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Abstract. The demand for more efficient ciphers is a likely to sharpen
with new generation of products and applications. Previous cipher de-
signs typically focused on optimizing only one of the two parameters
- hardware size or speed, for a given security level. In this paper, we
present a methodology for designing a class of stream ciphers which
takes into account both parameters simultaneously. We combine the ad-
vantage of the Galois configuration of NLFSRs, short propagation delay,
with the advantage of the Fibonacci configuration of NLFSRs, which can
be analyzed formally. According to our analysis, the presented stream ci-
pher Espresso is the fastest among the ciphers below 1500 GE, including
Grain-128 and Trivium.
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1 Introduction

The importance of designing efficient and secure cryptographic systems is hard to
overestimate. On one hand, with the growth of Internet-of-Things applications,
more everyday-life products become security-critical and require high levels of
assurance. On the other hand, these products typically have very limited re-
sources available for the implementation of security mechanisms. In addition,
the required computational effort and data rates are expected to significantly
increase with new generations of products. The 5G is envisioned to have 1000
times higher traffic volume compared to current LTE deployments while provid-
ing a better quality of service [1]. Consumer data rates of hundreds of Mbps are
expected to be available in a general scenario and multi-Gbps in specific scenar-
ios [2]. Furthermore, 5G needs to support a low latency of a few milliseconds to
address use cases such as safety or control mechanisms in the process industry,
in the electrical-distribution grid, or for traffic safety [2].

To design a secure cipher which satisfies requirements of the most demanding
products and applications, we have to find a best trade-off between hardware
size and speed for a given security level. Previous stream cipher designs have
either too high propagation delay (e.g. Grain [3]) or use too many flip-flops
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(e.g. Trivium [4]) for a given security level. Thus, they optimize only one of the
two important parameters - hardware size or speed. In this paper, we present
a methodology for designing a class of stream ciphers which takes into account
both parameters simultaneously, thus minimizing the hardware footprint and
maximizing the throughput of the design. We combine the advantage of the
Galois configuration of NLFSRs, short propagation delay, with the advantage
of the Fibonacci configuration of NLFSRs, which can be more easily analyzed
formally. A careful choice of taps for the output Boolean function allows us to
perform a security analysis for linear approximation attacks. According to our
evaluation, the presented stream cipher is the fastest among the ciphers below
1500 GE, including Grain-128 and Trivium.

The paper is organized as follows. Section 2 gives basic notation used in the
sequel. Section 3 describes previous work. Section 4 presents the new stream
cipher Espresso. Section 5 analyses its hardware cost. Section 6 presents the
security analysis. Section 7 concludes the paper.

2 Preliminaries

Throughout the paper, we use ”⊕” and ”·” to denote addition and multiplication
in GF (2), respectively.

The Boolean functions GF (2n) → GF (2) are represented using the Algebraic
Normal Form (ANF) which is a polynomial over GF (2) of type

f(x) =
2n−1
∑

i=0

ci · x
i0
0 · xi1

1 · . . . · x
in−1

n−1 ,

where ci ∈ {0, 1}, (i0i1 . . . in−1) is the binary expansion of i and x = (x0, x1, . . .
, xn−1) [5].

An n-bit Feedback Shift Register (FSR) consists of n binary storage elements,
called stages. Each stage i ∈ {0, 1, . . . , n − 1} has an associated state variable
xi which represents the current value of the stage i and a feedback function
fi : GF (2n) → GF (2) which determines how the value of i is updated.

A state of an FSR is a vector of values of its state variables. At each clock
cycle, the next state of an FSR is determined from its current state by simul-
taneously updating the value of each stage i to the value of the corresponding
feedback function fi, ∀i ∈ {0, 1, . . . , n− 1}.

The period of an FSR is the length of the longest cyclic output sequence it
produces.

If all feedback functions of an FSR are linear, then it is called a Linear
Feedback Shift Register (LFSR). Otherwise, it is called a Non-Linear Feedback
Shift Register (NLFSR).

