
Implicit Zero-Knowledge Arguments
and Applications to the Malicious Setting

Fabrice Benhamouda, Geoffroy Couteau, David Pointcheval, and Hoeteck Wee

ENS, CNRS, INRIA, and PSL, Paris, France

Abstract. We introduce implicit zero-knowledge arguments (iZK) and simulation-sound variants thereof
(SSiZK); these are lightweight alternatives to zero-knowledge arguments for enforcing semi-honest behavior.
Our main technical contribution is a construction of efficient two-flow iZK and SSiZK protocols for a large
class of languages under the (plain) DDH assumption in cyclic groups in the common reference string model.
As an application of iZK, we improve upon the round-efficiency of existing protocols for securely computing
inner product under the DDH assumption. This new protocol in turn provides privacy-preserving biometric
authentication with lower latency.

Keywords. hash proof systems, zero-knowledge, malicious adversaries, two-party computation, inner
product.

1 Introduction

Zero-Knowledge Arguments (ZK) enable a prover to prove the validity of a statement to a verifier
without revealing anything else [GMR89]. In addition to being interesting in its own right, zero
knowledge has found numerous applications in cryptography, most notably to simplify protocol design
as in the setting of secure two-party computation [Yao86, GMW87b, GMW87a], and as a tool for
building cryptographic primitives with strong security guarantees such as encryption secure against
chosen-ciphertext attacks [NY90,DDN91].

In this work, we focus on the use of zero-knowledge arguments as used in efficient two-party protocols
for enforcing semi-honest behavior. We are particularly interested in round-efficient two-party protocols,
as network latency and round-trip times can be a major efficiency bottleneck, for instance, when a user
wants to securely compute on data that is outsourced to the cloud. In addition, we want to rely on
standard and widely-deployed cryptographic assumptions. Here, a standard interactive zero-knowledge
argument based on the DDH assumption would require at least three flows; moreover, this overhead in
round complexity is incurred each time we want to enforce semi-honest behavior via zero knowledge. To
avoid this overhead, we could turn to non-interactive zero-knowledge proofs (NIZK). However, efficient
NIZK would require either the use of pairings [GS08] and thus stronger assumptions and additional
efficiency overhead, or the use of random oracles [BR93,FS87].

We would like to point out that, contrary to some common belief, there is no straightforward way
to reduce the number of rounds of zero-knowledge proofs “à la Schnorr” [Sch90] by performing the first
steps (commitment and challenges) in a preprocessing phase, so that each proof only takes one flow
subsequently. Indeed, as noticed by Bernhard-Pereira-Warinsky in [BPW12], the statement of the proof
has to be chosen before seeing the challenges, unless the proof becomes unsound.

On the Importance of Round-Efficiency. In addition to being an interesting theoretical problem,
improving the round efficiency is also very important in practice. If we consider a protocol between a
client in Europe, and a cloud provider in the US, for example, we expect a latency of at least 100ms
(and even worse if the client is connected with 3g or via satellite, which may induce a latency of up to
1s [Bro13]). Concretely, using Curve25519 elliptic curve of Bernstein [Ber06] (for 128 bits of security,
and 256-bit group elements) with a 10Mbps Internet link and 100ms latency, 100ms corresponds to
sending 1 flow, or 40,000 group elements, or computing 1,000 exponentiations at 2GHz on one core of
current AMD64 microprocessor1, hence 4,000 exponentiations on a 4-core microprocessor2. As a final
remark on latency, while speed of networks keeps increasing as technology improves, latency between
two (far away) places on earth is strongly limited by the speed of light: there is no hope to get a latency
less than 28ms between London and San Francisco, for example.
1 According to [II], an exponentiation takes about 200,000 cycles.
2 Assuming exponentiations can be made in parallel, which is the case for our iZKs.

2

Interactive ZK

A
x, π1

B

π2

...

π2n+1

x′ if argument valid

NIZK

A
x, π

B

x′ if π valid

iZK

A
x, ipk

B

x′ xorK, c

– x: original flow from (honest) Alice (A) to Bob (B);
– x′: the answer of B, which has to be sent after B is

sure that x is valid;
– π1, . . . , π2n+1: flows of the interactive ZK argument;
– π: non-interactive ZK proof;
– ipk,K, c: public key (associated to x), ephemeral key

computed by B, key encapsulation (which can be
decapsulated by A if she generated honestly ipk,
using a witness that x was valid), respectively.

Fig. 1: Enforcing semi-honest behavior of Alice (A)

Our Contributions. In this work, we introduce implicit Zero-Knowledge Arguments or iZK and
simulation-sound variants thereof or SSiZK, lightweight alternatives to (simulation-sound) zero-knowledge
arguments for enforcing semi-honest behavior in two-party protocols. Then, we construct efficient two-
flow iZK and SSiZK protocols for a large class of languages under the (plain) DDH assumption in
cyclic groups without random oracles; this is the main technical contribution of our work. Our SSiZK
construction from iZK is very efficient and incurs only a small additive overhead. Finally, we present
several applications of iZK to the design of efficient secure two-party computation, where iZK can be
used in place of interactive zero-knowledge arguments to obtain more round-efficient protocols.

While our iZK protocols require an additional flow compared to NIZK, we note that eliminating the
use of pairings and random oracles offers both theoretical and practical benefits. From a theoretical
stand-point, the DDH assumption in cyclic groups is a weaker assumption than the DDH-like assumptions
used in Groth-Sahai pairing-based NIZK [GS08], and we also avoid the theoretical pitfalls associated
with instantiating the random oracle methodology [CGH04,BBP04]. From a practical stand-point, we
can instantiate our DDH-based protocols over a larger classe of groups. Concrete examples include
Bernstein’s Curve25519 [Ber06] which admit very efficient group exponentiations, but do not support an
efficient pairing and are less likely to be susceptible to recent breakthroughs in discrete log attacks. By
using more efficient groups and avoiding the use of pairing operations, we also gain notable improvements
in computational efficiency over Groth-Sahai proofs. Moreover, additional efficiency improvements come
from the structure of iZK which makes them efficiently batchable. Conversely, Groth-Sahai NIZK cannot
be efficiently batched and do not admit efficient SS-NIZK (for non-linear equations).

