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Abstract

A fundamental primitive in distributed computing is Reliable Message Transmission (RMT),
which refers to the task of correctly sending a message from a party to another, despite the
presence of byzantine corruptions. In this work we address the problem in the general adversary
model of Hirt and Maurer, which subsumes earlier models such as the global or local thresh-
old adversaries. Regarding the topology knowledge, we employ the recently introduced Partial
Knowledge Model [13], which encompasses both the full knowledge and the ad hoc model; the
latter assumes knowledge of the local neighborhood only.

Our main contributions are: (a) a necessary and sufficient condition for achieving RMT in
the partial knowledge model with a general adversary; in order to show sufficiency, we propose
a protocol that solves RMT whenever this is possible, therefore the protocol is unique (cf. [14]),
and (b) a study of efficiency in the special case of the ad hoc network model; we present a
unique protocol scheme that is fully polynomial for a class of instances, if there exists any fully
polynomial protocol for RMT on the decomposition of this class to instances of a certain basic
topology.

To obtain our results we employ, among others, an operation on adversary structures, an
appropriate notion of separator in unreliable networks, and a self-reducibility property of the
RMT problem.



1 Introduction

Achieving reliable communication in unreliable networks is fundamental in distributed computing.
Of course, if there is an authenticated channel between two parties then reliable communication
between them is guaranteed. However, it is often the case that certain parties are only indirectly
connected, and need to use intermediate parties as relays to propagate their message to the actual
receiver. The Reliable Message Transmission problem (RMT) is the problem of achieving correct
delivery of a message m from a dealer (sender) D to a receiver r even if some of the intermediate
nodes are corrupted and do not relay the message as agreed. In this work we consider the worst
case corruption scenario, in which the adversary is unbounded and may control several nodes and
be able to make them deviate from the protocol arbitrarily by blocking, rerouting, or even altering
a message that they should normally relay intact to specific nodes. An adversary with this behavior
is referred to as Byzantine adversary.

The RMT problem has been initially considered by Dolev [2] in the context of the closely related
Reliable Broadcast (Byzantine Generals) problem, introduced by Lamport, Shostak and Pease [10].
In Reliable Broadcast the goal is to achieve correct delivery of the dealer’s D message to all parties
in the network.

The problem of message transmission under Byzantine adversaries has been studied extensively
in various settings: secure or reliable transmission, general or threshold adversary, perfect or un-
conditional security. Here we focus on perfectly reliable transmission under a general adversary
and the partial knowledge model. Note that the general adversary model, introduced by Hirt and
Maurer [6], subsumes both the global [10] and the local threshold adversary model [8]. Regarding
the topology knowledge, the recently introduced Partial Knowledge Model [13] encompasses both
the full knowledge and the ad hoc (unknown topology) models.

The motivation for partial knowledge considerations comes from large scale networks (e.g. the
Internet) where topologically local estimation of the power of the adversary may be possible, while
global estimation may be hard to obtain due to geographical or jurisdiction constraints. Additionally,
proximity in social networks is often correlated with an increased amount of available information,
further justifying the relevance of the model.

1.1 Related Work

The RMT problem under a threshold Byzantine adversary, where a fixed upper bound t is set for the
number of corrupted players was addressed in [3, 1], where additional secrecy restrictions were posed
and in [15] where a probability of failure was allowed. Results for RMT in the general adversary
model [6], where given in [9, 17, 16]. In general, very few studies have addressed RMT or related
problems in the partial knowledge setting despite the fact that this direction was already proposed
in 2002 by Kumar et al. [9].

The approach that we follow here stems from a line of work which addresses the Reliable Broad-
cast problem with an honest dealer in incomplete networks, initiated by Koo [8]. Koo studied the
problem in ad hoc networks under the t-locally bounded adversary model, in which at most a certain
number t of corruptions are allowed in the neighborhood of every node. This work was generalized
by Pelc, Peleg in [14] who pointed out how full knowledge of the topology yields better solvability
results. After a series of works ([7, 11, 18]) tight conditions for the solvability of the problem were
obtained in the ad hoc case. Finally, in [13] the Partial Knowledge Model was introduced, in which
the players only have partial knowledge of the topology and the adversary structure. Tight algo-
rithms for the extreme cases of full topology knowledge and ad hoc setting were also obtained in [13]
and the results were extended to the general adversary case as well. Trivially all the aforementioned
results for Reliable Broadcast with an honest dealer can be adapted for the RMT problem.

1.2 Our Results

We study the RMT problem under general adversaries. Our contribution is twofold:
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(a) Feasibility of RMT in the Partial Knowledge model. We prove a necessary and sufficient condition
for achieving RMT in this setting, and present an algorithm that achieves RMT whenever this
condition is met. In terminology of [14, 13] this is a unique algorithm for the problem, in the sense
that whenever any safe algorithm achieves RMT in a certain instance so does our algorithm. This
settles an open question of [13] and is, to the best of our knowledge, the first algorithm with this
property.

A key notion that we define and use is the joint adversary structure of (a set of) players which
corresponds to the worst case adversary structure that conforms to each player’s initial knowledge;
this notion is crucial in obtaining the tight condition mentioned above. We also make use of the
concept of local pair-cut technique, introduced by Pelc and Peleg [14] in the context of Broadcast.
This technique was later [13] extended in order to obtain characterizations of classes of graphs
for which Broadcast is possible for various levels of topology knowledge and type of corruption
distribution. However, an exact characterization for the partial knowledge setting was left as an open
question. Here we answer this question by proposing an adequate pair-cut for the partial knowledge
model together with a unique algorithm for RMT. A useful by-product of practical interest is that
the new cut notion can be used to determine the exact subgraph in which RMT is possible.

(b) Efficiency of RMT in the Ad Hoc network model. Regarding the adversary, in this model
each node knows only the local adversary structure, that is, the intersection of the actual adversary
structure with the node’s neighborhood.