An FSR can be implemented either in the Fibonacci or in the Galois con-
figuration [6]. In the former, the feedback is applied to the input stage of the
shift register only. All remaining feedback functions are of type fi = xi+1, for
i ∈ {0, 1, . . . , n − 2}. In the latter, the feedback can potentially be applied to
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every stage. Thus, the Fibonacci configuration is a special case of the Galois
configuration. Due to its conceptual simplicity, the Fibonacci configuration has
been studied much more thoroughly.

Two NLFSRs are called equivalent if sets of their output sequences are equal.

3 Previous Work

For encryption purposes, there are two types of ciphers, namely block and stream
ciphers. Block ciphers have been studied for over 50 years [7]. Collected knowl-
edge about their design and cryptanalysis made it possible to develop the Ad-
vanced Encryption Standard (AES) algorithm which is widely accepted and has
strong resistance against various kind of attacks [8].

On the other hand, an active public investigation of stream ciphers began only
about 20 years ago [9]. A common type of stream cipher is the binary additive
stream cipher, in which the keystream, the plaintext, and the ciphertext are
binary sequences. The keystream is produced by a keystream generator which
takes a secret key and an initial value (IV) as a seed and generates a long pseudo-
random sequence of 0s and 1s. The ciphertext is then obtained by the bit-wise
addition of the keystream and the plaintext.

In the eSTREAM initiative, many stream ciphers, including Grain [3] and
Trivium [4], were designed following the belief that stream ciphers can be made
both faster and smaller than block ciphers. In recent years, however, several
block ciphers have been presented which are comparable in size to Grain and
Trivium. Some well-known examples include KATAN [10], LED [11], KLEIN [12],
PRESENT [13], Piccolo [14] and TWINE [15]. The throughput for these is often
given for 100KHz clock frequency since this is typical for RFID tags [16]. Yet,
they can often be clocked faster and [17] reports some implementations reaching
about 1Gbps using slightly more than 3000 GE and 90nm CMOS technology.
For higher throughput and more compact design it appears that stream ciphers
are the best choice.

However, the confidence in stream ciphers’ security has been tapered by
many broken systems. For example, the popular stream ciphers A5/1 and A5/2
used in the Global System for Mobile communications (GSM) standard and
E0 used in Bluetooth have been found susceptible to a number of attacks [18].
As a result, A5/1 was replaced by a block cipher based A5/3 and A5/2 was
prohibited. Another well-known stream cipher RC4 used in the original IEEE
802.11 standard to secure wireless networks has been shown especially vulnerable
when the beginning of the output keystream is not discarded, non-random or
related keys are used, or a single keystream is used twice [19]. As a result, it was
replaced by the AES in the newest standard, IEEE 802.11i.

The confidence in stream ciphers is typically higher and their acceptance
is faster if they are built from well-defined components whose security can be
formally analyzed. One of the most studied components for stream ciphers is
a filter generator which consists of an FSR [20] and a nonlinear output func-
tion taking its inputs from the selected stages of the FSR. It is known how
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to make design choices for the size of internal state and the output function
(number and position of inputs, nonlinearity, resiliency, algebraic degree, etc) so
that the resulting filter generator is resistant to known attacks with a sufficient
security margin [21–23]. Techniques that can guarantee long FSR period are
also known [24, 25]. Examples of stream ciphers based on the idea behind filter
generators include Grain [3] and Trivium [4].

4 Design Description

This section motivates and describes the presented stream cipher Espresso.

4.1 Design Methodology

The Grain family of stream ciphers [3] uses FSRs in the Fibonacci configura-
tion. This adds simplicity to the security analysis, but has a drawback that the
propagation delay through the feedback function is large due to the large size of
the function. Trivium [4] uses much simpler feedback functions, but it has 288
flip-flops which are more area consuming compared to gates.