New Notion: Implicit Zero-Knowledge Arguments. iZK is a two-party protocol executed between
a prover and a verifier, at the end of which both parties should output an ephemeral key. The idea is
that the key will be used to encrypt subsequent messages and to protect the privacy of a verifier against
a cheating prover. Completeness states that if both parties start with a statement in the language, then
both parties output the same key K. Soundness states that if the statement is outside the language,
then the verifier’s ephemeral output key is hidden from the cheating prover. Note that the verifier
may not learn whether his key is the same as the prover’s and would not be able to detect whether
the prover is cheating, hence the soundness guarantee is implicit. This is in contrast to a standard ZK
argument, where the verifier would “explicitly” abort when interacting with a cheating prover. Finally,
zero-knowledge stipulates that for statements in the language, we can efficiently simulate (without
the witness) the joint distribution of the transcript between an honest prover and a malicious verifier,
together with the honest prover’s ephemeral output key K. Including K in the output of the simulator
ensures that the malicious verifier does not gain additional knowledge about the witness when honest
prover uses K in subsequent interaction, as will be the case when iZK is used as part of a bigger
protocol.

3

More precisely, iZK are key encapsulation mechanisms in which the public key ipk is associated with
a word x and a language iL . In our case, x is the flow3 and iL the language of valid flows. If x is in
iL , knowing a witness proving so (namely, random coins used to generate the flow) enables anyone to
generate ipk together with a secret key isk, using a key generation algorithm iKG. But, if x is not in iL ,
there is no polynomial-time way to generate a public key ipk for which it is possible to decrypt the
associated ciphertexts (soundness).

To ensure semi-honest behavior, as depicted in Figure 1, each time a player sends a flow x, he also
sends a public key ipk generated by iKG and keeps the associated secret key isk. To answer back, the
other user generates a key encapsulation c for ipk and x, of a random ephemeral key K. He can then
use K to encrypt (using symmetric encryption or pseudo-random generators and one-time pad) all the
subsequent flows he sends to the first player. For this transformation to be secure, we also need to be
sure that c (and the ability to decapsulate K for any ipk) leaks no information about random coins
used to generate the flow (or, more generally, the witness of x). This is ensured by the zero-knowledge
property, which states there must exist a trapdoor (for some common reference string) enabling to
generate a public key ipk and a trapdoor key itk (using a trapdoor key algorithm iTKG), so that ipk
looks like a classical public key and itk allows to decapsulate any ciphertext for ipk.

Overview of our iZK and SSiZK Constructions. We proceed to provide an overview of our two-
flow iZK protocols; this is the main technical contribution of our work. Our main tool is Hash Proof
Systems or Smooth Projective Hash Functions (SPHFs) [CS02]. We observe that SPHFs are essentially
“honest-verifier” iZK; our main technical challenge is to boost this weak honest-verifier into full-fledged
zero knowledge, without using pairings or random oracles.

Informally speaking, a smooth projective hash function on a language L is a sort of hash function
whose evaluation on a word C ∈ L can be computed in two ways, either by using a hashing key hk
(which can be seen as a private key) or by using the associated projection key hp (which can be seen as
a public key). On the other hand, when C /∈ L , the hash of C cannot be computed from hp; actually,
when C /∈ L , the hash of C computed with hk is statistically indistinguishable from a random value
from the point of view of any individual knowing the projection key hp only. Hence, an SPHF on L is
given by a pair (Hash,ProjHash) with the requirements that, when there is a witness w ensuring that
C ∈ L , Hash(hk,L , C) = ProjHash(hp,L , C, w), while when there is no such witness (i.e. C /∈ L),
the smoothness property states that H = Hash(hk,L , C) is random and independent of hp. In this
paper, as in [GL06], we consider a weak form of SPHFs, where the projection key hp can depend on C.

Concretely, if we have an SPHF for some language L , we can set the public key ipk to be empty (⊥),
the secret key isk to be the witness w, the ciphertext c to be the projection key hp, and the encapsulated
ephemeral key K would be the hash value. (Similar connections between SPHF and zero knowledge were
made in [GL03,GL06,BPV12,ABB+13].) The resulting iZK would be correct and sound, the soundness
coming from the smoothness of the SPHF: if the word C is not in L , even given the ciphertext c = hp,
the hash value K looks random. However, it would not necessarily be zero-knowledge for two reasons:
not only, a malicious verifier could generate a malformed projection key, for which the projected hash
value of a word depends on the witness, but also there seems to be no trapdoor enabling to compute
the hash value K from only c = hp.

These two issues could be solved using either Trapdoor SPHF [BBC+13] or NIZK of knowledge of
hk. But both methods require pairings or random oracle, if instantiated on cyclic or bilinear groups.
Instead we construct it as follows:

First, suppose that a projection key is well-formed (i.e., there exists a corresponding hashing key).
Then, there exists an unbounded zero-knowledge simulator that “extracts” a corresponding hashing key
and computes the hash value. To boost this into full-fledged zero knowledge with an efficient simulator,
we rely on the “OR trick” from [FLS90]. We add a random 4-tuple (g′, h′, u′, e′) to the CRS, and build
an SPHF for the augmented language C ∈ L or (g′, h′, u′, e′) is a DDH tuple. In the normal setup,
(g′, h′, u′, e′) is not a DDH tuple with overwhelming probability, so the soundness property is preserved.
3 In our formalization, actually, it is the flow together all the previous flows. But we just say it is the flow to simplify
explanations.

4

In the trapdoor setup, (g′, h′, u′, e′) := (g′, h′, g′r, h′r) is a random DDH tuple, and the zero-knowledge
simulator uses the witness r to compute the hash value.

Second, to ensure that the projection key is well-formed, we use a second SPHF. The idea for
building the second SPHF is as follows: in most SPHF schemes, proving that a projected key hp is
valid corresponds to proving that it lies in the column span of some matrix Γ (where all of the linear
algebra is carried out in the exponent). Now pick a random vector tk: if hp lies in the span of Γ , then
hpᵀtk is completely determined given Γ ᵀtk; otherwise, it is completely random. The former yields the
projective property and the latter yields smoothness, for the SPHF with hashing key hk and projection
key tp = Γ ᵀtk. Since the second SPHF is built using the transpose Γ ᵀ of the original matrix Γ (defining
the language L), we refer to it as a “transpose SPHF”. As it turns out, the second fix could ruin
soundness of the ensuing iZK protocol: a cheating prover could pick a malformed Γ ᵀtk, and then the
hash value hpᵀtk computed by the verifier could leak additional information about his witness hk for
hp, thereby ruining smoothness. To protect against the leakage, we would inject additional randomness
into hk so that smoothness holds even in the presence of leakage from the hash value hpᵀtk. This idea
is inspired by the 2-universality technique introduced in a very different context of chosen-ciphertext
security [CS02].