We observe that the Z-CPA protocol [13] is unique for RMT as well, and examine whether and
when it is fully polynomial. Ideally, we would like to show that if there existed any fully polynomial
protocol that solves RMT in a class of instances G, then Z-CPA would be fully polynomial in G.
We manage to show a weaker property: given a class of instances G, there exists a class of basic
instances G′ such that if there exists any fully polynomial protocol Π for RMT on G′ then Z-CPA
is fully polynomial on G, by using Π as a subroutine. In other words, Z-CPA can be seen as a
polynomial time self-reduction from RMT in G to RMT in G′. Let us note that G′ contains instances
of a certain basic topology obtained by decomposing instances of G, and each derived adversarial
structure is a subset of the original one.

1.3 Model and Definitions

In this work we address the problem of Perfectly Reliable Message Transmission, hereafter simply
referred as Reliable Message Transmission (RMT) under the influence of a general Byzantine adver-
sary. In our model the players have partial knowledge of the network topology and of the adversary
structure.

We assume a synchronous network represented by a graph G consisting of the player (node) set
V (G) and edge set E(G) which represents authenticated channels between players. The problem
definition follows.

Reliable Message Transmission. We assume the existence of a designated player D, called the
dealer, who wants to propagate a certain value xD ∈ X, where X is the initial message space, to a
designated player r, called the receiver. We say that a distributed protocol achieves (or solves) RMT
if by the end of the protocol the receiver r has decided on xD, i.e. if it has been able to deduce that
xD is the value originally sent by the dealer and output it as the correct value.

The Adversary Model. The general adversary model was introduced by Hirt and Maurer
in [6]. In this work they study the security of multiparty computation protocols with respect to an
adversary structure, that is, a family of subsets of the players; the adversary is able to corrupt one of
these subsets. More formally, a structure Z for the set of players V is a monotone family of subsets
of V , i.e. Z ⊆ 2V , where all subsets of Z ∈ Z belong to Z. In this work we obtain our results w.r.t.
a general byzantine adversary, i.e., a general adversary which can make all the corrupted players
deviate arbitrarily from the given protocol.
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We assume that the instances of the problem contain the adversary structure Z and say that
an RMT protocol is resilient for an instance I if it achieves RMT on instance I for any possible
corruption set. An RMT protocol which never causes the receiver r to decide on an incorrect value
is called safe. Finally we say that an RMT protocol is unique if it solves RMT in all instances where
RMT is solvable.

In our study we will often make use of node-cuts (separators) which separate some players from
the dealer, hence, node-cuts that do not include the dealer. From here on we will simply use the
term cut to denote such a separator.

Runs and Views. Given a run (execution) e of a distributed protocol, the view(v, e, k) of player
v consists of the messages exchanged by v and its neighbors until round k. For simplification we will
write view(v, e) to refer to all the messages exchanged by v and its neighbors until the end of the
run e. With view(v, e, k)|A (and view(v, e)|A) we will denote the corresponding messages exchanged
by v and the set A ⊆ N (v). The decision of a player v in run e will be denoted by decisione(v);
it is in fact completely determined by player’s v view on run e. We will simply write decision(v)
whenever the run is implied by the context.

2 Partial knowledge against a General Adversary

In this setting each player v only has knowledge of the topology of a certain connected subgraph Gv

of G which includes v. Namely if we consider the family G of connected subgraphs of G we use the
view function γ : V → G, where γ(v) represents the subgraph over which player v has knowledge
of the topology. We extend the domain of γ by allowing as input a set S ⊆ G. The output will
correspond to the joint view of nodes in S. In addition each player knows the possible corruption
sets in his view Zu = {z ∩ V (γ(u)) | z ∈ Z}.

Now considering two players who have partial knowledge of the adversary, it would be useful to
define an operation to calculate their joint knowledge about the adversary. Let E,F,G be adversary
structures and A,B,C be sets of nodes. Let EA = {z ∩ A | z ∈ E} denote the restriction of the
adversary structure E to the set of nodes A. The joint adversary structure from two restricted
adversary structures can be obtained through the ⊕ operator.

Definition 1. Let T A denote the space of adversary structures on the set of nodes A. Then operation
⊕ is a function of the form ⊕ : T A × T B → T (A∪B), for any A,B and is defined as follows:

EA ⊕ FB = {z1 ∪ z2 | (z1 ∈ EA) ∧ (z2 ∈ FB) ∧ (z1 ∩B ⊆ z2) ∧ (z2 ∩A ⊆ z1)}

Fact. An equivalent definition is EA ⊕ FB = {z1 ∪ z2|(z1 ∈ EA) ∧ (z2 ∈ FB) ∧ (z1 ∩B = z2 ∩A)}
We show some algebraic properties of this operation in the Appendix. The next theorem shows the
importance of the ⊕ operation in this work.

Lemma 1. For any adversary structures E,F and node sets A,B let G = EA⊕FB where G ∈ T A∪B.
It holds that GA = EA and GB = FB.

Theorem 2. For any adversary structures E,F and node sets A,B let G = EA ⊕ FB where G ∈
T A∪B. It holds that ∀G′ ∈ T A∪B : if G′A = EA and G′B = FB then G′ ⊆ G.

Proof. Suppose that there existed some G′ s.t. ∃z ∈ G′ : z ̸∈ G. For z we have z1 = z ∩A ∈ EA and
z2 = z ∩B ∈ FB. Also z1 ∩B = (z ∩A)∩B ⊆ z ∩B = z2 and symmetrically z2 ∩A ⊆ z1. But then
from definition z ∈ G which is a contradiction and no such G′ exists.

Corollary 3. For any adversary structures E and node sets A,B: E(A∪B) ⊆ EA ⊕ EB.

