
Fast Revocation of Attribute-Based Credentials
for Both Users and Verifiers?

Wouter Lueks, Gergely Alpár, Jaap-Henk Hoepman, and Pim Vullers

Radboud University, Nijmegen, The Netherlands
{lueks, gergely, jhh, pim}@cs.ru.nl

Abstract. Attribute-based credentials allow a user to prove properties about her-
self anonymously. Revoking such credentials, which requires singling them out,
is hard because it is at odds with anonymity. All revocation schemes proposed
to date either sacrifice anonymity altogether, require the parties to be online, or
put high load on the user or the verifier. As a result, these schemes are either too
complicated for low-powered devices like smart cards or they do not scale. We
propose a new revocation scheme that has a very low computational cost for users
and verifiers, and does not require users to process updates. We trade only a lim-
ited, but well-defined, amount of anonymity to make the first practical revocation
scheme that is efficient at large scales and fast enough for smart cards.

1 Introduction

More and more governments are issuing electronic identity (eID) cards to their citi-
zens [24,30,32]. These eID cards can be used both offline and online for secure authen-
tication with the government and sometimes with other parties, like shops. Attribute-
based credentials (ABCs) [9] are an emerging technology for implementing eID cards
because of their flexibility and strong privacy guarantees, and because they can be fully
implemented on smart cards [36]. Every credential contains attributes that the user
can either reveal or keep hidden. Such attributes describe properties of a person, like
her name and age. ABCs enable a range of scenarios from fully-identifying to fully-
anonymous.1 When using a credential fully anonymously (i.e., without revealing any
identifying attributes), proper ABC technologies guarantee that the credential is unlink-
able: it is not possible to connect multiple uses of the same credential.

When ABCs are applied, the carriers on which the credentials are stored (for exam-
ple, smart cards) can be lost or stolen. In such cases, it is important that users can revoke
these credentials to ensure that they can no longer be (ab)used. This is also necessary
when the owner of the credential herself abuses it. Revocation may, in fact, happen of-
ten. As an example, the nationwide Belgian eID system’s revocation list contains more
than 375 000 credentials [8] for just over 10 million citizens. A practical revocation
scheme must therefore efficiently deal with such large revocation lists.
? This paper is the extended version of Lueks et al. [27]. In particular, it adds a security model

and security proofs (see Section 5), a discussion about using multiple generators (see Sec-
tion 6), and an extended implementation discussion (see Section 8).

1 This is why we prefer the term ‘attribute-based credentials’ over the more traditional term
‘anonymous credentials’.

Unfortunately, the unlinkability of ABCs precludes the use of standard, identity-
based revocation. There exist many privacy-friendly revocation schemes, with different
trade-offs in terms of efficiency (both for users and verifiers), connectivity requirements,
and anonymity. It turns out to be hard to satisfy all of these simultaneously. In particu-
lar, all revocation schemes proposed so far suffer from at least one of the following two
problems: (1) they rely on computationally powerful users, making the scheme unsuit-
able for smart cards, the obvious carrier for a national eID; or (2) they place a high load
on verifiers, resulting in long transaction times.

The IRMA Project. This research is part of the ongoing research project “I Reveal
My Attributes” (IRMA). The goal of this project is to demonstrate the practicality of
attribute-based credentials. We implemented the entire user-side of the credentials on a
smart card [36]. In this paper we focus on this setting.

Our contribution. Our contribution is a new revocation scheme that has very low com-
putational cost for users and verifiers alike; it is efficient even in the smart card setting,
and can therefore be used in practice. We introduce the main idea in Section 2, introduce
ABCs in Section 3, and describe the full scheme in Section 4. In our scheme, verifiers
need only constant time on average to check revocation status, making it as fast as
traditional non-anonymous revocation schemes. Furthermore, the users’ computational
overhead is small (and updates to reflect revocations are not necessary). Our scheme is
based on epochs that divide time in short (configurable) intervals. Our scheme is un-
linkable, except if the user uses her credential more than once per epoch at the same
verifier. We model the security of our scheme and prove that our scheme is secure in
this model—see Section 5. To mitigate the linkability within an epoch, we explore the
idea of using multiple generators in Section 6. Our revocation scheme works with most
credential schemes. As an example, we instantiate it for Idemix [20] in Section 7. We
give pointers for implementing our scheme in practice, and give experimental results as
evidence of feasibility of our scheme in Section 8. Finally, we review related work in
Section 9 and conclude our paper in Section 10.

2 The Idea

Our scheme enables efficient and privacy-friendly revocation of credentials. As it re-
sembles verifier-local revocation (VLR) schemes [1,4,6], we describe those first.

2.1 Verifier-local revocation

The setting is a cyclic group G with prime order q. Every credential encodes a random
revocation value r ∈ Zq . If a credential has to be revoked, its revocation value r is added
to the global revocation list RL. When the user shows the credential to a verifier, the
verifier needs to check whether the user’s revocation value r appears on the revocation
list RL. To facilitate this check without revealing r itself, the user chooses a random
revocation generator h ∈R G, calculates the revocation token R = hr , and sends

(h,R) (1)

to the verifier during showing. The user also proves that the revocation value r embed-
ded into R corresponds to credential she is showing. This proof depends on the type
of credential—see Section 7 for an example. Each verifier holds a copy of the revoca-
tion list RL = {r1, . . . , rk}. To check whether the credential is still valid, the verifier
checks whether hrj = R for each rj ∈ RL and rejects the credential if one of these
equalities holds. This form of verifier-local revocation has some problems in practice:

1. Because the user chooses the revocation generator h at random, the work for the
verifier increases linearly with the number of items on the revocation list. This
quickly causes performance problems.

2. The scheme is not forward-secure. Once the verifier obtains a revocation value
ri, the verifier can link all past and future interactions involving this value, if it
stores the tuples (h,R) from (1). Some solutions have been proposed to solve this
problem—see Section 9—but they are not efficient enough for our purposes.

Our scheme addresses these two disadvantages.

2.2 Our scheme

We propose to split time into epochs and to use one generator per epoch and per ver-
ifier. This limits the user to one showing per verifier per epoch if she wants to remain
unlinkable (which is not a problem when epochs are small) but makes revocation check-
ing very fast for the verifier. The user uses the per-epoch per-verifier generator gε,V to
create the values in (1). In particular, she sends R = grε,V to the verifier.

To check whether the credential is revoked the verifier does not need to know the
raw revocation values. Instead, a semi-trusted party, the revocation authority (RA), can
store these, and provide the verifier with a revocation list:

RLε,V = {gr1ε,V , . . . , g
rk
ε,V }.

The credential is revoked if R ∈ RLε,V . This operation takes only O(1) time on av-
erage using associative arrays. The average time complexity thus decreases from linear
to constant in the length of the revocation list RLε,V . While some computation load
shifts to the RA, the RA does no more work creating the list than a verifier in the VLR
scheme does for every verification. Also, the verifier can no longer link transactions in
different epochs since it does not have the bare revocation values.

Epochs and generators. The length of an epoch must be sufficiently short so that a user
normally never shows her credential twice within the same epoch to the same verifier.
If the generator is reused, the corresponding activities of the user become linkable.

The generators form an attack vector for a malicious adversary to link users’ ac-
tivities. It is not sufficient for the user to keep track of the generators she used before.
A malicious verifier could take one fixed generator gε,V , and then create a new one
by picking a random exponent x ∈R Zq and sending gxε,V to the user. All revocation
tokens are then easily reduced to the same base gε,V , without the user ever seeing a
similar generator.