Finally, to get simulation-soundness (i.e., soundness even if the adversary can see fake or simulated
proofs), we rely on an additional “OR trick” (mixed up with an idea of Malkin et al. [MTVY11]): we
build an SPHF for the augmented language C ∈ L , or (g′, h′, u′, e′) is a DDH tuple (as before), or
(g′, h′,W1(C),W2(C)) is not a DDH tuple (withWk a Waters function [Wat05],Wk(m) = vk,0

∏|m|
i=1 v

mi
k,i ,

when m = m1‖ . . . ‖m|m| is a bitstring, the vk,0, . . . , vk,|m| are random group elements, and C is seen as
a bitstring, for k = 1, 2). In the security proof, with non-negligible probability, (g′′, h′′,W1(C),W2(C))
is a non-DDH tuple for simulated proofs, and a DDH tuple for the soundness challenge, which proves
simulation-soundness.

Organization. First, we formally introduce the notion of implicit zero-knowledge proofs (iZK) in
Section 2. Second, in Section 3, we discuss some difficulties related to the construction of iZK from
SPHF and provide an intuition of our method to overcome these difficulties. Next, we show how
to construct iZK and SSiZK from SPHF over cyclic groups for any language handled by the generic
framework [BBC+13], which encompasses most, if not all, known SPHFs over cyclic groups. This is the
main technical part of the paper. Third, in Section 4, we indeed show a concrete application of our
iZK constructions: the most efficient 3-round two-party protocol computing inner product in the UC
framework with static corruption so far. We analyze our construction and provide a detailed comparison
with the Groth-Sahai methodology [GS08] and the approach based on zero-knowledge proofs “à la
Schnorr” [Sch90] in Appendix A. In addition, as proof of concept, we show in Appendix B that iZK can
be used instead of ZK arguments to generically convert any protocol secure in the semi-honest model
into a protocol secure in the malicious model. This conversion follows the generic transformation of
Goldreich, Micali and Wigderson (GMW) in their seminal papers [GMW87b,GMW87a]. While applying
directly the original transformation with Schnorr-like ZK protocols blows up the number of rounds by a
multiplicative factor of at least three (even in the common reference string model), our conversion only
adds a small constant number of rounds. Eventually, in Appendix F, we extend our construction of iZK
from SPHF to handle larger classes of languages described by computational structures such as circuits
or branching programs.

Additional Related Work. Using the “OR trick” with SPHF is reminiscent of [ABP14]. However,
the methods used in our paper are very different from the one in [ABP14], as we do not use pairings,
but consider weaker form of SPHF on the other hand.

A recent line of work has focused on the cut-and-choose approach for transforming security from
semi-honest to malicious models [IKLP06,LP07,LP11, sS11, sS13,Lin13,HKE13] as an alternative to
the use of zero-knowledge arguments. Indeed, substantial progress has been made towards practical
protocols via this approach, as applied to Yao’s garbled circuits. However, the state-of-the-art still
incurs a large computation and communication multiplicative overhead that is equal to the security
parameter. We note that Yao’s garbled circuits do not efficiently generalize to arithmetic computations,

5

and that our approach would yield better concrete efficiency for natural functions F that admit compact
representations by arithmetic branching programs. In particular, Yao’s garbled circuits cannot take
advantage of the structure in languages handled by the Groth-Sahai methodology [GS08], and namely
the ones defined by multi-exponentiations: even in the latter case, Groth-Sahai technique requires
pairings, while we will be able to avoid them.

The idea of using implicit proofs (without the zero-knowledge requirement) as a lightweight alterna-
tive to zero-knowledge proofs also appeared in an earlier work of Aiello, Ishai and Reingold [AIR01].
They realize implicit proofs using conditional disclosure of secrets [GIKM98]. The latter, together
with witness encryption [GGSW13] and SPHFs, only provide a weak “honest-verifier zero-knowledge”
guarantee.

Witness encryption was introduced by Garg et al. in [GGSW13]. It enables to encrypt a message M
for a word C and a language L into a ciphertext c, so that any user knowing a witness w that C ∈ L
can decrypt c. Similarly to SPHFs, witness encryption also only has this “honest-verifier zero-knowledge”
flavor: it does not enable to decrypt ciphertext for words C /∈ L , with a trapdoor. That is why, as
SPHF, witness encryption cannot be used to construct directly iZK.

2 Definition of Implicit Zero-Knowledge Arguments

2.1 Notations

Since we will now be more formal, let us present the notations that we will use. Let {0, 1}∗ be the set
of bitstrings. We denote by PPT a probabilistic polynomial time algorithm. We write y ← A(x) for ‘y
is the output of the algorithm A on the input x’, while y $← A(x) means that A will additionally use
random coins. Similarly, X $← X indicates that X has been chosen uniformly at random in the (finite)
set X . We sometimes write st the state of the adversary.

We define, for a distinguisher A and two distributions D0,D1, the advantage of A (i.e., its ability to
distinguish those distributions) by AdvD0,D1(A) = Prx∈D0 [A(x) = 1]− Prx∈D1 [A(x) = 1].

The qualities of adversaries will be measured by their successes and advantages in certain experiments
ExpsecA or Expsec−bA : Succsec(A,K) = Pr[ExpsecA (1K) = 1] and Advsec(A,K) = Pr[Expsec−1A (1K) = 1] −
Pr[Expsec−0A (1K) = 1] respectively, where K is the security parameter, and probabilities are over the
random coins of the challenger and of the adversary.

