystream generation, including all its bits involved in the keystream generation.

We describe now the four sievings that can be performed in order to reduce the set
of possible states with the help of the conditions imposed by the keystream bits.

1which cannot be done as it contains 280 possible values and therefore exceeds the exhaustive
search complexity



Type I: Direct sieving of 2 bits.- From Section 2 we know that the keystream bit
at clock cycle t is given by:
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with B = {1, 6, 15, 17, 23, 28, 34}. We can see that 9 bits of the NLFSR intervene in
the keystream bit computation, 7 linearly and 2 as part of terms of degree 2 and 3, as
depicted on Figure 2 (in this figure, instant r corresponds to the generic instant t that
we consider in this section). The first observation we can make is that if we know the 80
bits of the internal state at clock t, then we can directly compute the impact of the LFSR
and of the NLFSR in the value of zt and of zt+1 (see r and r + 1 on Figure 2), which
will potentially give us a sieving of two bits: as zt and zt+1 are known, the computed
values should collide with the known ones. The number of state candidates will then be
reduced by a factor of 2−2. For instants positioned after t+1, the bit nt38 turns unknown
so we cannot exploit the same direct sieving. In the full version of the attack, this sieving
involves keystream bits zr and zr+1.

round NLFSR h LFSR z
L l g g h g l g g g g g L g l g l g L g g l g g g g l g g g g l L g g g L

… … …
r-7 7 6 5 4 3 2 1 7 7 … 6
r-6 6 5 4 3 2 1 6 6 … 5
r-5 5 4 3 2 1 5 5 … 4
r-4 4 3 2 1 4 4 … 3
r-3 3 2 1 3 3 … 2
r-2 2 1 2 2 … 1
r-1 1 1 1 … X
r ¾ … X

 r+1 ¾ … X
 r+2 ¾ … G
 r+3 ¾ … G
 r+4 ¾ … G
 r+5 ¾ … G
r+6 … G
 r+7 … G
 r+8 ? … ¾
r+9 ? … ¾

 r+10 ? … ¾
 r+11 ? … ¾

 Guessed bit from the NLFSR, imply
l: linear output function,  h: non-linear output function

 Guessed bit from the LFSR, imply

¾  Guessed bit from K* and L (sieving ¾)

Key bit determined with probability  2/3 X

Key bit determined with probability ½ G ¾

Deduced bits from ¾ ¾

α/K

n0 n38

L: linear retroaction,  g: non-linear retroaction

Known Keystream bits

 Keystream bit that provides a direct sieving

 Keystream bit that provides a sieving 1 after the guessed

 Keystream bit that provides a sieving 1 out of 2 times

Fig. 2. Representation of the full attack. Each line represents the internal values at a certain
instant, and the keystream generated at this same instant is represented in the rightmost
column.

Type II: Previous round for sieving.- We consider a situation in which we have
guessed a state not at instant 0, but at an instant t > 0. This nice idea has the advantage
of allowing to additionally exploit the previously generated keystream bits to filter out
the wrong states. We can therefore have for free an additional bit of sieving, provided by
round t− 1: indeed, as can be seen in Figure 2, for each possible pair of states (NLFSR,



LFSR) at round (t − 1) we know all the bits from the NLFSR having an influence on
zt−1, as well as all the bits needed from the LFSR, that are also needed to compute
zt−1. As this keystream bit is known, we have a probability of 1/2 of finding the correct
value, and therefore the number of possible states is still reduced by a factor of 2−1. In
the full version of the attack, this sieving involves keystream bit zr−1.