To prevent this attack, users should calculate the generators themselves. The easiest
method—and the one we propose here—is to use a hash function and let the generator
gε,V for a verifier V and epoch ε equal H(ε ‖ V), where H is a hash function from the
strings to the group G and the epoch ε is derived from the current time.

3 A primer on ABCs

Attribute-based credentials are a cryptographic alternative to traditional credentials like
driver’s licenses and passports. ABCs contain a set of attributes, typically encoded as
numbers, that a user can selectively reveal to the verifier. Even when attributes are
hidden, the verifier can still assess the validity of the credential.

A typical attribute-based credential scheme comprises the following three parties.

Issuer The issuer issues credentials to users. It ensures that the correct data are stored
in the credential. A typical credential scheme has multiple issuers.

User The user holds a set of credentials, obtained from one or more issuers. She can
disclose a (user defined) selection of attributes from any number of her credentials
to a verifier to obtain a service.

Verifier The verifier, sometimes called relying party or service provider, checks that
the credential is valid, the revealed attributes are as required, and the credential is
not revoked. Based on the outcome, it may provide a service to the user.

When the credential scheme supports revocation, another party is present.

Revocation Authority The revocation authority is responsible for revoking creden-
tials. It determines when to revoke, and stores all information necessary to do so. If
necessary, it sends revocation information to users and verifiers.

Our scheme is independent of the choice of credential scheme, but we impose three
restrictions on it:

1. The credential must be able to encode a revocation value r from a sufficiently large
set.2 This value can identify a credential if it is revoked. We use the notation C(r)
to denote a credential that contains the revocation value r. Depending on the type
of credential, other attributes may be present.

2. The issuer should be able to issue a credential C(r) without learning the revoca-
tion value r. Otherwise, the issuer can use it to trace credentials. Most credential
schemes support blind issuing, which makes this possible.

3. The showing protocol must be extendible to provide the verifier with the revocation
token R = grε,V and a proof that R and C(r) contain the same revocation value r.
Fortunately, most credential schemes already rely on zero-knowledge proofs, and
these can readily be extended to include the required proof of equality.

2 For simplicity, we focus on attribute-based credentials, but this is not strictly necessary. Any
credential scheme that can encode the revocation value and that satisfies the second restriction
can be used with our scheme. One example would be to use the user’s private key as the
revocation value.

Furthermore, we assume that the credential scheme authenticates the verifiers. (This is
without loss of generality. It is easy to add such a layer if it is missing.)

Our paper focuses on credentials that are multi-show unlinkable, i.e., a verifier can-
not link multiple showings of the same credential. When credentials are only single-
show unlinkable, we suspect that there are simpler methods available to revoke a cre-
dential, since multiple showings are linkable. Nevertheless, our methods also apply
to credentials that are single-show unlinkable, which would be useful if the user has
multiple versions of the same credential. The user shows each credential only once to
preserve unlinkability. If every version of the credential contains the same revocation
value, then they can all be revoked simultaneously.

4 The full scheme

We now describe the full scheme. It expands on the intuition described in Section 2
by explicitly stating how the revocation authority (RA) operates and how it deals with
verifiers. Section 8 shows how to implement this scheme.

The revocation authority runs the SetupRA algorithm once.

SetupRA(1`) This algorithm takes as input a security parameter 1`. It chooses a cyclic
group G of prime order q with generator g such that the DDH problem is hard in
G and q has ` bits. Furthermore, it picks a hash function H : {0, 1}∗ → G that
maps strings onto this group. It outputs (G, g, q,H). These parameters are public
and known to all other parties. The RA keeps track of the current epoch ε, which
it initializes to 0, and the initially empty master revocation list MRL containing
revoked credentials identified by their revocation values.

Users and verifiers run the algorithms SetupU and SetupV respectively.

SetupU() The user keeps track of the current epoch ε. She also stores sets TC of the
verifiers that she has shown credential C to in this epoch. Initially, TC = ∅.

SetupV() The verifier calls GetRevocationList to get an initial revocation list from
the revocation authority—see below. It also keeps track of the current epoch ε.

At the beginning of a new epoch, all parties increase the current epoch ε by 1. In par-
ticular, we assume that all users know the current epoch.3 At the start of a new epoch,
users additionally clear the list TC of verifiers that have seen credential C in this epoch.
Every verifier V runs the GetRevocationList protocol with the revocation authority to
get its revocation list for the current epoch.

GetRevocationList() This protocol is run between a verifier V and the revocation
authority. The parties execute the following steps:
1. The verifier V authenticates itself to the revocation authority.4

3 As we explain in Section 8.2, epochs are represented as time intervals. Users test their knowl-
edge of the current time against this interval to make sure the interval is not in the past.

4 The verifier reuses the authentication mechanism in the credential scheme.

2. The revocation authority
(a) calculates the generator gε,V = H(ε ‖ V) ∈ G for verifier V ;
(b) computes the sorted list RLε,V = sort({grε,V | r ∈ MRL}); and
(c) sends RLε,V to verifier V.

Sorting the revocation lists RLε,V ensures that unlinkability is preserved for all previ-
ous activities, even for revoked users (if |MRL| > 1).5

To revoke a credential, the Revoke protocol is run with the revocation authority.

Revoke(r) When the revocation authority is asked to revoke a credential with revoca-
tion value r, it adds r to the master revocation list MRL.

In a deployed system, it is the RA’s responsibility to decide whether to grant the revo-
cation request. In Section 8.1 we discuss how a credential can be revoked in practice.

When showing a credential, the user and the verifier follow the ShowCredential
protocol. Using this protocol, the user first authenticates the verifier. Then, she gives a
revocation token to the verifier and proves that she has a corresponding credential. The
verifier checks the validity of the credential and whether it has been revoked.

ShowCredential(C, V) This protocol is run between a user holding credentialC and
a verifier V. It proceeds as follows.
1. The verifier authenticates itself to the user. The user aborts if the authentication

is unsuccessful or if V ∈ TC .
2. The user calculates the verifier (and epoch) specific generator gε,V = H(ε ‖
V), and adds V to the list of seen verifiers TC .

3. The user sends its revocation token R = grε,V to the verifier. Here, r is the
revocation value encoded into the user’s credential C(r).

4. The user and the verifier run the normal showing protocol for the user’s cre-
dential C(r), but in addition the user proves that its revocation tokenR is well-
formed, i.e., that the exponent r is the same as the revocation value encoded in
the credential. Section 7 shows an example of such a proof for Idemix.

5. The verifier checks the validity of the credential and whetherR is well-formed.
Finally, it confirms that R is not on its revocation list RLε,V for the current
epoch. It aborts if any of these checks fail.

The list TC and the epoch ε uniquely determine the generators that the user has used
for credential C in this epoch. The checks above ensure that the user never reuses a
generator. Also, the user always calculates the generators herself. This prevents the
verifier from cheating with the generators.

Checking that R 6∈ RLε,V can be done in constant time (on average) if the verifier
processes the revocation list RLε,V into an associative array. Some tricks help keep the
size of the revocation lists manageable—see Section 8.5.

5 For this purpose, it suffices to sort on the representation of the elements. All that matters is
that the order depends only on information in the list itself.

5 Security model and proofs

A good revocation scheme needs to satisfy two properties: (1) non-revoked credentials
are still unlinkable, and (2) a revoked credential is no longer usable. In this section,
we prove that our scheme has these two properties, which we call unlinkability and
unavoidability.

For both security definitions, we use credentials that are indistinguishable from one
another. Most credential schemes provide this type of unlinkability, as long as the re-
vealed attributes (if any) are the same. For unavoidability, we also require that creden-
tials are unforgeable, but all credential schemes that we know of satisfy this property.