2.2 Definition

Let (iLcrs)crs be a family of NP languages, indexed by a common reference string crs, and defined by a
witness relation iRcrs, namely iL = {x ∈ iXcrs | ∃iw, iRcrs(x, iw) = 1}, where (iXcrs)crs is a family of sets.
crs is generated by some polynomial-time algorithm Setupcrs taking as input the unary representation of
the security parameter K. We suppose that membership to Xcrs and iRcrs can be evaluated in polynomial
time (in K). For the sake of simplicity, crs is often implicit.

To achieve stronger properties (namely simulation-soundness in Section 3.4), we sometimes also
assume that Setupcrs can also output some additional information or trapdoor Tcrs. This trapdoor should
enable to check, in polynomial time, whether a given word x is in iL or not. It is only used in security
proofs, and is never used by the iZK algorithms.

An iZK is defined by the following polynomial-time algorithms:

– icrs
$← iSetup(crs) generates the (normal) common reference string (CRS) icrs (which implicitly

contains crs). The resulting CRS provides statistical soundness;
– (icrs, iT) $← iTSetup(crs)4 generates the (trapdoor) common reference string icrs together with a

trapdoor iT . The resulting CRS provides statistical zero-knowledge;
– (ipk, isk)

$← iKG`(icrs, x, iw) generates a public/secret key pair, associated to a word x ∈ iL and a
label ` ∈ {0, 1}∗, with witness w;

4 When the CRS is word-dependent, i.e., when the trapdoor iT does only work for one word x∗ previously chosen,
there is a second argument: (icrs, iT) $← iTSetup(crs, x∗). Security notions are then slightly different. See details in
Appendix C.2.

6

– (ipk, itk)
$← iTKG`(icrs, iT , x) generates a public/trapdoor key pair, associated to a word x ∈ X and

a label ` ∈ {0, 1}∗;
– (c,K)

$← iEnc`(icrs, ipk, x) outputs a ciphertext c of a value K (an ephemeral key), for the public
key ipk, the word x, and the label ` ∈ {0, 1}∗;

– K ← iDec`(icrs, isk, c) decrypts the ciphertext c for the label ` ∈ {0, 1}∗, and outputs the ephemeral
key K;

– K ← iTDec`(icrs, itk, c) decrypts the ciphertext c for the label ` ∈ {0, 1}∗, and outputs the ephemeral
key K.

The three last algorithms can be seen as key encapsulation and decapsulation algorithms. Labels ` are
only used for SSiZK and are often omitted. The CRS icrs is often omitted, for the sake of simplicity.

Normally, the algorithms iKG and iDec are used by the user who wants to (implicitly) prove that
some word x is in iL (and we often call this user the prover), while the algorithm iEnc is used by the
user who wants to (implicitly) verify this (and we often call this user the verifier), as shown in Figs. 1
and 3. The algorithms iTKG and iTDec are usually only used in proofs, to generate simulated or fake
implicit proofs (for the zero-knowledge property).

2.3 Security Requirements

An iZK satisfies the four following properties (for any (crs, Tcrs) $← Setupcrs(1
K)):

– Correctness. The encryption is the reverse operation of the decryption, with or without a trapdoor:
for any icrs

$← iSetup(crs) or with a trapdoor, for any (icrs, iT) $← iTSetup(crs), and for any x ∈ X
and any ` ∈ {0, 1}∗,
• if x ∈ iL with witness iw, (ipk, isk) $← iKG`(icrs, x, w), and (c,K)

$← iEnc`(ipk, x), then K =
iDec`(isk, c);
• if (ipk, itk) $← iTKG`(iT , x) and (c,K)

$← iEnc`(ipk, x), then K = iTDec`(itk, c).
– Setup Indistinguishability. A polynomial-time adversary cannot distinguish a normal CRS

generated by iSetup from a trapdoor CRS generated by iTSetup. More formally, no PPT can
distinguish, with non-negligible advantage, the two distributions:

{icrs | icrs $← iSetup(crs)} {icrs | (icrs, iT) $← iTSetup(crs)}.

– Soundness. When the CRS is generated as icrs $← iSetup(crs), and when x /∈ L , the distribution
of K is statistically indistinguishable from the uniform distribution, even given c. More formally, if
Π is the set of all the possible values of K, for any bitstring ipk, for any word x /∈ iL , for any label
` ∈ {0, 1}∗, the two distributions:

{(c,K) | (c,K)
$← iEnc`(ipk, x)} {(c,K ′) | (c,K)

$← iEnc`(ipk, x);K ′
$← Π}

are statistically indistinguishable (iEnc may output (⊥,K) when the public key ipk is not well
formed).

– Zero-Knowledge. For any label ` ∈ {0, 1}∗, when the CRS is generated using (icrs, iT) $←
iTSetup`(crs), for any message x∗ ∈ iL with the witness iw∗, the public key ipk and the decapsulated
key K corresponding to a ciphertext c chosen by the adversary, either using isk or the trapdoor itk,
should be indistinguishable, even given the trapdoor iT . More formally, we consider the experiments
ExpiZK-zk-b in Figure 2. The iZK is (statistically) zero-knowledge if the advantage of any adversary
A (not necessarily polynomial-time) for these experiments is negligible.

We defined our security notion with a “composable” security flavor, as Groth and Sahai in [GS08]:
soundness and zero-knowledge are statistical properties, the only computational property is the setup
indistinguishability property. This is slightly stronger than what is needed, but is verified by our
constructions and often easier to use.

We also consider stronger iZK, called simulation-sound iZK or SSiZK, which verifies the following
additional property:

7

ExpiZK-zk-b(A, crs,K)
(icrs, iT) $← iTSetup(crs)

(`, x∗, w, st)
$← A(icrs, iT)

if R(x∗, w, st) = 0 then return random bit
if b = 0 then (ipk, isk)

$← iKG`(icrs, x∗, iw∗)

else (ipk, itk)
$← iTKG`(iT , x∗)

(c, st)
$← A(st, icrs, iT , ipk)

if b = 0 then K ← iDec`(isk, c)
else K ← iTDec`(itk, c)

return A(st,K)

ExpiZK-ss-b(A, crs,K)
(icrs, iT) $← iTSetup(crs)

(`∗, x∗, ipk, st)
$← AO(icrs)

(c,K)
$← iEnc`(ipk, x∗)

if ∃itk, (`∗, x∗,K, itk) ∈ L ∪ L′ then
return random bit

if x∗ ∈ iL then
return random bit

if b = 0 then K′ ← K
else K′ $← Π
return A(st, c,K′)