Type III: Guessing for sieving.- To obtain a better sieving, we consider one by
one the keystream bits generated at time t + i for i > 1. On average, one time out of
two, nt+i

38 won’t be known, as it would depend on the value of k∗t+i−2.We know that, on
average, k∗t+i−2 is null one time out of two with no additional guess. In these cases, we
have an additional bit sieving, as we can directly check if zt+i is the correct one. But,
each time the bit nt+i

38 is unknown, we can guess the corresponding k∗t+i−2, and keep as
possible candidate the one that verifies the relation with zt+i, as can be seen in Figure 2.
In this case not only we reduce the number of possible states, but we also recover some
associated key bit candidates 2 out of 3 times, as we show in detail in Section 3.3. For
each bit that we need to guess (×2) we obtain a sieving of 2−1, which compensate. The
total number of state candidates, when considering the positions that need a bit guessing
and the ones that do not, is reduced by a factor of (3/4) ≈ 2−0.415 per keystream bit
considered with the type III conditions. For our full attack this gives 2−0.415×(]z−2−4),
as ]z is the number of bits considered during conditions of type I, III and IV (the one
bit used during type 2 is not included in ]z). As sieving of type I always uses 2 bits, and
conditions of type IV, as we see next, always use 4 bits, sieving of type III remains with
]z − 2− 4. In the full version of the attack, this sieving involves keystream bits zt+i for
i from 2 to (]z − 5)2.

Type IV: Probabilistic sieving.- In the full version of the attack, this sieving
involves keystream bits zt+i for i from ]z−4 to (]z−1). Now, we do not guess any more
bits, as we were doing in the previous subsection, but instead check what can we still
say about the states, i.e. whether we can reduce the amount of candidates any further.
We point out that nt+i

38 only appears in one term from h.What happens if we consider
also the next 4 keystream bits? What information can the next keystream bits provide?
In fact, as represented in Figure 2, the next four keystream bits could be computed
without any additional guesses with each considered pair of states, but for the bit nt+i

38 ,
that is not known. But if we have a look carefully, this bit only affects the corresponding
keystream bit one time out of three. Indeed, the partial expression given by h:

nt+i
4 nt+i

38 l
t+i
32

is only affected by nt+i
38 for 3/4 of the values the other two related variables, nt+i

4 and
lt+i
32 , can take. Therefore, even without knowing nt+i

38 , we can perform a sieving of one bit
3/4 of the times. On average, as this can be done up to considering four more keystream
bits, marked in Figure 2 with 3/4, we will obtain an additional sieving of 4 × 3/4 = 3
bits, i.e. the number of state candidates will be additionally reduced by 2−3.

We can now start describing our attack.

3.2 Building the lists LL and LN

We pointed out in the previous section that guessing the whole internal state at once
(80 bits) would already be as expensive as the exhaustive key search. Therefore, we start
our attack by guessing separately the states of both the NLSFR and the LFSR registers

2the (−4) is explained in the next subsection.



at instant r. For each register we build a list, obtaining two independent lists LL and
LN , which contain respectively the possible state bit values of the internal states of the
LFSR, and respectively of the NLFSR, at a certain clock-cycle r′ = 320+r, i.e. r rounds
after the first keystream bit is generated.

More precisely, LL is filled with the 240 possibilities for the 40 bits of the LFSR at
time r (which we denoted by l0 to l39). LN is a bigger list that contains 240+]z−2−4 =
234+]z elements3, corresponding to the 40-bit state of the NLFSR (denoted by n0 to
n39), each coupled to the 2]z−2−4 possible values for αr = k∗r + lr0 + cr4 to αr+]z−6 =

k∗r+]z−6 + lr+]z−6
0 + cr+]z−6

4 . See Figure 4 for a better description of the guessed bit.
As detailed next, we also store additional bits deduced from the previous ones to

speed up the attack. In LN , we store for certain instants of time the bits n4, n38,
tn ,

∑
j∈B nj (the linear contribution of the NLFSR to the output bit z) and

∑
n =

n9 + n20 + n29 (the sum of the NLFSR bits that appear in the key selection process)
while in LL it is l6, l32, tl , l30 + l8l10 + l19l23 + l17l32 + zt and

∑
l = l4 + l21 + l37.