What Theorem 2 tells us is that the ⊕ operation gives the maximal possible adversary structure
that is indistinguishable between two agents that know EA and FB respectively, i.e., it coincides with
their knowledge of the adversary structures on sets A and B respectively. Recall that Zu = ZV (γ(u)).
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The difference is that we use Zu to denote the knowledge of a player and ZV (γ(u)) to denote a
restriction of the adversary structure. For a given adversary structure Z and a view function γ let

ZB =
⊕
v∈B

ZV (γ(u))

Then ZB exactly captures the maximal adversary structure possible, restricted in γ(B), relative to
the initial knowledge of players in B. Also notice that using corollary 3 we get ZV (γ(B)) ⊆ ZB. The
interpretation of this inequality in our setting, is that what nodes in B conceive as the worst case
adversary structure indistinguishable to them, it always contains the actual adversary structure in
their scenario. For the rest of this work we will use Zγ(u) and ZV (γ(u)) interchangeably.

3 Reliable Message Transmission in the partial knowledge model

In RMT we want the dealer D to sent a message to some player r (the receiver) in the network. We
assume that the dealer knows the id of player r. We denote an instance of the problem by the tuple
(G,Z, γ,D, r). To analyze feasibility of RMT we introduce the notion of RMT-cut.

Definition 2. Let (G,Z, γ,D, r) be an RMT instance (G,Z, γ,D, r) and C = C1 ∪ C2 be a cut in
G, partitioning V \ C in two sets A,B ̸= ∅ where D ∈ A and r ∈ B. C is a RMT-cut iff C1 ∈ Z
and C2 ∈ ZB.

Theorem 4 (Necessity). Let (G,Z, γ,D, r) be an RMT instance. If there exists a RMT-cut in G
then no safe and resilient RMT algorithm exists for (G,Z, γ,D, r).

The proof adapts arguments from [14, 13] making use of the ⊕ operation and is deferred to the
Appendix.

3.1 The RMT protocol

We present an RMT protocol (Protocol 1) which succeeds whenever the condition of Theorem 4 is
met, rendering it a tight condition on when RMT is possible. To prove this we need to define what
a valid scenario is for a set of messages that a node receives. In the definition below we refer to two
types of messages, namely type 1 and type 2, as defined in the description of the protocol.

Definition 3. Let M be a subset of the messages of type 1 and 2 that the receiver node r receives
at some round of the protocol on (G,Z, γ,D, r). We say that M corresponds to a valid scenario for
r if

• ∀m1,m2 ∈ M of type 1, their first part is the same. That is, all messages of type 1 agree on
the value sent to r.

• ∀m1,m2 ∈ M of type 2, their first part is the same when they refer to the same node. That is,
all messages of type 2 that refer to the same node v should contain exactly the same information,
except possibly for the propagation path.

Notice that a valid scenario uniquely determines a dealer’s value xM (or ⊥ if no message of type
1 exists in M), possibly not the correct one (xD). Additionally, if all these messages come from a
node set A (message paths contain only nodes from A), a valid scenario uniquely determines a part
of a possible world conforming to these messages : (GM ,ZM , xM ).

Theorem 5. Let (G,Z, γ,D, r) be an RMT instance. If an RMT-cut exists, then Protocol 1 does
not make the receiver decide on an incorrect value.

Proof. We will show that if an RMT -cut exists then r does not decide on any value. Suppose that
r decided on some value x′ ̸= xD. Then ∃C ⊆ V (G) : decision(r|C) = x′.

Let C1 be the set of corrupted nodes, C1 ∈ Z. Notice that C∪C1 is a separator between r and D,
or else r would receive the value xD from a path of honest nodes not in C. Let B′ = {v | v ∈ G\C1∧∃
path p in G \ (C ∪ C1) from v to r}. Since C1 is the actual corruption set, (C1 ∩ V (γ(B′))) ∈ ZB′ .
So decision(r|C) = ⊥, which is a contradiction.

4



Protocol 1: RMT protocol

Input (for each node v): dealer’s label D, γ(v), Zv.
Message format : type 1 : pair (x, p) or type 2 : pair ((u, γ(u),Zu), p) , where x ∈ X (message space),
u the id of some node, γ(u) is the view of node u, Zu is the adversary structure of node u, and p is
a path of G (message’s propagation trail).

Code for D: send messages (value : xD, {D}) and ((D, γ(u),ZD), {D}) to all neighbors and termi-
nate.

Code for v ̸= D: send message ((u, γ(u),Zu), {u}) to all neighbors.
upon reception of type 1 or type 2 message (a, p) from node u do:

if (v ∈ p) ∨ (tail(p) ̸= u) then discard the message else send (a, p||v) 1 to all neighbours.

Code for r: upon reception of (x, p) from node u do:

if decision(v) ̸= ⊥ then decide on decision(v) and terminate.

function decision(v)

if ∃C ⊆ G s.t decision(v|C) = x return x
else return ⊥.

function decision(v|C)

M : the set of all messages with valid format that have been received via paths that don’t pass
from nodes in C.

if M not valid (def. 3) or C ̸∈ ZM then return ∅.
if ∃C ′ ⊂ V (GM )\C, s.t. C ′ is a cut between D, r on GM \C, B′ is the connected component

that u lies in and (C ′ ∩ V (γ(B′))) ∈ (ZM )B′ then return ⊥.
else return x.

Theorem 6 (Sufficiency). Let (G,Z, γ,D, r) be an RMT instance. If no RMT-cut exists, then
Protocol 1 achieves reliable message transmission.

Proof. Suppose that no RMT-cut exists in G and Protocol 1 does not achieve reliable message
transmission. Then r has not decided on xD.

Let C1 be the set of corrupted nodes, C1 ∈ Z. We will show that r should have decided on xD
and we will arrive at a contradiction.