First, by using FSRs implemented in the Galois configuration, we can make
the feedback functions smaller. This allows us to reduce the propagation delay
compared to Grain while at the same time decrease the size compared to Triv-
ium. Due to the large number of feedback functions in the presented design, its
maximum degree of parallelization cannot be made as high as in both Grain and
Trivium. Still, by carefully choosing feedback functions, we are able to guarantee
the maximum degree of parallelization 4 and a maximum-length FSR.

Second, to enable security analysis of the presented design, we transform
the original Galois NLFSR to an NLFSR whose configuration resembles the Fi-
bonacci configuration. The core idea of our method is to assure that all of the
most biased linear approximations of the output Boolean function take inputs
only from those stages of the Galois NLFSR which have a corresponding equiv-
alent stage in the transformed NLFSR. As a result, traditional cryptanalysis
techniques can be applied to our design as well.

4.2 Design Details

The two main building blocks of Espresso are a 256-bit NLFSR G in the Galois
configuration and a 20-variable nonlinear output function. To avoid confusion
between the feedback functions of G and the feedback functions of the trans-
formed NLFSR F introduced later, we denote a feedback function of the stage i
of G by gi, for all i ∈ {0, 1, . . . , 255}.
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The feedback functions of the NLFSR G are specified as follows:

g255(x) = x0 ⊕ x41x70

g251(x) = x252 ⊕ x42x83 ⊕ x8

g247(x) = x248 ⊕ x44x102 ⊕ x40

g243(x) = x244 ⊕ x43x118 ⊕ x103

g239(x) = x240 ⊕ x46x141 ⊕ x117

g235(x) = x236 ⊕ x67x90x110x137

g231(x) = x232 ⊕ x50x159 ⊕ x189

g217(x) = x218 ⊕ x3x32

g213(x) = x214 ⊕ x4x45

g209(x) = x210 ⊕ x6x64

g205(x) = x206 ⊕ x5x80

g201(x) = x202 ⊕ x8x103

g197(x) = x198 ⊕ x29x52x72x99

g193(x) = x194 ⊕ x12x121

All remaining feedback functions of G are of type gi(x) = xi+1.

The output function z(x) is specified as follows:

z(x) = x80 ⊕ x99 ⊕ x137 ⊕ x227 ⊕ x222 ⊕ x187 ⊕ x243x217 ⊕ x247x231

⊕ x213x235 ⊕ x255x251 ⊕ x181x239 ⊕ x174x44 ⊕ x164x29

⊕ x255x247x243x213x181x174

The function z(x) consists of a linear function of 6 variables and a bent
function of 14 variables. Therefore, z(x) is balanced, has nonlinearity 26(213 −
26) = 520192 and resiliency 5. The algebraic degree of z(x) is 6 since its largest
ANF monomial contains 6 variables.

In z(x), 15 out of 20 indexes of variables are taken from the following full
positive difference set3:

{255, 247, 243, 227, 222, 213, 187, 181, 174, 164, 137, 99, 80, 44, 29}.

In seven two-variable monomials of z(x), the difference between the first and the
second indexes of variables is taken from the following full positive difference
set:

{26, 16, 22, 4, 58, 130, 135}.

NLFSRs in the Fibonacci configuration are much more studied and crypt-
analyzed compared to the NLFSRs in the Galois configuration. To make use of
the accumulated knowledge, we can transform the NLFSR G into an equiva-
lent NLFSR F whose configuration resembles the Fibonacci configuration (see
Figure 1) and therefore is easier to cryptanalyze. The NLFSR F has only two

3 A set is called full positive difference set if the positive pairwise differences between
its elements are distinct [21]
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Fig. 1. The structure of the transformed NLFSR F .