5.1 Unlinkability game

We say that a revocation scheme is unlinkable if no adversary can win the following
game.

Definition 1 (The unlinkability game). In the unlinkability game, the adversary’s
goal is to determine which of two credentials is shown to him. Let S be a credential
scheme, n the number of credentials in the system, k the number of verifiers in the
system, and ` the security parameter.

Setup The challenger sets up the system by running the SetupRA(1`) algorithm on
the RA. It sets up the credential system S and creates n credentials with identifiers
1, . . . , n and randomly generated revocation values r1, . . . , rn. Next, it initialises
the corresponding users using SetupU(). Finally, it initializes the current epoch ε
to 0. The adversary is responsible for setting up the verifiers.

Queries The adversary may issue the following queries.
Corrupt(i) The adversary can request a credential with identifier i to be cor-

rupted. It receives the revocation value ri and the entire internal state of the
credential.

GetRevocationList(Vj) The adversary can request the revocation list for ver-
ifier Vj . The challenger runs GetRevocationList with the RA and returns
RLε,Vj to the adversary.

Verify(Vj , i) The adversary acts as verifier Vj for a credential with identifier i in
the ShowCred(Ci, Vj) protocol.

Revoke(i) The adversary can ask to revoke the credential with identifier i. The
challenger calls the Revoke(ri) protocol on the RA.

NextEpoch The adversary requests to move to the next epoch. The challenger
ensures that the revocation authority and the users move to the next epoch and
updates its own epoch ε as well. The adversary is responsible for moving the
epoch of the verifiers.

Challenge The adversary selects two credentials with identifiers i0 and i1, a verifier
V ∗, and an epoch ε∗ such that linking is not trivial, i.e.,
1. neither i0 nor i1 was revoked in ε∗ or earlier,
2. neither i0 nor i1 was corrupted, and
3. verifier V ∗ did not verify the credentials i0 and i1 during epoch ε∗.

The challenger then picks a bit b ∈ {0, 1} at random and runs Verify(V ∗, ib) with
the adversary. The adversary outputs a bit b′. It wins if b = b′.

The advantage of an adversary A is given by AdvLINK
A,S (1

`) = 2|Pr[b = b′] − 1/2|
where the probability is over the random bits of the challenger and the adversary. The
revocation scheme for credential scheme S is unlinkable if AdvLINK

A,S (1
`) is negligible

for every PPT algorithm A.

This game models the fact that the revocation authority is trusted; it will not give the
raw revocation values to the adversary. The game also models the forward security of
the scheme. The adversary is allowed to revoke the challenge credentials i0 and i1 in
epochs beyond ε∗, but should nevertheless have a negligible advantage in distinguishing
the credentials in epoch ε∗.

In the following reduction we let the revocation token R of a specific user depend
on a DDH instance. As a result, we do not know its discrete logarithm, so we cannot
do the equality proof required in the protocol. Instead, we require that we can forge
this proof in the reduction. In most applications, this proof will be a non-interactive
zero-knowledge proof resulting from the Fiat-Shamir heuristic [18]. In this case, our re-
duction can forge these proofs assuming a random oracle. (For regular zero-knowledge
proofs we can use rewinding techniques.)

Theorem 1. Our credential scheme with our revocation scheme is unlinkable (in the
sense of Definition 1) in the random oracle model provided that the DDH problem is
hard in the group G.

Proof. We reduce the security of our revocation scheme to the hardness of the DDH
problem. Let (g,A = ga, B = gb, C = gc) ∈ G4 be a DDH instance. We encode this
instance into the revocation token of a specific user. We do this in such a way that in the
challenge epoch ε∗ we give the correct token if c = ab and a random one otherwise.
Any distinguisher thus breaks DDH.

Given this tactic it is more natural to first prove that an adversary A can never win
the following real-or-random variant of the unlinkability game. In the real-or-random
game, the adversary is only allowed to ask for a single credential i in the challenge
phase (the same restrictions that applied to i0 and i1 also apply to i). In response the
adversary is shown the credential i and a revocation token R. Its goal is to distinguish
the following two cases: the real case, R = griε∗,V ∗ , and the random case, R ∈R G. This
implies that the adversary can never distinguish real revocation tokens from random
ones. As a consequence, we can replace the revocation token in the challenge of the
regular indistinguishability game with a random token without being detected. Clearly,
if the revocation token is random the adversary has no advantage in winning the game
(because the credentials themselves are unlinkable).

We now prove that no adversaryA can win the real-or-random game. Suppose such
an adversary A does exist. We will construct a challenger B that breaks the DDH as-
sumption. As input, the challenger takes a DDH problem (g,A = ga, B = gb, C = gc),
and B’s task is to determine whether c = ab or c ∈R Zq .

First, challenger B will guess the challenge epoch ε∗, the challenge verifier V ∗ and
the special credential i∗. Challenger B generates n− 1 revocation values r1, . . . , ri∗−1,

ri∗+1, . . . , rn at random and issues n − 1 credentials C(r1), . . . , C(ri∗−1), C(ri∗+1),
. . . , C(rn) corresponding to these values. For credential i∗, it picks random values
y, z ∈R Zq, and it will act as if credential i∗’s revocation value ri∗ equals a · z,. It
also creates a corresponding credential C(y). It does not know ri∗ itself, and since
y 6= ri∗ challenger B always needs to fake the equality proof involving C(y).

The challenger uses his control over the random oracle H to choose the generators
gε,V . A judicious choice of the generators makes it possible to create the revocation
token for credential i∗, even though a is unknown. For every epoch ε and verifier V it
chooses an exponent xε,V ∈R Zq . For verifier V = V ∗ in epoch ε = ε∗ the challenger
sets gε∗,V ∗ = H(ε∗ ‖ V ∗) := Bxε∗,V ∗ . For all other ε, V pairs, it sets gε,V = H(ε ‖
V) := gxε,V . The challenger runs the adversaryA, and honestly answers all queries not
involving credential i∗. For credential i∗ it will create the revocation token as

Rε,V,i∗ = gri∗ε,V = (gxε,V)a·z = (ga)xε,V ·z = Axε,V ·z

unless V = V ∗ and ε = ε∗. If the adversary ever makes a Verify(V ∗, i∗) query in epoch
ε∗, corrupts credential i∗ or requests the revocation list for verifier V ∗ in epoch ε∗ with
credential i∗ on it,6 challenger B aborts. In all cases the challenger forges the proof of
equality of the revocation value and credential C(y) using its random oracle.

Eventually, the adversary makes its challenge query for credential i at verfier V in
epoch ε. If B did not guess these correctly, i.e., if ε∗ 6= ε, or i∗ 6= i, or V ∗ 6= V , it
aborts. Otherwise, it answers withR = Cxε,V ∗ ·z (and forges the corresponding equality
proof). If c = ab then R belongs to credential i = i∗ (because then C = Ba) and if
c ∈R Zq then R is random. If A answers real then B will answer that c = ab and
if A answers random then B will answer that c 6= ab. Any non-negligible advantage
that A has in winning the real-or-random game will result in challenger B having a
non-negligible advantage for solving the DDH problem. ut

5.2 Unavoidability game

We say that our revocation scheme is unavoidable if no adversary can win the following
game.

Definition 2 (The unavoidability game). In the unavoidability game, the adversary’s
goal is to convince the challenger’s verifier that it has a valid and unrevoked credential.
The adversary gets as many credentials as it wants, but the challenger will revoke all of
these to prevent trivial wins. Let S be a credential system and ` the security parameter.