These bits are arranged as shown in Figure 3.

n 4 n 38tn t l l 6 l 32
∑ l

LN LL

guess
related

guess
related

240+♯z−2−4 240

r

n 4 n 38tn

r+1

n 4 n 38tn

r+2 r+3

∑ n
α n 4 n 38tn

∑ n
α

... r

t l l 6 l 32

r+1

t l l 6 l 32

r+2

l 0

...

guess
related

n 4 n 38tn

r-1

t l l 6 l 32

r-1

Fig. 3. Lists LL and LN before starting the attack. All the values used for the sorting can be
computed from the original states, and the αr+i in the case of LN

3.3 Reducing the Set of Possible States

The main aim of this step is to use the precomputed lists LL and LN to combine them
and keep only the subset of the crossproduct that corresponds to a full internal state
for the registers and that could generate the keystream bits considered. It is easy to
see that this problem perfectly corresponds to merging lists with respect to a relation,
introduced in [24]. Therefore, we will use the algorithms proposed to solve it in [24, 15,
13] in order to efficiently find the remaining candidate pairs.

Of course, our aim is to make the number of remaining state candidates shorter than
the trivial amount of 280 (the total number of possible internal states for the registers).
To achieve this, we use the sieves described in section 3.1 as the relations to consider
during the merging of the lists. The sieves were deduced from relations that the known
keystream bits and the state bits at time r must satisfy.

For the sake of simplicity, we start by presenting an attack that only uses the sievings
of type I and II. Next we will show how to also take into consideration the sieving of

3In the next section we describe how to reduce the state candidates step by step, so if only
conditions of type I and II are considered, no guesses are needed and LN is of size 240. When
sieving conditions of type III are considered, but not of type IV, as in Table 2, the size of LN is
240+]z−2 instead, i.e. the size of the list is 240+]z−2−]IV , where ]IV are the conditions of type
IV considered.



type III, and finally we will show how to take into account also the sieving of type IV,
and therefore the 4 sievings at once for obtaining a reduced set of possible initial states.
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Fig. 4. Position of the Additional Guesses Stored in List LN

Sievings of Type I and II with zr−1, zr and zr+1.- Exceptionally, in this simplified
version of the attack we consider ]z = 2, and t is at least one. We therefore know at
least three keystream bits: zt−1, zt and zt+1, that we use for reducing the size of the set
of possible internal states at instant t.

We consider the previously built lists LL and LN both of size 240 (no guesses are
performed for this sievings) and are sorted as follows (see the three first columns of lists
in Figure 3):

– LL is sorted according to ttl = lt30 + lt8l
t
10 + lt19l

t
23 + lt17l

t
32 + zt, l

t
6 and lt32 at instants

r − 1, r and r + 1.
– LN is sorted according to nt4, nt38 and finally ttn =

∑
j∈B n

t
j at time r − 1, r and

r + 1.

Given our new notations, we can rewrite the equation expressing zt, as:

ttl + ttn + nt4(nt38l
t
32 + lt6) = 0

We will use it for t from r− 1 to r+ 1. The idea is then to use the relations implied
by these three equations to deduce the possible initial state values of the LFSR and of
the NLFSR in a guess and determine way.

For instance, if we first consider the situations in which the bits nt4 and nt38 are null,
we know that the relation ttl + ttn = 0 must be satisfied so that we can only combine one
eighth of LN (nt4 = 0, nt38 = 0 and ttn = 0, or respectively n4 = 0, n38 = 0 and tn = 1)
with one half of LL (in which tl = 0, respectively tl = 1). The same way, fixing other
values for n4, n38 and tn we obtain other restricted number of possibilities for the values
of ttl , l

t
6 and lt32. We reduce the total number of candidate states by 2−1 per keystream

bit considered. When considering the equations from the three keystream bits zt−1, zt
and zt+1, we therefore obtain 277 possible combinations instead of 280.

This is a direct application of the gradual matching algorithm from [24], and we
provide a detailed description of how the algorithm works and should be implemented
in Section 4.2.



Additional Sieving of Type III with zr+2, . . . , zr+]z−1.-
4

We can easily improve the previous result by taking into account the sieving of type
III presented in the previous section. List LN will have, in this case, a size of 240+]z−2,
where ]z−2 is the number of keystream bits that will be treated with sieving of type III,
and therefore, the number of αt+i bits that will be guessed (for i from 0 to ]z − 2− 1).
The attacker is given (1+ ]z) bits of keystream (zr−1, . . . , zr+]z−1), and she can directly
exploit zr−1, zr and zr+1 with sieving conditions of type I and II. Next arranging the
table as showed in Figure 3 will help exploiting the conditions derived from keystream
bits zr+2, . . . , zr+]z−1.