First we show that decision(r|C1) = xD. Node r has received messages from G \ C1, and the
value sent from these paths is xD. Node r only uses information that he has received from paths
in G \ C1 e.g. only correct information. Now since no RMT -cut exists in the graph, for every cut
C2 of G \ C1 where B′ is the connected component that r lies in, C2 /∈ ZB′ should hold. Otherwise
C1 ∪ C2 would be an RMT -cut. So decision(r|C1) = xD.

Now suppose that there exists a set C ′ s.t. decision(r|C ′) ̸∈ {xD, ∅}. This means that the view
that r makes from the messages that come from paths not crossing C ′ is valid. Additionally C ′ ∪C1

should form a cut on G between D and r, or else the scenario would not be valid.
Let B′ = {v | v ∈ G\C1∧∃ path p in G\ (C ′∪C1) from v to r}. Since C ′ is a possible adversary

set for r, and nodes in B′ are considered honest and can communicate through a fully honest path
with r, C ′ ∩ γ(B′) ∈ ZB′ . Otherwise the scenario would not be valid, since C ′ could no be a possible
corruption set.

So C1 ∈ Z and C ′ ∩ γ(B′) ∈ ZB′ and C1 ∪ C ′ is a RMT -cut, a contradiction, since there is no
RMT -cut in G. Therefore no set C ′ exists s.t. decision(r|C ′) ̸∈ {xD, ∅}.

It follows that decision(r) = xD, also a contradiction. So Protocol 1 achieves reliable message
transmission if no RMT -cut exists in G.

1By p||v we denote the path consisting of path p and node v, with the last node of p connected to v.
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Note on termination of protocol 1. Due to the uncertainty of nodes about the topology, the
adversary can present them with a fake view of a huge graph and make them terminate whenever he
wants. To avoid this, a strategy must employed on the order that the receiver checks the information
she gets from other players.

First, to restrict the power of the adversary, we allow every player to send at most b bytes at
every round (where b is some constant). So if some player wants to send a message that exceeds this
size, she splits it in parts of size b and sends it in successive rounds. Every player receives messages
in a a round robin fashion, that is in every round she receives a message only from one of her
neighbors. Players forward messages, prioritizing messages that they received earlier. This way we
can guarantee first, that r will get sufficient information to decide until some round t0 independently
of the behavior of the adversary, and secondly, that at time t0 there is an upper bound on the
information that r has received, namely bt0N(r).

With these modifications a simple strategy to achieve termination is to make r check the older
scenarios first. So r first checks all possible scenarios using the information that she received until
round 1, then until round 2, and so on. But by the way messages are forwarded as we argued before,
there is a limited number of scenarios that have to be checked, namely the maximum number of
scenarios that can be generated from bt0N(r) bytes. This way when RMT is possible, there exists
an upper bound on the time the protocol takes to terminate, independent of the behavior of the
adversary.

Corollary 7. (RMT Protocol Uniqueness) Given an RMT instance (G,Z, γ,D, r), if there exists
any safe and resilient RMT algorithm for this instance, then Protocol 1 also achieves reliable message
transmission on this instance.

4 RMT in Ad Hoc Networks

In this section we consider the Reliable Message Transmission problem (RMT ) in ad hoc networks.
In the closely related problem of Reliable Broadcast the receiver is not a single node but instead the
whole set V (G). Reliable Broadcast in ad hoc networks under the influence of a general Byzantine
adversary was initially studied in [13] where an algorithm for this model was presented and proven
unique. The results can trivially be adapted to the case of the RMT problem.

4.1 Knowledge assumptions

As in the ad hoc model with a general Byzantine adversary, presented in [13], we make the assumption
that given the actual adversary structure Z , each player v knows only the local adversary structure

Zv = {A ∩N (v) | A ∈ Z}

Moreover, the topology knowledge of each player is limited to its own neighborhood, i.e., ∀v ∈
V (G), γ(v) = N (v).

4.2 Ad Hoc RMT

An instance of the RMT problem in the ad hoc setting consists of a tuple (G,Z, D, r) as explained
in previous sections. In the closely related problem of Reliable Broadcast with an honest dealer [8,
14, 13], the notion of Z-pp cut (definition given in the Appendix) was introduced in [13] and it was
proved that a necessary and sufficient condition for the solvability of the problem is that a Z-pp cut
does not exist in the instance. Furthermore, the protocol Z-CPA (Certified Propagation Algorithm),
in the following simply referred to as CPA, was given and proved that it achieves Broadcast in every
instance where Broadcast is possible, i.e., it is unique.

Since in the RMT problem we are only concerned about the decision of the receiver r, we slightly
modify the definition of the Z-pp cut in order to capture an analogous cut (RMT Z-pp cut) between
the dealer D and the receiver r,

6



Definition 4 (RMT Z-pp cut). Let C be a cut of G partitioning V \ C into sets A,B ̸= ∅ s.t.
D ∈ A and r ∈ B. C is an RMT Z-pp cut if there exists a partition C = C1 ∪C2 with C1 ∈ Z and
∀u ∈ B, N (u) ∩ C2 ∈ Zu.

The CPA algorithm can be trivially adapted for solving the RMT problem. In this algorithm the
dealer first sends its initial value xD to all its neighbors and terminates. After that the actions of
any player v are defined as follows.

CPA Code for v

1. If v ∈ N (D) then upon reception of xD from the dealer, decide on xD.

2. If v /∈ N (D) then upon receiving the same value x from all neighbors in a set N ⊆ N (v) s.t.
N /∈ Zv, decide on value x.

3. If v = r and decided on x then output decision x and terminate, else if v ̸= r and decided on
x, send x to all neighbors N (v) and terminate.

Note that CPA is safe, in a sense that, never causes any honest player to decide on an incorrect value.
Following an analysis identical to that of [13], where CPA is proven unique among safe Broadcast
algorithms, we prove the uniqueness of CPA (modified as explained) among safe RMT algorithms.
The following theorems are completely analogous with those of [13].