Setup The challenger sets up the system by running the SetupRA(1`) algorithm on
the RA. It also sets up an issuer for credential system S to provide the adversary
with credentials and a verifier for its own use. The challenger controls the users
and is responsible for setting them up.

Queries The adversary may issue the following queries.

6 Even though we do not know ri∗ we can still revoke credential i∗ in later epochs because we
can calulate the revocation token Rε,V,i∗ as shown.

GetCredential The adversary can request a credential to be issued to him. The
challenger runs the issue protocol of the credential scheme with the adversary.
Let r be the revocation value that is embedded into this credential. After pro-
viding the adversary with the credential, the challenger calls Revoke(r) to
revoke it immediately.

NextEpoch Same as before, but now the challenger is responsible for its verifier
and the adversary for the users.

Challenge The challenger sets its verifier V to this epoch, and subsequently runs the
GetRevocationList algorithm to get the latest revocation list. The adversary will
run the ShowCredential protocol with this verifier. The adversary wins if the ver-
ifier accepts.

The advantage of adversary A is given by AdvAVOID
S (1`) = Pr[V accepts] where the

probability is over the random bits of the challenger and the adversary. The revocation
scheme for credential scheme S is unavoidable if AdvAVOID

S (1`) is negligible for every
PPT algorithm A.

For simplicity we do not give the challenger the option to revoke credentials nor to ob-
tain the revocation list since all this information is already encoded into its credentials.

Theorem 2. Our revocation scheme is unavoidable (in the sense Definition 2) in the
random oracle model provided that the underlying credential scheme is unforgeable.

Proof. Suppose the challenger’s verifier accepts the credential C(r) that is shown by
the adversary. Since credentials are unforgeable, the adversary obtained this credential
using a GetCredential query, thus the embedded revocation token r is on the master
revocation list MRL. Let gV be the verifier’s generator. The equality proof guarantees
that the revocation token R presented by the adversary is of the form grV . Since grV is
on the verifier’s revocation list, the verifier will never accept the adversary’s proof. ut

6 Multiple generators

The single generator protocol we described above is secure and efficient. A user is link-
able only in exceptional cases: when she uses a credential multiple times for the same
verifier within one epoch (which is then too long). Also, the load on the revocation au-
thority can become quite high (it needs to create a revocation list for each verifier). In
this section, we make a detour to explore the question whether multiple generators—
shared among the verifiers, or even per verifier—alleviate these minor problems. The
answer is positive, however, using multiple generators can make the user somewhat
linkable. Before we explain this linkability, we extend our scheme with multiple gener-
ators.

6.1 Multiple generators for revocation

We propose two methods for creating multiple generators: the global and the local.
In the global method there are m generators (per epoch) that are shared among the

verifiers. In the local method there are m generators (per epoch) for each verifier indi-
vidually. In the latter case m can be smaller than in the former.

Global generators ensure that the user has m different generators to choose from.
These can be spent at any verifier, even multiple times at the same one. If m is smaller
than the number of verifiers this reduces the load on the revocation authority as well.
Local generators give the user m generators per verifier instead of only one.

Instead of generating per-epoch per-verifier generators, we now create the ith gen-
erator, with 1 ≤ i ≤ m as follows:

gε,i =

{
H(ε ‖ i) if mode is global
H(ε ‖ V ‖ i) if mode is local.

The verifier is implicit for local generators. The verifier can now request revocation lists
for each of theses generators (for global generators the RA will cache the responses).
During showing a user randomly picks one of the unused generators (or aborts if she
cannot). To this end, she keeps track of the indexes of generators used in this epoch
for global generators, or pairs (V, i) when she used the ith verifier of verifier V . She
informs the verifier of her generator choice, and proves that she created her revocation
token R with respect to this generator.

This method was inspired by ideas for traceable signatures [15], where signature
can be traced because the signer can only produce a finite number of unique tags. When
tracing a signature the tracing agent produces all these tags, much like we generate
revocation tokens for all the generators. The traceable signature scheme does not suffer
from the problem we describe next because the (inefficient) proofs of knowledge hide
which generators are used.

6.2 Distinguishing credentials

The unlinkability game is easily extended to the above setting. We first note some pos-
itive results. For local generators with m = 1 we exactly have the same scheme as
before, with the same security requirements. Similarly, if two credentials have never
been used in this epoch (at this verifier, for local generators), it can be shown that the
adversary has no chance of linking them.

However, when a credential is used multiple times, before the challenge phase, it
creates an internal state—the generators that it has already used—that can be recognized
by the verifier with a non-negligible probability. This attack works independent of the
mode.

The verifier only needs two credentials C0 and C1 to have an advantage in the
unlinkability game. It makesm−1 verify queries toC0. It can observe which generators
C0 chooses, let g̃ be the generator it did not yet use. The adversary makes no queries to
C1. In the challenge phase it again requests credentials C0 and C1. If the credential uses
generator g̃ the adversary guesses it is communicating withC0, otherwise it guessesC1.
Since C0 always uses g̃ and C1 uses it with probability 1/m the adversary is correct
with probability 1 − 1/(2m). Note that this attack does not work if m = 1. A similar
attack works for any two credentials for which the internal state TC differs.

While it is not nice to have credentials that are linkable in this way, the effect of this
attack—that does not identify credentials directly, nor makes them fully linkable—may

be acceptable to either significantly reduce the load on the RA for global generators, or
allow the options of multiple authentications with the same verifier within an epoch at
a small loss of privacy. (The original scheme makes the credentials fully linkable in this
case.)

6.3 Making multiple generators work

The essential difficulty in the multiple-generator scheme we sketched above is that the
user reveals the generator she used. This is not necessary. Instead, given a set of gener-
ators gε,1, . . . , gε,m the user with revocation value r can make a zero-knowledge proof
that

R = grε,1 ∨R = grε,2 ∨ · · · ∨R = grε,m.

The verifier then checks whether R is on any of its revocation lists (corresponding to
the m generators. It can be shown that this variant is secure.

This zero-knowledge proof is not complicated, but it is computationally intensive
for the user: its complexity is O(m). However, it provides us with a trade-off between
efficiency and perfect unlinkability. Moreover, when m is small, we still outperform
other fast solutions (like accumulators, see Section 9) without requiring updates to the
user.

7 Showing Protocol for Idemix

In this section, we give a brief overview of the Idemix [20] attribute-based credential
system and how our revocation scheme can be incorporated into it to enable revocation
without losing anonymity. We focus on the way our revocation scheme can be incorpo-
rated and omit some of the cryptographic details.

In Idemix, a credential is a Camenisch–Lysyanskaya [12] signature (A, e, v) on the
block of messages consisting of the user’s private key skU and the attributes a1, . . . , aL.
We can easily incorporate an extra attribute containing the revocation value r into the
signature:

A ≡

(
Z

Sv ·RskUK ·RrR ·
∏L
i=1R

ai
i

)1/e

(mod n),

where the credential issuer’s public key consists of the integers Z, S,RK , RR, R1, . . . ,
RL, n. Both skU and r should be chosen from a large set. The construction of the
signature guarantees that the user cannot change any of the values in the exponents. In
the issuing protocol, the revocation value r and the private key skU should be hidden.

Given a block of messages skU , r and a1, . . . , aL the validity of the signature can
be verified by checking that

Z
?≡ Ae · Sv ·RskUK ·RrR ·

L∏
i=1

Raii (mod n).

When the signature is part of a credential scheme, some of these values can never be
shown to the verifier as they would make the credential linkable. Instead, during ver-
ification the user uses the following two functions to show a credential anonymously.