To explain in more detail the sieving probability deduced in section 3.1 with respect
to one condition of type III, we refer to Table 1, where in 1 case out of 4 the cohabitation
of a fixed value of bits of LL and LN is impossible, which indicates to the attacker that
the internal state is not possible, retaining a proportion of 3/4 of the considered states.

Table 1. Restrictions obtained from the additional guess

guess
∑
n l0

∑
l information

0 none
0 1 k = 0

0 0 impossible
1 1 k = 1

0 0 k = 0
0 1 none

1 0 k = 1
1 1 impossible

0 impossible
0 1 k = 1

0 0 none
1 1 k = 0

1 0 k = 1
0 1 impossible

1 0 k = 0
1 1 none

We recall that, so far (as we have not discussed yet the application of sieving condi-
tions of type IV), the number of keystream bits treated by type III of conditions is ]z−2.
We have one additional sieving condition of type III per each one of these ]z − 2 bits of
the keystream. Each additional condition to test reduces the number of possible combi-
nations of sublists by a factor of 3

4 = 2−0,4150, as we have just seen. By repeating this

process ]z − 2 times, we finally obtain a number 280−3−0,415∗(]z−2) of possible internal
states. Let us detail the cost of obtaining this reduced set of possible states. The process
of the attack considering sievings of type I, II and III simultaneously, which is done
using a gradual matching technique as described in [24], can be broadly summarized as
follows and can be visualized in Table 2:

1. Consider the two precomputed lists LN and LL of respective sizes 240+]z−2 and 240,
containing all the possibilities for the 40-bit long internal states of the NLFSR and
the ]z−2 additional guesses and respectively the 40-bit long possible internal states
of the LFSR.

4In the full attack, the last keystream bit considered here is zr+]z−1−4, as ]z is four units
bigger when considering sieving conditions of type IV



2. For i from 0 to ]z, consider keystream bit zr+i, and:

(a) if i ≤ 2, divide the current (sub)list from LN in 23 sublists according to the
values of n4, n38 and tn at time r + i − 1 and divide the current (sub)list
from LL in 23 sublists according to the values of tl, l6 and l32 also at time
r + i− 1. According to the previous discussion, we know that only 23+3−1 = 25

combinations of sublists are possible (for sievings of type I and II). For each one
of the 25 possible combinations, consider the next value for i.

(b) if i > 2, divide further the current sublist from LN in 25 sublists according to the
values of the 5 bits n4, n38, tn,

∑
n and αr+i−1−2 = (k∗r+i−1−2 + lr+i−1−2) (the

additional guess) at time r + i− 1 and divide the current sublist from LL in 25

sublists according to the values of the 5 bits tl, l6, l32,
∑
l and l0 at time r+i−1.

According to the previous discussion, we know that only 25+5−1−0.415 = 28.585

combinations of those sublists are possible. For each one of the 28.585 possible
combinations, consider the next value for i.

Table 2.

i LN sublists size LL sublists size matching pairs
(log) (log) at this step (log)

40+]z − 2 40

0 35+ ]z 37 5

1 32+ ]z 34 5

2 29+ ]z 31 5

3 24+ ]z 26 8.585

4 19+ ]z 21 8.585

5 14+ ]z 16 8.585

6 9+ ]z 11 8.585

7 4+ ]z 6 8.585

8 ]z-1 1 8.585

9 ]z-6 ’-4’ 8.585

10 ]z-11 ’-9’ 8.585

For a given value of ]z, the log of the complexity of recursively obtaining the reduced
possibilities for the internal state by this method could be computed as the sum of the
right most column, as this represents the total number of possible sublist combinations
to take into account plus the sum of this column and the log of the relative sizes in
both remaining sublists, which are given in the last line considered, as, for each possible
combination of the sublists, we have to try all the elements remaining in one list with
all the elements in the other. In the cases where the log is negative (−h), we only check
the combinations with the other sublists when we find a non empty one, which happens
with probability 2−h, and this also corresponds to the described complexity.