non-trivial feedback functions:

f255(x) = x0 ⊕ x12 ⊕ x48 ⊕ x115 ⊕ x133 ⊕ x213 ⊕ x41x70 ⊕ x46x87

⊕ x52x110 ⊕ x55x130 ⊕ x62x157 ⊕ x74x183 ⊕ x87x110x130x157

f217(x) = x218 ⊕ x3x32 ⊕ x8x49 ⊕ x14x72 ⊕ x17x92 ⊕ x24x119 ⊕ x36x145

⊕ x49x72x92x119

and all remaining feedback functions are of type fi(x) = xi+1. We can see that
the function f255(x) of F is of type f255(x) = fL(x) ⊕ fN (x) where fL(x) is
a linear function of 6 variables and fN (x) is a nonlinear bent function of 12
variables. The function f217(x) is of type f217(x) = x218 ⊕ f s

N (x) where f s
N (x)

is the ”shifted” version of fN(x), in which each variable xi is replaced by xi−38.
f s
N (x) cancels the effect of non-linearity introduced by fN (x). So, stages 217 to
0 of F generate the linear sequence induced by the primitive polynomial

1 + x12 + x48 + x115 + x133 + x213 + x256 (1)

which is induced by the function fL(x). It is known that NLFSRs constructed
in this way have the period 2n − 1 where n is the size of the state [24].

The equivalence of G and F can be shown by applying the Fibonacci-to-
Galois transformation [6]. The set of sequences generated by the stage 231 of G
is equivalent to the set of sequences generated by the stage 255 of F . The set of
sequences generated by the stage 193 of G is equivalent to the set of sequences
generated by the stage 217 of F . Since G is equivalent to F , its period is 2256−1.

The function f255(x) is balanced, has nonlinearity 26(211 − 25) = 129024,
resiliency 5, and algebraic degree 4. Since F and G are equivalent, the function
g231(x) of G has the same properties.

Indexes of variables of fL(x) form the full difference set

{0, 12, 48, 115, 133, 213}

and indexes of variables of fN (x) form the full difference set

{41, 46, 52, 55, 62, 70, 74, 87, 110, 130, 157, 183}.
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4.3 Key and IV Initialization

The cipher Espresso is initialized as follows. Let ki denote the bits of the key k,
0 ≤ i ≤ 127, and IVi denote the bits of the initialization value IV , 0 ≤ i ≤ 95.
The key and IV bits are loaded into the shift register as follows:

xi = ki, 0 ≤ i ≤ 127
xi = IVi−128, 128 ≤ i ≤ 223
xi = 1, 224 ≤ i ≤ 254
xi = 0, i = 255

The initialization phase consists of clocking the cipher 256 times, XORing the
produced output bit with the stages x255 and x217. Thus, in this phase the
feedback functions g255(x) and g217(x) of the NLFSR G are given by

g255(x) = x0 ⊕ x41x70 ⊕ z(x)
g217(x) = x218 ⊕ x3x32 ⊕ z(x)

After initialization, the cipher is clocked for three more cycles (due to the pipelin-
ing of the output function and additional logic required for switching between
the initialization and the keystream generation phases, as explained in Section 5)
and then the keystream is produced.

5 Hardware Cost Analysis

In order to reduce the propagation delay of the circuit implementing the output
function z(x), we can pipeline it as follows:

z1(x) = x80 ⊕ x99 ⊕ x137 ⊕ x227

z2(x) = x222 ⊕ x187 ⊕ x243x217

z3(x) = x247x231 ⊕ x213x235

z4(x) = x255x251 ⊕ x181x239

z5(x) = x174x44 ⊕ x164x29

z6(x) = x255x247x243x213x181x174

z7(x) = z1(x) ⊕ z2(x)⊕ z3(x)⊕ z4(x)
z8(x) = z5(x) ⊕ z6(x)
z(x) = z7(x)⊕ z8(x)

A circuit diagram implementing the pipelined version of z(x) is showed in Fig-
ure 2. As a consequence of the pipelining, the output of the stream cipher is
delayed by two clock cycles, increasing the latency. In addition, the pipelining
increases the area by 8 flip-flops. However, it allows us to increase the through-
put 1.7 times. In our opinion, the substantial gain in throughput outweighs the
minor increases in areas and latency.