Theorem 8 (Sufficient Condition). Given an RMT instance (G,Z, D, r), if no RMT Z-pp cut
exists on G, then Z-CPA achieves RMT in (G,Z, D, r).

Theorem 9 (Necessary Condition). Given an RMT instance (G,Z, D, r), if an RMT Z-pp cut
exists on G then no safe RMT algorithm exists for (G,Z, D, r).

For completeness, the proofs (practically identical to those of [13]) are given in the appendix.

5 Fully Polynomial RMT in Ad Hoc Networks

Up to now we have seen that CPA is unique among the safe ad hoc RMT algorithms. In terms of
efficiency it is interesting to study whether CPA is also the more efficient one among unique RMT
algorithms w.r.t. polynomial time. We will measure protocol complexity with respect to the size of
the graph |G| = n only, because we are mainly interested in protocols that are fully polynomial (of
polynomial round, bit and local computations complexity) regardless of the size of the adversary
structure description. Note however that, if the adversary structure is given explicitly, CPA is
trivially fully polynomial w.r.t. the total size of the input.

Under this approach, we need to take into account the complexity of membership check for
Z, due to the second decision rule of CPA. Indeed, we may observe that CPA is fully polynomial
if the membership check for Z can be performed in polynomial time w.r.t. |G|. In the sequel, we
essentially show that if a unique fully polynomial RMT algorithm exists, it must be able to answer the
membership question for Z in polynomial time w.r.t. |G| and therefore can be used as a subroutine
to make CPA fully polynomial.

5.1 Self-Reducibility of RMT

Consider the family of instances G where achieving RMT is possible. By Theorems 8,9:

G = {(G,Z, D, r) | ∄RMT Z-pp cut in G }

Also consider the family of basic instances G′ ⊆ G which contains the tuples (G,Z, D, r) where
G is of the form shown in Figure 1 and RMT is solvable. More specifically, G contains the two
distinguished nodes D, r and a “middle set” which we call A(G). The only edges appearing are those
which connect each player in the set A(G) with the dealer D and the receiver-node r and in the
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Figure 1: Family of instances G′. No RMT Z-pp cut exists.

resulting graph there does not exist a RMT Z-pp cut. Finally for any G1 ⊆ G we define the family
of instances I(G1) ⊆ G′ which consists of all the instances (G′,Z ′, D′, r′) ∈ G′ such that graph’s G′

middle-set A(G′) is a subset of a neighborhood of a node v in a graph contained in family G1, as a
part of the instance tuple (G,Z, D, r), and Z ′ = Zv

2. More precisely,

I(G1) = {(G′,Z ′, D′, r′) ∈ G′ | ∃(G,Z, D, r) ∈ G1, ∃v ∈ V (G) \ {D} s.t. A(G′) ⊆ N (v),Z ′ = Zv}

Intuitively the above family consists of the decomposition of every graph G in the G1 family into
“small” graphs of the family G′ whose middle sets appear in G as (partial) neighborhoods of nodes,
the adversary structures are subsets of the original structure, and the RMT problem is solvable.

We next show that the RMT problem in any family of instances G1 ⊆ G (denoted RMT |G1), also
referred to as the RMT problem with promise set G1 (cf. [5]), reduces in polynomial time w.r.t. the
size of the graph n to the RMT |I(G1) problem. That is, if there exists an algorithm for solving RMT
in I(G1) in fully polynomial time it can be used, as a subroutine of CPA, to solve RMT in G1 in
fully polynomial time.

Theorem 10. If there exists a fully polynomial (in n) algorithm Π for solving RMT |I(G1) then there
exist a fully polynomial algorithm (in n) that solves RMT |G1.

Proof. We will use CPA to solve RMT |G1 . CPA has been proven unique, i.e., solves RMT in all
instances where it is solvable, hence also for the family of instances G1 that we consider in this
theorem.

We will show that CPA with protocol Π as a subroutine yields a fully polynomial algorithm for
RMT |G1 . Namely, the decision rule of CPA which consists of a membership check for Zv will be
answered through simulations of protocol Π in time poly(n). Since the subroutine protocol Π will
only be used in the local computations phase of CPA, the round and bit complexity of CPA will be
maintained in the resulting algorithm.

First, from the description of CPA observe that the round complexity is linear in n because at
least one new player decides in every round and each player terminates after decision. Thus the
receiver r will decide in at most n rounds. Second, one can see that the bit complexity of CPA is
also of order poly(n) due to the fact that each player sends one message to all of its neighbors. For
deducing the latter we can reasonably assume that the messages sent by honest players are of size
poly(n) or, to drop any such assumption, consider the space X of the messages exchanged as a part
of the input of size n. It thus remains to show that in CPA, the local computations complexity, can
be of order poly(n) if we use Π as subroutine.

For an arbitrary run e of CPA in some instance of G1, we can define D(i) to be the set of players
that decide in round i of CPA. Moreover since run e is on an instance in the family G1 ⊆ G, i.e.,
the RMT problem is solvable, it should be the case that ∃i ∈ {1, . . . , n}, r ∈ D(i). Observe that
the function D is well defined as we can assume that we use an arbitrary algorithm, e.g. exhaustive
search, to answer the membership check for Zv (possibly in exponential time).

2In this point we slightly abuse the terminology, for ease of exposition, and use Z ′ = Zv instead of Z ′ = {S ∩
A(G′) | S ∈ Zv}. The second statement is more accurate in the case where A(G′) ⊊ N (v) because we defined Z as a
subset of the powerset of the nodes in the instance. This however does not affect our study because we can add the
extra nodes N (v) \A(G′) in our instance (G′,Z ′, D′, r′) as isolated nodes.

8



We next show that if we use Π as a subroutine for the local computations of the run e of CPA,
we can achieve RMT in time poly(n). Namely, we show by induction that for every round i, each
player v ∈ D(i) will decide in poly(n). Since ∃i ∈ {1, . . . , n}, r ∈ D(i) RMT will be achieved.