Let us consider ]z = 8. The total time complexity5 will be

23∗5+6∗8.585 + 23∗5+6∗8.585+8−1+1 ≈ 274.51

If we considered for instance ]z = 9 , we obtain for i = 9 a number of possible
combinations of 23∗5+7∗8.585 ≈ 275.095 for checking if the corresponding sublist is empty

5we are not giving here the complexity yet in number of encryptions, which will reduce it
when comparing with an exhaustive search



or not, and so the attack will be more expensive than when considering ]z = 8, which
seems optimal.

To compare with exhaustive search (so to give the time complexity on encryption
functions), we have to multiply 274.51 by 8

(320+80) , where 8
(320+80) = 2−5.64 is the term

comparing our computations with one encryption, i.e. 320 initialization rounds plus 80
rounds for recovering one unique key. This gives 268.87 as time complexity, for recovering
274.5 possible states.

We can still improve this, by using the sieving of type 4, as we show in the next
section.

Additional Sieving of Type IV with zr+2, . . . , zr+]z−1.- Applying the type IV
sieving is quite straight forward, as no additional guesses are needed: It just means that
on average, we have an additional extra sieving of 2−3 per possible state found after the
sievings of type I, II and III. In the end, when considering all the sievings, we recover
271.5 possible states with a time complexity determined by the previous step (applying
sieving of type III which is the bottleneck) of 268.87 encryption calls.

As previously we have determined that the optimal value for ]z when considering
sieving conditions of type I, II and III is 8, now, as we consider 4 additional keystream
bits , the optimal value is ]z = 8 + 4 = 12.

The question now is: how to determine, from the 271.5 possible states, which one is
the correct, and whether it is possible or not to recover the whole key. We will see how
both things are possible with negligible additional cost.

3.4 Full key recovery attack: guessing a middle state

The main idea that allows us to recover the whole master key with a negligible extra
complexity is considering the guessed states of the registers as not the first initial one,
obtained right after initialization and generation of z0, but instead, guessing the state
after having generated r keystream bits, with r > 06. The data needs will be r + ]z
keystream bits, which is more than reasonably low (the keystream generation limit
provided by the authors is 240 bits). We recall here that the optimal value for ]z is 12.

With a complexity equivalent to 268.87 encryptions, we have recovered 271.5 possible
internal states at time r using ]z + 1 = 13 keystream bits, reducing the initial total
amount by 28.5. The question now is: how to find the only correct one, out of these 271.5

possible states? And can we recover the 80-bit master key? We recall that, on average,
we have already recovered (]z − 2− 4) ∗ 2/3 = 4 keybits during the type III procedure
described in section 3.3. For the sake of simplicity, and as the final complexity won’t be
modified (it might be slightly better for the attacker if we consider them in some cases),
we will forget about these 4 keybits.

Inverting one round for free.- Using Figure 2, we will describe how to recover the
whole key and the correct internal state with a negligible cost. This can be done with
a technique inspired on the one for inverting the round function of the Shabal [9] hash
function, proposed in [23, 10]. The keystream bit from column z, marked with a 1 (at
round (r− 2)) represents zr−2, and implies the value of nr−21 , at this same round, which
implies the value of nr−10 , one round later. This last value also completely determines the
value of the guessed bit in round r − 1, which determines the value of this same round
Kr−1∗, which, with a probability of 1/2, will determine the corresponding key bit and
with probability of 1/4 won’t be a valid state, corresponding to the case of K∗r−1 = 1

and (lr−14 + lr−121 + lr−137 + nr−19 + nr−120 + nr−129 ) = 0, producing a sieving of 3/4 (we only
keep 3/4 of the states on average).

6For instance, values of r that we will consider are around 100



Inverting many rounds for free.- We can repeat the exact same procedure considering
also the keystream bits marqued with 2 and 3 (zr−3 and zr−4 respectively). When we
arrive backwards at round (r− 5), we are considering the keystream bit marked with 4,
that is actually zr−5, and the bit nr−54 needed for checking the output equations that
wasn’t known before, is now known as it is nr−21 , that was determined when considering
the keystream bit zr−2. We can therefore repeat the procedure for keystream bits 4,5,6..
and so on. Indeed, the same way, we can repeat this for as many rounds as we want,
with a negligible cost (but for the constant represented by the number of rounds).