In order to further reduce the propagation delay of the presented design, we
apply de Morgan rule to re-express ANFs of the feedback functions g235 and g197
of the NLFSR G as follows:

g235(x) = x236 ⊕ x67x90x110x137 = x236 ⊕ ((x67x90)
′ + (x110x137)

′)′

g197(x) = x198 ⊕ x29x52x72x99 = x198 ⊕ ((x29x52)
′ + (x72x99)

′)′
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Fig. 2. A circuit implementing the pipelined version of z(x).

where x′ denotes the Boolean complement of x (defined as x′ = x ⊕ 1), and
”+” denotes the Boolean OR. From Table 1, the reader can see that, in CMOS
technology, NAND or NOR are much smaller and faster than AND. Therefore,
we can decrease both, the area and the delay, by replacing a 4-input AND as
shown above.

Finally, we need to take care of the propagation delay of the feedback func-
tions g255 and g217 during the initialization phase. In this phase, the functions
g255(x) and g217(x) are computed as

g255(x) = x0 ⊕ x41x70 ⊕ z(x)
g217(x) = x218 ⊕ x3x32 ⊕ z(x)

Figure 3 shows how switching between the initialization and the keystream gen-
eration phases can be implemented for g255 without increasing the critical path
(a circuit for the function g217 is similar). The output of z(x) needs to be multi-
plexed and pipelined. Note that while the function describing a regular 2-input
multiplexer (MUX) is a · b+ a′ · c, a multiplexer in which one input is fixed to 0
can be implemented as

a · b+ a′ · 0 = a · b
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g255
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Fig. 3. A circuit implementing the switching between the initialization and the
keystream generation phases.

Gate Area, µm2 Area, GE Delay, ps

2-input NAND 3.7 1 33
2-input NOR 3.7 1 57
2-input AND 5 1.4 87
3-input AND 7 1.9 95
2-input XOR 10 2.7 115

flip-flop 19 5.1 221

Table 1. Parameters of gates and flip-flops for a typical 90nm CMOS technology.

Therefore, an AND gate can be used to implement the multiplexing of z(x),
as shown in Figure 3. Since the delay of an AND is smaller than the delay of
an XOR, the proposed switching scheme does not increase the overall delay.
However, it increases the latency by one clock cycle.

After these modifications, the NLFSR G requires 12 2-input ANDs, 4 2-input
NANDs, 2 2-input NORs, 19 2-input XORs and 256 flip-flops to be implemented.
The output function z(x) requires 8 2-input ANDs, 2 3-input ANDs, 13 2-input
XORs and 8 flip-flops. The additional logic for switching between the initial-
ization and the keystream generation phases requires 2 ANDs, 2 XORs and 2
flip-flops.

If we use 90nm CMOS technology for implementing this NLFSR (see Table 1
for parameters of gates), then we can approximate the area and the propagation
delay of the presented stream cipher Espresso as

Area of (22 2-input ANDs + 2 3-input ANDs + 4 2-input NANDs +
2 2-input NORs + 34 XORs + 266 flip-flops) = 5540 µm2 = 1497 GE

Delay of (2 XORs + flip-flop) = 451 ps.

So, the presented design can support data rates of up to 2.22 Gbits/sec. Its
latency is 232 ns (computed as (256+256+3) clock cycles × 451 ps). It can be
parallelized to produce up to 4 bits per clock cycle, because three bits after each
stage which is updated using a feedback are not used neither as state variables
nor in the output function.
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Espresso
p Area, Throughput, Latency, Security,

A1, GE T1, Gbits/s L1, ns bits

1 1497 2.22 232 128
2 1680 4.44 116 128
4 2045 8.88 59 128

Table 2. Hardware parameters of Espresso; p = degree of parallelization (number of
bits generated per one clock cycle).

For a comparison, the area and propagation delay of the stream cipher Grain-
128 [3] are given by:

Area of (22 ANDs + 34 XORs + 258 flip-flops) = 5352 µm2 = 1446 GE

Delay of (AND + 4 XORs + flip-flop) = 768 ps.