First, the user randomizes the signature to ensure unlinkability. Second, the user selec-
tively discloses only those attributes appropriate for the application (the private key and
the revocation value are never revealed).

A user randomizes the value A of a signature (A, e, v) as follows. If (A, e, v) is a
valid signature on skU , r and a1, . . . , aL, then (Â, e, v̂) is also a valid signature where
Â := A · S−% (mod n), v̂ := v + e% for any randomly chosen % (in some large inter-
val). This does not yet provide unlinkability by itself—e remains unchanged—but the
selective disclosure proof described below also hides the value e.

The selective disclosure protocol is a (non-interactive) zero-knowledge proof con-
structed by the user. Such a proof reveals a subset of the attributes determined by the
index set D and proves that a (randomised) signature contains these attribute values.
To make revocation possible, we also include a predicate that demonstrates that (a) the
revocation token R was honestly computed using the generator gε,V and (b) the revo-
cation value r corresponds to this credential. The proof is as follows:7

PK
{
(e, v̂, skU , r, (ai)i/∈D) : Z

∏
i∈D

R−aii ≡ ÂeSv̂RskUK RrR
∏
i/∈D

Raii (mod n)

∧ R = grε,V in G
}
.

In the congruence above, all the exponents on the left-hand side are known to the verifier
(selectively disclosed attributes (ai)i∈D), while the exponents on the right-hand side
remain hidden and the user only proves knowledge of them. The above proof realizes
the user’s side of steps 4 and 5 in the ShowCredential algorithm—see Section 4.

8 Implementation

We now address some implementation challenges when using our revocation scheme.

8.1 Obtaining revocation information

To revoke a credential one needs to know its revocation value. However, this value
also poses a privacy risk: the party that stores it could revoke the credential and hence
detect its use. Many revocation schemes suffer from the same problem, see Section 9.
We discuss three options: (1) the user generates the revocation information herself,
and gives it to the RA when her credential needs to be revoked, (2) the revocation
information is stored by a trusted third party (TTP), and (3) the revocation information
is escrowed during showing.

User provides revocation information The owner of a credential can best guarantee
her anonymity if she alone knows the revocation value. If she loses her credential she
then uses this value to revoke her credential. We see two distinct methods for doing this.

7 We use a simplified version of the Camenisch–Stadler notation [14] for zero-knowledge proofs
of knowledge. Only the prover knows the values in front of ‘:’, other values are also known by
the verifier. We also omited the range proofs; see the Idemix specification [20] for details.

Method 1 The user sends the revocation value r to the revocation authority, as in our
protocol.

Method 2 If the revocation authority cannot be trusted, it is possible to change the
protocol to protect the user’s revocation value. The generators are known in ad-
vance, so instead of giving the revocation value to the RA, the user can calculate
the revocation tokens herself for all verifiers and all remaining epochs in which the
credential is valid (assuming credentials expire).
This is costly, but does give forward-privacy for the user without trusting the RA.
To reduce this cost, the RA can add structure to the generators of a single epoch as
follows. It picks zε,V ∈R Zq and sets gε,V = H(ε)zε,V . The user only needs to do
one exponentiation per epoch—it calculates H(ε)r—and the RA creates the per-
verifier specific values (as RrV = (H(ε)r)zε,V). The user is no longer able to check
the generators herself (she does not know zε,V), instead, the RA issues certificates
on the verifiers’ generators.

In either case the revocation value needs to be available. This is not the case when the
credentials (and thus the revocation values) are stored on a smart card. So, when the
card is lost or stolen, the revocation values needed to revoke the credentials need to be
available elsewhere. One option would be to use a trusted terminal to print the (card-
generated) revocation values (for example as a QR code) when a credential is issued.
The user can then store the revocation values separately from the card. Another option
to store the revocation values is to use a trusted third party.

TTP stores revocation information The revocation values can also be stored centrally
by a (possibly distributed) trusted third party, for example by the revocation authority
itself (this raises the trust level required for the RA). The revocation information is now
always available, even if the user loses her credentials. But the disadvantage is equally
clear: revocation values that are known, can also be abused.

This approach brings a new challenge: how does the TTP get the revocation values?
They are included in the credential during the issuance phase, but the value of the revo-
cation token should be hidden from the issuer to prevent the issuer from being able to
identify credentials. On the other hand, the TTP cannot rely on the (possibly malicious)
user to provide this information voluntarily.

The most obvious solution is to use verifiable encryption [13]. During the issuance
process the user encrypts the revocation value it has included in the credential with the
public key of the TTP. It sends this ciphertext to the issuer, and proves that the ciphertext
does indeed decrypt to the revocation value she included in the credential.

Credential schemes where the issuance protocol uses zero-knowledge proofs, like
Idemix, can easily be extended to include the necessary extra proofs, at the cost of
slower issuance.

We wish to point out that requiring the revocation values to be stored centrally so
that credentials can be revoked if they are abused is not as easy as it seems. In particular,
attributing abuse of attribute-based credentials is impossible if no identifying attributes
are used. This is where the last technique comes in.

Escrowing revocation information A final option is to escrow the revocation infor-
mation during the showing protocol. Similar to identity escrow [21] the user provides a
verifiable encryption of her revocation token (encrypted with the public key of a TTP)
to the verifier. While this does not protect against lost or stolen credentials, it does allow
verifiers to ask for revocation of a credential when it can present sufficient grounds to
do so.

Since we already assume that the credential systems use a zero-knowledge proof
during showing, all of these can easily be extended to include a proof of correct encryp-
tion of the revocation token. As with issuing, this does make the protocol much less
efficient.

While the latter two solutions trade privacy of the user for a better security of the
system as a whole, it depends on the application of the system whether trusting a TTP
is better than simply allowing some abuse.

8.2 Instantiating epochs

To keep the protocol description simple, we assumed that all parties are aware of the
current epoch. To achieve this, epochs are, in practice, based on time. The revocation
authority determines the length of an epoch, by specifying its start time ts and end time
te, so the current epoch ε is modelled by the tuple ε = (ts, te).

In step 2 of the ShowCredential protocol, the user checks that ts ≤ t ≤ te where
t is the current time. If this equation is not correct, the user aborts. In this way, users
always use the correct generator.

Embedded devices The above description does not suffice for smart cards, our target
platform, as they lack a built-in clock, and thus have no notion of time. Nevertheless,
an embedded device must also be able to calculate the generators itself, to prevent a
verifier from adversarially choosing them.

We propose the following solution, similar to the method used in Machine Readable
Travel Documents, like the new European passport [7]. The embedded device keeps
track of an estimate t∗ of the current time. The estimate is always at or before the
current time. Every time the embedded device interacts with a verifier, it

1. receives a description of the current epoch (ts, te) signed by the RA;
2. confirms that the epoch (ts, te) is possible given its time estimate t∗ by checking

that t∗ ≤ te (this is done in step 1 of the ShowCredential protocol); and
3. updates its estimate t∗ ← max(ts, t∗) if the signature is valid.

The signature by the revocation authority on the epoch makes it impossible for verifiers
to trick the device into creating a too futuristic estimate t∗ of the current time.

8.3 How to choose the epochs

Epochs determine during what period a credential is linkable. Ideally, at most one show-
ing happens at each verifier within an epoch. The period between two showings wildly
differs among applications. For example, a citizen credential may be used only a couple

of times a year for filing tax returns with the government, while it may be used weekly
to prove having reached legal drinking age in a pub or a store. A credential for accessing
an online newspaper subscription could even be used daily.