Choosing the optimal value for r.- As we have seen, going backwards r rounds (so up to
the initialisation state) will determine on average r/2 key bits, and for each keystream
bit considered we have a probability of 3/4 of keeping the state as candidate, so we will
keep a proportion of (3/4)r−1 state candidates.

Additionally, if r > 80, because of the definition of K∗, the master key involved bits
will start repeating7. For the kept state candidates, we have an additional probability
of around 2/3× 2/3 = 2−2 of having determined the bit at one round as well as exactly
80 rounds before. The 2/3 comes from the fact that, for having one key bit at an
instant t determined we need (lt4 + lt21 + lt37 + nt9 + nt20 + nt29) = 1, and as the case
(lt4 + lt21 + lt37 + nt9 + nt20 + nt29) = 0 with K∗t = 1 has been eliminated by discarding
states, we have that 2 out of the three remaining cases will determine a key bit. Therefore,
when this happens, we need the bits to collide in order to keep the tested state as a
candidate. This happens with an additional probability of 1/2 per bit.

We first provide here the equations considering r ≤ 80. Given 271.5 possible states
obtained during the second step, the average number of states that we will keep as
candidates after inverting r rounds (]s) is
]s = 271.5 × (3/4)r. Each one has ]K = r × 2/3 determined key bits on average.

For 160 > r > 80, the average number of states that we will keep as candidates is

]s = 271.5 × (3/4)r × 2−(r−80)×(2/3)
2

.

Each one has ]K = r × 2/3− (r − 80)× (2/3)2 determined key bits on average.
For any r, as we can gradually eliminate the candidate states on the fly, we do not

need to compute backwards all the 100 bits but for very few of them. The complexity
of testing the kept states in encryption function calls in the worst case will be

271.5 × 1

320 + 80
+ 271.5−1∗0.41 × 2

320 + 80
+ . . .+ 271.5−(r−1)∗0.41 × r

320 + 80
,

we can upper bound this complexity by 10× 271.5 × 1
320+80 ≈ 266.8, which is lower than

the complexity to perform the previous step, described in Section 3.3, so won’t be the
bottleneck.

As for each final kept state, we have to try all the possibilities for the remaining
80 − ]K key bits, we can conclude that the final complexity of this last part of the
attack in number of encryptions is

]s× 280−]K , (1)

Which will be negligible most of the times (as a small increase in r means a big reduction
of this complexity).

7As previously said, for the sake of simplicity we do not take into account the ]z bits
computed from r forward, and we discuss in the next section on implementation, the very little
this changes in the final complexity (any way, it could only help the attacker, so the attack is
as least as ”good” as explained in our analysis).



The optimallity is obtained for values of r of around 100, so we won’t provide the
equations when r > 160.

For our attack, it would seem enough to choose r = 80 in order to have this last step
less expensive than the previous one, and therefore, in order not to increase the time
complexity. We can choose r = 100 so that we are sure that things will behave correctly
and the remaining possible key candidates can be very efficiently tested. We recall that
the optimal value for ]z was 8+4, which means that the data complexity of our attack is
r+ ]z = 112 bits of keystream, which is very small. We have ]s = 221.11 and ]K = 57.2.
The complexity of this step is therefore 221.11 × 280−57.2 = 243.91, which is much lower
than the complexity of the previous steps.

3.5 Full attack summary

We consider r = 100 and ]z = 12. The data complexity of the attack is therefore 112
bits.