We assume that a logic similar to the one shown in Figure 3 is used for switching
between the initialization and the operational phases. Otherwise, the delay of
Grain-128 is considerably higher. Grain-128 can be parallelized to produce up
to 32 bits per clock cycle. For the degree of parallelization one, its latency is 296
ns (computed as (128 + 256 + 1) clock cycles × 768 ps).

For the stream cipher Trivium [4] we have:

Area of (3 ANDs + 11 XORs + 288 flip-flops) = 5597 µm2 = 1513 GE

Delay of (AND + 2 XORs + flip-flop) = 538 ps.

Trivium can be parallelized to produce up to 64 bits per clock cycle. For the
degree of parallelization one, its latency is 663 ns (computed as (80 + 4 × 288)
clock cycles × 538 ps).

Note that, in all three ciphers, the latency can be reduced if the key and IV
are loaded in parallel rather than sequentially. However, such a technique requires
the addition of a MUX to each flip-flip of the FSRs, implying the increase in
area by at least 3 GE × FSR size. Furthermore, the propagation delay of the
presented design and Trivium would increase by at least twice the delay of a
NAND, implying a reduction in the maximum data rate of 283 Mbits/s for the
presented design and of 203 Mbits/s for Trivium.

Tables 2, 3 and 4 summarizes the area and throughput of the three ciphers
for the degrees of parallelization 1, 2 and 4. For the degree of parallelization 1,
Espresso is 3.4% larger and 71% faster than Grain-128. Its latency is 22% smaller
than the one of Grain-128. Compared to Trivium, it is 1% smaller, 19% faster,
and has 65% smaller latency. We can see that Espresso is the fastest among the
designs below 1500 GE.
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Grain-128
A1−A2

A1

T1−T2
T2

L1−L2
L2

p Area, Throughput, Latency, Security,
A2, GE T2, Gbits/s L2, ns bits

1 1446 1.30 296 128 3.4% 71% -22%
2 1578 2.60 147 128 6.1% 71% -22%
4 1842 5.20 47 128 9.9% 71% -22%

Table 3. Comparison of Espresso with Grain-128.

Trivium
A1−A3

A1

T1−T3
T3

L1−L3
L2

p Area, Throughput, Latency, Security,
A3, GE T3, Gbits/s L3, ns bits

1 1513 1.86 663 80 -1.0% 19% -65%
2 1547 3.72 332 80 7.9% 19% -65%
4 1614 7.43 166 80 21.1% 19% -65%

Table 4. Comparison of Espresso with Trivium.

6 Security Analysis

This section will give a security analysis of the presented stream cipher Espresso.
Both attacks on the running key stream and attacks on the initialization proce-
dure are discussed.

6.1 Linear Approximations

Attacks using linear approximations were successful against the initial version
of Grain, resulting in key recovery attacks. Being an NLFSR with a nonlinear
output function, the current design has similarities with Grain. This makes it
important to determine the resistance against these attacks.

The security against linear attacks will be analyzed using the equivalent
transformed configuration F of the shift register G. Note that there are no
linear terms in any shift register stages that do not have an equivalent in both
configurations, so the analysis is valid also for the Galois configuration. For
clarity of the presentation, we divide the state register into two separate parts.
The state variables in the nonlinear part (Shift Register1 in Figure 1) are denoted
b and the state variables in the linear part (Shift Register2 in Figure 1) are
denoted by s. Furthermore, let B and S denote the size of the nonlinear part
and the linear part of the shift register respectively. Thus, we have

bi = si+S 0 ≤ i < B. (2)

The linear stages si, 0 ≤ i < S satisfy the linear recurrence relation

si+256 = si + si+43 + si+123 + si+141 + si+208 + si+244
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which is induced by the polynomial (1). Define the bias ε of an approximation

as ε = 2 ·Pr(X = Y )− 1, simply written as X
ε
= Y . Then, the nonlinear output

function can be approximated with a linear function and we can write

z(t)
ε1=

⊕

i

b0(t+ φi)⊕
⊕

j

s0(t+ θj). (3)