Fig. 2: Experiments ExpiZK-zk-b for zero-knowledge of iZK, and ExpiZK-ss-b for simulation-soundness of
SSiZK

Prover P Verifier V
(ipk, isk)

$← iKG(icrs, x, iw)
x, ipk

(c,K)
$← iEnc(ipk, x)

c

K′ ← iDec(isk, c) accept if K′ = K
K′

Fig. 3: Three-round zero-knowledge from iZK for a word x ∈ iL and a witness iw

– Simulation Soundness. The soundness holds (computationally) even when the adversary can see
simulated public keys and decryption with these keys. More formally, we consider the experiments
ExpiZK-ss-b in Figure 2, where the oracle O, and the lists L and L′ are defined as follows:
• on input (`, x), O generates (ipk, itk) $← iTKG(icrs, iT , x), stores (`, x, ipk, itk) in a list L, and

outputs ipk;
• on input (ipk, c), O retrieves the record (`, x, ipk, itk) from L (and aborts if no such record

exists), removes it from L, and add it to L′, computes K ← iTDec`(icrs, itk, c), and outputs K.
The iZK is (statistically) zero-knowledge if the advantage of any adversary A (not necessarily
polynomial-time) for these experiments is negligible.

Remark 1. An iZK for some language iL directly leads to a 3-round zero-knowledge arguments for
iL . The construction is depicted in Fig. 3 and the proof is provided in Appendix D.4. If the iZK is
additionally simulation-sound, the resulting zero-knowledge argument is also simulation-sound.

Remark 2. For the sake of completeness, in Appendix E, we show how to construct iZK from either NIZK
or Trapdoor SPHFs. In the latter case, the resulting iZK is not statistically sound and zero-knowledge
but only computationally sound and zero-knowledge. In both cases, using currently known constructions
over cyclic groups, strong assumptions such as the random oracle model or pairings are needed.

3 Construction of Implicit Zero-Knowledge Arguments

Let us first recall the generic framework of SPHFs [BBC+13] for the particular case of cyclic groups,
and when the projection key hp can depend on the word C, as it is at the core of our construction of
iZK. Second, we explain in more details the limitations of SPHFs and the fact they cannot directly be
used to construct iZK (even with a concrete attack). Third, we show how to overcome these limitations
to build iZK and SSiZK.

3.1 Review of the Generic Framework of SPHFs over Cyclic Groups

Languages. Let G be a cyclic group of prime order p and Zp the field of integers modulo p. If we look
at G and Zp as the same ring (G,+, •), where internal operations are on the scalars, many interesting
languages can be represented as subspaces of the vector space Gn, for some n. Here are some examples.

8

Example 3 (DDH or ElGamal ciphertexts of 0). Let g and h be two generators of G. The language of
DDH tuples in basis (g, h) is

L = {(u, e) ∈ G2 | ∃r ∈ Zp, u = gr and e = hr} ⊆ G2,

where r is the witness. It can be seen as the subspace of G2 generated by (g, h). We remark that this
language can also be seen as the language of (additive) ElGamal ciphertexts of 0 for the public key
pk = (g, h). ut

Example 4 (ElGamal ciphertexts of a bit). Let us consider the language of ElGamal ciphertexts of 0 or
1, under the public key pk = (g, h):

L := {(u, e) ∈ G2 | ∃r ∈ Zp,∃b ∈ {0, 1}, u = gr and e = hrgb}.

Here C = (u, e) cannot directly be seen as an element of some vector space. However, a word
C = (u, e) ∈ G2 is in L if and only there exists λ = (λ1, λ2, λ3) ∈ Z3

p such that:

u = gλ1 (= λ1 • g) e = hλ1gλ2 (= λ1 • h+ λ2 • g)
1 = uλ1gλ3 (= λ1 • u+ λ3 • g) 1 = (e/g)λ1hλ3 (= λ1 • (e− g) + λ3 • h),

because, if we write C = (u, e) = (gr, hrgb) (with r, b ∈ Zp, which is always possible), then the first
three equations ensure that λ1 = r, λ2 = b and λ3 = −rb, while the last equation (right bottom) ensures
that b(b− 1) = 0, i.e., b ∈ {0, 1}.

Therefore, if we introduce the notation Ĉ = θ(C) :=
(
u e 1 1

)
∈ G4, then the language L can

be defined as the set of C = (u, e) such that Ĉ is in the subspace of G4 generated by the rows of the
following matrix

Γ :=

g h 1 1
1 g u e/g
1 1 g h

 . ut

Example 5 (Conjunction of Languages). Let gi and hi (for i = 1, 2) be four generators of G, and Li

be (as above) the languages of DDH tuples in bases (gi, hi) respectively. We are now interested in the
language L = L1 ×L2 ⊆ G4, which is thus the conjunction of L1 ×G2 and G2 ×L2: it can be seen
as the subspace of G4 generated by the rows of the following matrix

Γ :=

(
g1 h1 1 1
1 1 g2 h2

)
. ut

This can also be seen as the matrix, diagonal by blocks, with Γ1 and Γ2 the matrices for L1 and L2

respectively.

More formally, the generic framework for SPHFs in [BBC+13] considers the languages L ⊆ X
defined as follows: There exist two functions θ and Γ from the set of words X to the vector space Gn

of dimension n, and to set Gk×n of k × n matrices over G, such that C ∈ L if and only if Ĉ := θ(C)
is a linear combination of the rows of Γ (C). From a witness w for a word C, it should be possible to
compute such a linear combination as a row vector λ = (λi)i=1,...,k ∈ Z1×k

p :

Ĉ = θ(C) = λ • Γ (C). (1)

For the sake of simplicity, because of the equivalence between w and λ, we will use them indifferently
for the witness.

SPHFs. Let us now build an SPHF on such a language. A hashing key hk is just a random column
vector hk ∈ Znp , and the associated projection key is hp := Γ (C) • hk. The hash value of a word C is
then H := Ĉ • hk, and if λ is a witness for C ∈ L , this hash value can also be computed as:

H = Ĉ • hk = λ • Γ (C) • hk = λ • hp = projH,

which only depends on the witness λ and the projection key hp. On the other hand, if C /∈ L , then
Ĉ is linearly independent from the rows of Γ (C). Hence, H := Ĉ • hk looks random even given
hp := Γ (C) • hk, which is exactly the smoothness property.