For round i = 1 all v ∈ N (D) receive the dealer’s value xD from the dealer and trivially decide
on it in poly(n) time.

Assume that, for every round i ≤ k every v ∈ D(i) decides in poly(n)-time. Considering any
v ∈ D(k+1) and the CPA message propagation, the latter means that by the end of round k, v will
have received sufficient information view(v, e, k) to decide, from players in

∪
i=1,...,k D(i), in poly(n)-

time, i.e., v will have received the same value x from all its neighbors in a set N ⊆ N (v) s.t. N /∈ Zv.
All valid messages exchanged in CPA consist of a single value x ∈ X which corresponds to a possible
dealer’s value, and each player transmits only once to all its neighbors. Messages of different form,
which we call erroneous, can be recognized by the recipient in poly(n) time since |X| = poly(n). Given

view(v, e, k), player v, in poly(n)-time, can create a partition of its neighborhood N (v) =

m+1∪
i=0

Ai

such that

A0 ={u ∈ N (v) | u sent nothing}
Ai ={u ∈ N (v) | u sent value ai ∈ X}, i = {1, . . .m}

Am+1 ={u ∈ N (v) | u sent erroneous messages}

Since sets A0, Am+1 do not affect our study we let A =
∪

i={1,...m}Ai. Denote with H,Z ⊆ V the
sets of actual honest and corrupted players of run e. Also consider the sets of honest and corrupted
neighbors of v, Hv = H ∩N (v) and Zv = Z ∩N (v) respectively. Given view(v, e, k), observe that

∃! h ∈ {1, . . . ,m} s.t. Hv \A0 ⊆ Ah

else there exists an honest player which sends an incorrect value, a contradiction because CPA
is safe. Subsequently Zv ⊇ A \ Ah. Note that all u ∈ Ah transmit the correct value ah (regardless
of whether they are honest or not) and all u ∈ A \ Ah transmit false values. Since, by assumption,
view(v, e, k) is sufficient for v to decide through CPA, it holds that Ah /∈ Zv due to the decision rule
of CPA. Moreover ∀i ∈ {1, . . . ,m} \ {h} it holds that Ai ∈ Zv since A \Ah ⊆ Zv. Consequently

∃! h ∈ {1, . . . ,m} s.t. Ah /∈ Zv and A \Ah ∈ Zv (1)

We next show how player v can decide which is the actual value of h in poly(n) time using the
protocol Π, and thus decide on the correct value ah.

For l = 1, . . .m, we define the following runs of Π that can be simulated by v.

• Run el0 is on the instance (G,Zv, D, v) ∈ G′ with V (G) = A∪{D}∪{v}, dealer’s value xD = 0,
and corruption set Zv = A \ Al; in each round, all players in Zv send the messages that send
in the respective round of run el1 (where A \ Al is a set of honest players which runs Π). The
latter means that v exchanges with Zv messages that consist the view(el1, v)|A\Al

.

• Run el1, is on the same graph G, with dealer’s value xD = 1, and corruption set Zv = Al;
Analogously with e0 player v exchanges with Zv the messages view(el0, v)|Al

.

Player v simulates run el1 in order to determine the behavior of the corrupted players in el0. Observe
that for every l exactly one of el0, e

l
1 is not in the family of instances I(G1) (due to the selection of the

corruption set) and thus the local computations complexity might not be polynomial. Since protocol
Π is fully polynomial in I(G1), it means that there is an explicit bound B on the local computations
complexity of Π in the family I(G1). Assuming that arbitrary player v knows such a bound 3 we
modify the above runs such that if the local computations complexity of a player w in a round i of
el0 or el1 exceeds the bound B then v halts the simulation of the round i local computations of w

3Although this assumption is natural and often used, it is possible to avoid it if we consider family I(G1) consisting
of directed graphs (with edges from dealer to A(G) and from A(G) to v). In this case the view of all players in Al, A\Al

would be the same as that of some run in I(G1) and thus their local computations complexity would be polynomial.
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Figure 2: Runs e0 and e1.

and sends nothing on behalf of player w in round i. Such a modification of the run is necessary to
obtain the desired result.

Player v runs the following protocol in order to decide on the value of the dealer of run e.
(Decision Protocol.) Player v simulates, in parallel, 2m = poly(n) runs (el0, e

l
1)l∈{1,...m} and halts all

parallel simulations with decision al if run el0 terminates with decision(v) = 0.

We next show that v terminates run el0 with decision(v) = 0 if and only if Al /∈ Zv. More
concretely

Al /∈ Zv ⇔ decisionel0
(v) = 0

“⇒”: Al /∈ Zv ⇒ Zv = A \ Al ∈ Zv. Since by assumption Π solves RMT |I(G1), for any adversarial

behavior, that of Zv in el0 included, v will decide on the correct value xD = 0, i.e., decisionel0
(v) = 0.

“⇐”: Let Al ∈ Zv and decisionel0
(v) = 0. This by equation (1) means that Zv = A \ Al /∈ Zv.

Observe now that the run el0 is not a valid run for the instance (G,Zv, D, v) because the adversarial
behavior of Zv /∈ Zv is not valid for the adversary structure Zv. But the view of v is the same as
the valid run el1 in which xD = 1 and Zv = Al ∈ Zv. Since Π solves RMT |I(G1), for any adversarial

behavior, that of Zv in el1 included, v will decide on the correct value xD = 1 in the run el1 i.e.,
decisionel1

(v) = 1. But since the decision is a function of the view and player v receives exactly the

same messages in runs el0, e
l
1, it holds that decisionel0

(v) = 1, a contradiction.
The latter shows that the decision of player v in run e, which is acquired through the Decision

Protocol, is correct and uniquely defined. Moreover all parallel simulations halt when the simulated
run el0, l = h of Π terminates. Thus we have to show that run eh0 can be be simulated in polynomial
time.