Denote the number of b-variables in the output function wb(z), i.e., 0 ≤ i < wb(z)
in (3). Similarly, the nonlinear feedback function can be approximated by a linear
function in bits from s since there are no b-variables in the feedback in order for
the nonlinear compensation to sS−1 to work properly. Thus, we can also write

bB−1(t+ 1) = b0(t+B)
ε2=

⊕

k

s0(t+ µk) (4)

Combining (3) and (4), we can write the output as a sum of only variables from
the linear part of the shift register,

z(t)
ε1=

⊕

i

b0(t+B − (B − φi))⊕
⊕

j

s0(t+ θj) (5)

ε1ε
w

b
(z)

2=
⊕

i

⊕

k

s0(t+ µk − (B − φi))⊕
⊕

j

s0(t+ θj), (6)

where the piling-up lemma has been used to combine linear approximations.
Thus, an output variable can always be written as a biased sum of s-variables,
which in turn satisfy a linear recurrence relation. If we denote the weight of this
recurrence relation by w(LR), we get a distinguishing attack with total bias

εtot =
(

ε1ε
wb(z)
2

)w(LR)

. (7)

From this it is clear that the complexity of the attacks relies on the biases of
the two approximations and on the number of b-variables that are used in the
linear approximation of the output function. Looking at the design, we have
ε1 = 2−7 and ε2 = 2−6 and wb(z) = 6 for all biased linear approximations. From
this it follows that the approximation (6) has bias 2−43 which makes an attack
similar to the one in [26] inefficient. Also, if we use a weight 3 multiple of the
linear recurrence relation the number of samples needed would be in the order
of 1/ε2tot = 243·3·2 = 2172 (with distance 2218/2 = 2109 between first and last
keystream bit in each sample [27, 28]).

6.2 Algebraic Attacks

Algebraic attacks have been proved very efficient against nonlinear combiners
with or without memory [29,30]. The success of the attack is due to the linearity
of the shift register and the fact that the output function is the only nonlinear
part of the register. It is always possible to write equations describing output
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bits using initial state bits. Due to the linearity of the shift register, the algebraic
degree of these equations will never exceed the degree of the output function.
With enough equations, linearization, or other more advanced methods [31–33],
can be used to recover the internal state. Moreover, annihilators [34] can be
used to lower the degree of the functions even more. With a part of the state
being nonlinearly updated, these attacks are no longer applicable since several
nonlinear register stages are used in the output function. The degree of the
equations in initial state bits will increase and is not limited by the degree of
the output function.

6.3 Time-Memory-Data Trade-off Attacks

TMTO attacks on stream ciphers can be divided into two categories, those that
attempt to reconstruct the internal state, see e.g., [35–37] and those that attempt
to recover the key, see e.g., [38]. The algorithms used in the latter attacks are
the same as those in the former, they just use a different one-way function as
target of the attack. The algorithm used in [35,36] simply records input/output
combinations and uses enough data in order to have a collision with a recorded
value. The trade off curve is given by TM = N , T = D, and P = M = N/D. The
algorithm used in [37] instead created tables similar to those used by Hellman
in [39] and has the trade-off given by TM2D2 = N2, 1 ≤ D2 ≤ T and P = N/D.
Both algorithms uses the observation that an increased amount of data can lower
the precomputation time. Since the size of the internal state is 22k, it is clear
that recovering the internal state is not possible with T < 2k and M < 2k using
any of the algorithms. On the other hand, recovering the key would be possible
with e.g., T = 2112, M = 2112 and D = 256 but will require a precomputation
time of P = 2168. Some might argue that this would be a valid (academic) attack
while some would claim that P = 2168 is too large to be interesting when key
size is 128 bits.