First, we have precomputed and carefully arranged the two lists LL and LN , of size
240 and 240+12−4−2 = 246, and 246 will be the memory needed to perform the attack,
as all the remaining steps can be performed on the fly. Next, we merged both lists with
respect to the sieving conditions of type I, II, III and IV, obtaining 271.5 state candidates
with a complexity of 268.87 encryptions. For each candidate state, we compute some
clocks backwards, in order to perform an additional sieving and to recover some key
bits. This can be done with a complexity of 266.8. The kept states and associated key
bits are tested by completing the remaining key bits, and we only keep the correct one.
This is done with a cost of 243.91. We recover then the whole master key with a time
complexity of 269.36 encryptions, i.e. around 210 times faster than an exhaustive key
search. In the next section we implement the attack on a reduced version of the cipher,
being able to proof the validity of our theoretical analysis, and verifying the attack.

4 Implementation and verification of the attack

To proof the validity of our attack, we experimentally test it on a shrinked cipher
with similar structure and properties. More specifically, we built a small stream cipher
according to the design principles used for Sprout but with a key of 22 bits and two states
of 11 bits. We then implemented our attack and checked the returned complexities.

4.1 Toy cipher used

The toy cipher we built is the one represented in Figure 5. It follows the same structure
as Sprout but its registers are around 4 times smaller. We have chosen the functions so
that the sieving conditions behaved similarly as in our full round attack. We keep the
same initialisation principle and set the number of initialisation rounds to 22 × 4 = 88
(in Sprout there are 80× 4 = 320 initialisation rounds).

4.2 Algorithm implemented

Steps 1 and 2 of the attack.-

1. Ask for r + #z = r + 3 keystream bits generated from time t = 0 to t = r + 3− 1,
that we denote by z0, z1, · · · zr+2

2. Build a list LL of size 211 containing all the possible values for the 11 bits of the
linear register at time t = r, sorted according to:
– lr1, lr3 and lr7 at time t = r,
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Fig. 5. Toy Cipher

– lr+1
1 , lr+1

3 and lr+1
7 at time t = r + 1,

– lr+2
3 and lr+2

7 at time t = r + 2 and finally
– lr0, lr2 + lr4 + lr8 at time t = r

3. Build a list LN of size 211+1 = 212 that contains all the possible states values of the
non-linear register at time t = r plus the value of an additional guess and sort it
according to:
– nr0 + zr, nr4 and nr9 at time t = r,
– nr+1

0 + zr+1, nr+1
4 and nr+1

9 at time t = r + 1,
– nr+2

0 + zr+2, nr+2
4 and nr+2

9 at time t = r + 2 and finally
– αr (the guessed bit) at time t = r

4. Create a new list M containing the possible value of LL and LN together:

(a) Consider the states of LL and LN for which the first indexes (lr1, lr3 and lr7 in LL

and nr0 + zr, nr4 and nr9 in LN ) verify the equation given by the keystream bit
at time t = r:

zr = nr4l
r
1 + nr9l

r
3 + nr4n

r
9l

r
7 + nr0

i. Apply a second filter given by the second indexes (lr+1
1 , lr+1

3 and lr+1
7 in L

and nr+1
0 + zr+1, nr+1

4 and nr+1
9 in G) by checking if the equation given by

the keystream bit at time t = r + 1 holds:
zr+1 = nr+1

4 lr+1
1 + nr+1

9 lr+1
3 + nr+1

4 nr+1
9 lr+1

7 + nr+1
0

A. Similarly, apply a sieving according to the third indexes. Remark here
that l1 at time t = r+2 is equal to the already fixed bit l3 at time t = r.
Finally, use the additional information deduced from the guessed bit at
time t = r that must verify

αr = kr · (lr2 + lr4 + lr8 + nr2 + nr4 + nr6)
so that it implies a contradiction if lr2 + lr4 + lr8 = nr2+nr4+nr6 and αr 6= l0
at the same time.

As discussed in Section 3.3, the resulting filter on the cardinal product of the list is of
2−1−1−1−0.415 so 223−3.415 = 219.585 possible states remain at this point.