At the same time, computing revocation lists for every epoch can become compu-
tationally intensive and transferring uses bandwidth. Therefore, we propose not to have
a global epoch, but instead create epochs per verifier. The length of the epoch should
be chosen in such a way that no credential is normally reused within the epoch for that
particular verifier.8 Using time to instantiate epochs (as described in Section 8.2) allows
us to use verifier-specific epochs easily.

8.4 Experiments

We did two experiments to prove the validity of our scheme: we estimated the perfor-
mance impact on an existing smart card implementation and tested the impact on the
revocation authority. As the extra work for the verifier is extremely small, we did not
measure its overhead.

Fast smart card implementation We estimate the efficiency of this scheme based on
the work by Vullers and Alpár [36] in the IRMA project. To assess the performance of
the implementation, we compare it to its version without revocation. As described in
Section 7, we add an extra attribute to every credential to hold the revocation value.

As group G, we use the quadratic residues modulo a 1024-bit safe prime (this is
somewhat small, but matches the security level used in the implementation of Vullers
and Alpár [36]). This group is cyclic and the DDH problem is hard. Furthermore, hash-
ing onto this group is easy. It takes five 256-bit hash calculations (to get a statically
uniformly random element) and a squaring (which can be precomputed as part of the
revocation value). Calculating a 256-bit hash takes about 10 milliseconds. We estimate
a total extra time of 390 milliseconds for including the revocation value as an attribute,
generating the revocation token and adding the equality proof [33]. This is very practi-
cal. Since showing a credential takes 1.0–1.5 seconds, the overhead is limited too.

We did not implement the verification of the certificate for the epoch yet, but we
believe that the cost of doing this to be approximately 150 milliseconds.

Fast revocation list calculation The main remaining burden of the revocation scheme
is on the revocation authority, which has to generate revocation lists for all verifiers,
and has to do so for each epoch. This can amount to a large number of exponentiations.
However, the reader should be aware that the amount of work the revocation authority
has to do per generator (i.e., per epoch and per verifier) equals the work that a verifier
has to do for every verification in the standard VLR setting.

Idemix [10,20] uses a modular arithmetic setting for their credential scheme. One
option is to reuse this setting to create a cyclic group G, as described in the previous

8 Note that when a user does use her credential more often within the same epoch a lot of
anonymity remains. The uses within this epoch are linkable, but they are still unlinkable to
uses in other epochs or at other verifiers. In particular, this will usually not reveal the user’s
identity.

section. We created a (non-optimized) test application, built using the GMP big number
library9 to get an estimate for the time required to build the revocation list. Our appli-
cation calculates approximately 7500 revocation tokens per second on a single core of
a first generation mobile Intel Core i7 at 2.66 GHz. This is already acceptable in a sys-
tem with a small number of users and service providers, for example with 450 service
providers and 10000 revoked users all lists can be generated in just 10 minutes.

However, nothing prevents us from choosing a more efficient group. It does not
matter for the proof of knowledge. The only impediment might be that the smart card
may not support this group. For reference, we also created an optimized implementation
using the ECC library by Bernstein et al. [2]. The authors of this library already went to
great lengths to create fast exponentiation for a fixed generator. We extended this library
somewhat to also support dynamic generators (and do the pre-computation on the fly).
This implementation performs about 50 000 exponentiations per second, on a single
core 2.53 GHz machine. This should be fast enough for even nationwide deployment of
the system.

There is one technicality that one has to take care of when using an ECC library like
the one by Bernstein et al. Often, points are represented internally in projective coordi-
nates. This saves an expensive inversion operation in the underlying field. However, it
also means that points do not have a unique representation. Such a unique representa-
tion is, however, essential to our fast revocation check. We normalize the representation,
by using Montgomery’s trick [28] to calculate the inverses. By using this trick we only
require 1 inversion and 3n multiplications to calculate n inverses. This causes a signifi-
cant speedup over the naive approach. The cost of inversion has been taken into account
in the performance measures given above.

The specific curve we used above is generally not available on smart cards, but other
curves are; see for example Hein et al. [19]. Finally, our results with the optimized ECC
library suggest that also in the modular arithmetic setting serious improvements in speed
can still be obtained.

8.5 The size of a revocation list

Our scheme requires the distribution of revocation lists. It might seem that when the
revocation list contains many items, the size of these revocation lists could become
prohibitive. We will show that this is not the case.

Throughout, let ν be the number of items on the revocation list. The list contains
group elements, therefore their size depends on the group. We consider two types of
cyclic groups, both of prime order q of about 256-bits. We follow the 2012 ECRYPT
advisory [17] in selecting sizes that give long term protection.

– A cyclic subgroup of the integers modulo a prime p. For a group order of 256-bits,
p itself needs to have 3248-bits. A group element is thus 406 bytes.

– An elliptic curve group of order q. Only the x coordinate and one bit for the y co-
ordinate need to be stored. Thus a group element takes about 32 bytes to represent.

9 The GNU multiple precision big number arithmetic library: http://gmplib.org/.

http://gmplib.org/

Table 1 compares the storage requirements for a single revocation list, for ν = 215,
ν = 218 and ν = 221 elements. We see that especially for the integers modulo p the
storage requirements are considerable.

For traditional O(1) access structures, the verifier needs to store at least the entire
list itself, and additionally some overhead. Since we only test membership of the revo-
cation list, and do not calculate with the elements on the revocation list, it suffices to
store the hashes of the elements. This reduces the storage requirements immediately,
see Table 1. However, if we accept a very small error probability, we can do better by
applying Bloom filters.

Bloom filters Bloom filters are a probabilistic data structure that can very efficiently
store revocation tokens, at a constant number of bits per item, independent of the size
of the item itself [3]. The number of bits per item is so small that a Bloom filter gives a
one or two orders of magnitude improvement over storing the elements directly.

This increased efficiency comes at a price: the filter can give false positives, i.e., it
can claim that an element is on the revocation list, while in fact it is not. However, the
false positive rate can be made small. We think that in this setting a small (in the order
of 10−6) false positive rate is acceptable for two reasons. One, in a practical system
the error probability due to other means (like intermittent connections and user error)
is probably much higher, and two, when sufficient generators are available the user can
easily retry with a fresh one (the probability that both fail is extremely small).

A Bloom filter is constructed as follows. It consists of a bit array of length κ together
with λ hash functions Hi that map strings into indices of this array, i.e., it maps into
the range {1, . . . , κ}. To store an item m in the filter, calculate H1(m), . . . ,Hλ(m),
and set those bits in the array to one. To check if an item m is on the list, calculate
H1(m), . . . ,Hλ(m). If all these indices are set, the item is most likely in the filter.

It can be shown that the probability P of a false positive for a Bloom filter storing
ν items is given by

P ≈
(
1− e

−λν
κ

)λ
.

This probability is minimal for λ = ln(2)κ/ν. Table 1 shows that a Bloom filter uses
at least an order of magnitude less storage than a traditional solution at acceptable false
positive rates.

The number of hash function calls is small too. The biggest filter with κ/ν = 32
and ν = 221 contains 226 items. We need λ = bln(2)32c = 22 hash functions with a
26-bit output. If we make one SHA256 call, we get 256 bits, therefore we need to make
3 SHA256 calls (with appropriate padding to get different hash functions) for every
item.