Ad hoc improvements to the TMTO attacks can also be considered, where
recovering a subset of bits will allow recovering other bits as well using algebraic
relations in the output function. The success of these attacks are specific to the
design, in particular to the output function chosen in the design. The idea, as
proposed in [40, 41] and demonstrated on the Grain family of stream ciphers, is
to identify a subset of state bits, which together with some output bits can be
used to determine the remaining state bits. Using this observation, the TMTO
attack can be improved by only considering the subset of state bits needed for
recovering the rest. The normality of the output Boolean function will here play
an important role as it determines how many shift register bits need to be fixed
in order to recover remaining state bits. The normality order of this function
in the design is 7, which means that 14 − 7 = 7 variables need to be fixed in
order to get linear equations for the recovery. The Galois configuration of the
shift register G, together with the fact that not all bits have a corresponding
bit in the transformed equivalent register F , will complicate this attack. Still,
we do not rule out that some improvement over the generic TMTO attacks are
possible using this approach. However, the required memory complexity of such
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an attack will far exceed that of brute force and a parallelized brute force [42]
is likely to be much more efficient.

6.4 Chosen IV Attacks

The complexity of the initialization function does not affect the attack complex-
ities in the TMTO attacks. In this section we consider attacks that do depend on
the initialization function. In a chosen IV scenario, the adversary can choose the
initialization vector used in the initialization step. This is the basis for the Cube
attack [43] and AIDA attack [44] and can lead to key recovery if the initialization
is not carefully designed. The number of iterations in the initialization should
be chosen such that all key and IV bits affect the keystream bits in a complex
way.

To determine the resistance against these types of attacks, maximum degree
monomial tests have been performed. Any keystream bit can be written as a
function of key and IV bits

zi = fi(k0, . . . , k127, iv0, . . . , iv95). (8)

All key bits are fixed to zero and a subset of the IV bits are fixed as well. Thus,
running through all possible combinations of the non-fixed bits, the truth table
of the function fi is obtained, which can in turn be used to compute the ANF.
This will lead to a d-monomial test [45] as we could check the presence of mono-
mials of degree d and compare it to the expected number for a random Boolean
function. Intuitively, the maximum degree monomial only exists if all bits have
been properly mixed by the initialization function, so we focus on this mono-
mial. The total number of bits that can be used is 96 requiring a complexity of
296 in order to determine the presence of the monomial iv0, . . . , iv95. This is not
feasible, and we instead adopt the test in [46] in order to find a monomial with
manageable degree and that will be absent for as many initialization rounds as
possible. The algorithm starts with just a few bits and exhaustively finds the
monomial that is absent the maximum number of rounds. Then it greedily adds
one more bit to the set and continues. All non-used key and IV bits are set to
zero. For a conservative estimate the algorithm is allowed to use also key bits.
This turns the Chosen IV attack into a less powerful nonrandomness detector
since an attacker is not assumed to be able to choose key bits. Figure 4 shows
the number of initialization rounds that can be broken using a particular degree
(bit set size) for the monomial.

By using dedicated hardware it would be possible to test a larger number of
IV bits, i.e., larger degree monomials. However, from the results in Figure 4 we
deduce that the number of initialization steps is adequate to resist these types
of chosen IV attacks. With 159 rounds that fail the nonrandomness test, we
conclude that the proposed 256 rounds provide an adequate security margin.
For a comparison, this test applied to Grain-128 can find non-randomness in
about 240 initialization rounds with bit set size 23. Using bit set size of 40 the
full Grain-128 initialization using 256 shows nonrandomness.
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Fig. 4. The maximum number of initialization rounds that do not pass a maximum
degree monomial test for a given monomial degree.

7 Conclusion

We presented a new stream cipher Espresso targeting 5G wireless communication
systems. Its 1-bit per cycle version has 1497 GE area, 2.22 Gbits/sec throughput
and 232 ns latency, meeting requirements of most 5G applications envisioned
today. It is resistant to known attacks, including linear approximations, algebraic
attacks, time-memory-data trade off attacks and chosen IV attacks.
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