The problem is that run eh1 , which is simulated to determine the behavior of the corrupted players
in el0, is not a run of RMT in the family I(G1) due to the selection of the corruption set. Therefore
we lose guarantee of full polynomiality in that run. Non-polynomiality of the round complexity is not
an obstacle since the simulations are done in parallel. Local computations’ polynomial complexity
of eh1 is ensured by the fact that we halt any local computations that exceed the explicit bound
B previously mentioned. Finally it is easy to see that the bit complexity of the simulated runs is
polynomial if the round and local computations complexity is polynomial. Thus the simulated run
el0 remains fully polynomial.

Therefore it follows that v will decide in run e in polynomial time because the simulation of a
fully polynomial protocol can be done in polynomial time.

6 Open questions

Regarding the partial knowledge model, Protocol 1 forces players to exchange information about the
topology. Although topology discovery was not our motive, techniques used here (e.g. the ⊕ opera-
tion) may be applicable to that problem under a Byzantine adversary ([12],[4]). A comparison with
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the techniques used in this field might give further insight on how to efficiently extract information
from maliciously crafted topological data.

The unique protocol proposed for the partial knowledge model only answers the feasibility ques-
tion. A natural question is whether and when we can devise a unique and also efficient algorithm for
this setting. The techniques used so far in the bibliography to reduce the communication complex-
ity [9] do not seem to be directly applicable to this model. So exploring this direction might give
new insights on message delivery in partially known graphs.

It would be interesting to study RMT in the partial knowledge model under the (in)efficiency
perspective by extending our analysis of the ad hoc case.
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Appendix

A The ⊕ operation

Theorem 11. Operator ⊕ is commutative.

Proof. A binary operation ∗ is called commutative if a ∗ b = b ∗a. For any adversary structures E,F
and node sets A,B:

EA ⊕ FB = {z1 ∪ z2|(z1 ∈ EA) ∧ (z2 ∈ FB) ∧ (z1 ∩B ⊆ z2) ∧ (z2 ∩A ⊆ z1)}
= {z2 ∪ z1|(z2 ∈ FB) ∧ (z1 ∈ EA) ∧ (z2 ∩A ⊆ z1) ∧ (z1 ∩B ⊆ z2)}
= FB ⊕ EA

So operator ⊕ is commutative.

To prove that ⊕ is also associative we will need the following lemma.

Lemma 12. For any node sets A,B,C it holds that

(z1 ∩B ⊆ z2) ∧ (z2 ∩A ⊆ z1)∧(z1 ∪ z2 ∩ C ⊆ z3) ∧ (z3 ∩A ∪B ⊆ z1 ∪ z2)

⇔
(z2 ∩ C ⊆ z3) ∧ (z3 ∩B ⊆ z2)∧(z2 ∪ z3 ∩A ⊆ z1) ∧ (z1 ∩B ∪ C ⊆ z2 ∪ z3)

Proof. First we prove the ⇒ direction. From (z1 ∪ z2 ∩ C ⊆ z3) it follows that:

(z1 ∪ z2) ∩ C ⊆ z3 ⇒ (z1 ∩ C) ∪ (z2 ∩ C) ⊆ z3

⇒ (z1 ∩ C) ⊆ z3 ∧ (z2 ∩ C) ⊆ z3

From (z3 ∩ (A ∪B) ⊆ z1 ∪ z2) it follows that:

z3 ∩ (A ∪B) ⊆ z1 ∪ z2 ⇒ (z3 ∩A) ∪ (z3 ∩B) ⊆ z1 ∪ z2

⇒ (z3 ∩B) ⊆ z1 ∪ z2

⇒ (z3 ∩B) ∩B ⊆ (z1 ∪ z2) ∩B

⇒ (z3 ∩B) ⊆ (z1 ∩B) ∪ (z2 ∩B)

⇒ (z3 ∩B) ⊆ (z2 ∩B)

⇒ (z3 ∩B) ⊆ z2

z3 ∩ (A ∪B) ⊆ z1 ∪ z2 ⇒ (z3 ∩A) ∪ (z3 ∩B) ⊆ z1 ∪ z2

⇒ (z3 ∩A) ⊆ z1 ∪ z2

⇒ (z3 ∩A) ⊆ z1 ∪ z2

⇒ (z3 ∩A) ∩A ⊆ (z1 ∪ z2) ∩A

⇒ (z3 ∩A) ⊆ (z1 ∩A) ∪ (z2 ∩A)

⇒ (z3 ∩A) ⊆ (z2 ∩A)

⇒ (z3 ∩A) ⊆ z2

Also :

(z2 ∪ z3) ∩A ⊆ (z2 ∩A) ∪ (z3 ∩A)

⊆ z1 ∪ z1

⊆ z1
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And

(z1 ∩ (B ∪ C)) ⊆ (z1 ∩B) ∪ (z1 ∩ C)

⊆ z2 ∪ z3

The proof for the ⇒ direction is complete. The other direction follows from symmetry.

Theorem 13. Operator ⊕ is associative.