Step 3 of the attack.-

1. For each of the 219.585 possible states at time t = r, create a vector of 22 bits K̃ for
the possible value of the key associated to it:



(a) For time t = r − 1 to t = 0:
i. Deduce the values of nti, i = 1 · · · 10 and of lti , i = 1 · · · 10 from the state at

time t+ 1
ii. Compute the value of nt0 given by the keystream bit equation as:

nt0 = zt + nt4l
t
1 + nt9l

t
3 + nt4n

t
9l

t
7

and of lt0 given by the LFSR retroaction equation as:
lt0 = lt2 + lt5 + lt+1

10

and deduce from it the value of
k∗t = nt0 + nt3n

t
5 + nt7n

t
9 + nt10 + l0 + nt+1

10

(given by the NLFSR retroaction equation)
iii. Compute the value of lt2 + lt4 + lt8 + nt2 + nt4 + nt6 and combine it with the

value of k∗t obtained in the previous step:
A. If lt2 + lt4 + lt8 + nt2 + nt4 + nt6 = 0 and k∗t = 1, there is a contradiction so

discard the state and try another one by going back to Step 1.
B. If lt2 + lt4 + lt8 +nt2 +nt4 +nt6 = 1 and k∗t = 0 check if the bit has already

been set in K̃. If no, set it to 0. Else, if there is a contradiction, discard
the state and try another one by going back to Step 1.

C. If lt2 + lt4 + lt8 +nt2 +nt4 +nt6 = 1 and k∗t = 1 check if the bit has already
been set in K̃. If no, set it to 1. Else, if there is a contradiction, discard
the state and try another one by going back to Step 1.

4.3 Results

The previous algorithm has been implemented and tested for various values of r. At
the end of step 2 we recovered indeed 219.5 state candidates. In all the cases, the pair
formed by the correct internal state and the partial good key were included amongst
the candidates at the end of step 3. The results are displayed in Table 3, together with
the values predicted by theory. We recall here that the expected number of states at the
end of the key recovery is given by the formula in Section 3.4 which in this case can be
simplified by:

219.5 × (3/4)r = 219.5−0.415r when r < |K| and by

219.5 × (3/4)r × 2−(r−|K|)×(2/3)
2

= 229.35−0.859r when r ≥ |K|.
In the same way, we expect the following amount of bits to be determined:

r × (2/3) when r < |K| and
r × (2/3)− (r − |K|)× (2/3)2 when r ≥ |K|.

This leads to the comparison given in Table 3 in which we can remark that theory and
practice meet quite well.

Note that given the implementation results, a sensible choice would be to consider
a value of r around 26. Indeed, r = 26 means that the attacker has to consider all the
27.32 states at the end of the key recovery part and for each of them has to exhaust
on average the 6.67 unknown bits, leading to an additional complexity of 213.99. This
number has to be compared to the time complexity of the previous operation. The time
complexity for recovering the 219.585 candidates at the end of step 2 is the bottleneck of
the time complexity. According to Section 3.3, this term can be approximated by:

219.585 × 3

88 + 22
' 214,38 encryptions.

So recovering the full key is of negligible complexity in comparison, and r = 26 leads to an
attack of time complexity smaller than 215 encryptions, coinciding with our theoretical
complexity.



Table 3. Experimental Results Obtained on Average on 300 Random States and Keys

r 20 21 22 23 24 25 26 27 28 29 30

log of number of states
remaining at the end 11.28 10.85 10.47 9.68 8.95 8.01 7.32 6.63 5.75 5.17 4.42
of the key recovery

theory 11.3 10.9 10.5 9.6 8.8 7.9 7.0 6.2 5.3 4.4 3.6

unknown bits 8.68 8.02 7.30 7.12 6.96 6.77 6.67 6.32 6.29 6.03 5.94

theory 8.7 8.0 7.3 7.1 6.9 6.7 6.4 6.2 6.0 5.8 5.6

5 Conclusion

In this paper we present a key-recovery attack on the stream cipher Sprout, proposed
at FSE 2015, that allows to recover the whole key more than 210 times faster than
exhaustive search. We have implemented our attack on a toy version of the cipher. This
implemented attack behaves as predicted, and, therefore, we have been able to verify
the correctness of our approach. Our attack exploits the small size of the registers and
the non-linear influence of the key in the update function. We believe that it questions
the validity of the family proposed in [5].

An interesting direction to look at for repairing this weakness would be to consider
the key influence on the update function as linear.
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