9

Example 6. The SPHF corresponding to the language in Example 4, is then defined by:

hk = (hk1, hk2, hk3, hk4)
ᵀ $← Zp

hp = Γ (C) • hk = (ghk1ghk2 , ghk2uhk3(e/g)hk4 , ghk3hhk4)

H = Ĉ • hk = uhk1ehk2 projH = λ • hp = hpr1 · hpb2 · hp−rb3 .

For the sake of clarity, we will omit the C argument, and write Γ , instead of Γ (C).

3.2 Limitations of Smooth Projective Hash Functions

At a first glance, as explained in the introduction, it may look possible to construct an iZK from an
SPHF for the same language L = iL as follows:

– iSetup(crs) and iTSetup(crs) outputs the empty CRS icrs :=⊥;
– iKG(icrs, x, iw) outputs an empty public key ipk :=⊥ together with the secret key isk := (x, iw);
– iEnc(ipk, x) generates a random hashing key hk

$← HashKG(crs, x) and outputs the ciphertext
c := hp← ProjKG(hk, crs, x) together with the ephemeral key K := H ← Hash(hk, crs, x);

– iDec(isk, c) outputs the ephemeral key K := projH ← ProjHash(hp, crs, x, iw).

This construction is sound: if x /∈ L , given only c = hp, the smoothness ensures that K = H looks
random. Unfortunately, there seems to be no way to compute K from only c, or in other words, there
does not seem to exist algorithms iTKG and iTDec.

Example 6 is not Zero-Knowledge. Actually, with the SPHF from Example 6, no such algorithm
iTKG or iTDec (verifying the zero-knowledge property) exists. It is even worse than that: a malicious
verifier may get information about the witness, even if he just has a feedback whether the prover could
use the correct hash value or not (and get the masked value or not), in a protocol such as the one in
Fig. 1. A malicious verifier can indeed generate a ciphertext c = hp, by generating hp1 honestly but by
picking hp2 and hp3 uniformly at random. Now, a honest prover will compute projH = hpr1hp

b
2hp
−rb
3 , to

get back the ephemeral key (using iDec). When C is an encryption of b = 1, this value is random and
independent of H, as hp2 and hp3 have been chosen at random, while when b = 0, this value is the
correct projH and is equal to H. Thus the projected hash value projH, which is the ephemeral output
key by the honest prover, reveals some information about b, part of the witness.

If we want to avoid such an attack, the prover has to make sure that the hp he received was built
correctly. Intuitively, this sounds exactly like the kind of verifications we could make with an SPHF: we
could simply build an SPHF on the language of the “correctly built” hp. Then the prover could send
a projection key for this new SPHF and ask the verifier to XOR the original hash value H with the
hash value of this new SPHF. However, things are not that easy: first this does not solve the limitation
due to the security proof (the impossibility of computing H for x /∈ iL) and second, in the SPHF in
Example 6, all projection keys are valid (since Γ is full-rank, for any hp, there exists necessarily a hk
such that hp = Γ • hk).

3.3 iZK Construction

Let us consider an SPHF defined as in Section 3.1 for a language iL = L . In this section, we show
how to design, step by step, an iZK for iL from this SPHF, following the overview in Section 1. At the
end, we provide a summary of the construction and a complete proof. We illustrate our construction on
the language of ElGamal ciphertexts of bits (Examples 4 and 6), and refer to this language as “our
example”. We suppose a cyclic group G of prime order p is fixed, and that DDH is hard in G5.

We have seen the limitations of directly using the original SPHF are actually twofold. First, SPHFs
do not provide a way to compute the hash value of a word outside the language, with just a projection
key for which the hashing key is not known. Second, nothing ensures that a projection key has really
5 The construction can be trivially extended to DLin, or any MDDH assumption [EHK+13] though.

10

been derived from an actually known hashing key, and in such a bad case, the projected hash value
may leak some information about the word C (and the witness).

To better explain our construction, we first show how to overcome the first limitation. Thereafter,
we will show how our approach additionally allows to check the validity of the projection keys (with
a non-trivial validity meaning). It will indeed be quite important to notice that the projection keys
coming from our construction (according to one of the setups) will not necessarily be valid (with a
corresponding hashing key), as the corresponding matrix Γ will not always be full rank, contrary to the
projection keys of the SPHF in Example 6. Hence, the language of the valid projection keys will make
sense in this setting.

Adding the Trapdoor. The CRS of our construction is a tuple icrs = (g′, h′, u′ = g′r
′
, v′ = h′s

′
) ∈ G4,

with g′, h′ two random generators of G, and

– r′, s′ two random distinct scalars in Zp, for the normal CRS generated by iSetup, so that (g′, h′, u′, v′)
is not a DDH tuple;

– r′ = s′ a random scalar in Zp, for the trapdoor CRS generated by iTSetup, with iT = r′ the
trapdoor, so that (g′, h′, u′, v′) is a DDH tuple.

Then, we build an SPHF for the augmented language Lt defined as follows: a word Ct = (C, u′, e′) is
in Lt if and only if either C is in the original language L or (u′, e′) is a DDH tuple. This new language
Lt can be seen as the disjunction of the original language L and of the DDH language in basis (g′, h′).
Construction of disjunctions of SPHFs were proposed in [ABP14] but require pairings. In this article,
we use an alternative more efficient construction without pairing6. Let us show it on our example, with
Ct = (C, u′, e′). We set Ĉt := (g′−1, 1, 1, 1, 1, 1, 1) and Γt(Ct) ∈ G(k+3)×(n+3) as

Γt(Ct) :=


1 Γ (C)

g′ 1 1 Ĉ = θ(C)

1 g′ h′ 1 . . . 1

g′ u′ e′ 1 . . . 1

 =



1 1 1 g h 1 1
1 1 1 1 g u e/g
1 1 1 1 1 g h

g′ 1 1 u e 1 1

1 g′ h′ 1 1 1 1

g′ u′ e′ 1 1 1 1

 (2)

Let us show the language corresponding to Γt and Ĉt is indeed Lt: Due to the first column of Γt and
the first element of Ĉt, if Ĉt is a linear combination of rows of Γt with coefficients λt (i.e., Ĉt = λt •Γt),
one has λt,4 + λt,6 = −1, and thus at least λt,4 or λt,6 is not equal to zero.