Proof. A binary operation ∗ is called associative if (a ∗ b) ∗ c = a ∗ (b ∗ c) for any well defined a, b, c.
For any adversary structures E,F,G and node sets A,B,C:

(EA ⊕ FB)⊕GC = {z1 ∪ z2|(z1 ∈ EA) ∧ (z2 ∈ FB) ∧ (z1 ∩B ⊆ z2) ∧ (z2 ∩A ⊆ z1)} ⊕GC

= {z1 ∪ z2 ∪ z3|(z1 ∈ EA) ∧ (z2 ∈ FB) ∧ (z3 ∈ GC) ∧ (z1 ∩B ⊆ z2)

∧ (z2 ∩A ⊆ z1) ∧ (z1 ∪ z2 ∩ C ⊆ z3) ∧ (z3 ∩A ∪B ⊆ z1 ∪ z2)}

EA ⊕ (FB ⊕GC) = EA ⊕ {z2 ∪ z3|(z2 ∈ FB) ∧ (z3 ∈ GC) ∧ (z2 ∩ C ⊆ z3) ∧ (z3 ∩B ⊆ z2)}
= {z1 ∪ z2 ∪ z3|(z1 ∈ EA) ∧ (z2 ∈ FB) ∧ (z3 ∈ GC) ∧ (z2 ∩ C ⊆ z3)

∧ (z3 ∩B ⊆ z2) ∧ (z2 ∪ z3 ∩A ⊆ z1) ∧ (z1 ∩B ∪ C ⊆ z2 ∪ z3)}

But from lemma 12 it follows that:

EA ⊕ (FB ⊕GC) = (EA ⊕ FB)⊕GC

So operator ⊕ is associative.

Theorem 14. Operation ⊕ is idempotent.

Proof. Given some operation ∗ we say that it is idempotent iff a ∗ a = a for any possible a.

EA ⊕ EA = {z1 ∪ z2|(z1 ∈ EA) ∧ (z2 ∈ EA) ∧ (z1 ∩A ⊆ z2) ∧ (z2 ∩A ⊆ z1)}
= {z1 ∪ z2|(z1 ∈ EA) ∧ (z2 ∈ EA) ∧ (z1 = z2)}
= {z1|(z1 ∈ EA)}
= EA

So operation ⊕ is idempotent.

Theorem 15. Let V be a finite set and S = {(E,A)|E ⊆ 2A ∧ A ⊆ V }. Then < S,⊕ > is a
semilattice.

Proof. A set L with some operations ∗ is a semilattice if the operation ∗ is commutative, associative
and idempotent. From the previous theorem all these properties hold for the ⊕ operation and the
set S.

B Proof of Theorem 4

Proof. Let C = C1 ∪ C2 be the RMT-cut which partitions V \ C in sets A,B ̸= ∅ s.t. D ∈ A and
r ∈ B. Then there exists a different scenario where Z ′ = ZB and all other parameters are the same.
From lemma 1, nodes in B have the same initial knowledge in both scenarios, since ZB = Z ′

B.
Suppose r could decide correctly with Z being the actual adversary structure. Then using

a standard argument employed in [14, 13], an attack on the safeness of the algorithm would be
possible in the same setting with Z ′ being the actual adversary structure. The details of the proof
are similar and are based on the difficulty of the honest players in B to distinguish which scenario
they participate in, with respect to the actual adversary structure: the one with Z or the one with
Z ′.
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C Definition of Z-pp Cut

Definition 5 (Z-partial pair cut). Let C be a cut of G partitioning V \ C into sets A,B ̸= ∅ s.t.
D ∈ A. C is a Z-partial pair cut (Z-pp cut) if there exists a partition C = C1 ∪ C2 with C1 ∈ Z
and ∀u ∈ B, N (u) ∩ C2 ∈ Zu.

D Proof of Theorem 8

Proof. Suppose that Z-CPA does not achieve RMT in (G,Z, D, r). Then we can split the graph in 3
parts: A being the honest decided nodes, B being the honest undecided nodes with r ∈ B and C being
the corrupted nodes. Now since every node in B is undecided we have that ∀u ∈ B : N(u)∩A ∈ Zu

(otherwise u would have decided). But then C ∪ A is an RMT Z-pp cut which is a contradiction.
Hence, Z-CPA achieves RMT in (G,Z, D, r).

E Proof of Theorem 9

Proof. Let C = C1 ∪ C2 be the RMT Z-pp cut which partitions V \ C in sets A,B ̸= ∅ s.t. D ∈ A
and r ∈ B. Let Z ′ = {

∪
u∈B Z ∩N(u) : Z ∈ Z} ∪ {C2}. We have that Z ′

u = {Z ∩N(u) : Z ∈ Z ′} ∪
{C2∩N(u)} = {(

∪
v∈B Z∩N(v))∩N(u) : Z ∈ Z}∪{C2∩N(u)} = {Z∩N(u) : Z ∈ Z}∪{C2∩N(u)}

but since ∀u ∈ B : N(u) ∩ C2 ∈ Zu, for every node u in B: Zu = Z ′
u. So far we have established

that (a) nodes in B cannot tell whether Z or Z ′ is the adversary structure since ∀u ∈ B : Zu = Z ′
u

and (b) C2 is an admissible corruption set in Z ′.
Suppose that there exists a safe algorithm A which achieves RMT in instance (G,Z, D, r). We

consider the following runs e and e′ of A :

• Run e is on the instance (G,Z, D, r), with dealer’s value xD = 0, and corruption set C1; in
each round, all players in C1 perform the actions that perform in the respective round of run
e′ (where C1 is a set of honest players).

• Run e′ is on the the instance (G,Z ′, D, r), with dealer’s value xD = 1, and corruption set C2;
in each round, all players in C2 perform the actions that perform in the respective round of
run e (where C2 is a set of honest players).

Note that C1, C2 are admissible corruption sets in instances (G,Z, D, r), (G,Z ′, D, r) respectively.
Since C1 ∪ C2 is a cut which separates D from r in both (G,Z, D, r), (G,Z ′, D, r) and the actions
of every node of this cut are identical in both runs e, e′, the messages that r receives are the same
in both runs,i.e., view(v, e) = view(v, e′). Therefore the decision of r ∈ B must be identical in both
runs. Since, by assumption, algorithm A achieves RMT in instance (G,Z, D, r), r must decide on
the dealer’s message 0 in run e on (G,Z, D, r), and must do the same in run e′ on (G,Z ′, D, r).
However, in run e′ the dealer’s message is 1. Therefore A makes r decide on an incorrect message in
(G,Z ′, D, r). This contradicts the assumption that A is safe.
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