9 Related Work

Revocation has been widely studied in the literature; we refer to, for example, Lapon et
al. [23] for a nice overview of current revocation techniques for attribute-based (Idemix)

Table 1. Comparison of storage requirements for a single revocation list. We consider different
sizes of the revocation list, and two types of groups: the integers modulo p, with elements of 406
bytes and an elliptic curve, with elements of 32 bytes. Verifiers in our scheme only do membership
tests with the revocation list, so instead of storing the elements themselves it suffices to hash them
(with SHA256 in this case), or to store them in a Bloom filter. The data are parameterized by the
false positive probability P of the Bloom filter (based on λ = bln(2)κ/νc hash functions), the
length κ of the filter and ν the number of revoked items.

Nr. of revoked items (ν)
215 218 221

Integers modulo p 13 MiB 102 MiB 812 MiB
Elliptic curve 1 MiB 8 MiB 64 MiB

Hashes of elements 1 MiB 8 MiB 64 MiB
Bloom filter
P = 4.6 · 10−4, κ/ν = 16 64 KiB 512 KiB 4 MiB
P = 9.9 · 10−6, κ/ν = 24 96 KiB 768 KiB 6 MiB
P = 2.1 · 10−7, κ/ν = 32 128 KiB 1 MiB 8 MiB

credentials. Traditional revocation techniques, like CRLs and OCSPs, require creden-
tials to have a unique identifier that is always visible to the verifier. A certificate revo-
cation list (CRL) [16] is a list of revoked credential identifiers, published by the issuer.
Alternatively, the verifier can ask the issuer if a credential is still valid using the Online
Certificate Status Protocol (OCSP) [34]. Both situations require the credential to be rec-
ognizable, which is undesirable for ABCs. However, revocation is fast: there is no extra
work required on the side of the user, and the verifier can test validity in constant time.

Domain-specific pseudonyms [5,20,22] only slightly improve the situation: instead
of being globally linkable, different uses are only linkable by the same verifier, but not
across different verifiers. We believe this still weakens the unlinkability too much.

We now focus our attention on solutions that do offer sufficient privacy guarantees
for the user. Table 2 compares these schemes with our scheme and the CRL scheme. A
digital accumulator is a constant-sized representation of a set of values. Every value in
the accumulator comes with a witness, which enables efficient membership checks. Ca-
menisch and Lysyanskaya [11] proposed an updatable accumulator that can be used for
revocation. A credential is unrevoked as long as it appears on the whitelist, represented
by the accumulator. Another approach is to accumulate revoked credentials to create a
blacklist. A credential is unrevoked if it is not on this blacklist [25,31].

Accumulators change. For whitelists, this is after an addition; for blacklists, this is
after a revocation. Thus users need to receive updates (for schemes like Camenisch et
al. [8], these updates are public and can be provided by the verifier) and process them,
inducing extra load on carriers like smart cards. Additionally, the (non-)membership
proofs are expensive. Lapon et al. [23] show an overhead of 300% in the showing
protocol. Other schemes, like Libert et al. [26] are equally inefficient, making them
impractical.

Table 2. We compare CRLs [16], accumulators [8,11,31], traditional VLR schemes [1,4,6],
VLR schemes with backward unlinkability (VLR-BU) [29], blacklistable anonymous credentials
(BLAC) [35], and our scheme. We compare the complexity of the operations and data transfers.
A proving time of 1 means that it is constant, while a proving time of |RL| means that it scales
linearly with the size of the revocation list. Of all the constant-time proving schemes, the ac-
cumulator has the biggest overhead. Our scheme is the only privacy-friendly scheme that has
constant-time proving and verification while users do not need to receive updates.

CRL Accumulators VLR VLR-BU BLAC Our scheme

User can be offline X × X X X X

Data to verifier
per epoch |RL| 1 |RL| |RL| |RL| |RL|
per update 1 1 1 1 1 1

Proving (time) 1 1 1 1 |RL| 1

Verifying (time) 1 1 |RL| |RL| |RL| 1

Security - + +/- + + +

Where accumulators place the load on the users—who need to get new witnesses
after revocations or additions—and the revocation authority—who needs to create those
witnesses—verifier-local revocation (VLR) [1,4,6] places the majority of the load at the
verifier. As we saw in Section 2, the verifier needs to do a check that is linear in the
length of the revocation list, however, apart from sending the extra revocation token,
the extra work for the user is minimal.

A downside of traditional VLR schemes is that once a user is revoked, all of its
transactions (also past ones) become linkable. Nakanishi and Funabiki [29] proposed a
VLR scheme that is backward unlinkable, like our scheme. Similar to our scheme, they
create different revocation tokens per epoch, so that verifiers cannot use the revocation
token for the current epoch and apply it to earlier ones. However, their scheme is still
linear in the number of revoked users, and needs to perform a pairing operation per
revoked user. This makes it less efficient than previous and our solutions. The security
of their scheme hinges on the fact that the per-epoch revocation tokens are maintained
by a trusted party. It thus requires the same trusted party as our scheme does.

Finally, blacklistable anonymous credentials (BLAC) [35] take a different approach
to revocation: misbehaving users can be blacklisted without requiring a TTP to provide
a revocation token. In every transaction, the user provides a ticket, similar to our revo-
cation token, that is bound to the user. To blacklist a user, the verifier places this ticket
on the blacklist. In the second step of the authentication, the user proves that her ticket
is not on the blacklist. The complexity of this proof is linear in the number of items on
the blacklist, so this scheme places a high load on the user. Even if a user’s credential is
revoked, the verifier does not learn her identity, nor can the verifier trace her.

10 Discussion and Conclusion

Our revocation scheme is fast. It can be combined with ABC showing protocols and
can be fully implemented on a smart card. It incurs minimal overhead, while at the
same time the revocation check can be performed efficiently by the verifier. We created
a security model for our scheme and proved that our scheme is forward secure as long as
the revocation authority is trusted. We showed that we can remove this trust assumption
when the users calculate the revocation tokens themselves. Finally, we showed that by
using multiple generators we can even limit the linkability within an epoch.

To obtain this speedup, we traded some traceability, but with an appropriate choice
of epoch length this should not be a problem in practice. The fact that this enables us to
create a revocation system that is truly practical makes this a worthwhile trade-off.

We believe our scheme is a valuable contribution to making large scale attribute-
based credentials possible. It would be interesting to investigate protocols that further
reduce the trust assumption on the revocation authority.

Acknowledgements The work described in this paper has been supported under the ICT
theme of the Cooperation Programme of the 7th Framework Programme of the Euro-
pean Commission, GA number 318424 (FutureID) and the research program Sentinels
(www.sentinels.nl) as project ‘Mobile IDM’ (10522) and ‘Revocable Privacy’
(10532). Sentinels is being financed by Technology Foundation STW, the Netherlands
Organization for Scientific Research (NWO), and the Dutch Ministry of Economic Af-
fairs. This research is conducted within the Privacy and Identity Lab (PI.lab) and funded
by SIDN.nl (http://www.sidn.nl).