– If λt,6 6= 0, looking at the second and the third columns of Γt gives that:

λt,5 • (g′, h′) + λt,6 • (u′, e′) = (1, 1) equivalent to (u′, e′) = (g′λt,5/λt,6 , h′λt,5/λt,6),

or in other words (u′, e′) is a DDH tuple in basis (g′, h′);
– if λt,4 6= 0, looking at the last four columns of Γt gives that: λt,4 • Ĉ = λt,4 • (u, e, 1, 1) is a linear

combination of rows of Γ , hence Ĉ too. As a consequence, by definition of L , C ∈ L .

Now, whatever the way the CRS is generated (whether (u′, e′) is a DDH tuple or not), it is always
possible to compute projH as follows, for a word C ∈ L with witnesses r and b:

projH = λt • hp λt = (λ,−1, 0, 0) = (r, b,−rb,−1, 0, 0)

When the CRS is generated with the normal setup, as shown above, this is actually the only way to
compute projH, since (u′, e′) is not a DDH tuple and so Ĉt is linearly dependent of the rows of Γt if
and only if C ∈ L . On the opposite, when the CRS is generated by the trapdoor setup with trapdoor
r′, we can also compute projH using the witness r′: projH = λ′t • hp with λ′t = (0, 0, 0, 0, r′,−1).

However, the latter way to compute projH gives the same result as the former way, only if hpt,5 and
hpt,6 involve the correct value for hk1. A malicious verifier could decide to choose random hpt,5 and
hpt,6, which would make λ′t • hp look random and independent of the real hash value!
6 Contrary to [ABP14] however, our matrix Γt depends on the words Ct, which is why we get this more efficient
construction.

11

Ensuring the Validity of Projection Keys. The above construction and trapdoor would provide
zero-knowledge if we could ensure that the projection keys hp (generated by a potentially malicious
verifier) is valid, so that, intuitively, hpt,5 and hpt,6 involve the correct value of hk1. Using a zero-
knowledge proof (that hp derives from some hashing key hk) for that purpose would annihilate all our
efforts to avoid adding rounds and to work under plain DDH (interactive ZK proofs introduce more
rounds, and Groth-Sahai [GS08] NIZK would require assumptions on bilinear groups). So we are left
with doing the validity check again with SPHFs.

Fortunately, the language of valid projection keys hp can be handled by the generic framework,
since a valid projection key hp is such that: hp = Γt • hk, or in other words, if we transpose everything
hpᵀ = hkᵀ • Γ ᵀ

t . This is exactly the same as in Equation (1), with Ĉ ↔ hpᵀ, Γ ↔ Γ ᵀ
t and witness

λ↔ hkᵀ. So we can now define a smooth projective hash function on that language, where the projection
key is called transposed projection key tp, the hashing key is called transposed hashing key tk, the hash
value is called transposed hash value tH and the projected hash value is called transposed projected
hash value tprojH.

Finally, we could define an iZK, similarly to the one in Section 3.2, except, ipk contains a transposed
projection key tp (generated by the prover from a random transposed hashing key tk), and c contains
the associated transposed projected hash value tprojH in addition to hp, so that the prover can check
using tk that hp is valid by verifying whether tprojH = tH or not.

An Additional Step. Unfortunately, we are not done yet, as the above modification breaks the
soundness property! Indeed, in this last construction, the prover now learns an additional information
about the hash value H: tprojH = hkᵀtp, which does depend on the secret key hk. He could therefore
choose tp = Ĉᵀ

t , so that tprojH = hkᵀĈᵀ
t = Ĉthk is the hash value H = K of C under hk.

We can fix this by ensuring that the prover will not know the extended word Ĉt on which the SPHF
will be based when he sends tp, using an idea similar to the 2-universality property of SPHF introduced
by Cramer and Shoup in [CS02]. For that purpose, we extend Γt and make Ĉt depends on a random
scalar ζ ∈ Zp chosen by the verifier (and included in c).

Detailed Construction. Let us now formally show how to build an iZK from any SPHF built from
the generic framework of [BBC+13], following the previous ideas. We recall that we consider a language
L = iL , such that a word x = C is in iL , if and only if Ĉ = θ(C) is a linear combination of the rows
of some matrix Γ ∈ Gk×n (which may depend on C). The coefficients of this linear combination are
entries of a row vector λ ∈ Z1×k

p : Ĉ = λ • Γ , where λ = λ(iw) can be computed from the witness iw
for x.

The setup algorithms iSetup(crs) and iTSetup(crs) are defined as above (page 10). We define an
extended language using the generic framework:

θt(x, ζ) = Ĉt = (g′−1, 1, . . . , 1, g′−ζ , 1, . . . , 1) ∈ G1×(2n+6)

Γt(x) =

(
Γ ′t(x) 1
1 Γ ′t(x)

)
∈ G(2k+6)×(2n+6),

where Γ ′t(x) is the matrix (initially called Γt(x) in Equation (2), 1 is the matrix of G(2k+3)×(2n+3) with
all entries equal to 1, and ζ is a scalar used to ensure the prover cannot guess the word Ĉt which will
be used, and so cannot choose tp = Ĉt. As explained above, this language corresponds to a 2-universal
SPHF for the disjunction of the language of DDH tuples (g′, h′, u′, e′) and the original language L . We
write:

λt(ζ, iw) = (λ(iw),−1, 0, 0, ζλ(iw),−ζ, 0, 0)
λt(ζ, iT) = (0, . . . , 0, r′,−1, 0, . . . , 0, ζr′,−ζ) with iT = r′,

so that:

Ĉt =

{
λt(ζ, iw) • Γt(x) if (g′, h′, u′, e′) is a DDH tuple, with witness iT
λt(ζ, iT) • Γt(x) if x ∈ iL with witness iw.