References

1. Ateniese, G., Song, D.X., Tsudik, G.: Quasi-Efficient Revocation in Group Signatures. In:
Financial Cryptography 2002. pp. 183–197. LNCS 2357, Springer (2003)

2. Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.Y.: High-speed high-security sig-
natures. Journal of Cryptographic Engineering 2(2), 77–89 (2012)

3. Bloom, B.H.: Space/Time Trade-offs in Hash Coding with Allowable Errors. Communica-
tions of the ACM 13(7), 422–426 (Jul 1970)

4. Boneh, D., Shacham, H.: Group Signatures with Verifier-Local Revocation. In: CCS 2004.
pp. 168–177. ACM (2004)

5. Brands, S., Demuynck, L., Decker, B.D.: A Practical System for Globally Revoking the
Unlinkable Pseudonyms of Unknown Users. In: Australasian Conf. on Information Security
and Privacy (ACISP 2007). pp. 400–415. LNCS 4586, Springer (2007)

6. Brickell, E., Camenisch, J., Chen, L.: The DAA scheme in context. In: Mitchell, C.J. (ed.)
Trusted Computing, Professional Applications of Computing, vol. 6, chap. 5, pp. 143–174.
Institution of Electrical Engineers (2005)

7. BSI: Advanced security mechanisms for machine readable travel documents – extended ac-
cess control (eac). Tech. Rep. TR-03110, Bundesamt für Sicherheit in der Informationstech-
nik (BSI), Bonn, Germany (2006)

8. Camenisch, J., Kohlweiss, M., Soriente, C.: An Accumulator Based on Bilinear Maps and
Efficient Revocation for Anonymous Credentials. In: PKC 2009. pp. 481–500. LNCS 5443,
Springer (2009)

www.sentinels.nl
http://www.sidn.nl

9. Camenisch, J., Krontiris, I., Lehmann, A., Neven, G., Paquin, C., Rannenberg, K., Zwingel-
berg, H.: D2.1 Architecture for Attribute-based Credential Technologies. Tech. rep.,
ABC4Trust (2011)

10. Camenisch, J., Lysyanskaya, A.: An Efficient System for Non-transferable Anonymous Cre-
dentials with Optional Anonymity Revocation. In: EUROCRYPT 2001. pp. 93–118. LNCS
2045, Springer (2001)

11. Camenisch, J., Lysyanskaya, A.: Dynamic Accumulators and Application to Efficient Re-
vocation of Anonymous Credentials. In: CRYPTO 2002. pp. 61–76. LNCS 2442, Springer
(2002)

12. Camenisch, J., Lysyanskaya, A.: A Signature Scheme with Efficient Protocols. In: SCN
2002. pp. 268–289. LNCS 2576, Springer (2003)

13. Camenisch, J., Shoup, V.: Practical Verifiable Encryption and Decryption of Discrete Loga-
rithms. In: CRYPTO 2003. pp. 126–144. LNCS 2729, Springer (2003)

14. Camenisch, J., Stadler, M.: Efficient Group Signature Schemes for Large Groups. In:
CRYPTO 1997, pp. 410–424. LNCS 1294, Springer (1997)

15. Chow, S.S.M.: Real Traceable Signatures. In: SAC 2009. pp. 92–107. LNCS 5867, Springer
(2009)

16. Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., Polk, W.: Internet X.509
Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile. RFC
5280 (Proposed Standard) (May 2008), updated by RFC 6818

17. ECRYPT II: Yearly Report on Algorithms and Key Lengths (2012), revision 1.0
18. Fiat, A., Shamir, A.: How to Prove Yourself: Practical Solutions to Identification and Signa-

ture Problems. In: CRYPTO 1986. pp. 186–194. LNCS 263, Springer (1987)
19. Hein, D.M., Wolkerstorfer, J., Felber, N.: ECC Is Ready for RFID — A Proof in Silicon.

In: Proc. 15th Workshop on Selected Areas in Cryptography (SAC 2008), Sackville, New
Brunswick, Canada, August 14-15, 2008. pp. 401–413. LNCS 5381, Springer (2009)

20. IBM Research Zürich Security Team: Specification of the Identity Mixer cryptographic li-
brary, version 2.3.4. Tech. rep., IBM Research, Zürich (Feb 2012)

21. Kilian, J., Petrank, E.: Identity Escrow. In: Proc. 18th Annual Int. Cryptology Conf.
(CRYPTO 1998), Santa Barbara, California, USA, August 23-27, 1998. pp. 169–185. LNCS
1462, Springer (1998)

22. Kutylowski, M., Krzywiecki, L., Kubiak, P., Koza, M.: Restricted identification scheme and
diffie-hellman linking problem. In: INTRUST 2011. pp. 221–238 (2011)

23. Lapon, J., Kohlweiss, M., de Decker, B., Naessens, V.: Analysis of Revocation Strategies for
Anonymous Idemix Credentials. In: CMS 2011. pp. 3–17. LNCS 7025, Springer (2011)

24. Lehmann, A., Bichsel, P., Bichsel, P., Bruegger, B., Camenisch, J., Garcia, A.C., Gross, T.,
Gutwirth, A., Horsch, M., Houdeau, D., Hühnlein, D., Kamm, F.M., Krenn, S., Neven, G.,
Rodriguez, C.B., Schmölz, J., Bolliger, C.: Survey and Analysis of Existing eID and Creden-
tial Systems. Tech. Rep. Deliverable D32.1, FutureID (2013)

25. Li, J., Li, N., Xue, R.: Universal accumulators with efficient nonmembership proofs. In:
ACNS 2007. pp. 253–269 (2007)

26. Libert, B., Peters, T., Yung, M.: Group signatures with almost-for-free revocation. In:
CRYPTO 2012. pp. 571–589 (2012)

27. Lueks, W., Alpár, G., Hoepman, J.H., Vullers, P.: Fast revocation of attribute-based creden-
tials for both users and verifiers. IFIP Advances in Information and Communication Tech-
nology (2015), to appear.

28. Montgomery, P.L.: Speeding the Pollard and Elliptic Curve Methods of Cactorization. Math-
ematics of Computation 48(177), 243–264 (1987)

29. Nakanishi, T., Funabiki, N.: Verifier-Local Revocation Group Signature Schemes with Back-
ward Unlinkability from Bilinear Maps. In: ASIACRYPT 2005. pp. 533–548. LNCS 3788,
Springer (2005)

30. Naumann, I., Hogben, G.: Privacy features of European eID card specifications. Network
Security 2008(8), 9–13 (2008)

31. Nguyen, L., Paquin, C.: U-prove designated-verifier accumulator revocation extension. Tech.
Rep. MSR-TR-2014-85 (June 2014)

32. OECD: National Strategies and Policies for Digital Identity Management in OECD Countries
(2011)

33. De la Piedra, A., Hoepman, J.H., Vullers, P.: Towards a Full-Featured Implementation of
Attribute Based Credentials on Smart Cards. In: CANS 2014. Springer (2014), (To appear)

34. Santesson, S., Myers, M., Ankney, R., Malpani, A., Galperin, S., Adams, C.: X.509 Internet
Public Key Infrastructure Online Certificate Status Protocol - OCSP. RFC 6960 (Proposed
Standard) (Jun 2013)

35. Tsang, P.P., Au, M.H., Kapadia, A., Smith, S.W.: Blacklistable Anonymous Credentials:
Blocking Misbehaving Users without TTPs. In: CCS 2007. pp. 72–81. ACM (2007)

36. Vullers, P., Alpár, G.: Efficient Selective Disclosure on Smart Cards Using Idemix. In: ID-
MAN 2013. pp. 53–67. IFIP AICT 396 (2013)

	Fast Revocation of Attribute-Based Credentialsfor Both Users and Verifiers
	Introduction
	The Idea
	Verifier-local revocation
	Our scheme

	A primer on ABCs
	The full scheme
	Security model and proofs
	Unlinkability game
	Unavoidability game

	Multiple generators
	Multiple generators for revocation
	Distinguishing credentials
	Making multiple generators work

	Showing Protocol for Idemix
	Implementation
	Obtaining revocation information
	User provides revocation information
	TTP stores revocation information
	Escrowing revocation information

	Instantiating epochs
	Embedded devices

	How to choose the epochs
	Experiments
	Fast smart card implementation
	Fast revocation list calculation

	The size of a revocation list
	Bloom filters

	Related Work
	Discussion and Conclusion