12

iSetup(crs)

(g′, h′)
$← G∗2

(r′, s′)
$← Z2

p \ {(a, a) | a ∈ Zp}
(u′, v′)← (g′

r′
, h′

s′
) ∈ G2

icrs← (u′, v′)
return icrs

iTSetup(crs)

(g′, h′)
$← G∗2

r′
$← Zp

(u′, v′)← (g′
r′
, h′

r′
) ∈ G2

icrs← (u′, v′); iT ← r′

return (icrs, iT)

iKG(icrs, x, iw)

tk
$← Z2k+6

p

ipk := tp← Γt(x)
ᵀ • tk ∈ G2n+6

isk := (x, tk, iw)
return (ipk, isk)

iTKG(icrs, x, iT)
tk

$← Z2k+6
p

ipk := tp← Γt(x)
ᵀ • tk ∈ G2n+6

itk := (x, tk, iT)
return (ipk, itk)

iEnc(icrs, ipk, x)

tp← ipk; hk $← Zn+3
p ; ζ $← Zp

hp← Γt(x) • hk ∈ Z2k+6
p

tprojH ← hkᵀ • tp ∈ Zp

H ← θt(x) • hk ∈ Zp

K ← H · tprojH ∈ G
c := (ζ, hp)
return (K, c)

iDec(icrs, isk, c)
(x, tk, iw)← isk
(ζ, hp)← c
tH ← hpᵀ • tk ∈ Zp

projH ← λt(ζ, iw) • hp ∈ G
return K := projH/tH ∈ G

iTDec(icrs, itk, c)
(x, tk, iT)← itk
(ζ, hp)← c
tH ← hpᵀ • tk ∈ Zp

trapH := λt(ζ, iT) • hp ∈ G
return K := trapH/tH ∈ G

Fig. 4: Construction of iZK

The resulting iZK construction is depicted in Fig. 4. This is a slightly more efficient construction that
the one we sketched previously, where the prover does not test anymore explicitly tprojH, but tprojH
(or tH) is used to mask K. Thus, tprojH no more needs to be included in c.

Variants. In numerous cases, it is possible to add the trapdoor in a slightly more efficient way, if we
accept to use word-dependent CRS (see Appendix C.2 for details). While the previous construction
would be useful for security in the UC framework [Can01], the more efficient construction with a
word-dependent CRS is enough in the stand-alone setting.

Independently of that improvement, it is also possible to slightly reduce the size of hp, by computing
ζ with an entropy extractor, and so dropping it from hp. Details are given in Appendix C.1.

3.4 SSiZK Construction

Our SSiZK construction is similar to our iZK construction, except that, in addition both iSetup and
iTSetup adds the CRS icrs, a tuple (vk,i)

k=1,2
i=0,...,2K of group elements constructed as follows: for i = 0 to

2K (with K the security parameter): r′i
$← Zp, v1,i ← g′r

′
i , v2,i ← h′r

′
i . We also define the two Waters

functions [Wat05] Wk : {0, 1}2K → G, as Wk(m) = vk,0
∏2K
i=1 v

mi
k,i , for any bitstring m = m1‖ . . . ‖m2K ∈

{0, 1}2K. Finally, the CRS is also supposed to contain a hash function H : {0, 1}∗ → {0, 1}2K drawn
from a collision-resistant hash function family HF .

Next, the language Lt is further extended by adding 3 rows and 2 columns (all equal to 1 except on
the 3 new rows) to both the sub-matrices Γ ′t(x) of Γt(x), where the 3 new rows are: 1 1 1 1 . . . 1 g′ h′

1 1 1 1 . . . 1 u′′ e′′

g′ 1 1 1 . . . 1 g′ 1

 ∈ G3×(n+5),

with u′′ =W1(H(`, x)) and e′′ =W2(H(`, x)). The vector Ĉt becomes Ĉt = (g−1, 1, . . . , 1, g−ζ , 1, . . . , 1)
(it is the same except for the number of 1’s). Due to lack of space, the full matrix is depicted in
Appendix D.2, where the security proof can also be found. The security proof requires that Setupcrs
also outputs some additional information or trapdoor Tcrs, which enables to check, in polynomial time,
whether a given word x is in iL or not.

13

Here is an overview of the security proof. Correctness, setup indistinguishability, and zero-knowledge
are straightforward. Soundness follows from the fact that (g′, h′, u′′, e′′) is a DDH-tuple, when parameters
are generated by iSetup (and also iTSetup actually), and so (g′, 1) is never in the subspace generated
by (g′, h′) and (u′′, e′′) (as h′ 6= 1), hence the corresponding language Lt is the same as for our
iZK construction. Finally, to prove simulation-soundness, we use the programmability of the Waters
function [HK12] and change the generation of the group elements (vk,i) so that for the challenge
proof (generated by the adversary) (g′, h′, u′′, e′′) is not a DDH-tuple, while for the simulated proofs
it is a DDH-tuple. Then, we can change the setup to iSetup, while still being able to simulate proofs.
But in this setting, the word Ĉt for the challenge proof is no more in Lt, and smoothness implies
simulation-soundness.

4 Application to the Inner Product

In case of biometric authentication, a server S wants to compute the Hamming distance between a
fresh user’s feature and the stored template, but without asking the two players to reveal their own
input: the template y from the server side and the fresh feature x from the client side. One can see that
the Hamming distance between the `-bit vectors x and y is the sum of the Hamming weights of x and
y, minus twice the inner product of x and y. Let us thus focus on this private evaluation of the inner
product: a client C has an input x = (xi)

`
i=1 ∈ {0, 1}` and a server S has an input y = (yi)

`
i=1 ∈ {0, 1}`.

The server S wants to learn the inner product IP =
∑`

i=1 xiyi ∈ {0, . . . , `}, but nothing else, while the
client C just learns whether the protocol succeeded or was aborted.

Semi-Honest Protocol. C can send an ElGamal encryption of each bit under a public key of her
choice and then S can compute an encryption of IP + R, with R ∈ Zp a random mask, using the
homomorphic properties of ElGamal, and sends this ciphertext. C finally decrypts and sends back gIP+R

to S who divides it by gR to get gIP. Since IP is small, an easy discrete logarithm computation leads to
IP.

Malicious Setting. To transform this semi-honest protocol into one secure against malicious adver-
saries, we could apply our generic conversion presented in Appendix B. Here, we propose an optimized
version of this transformation for this protocol. We use the ElGamal scheme for the encryption Epk,
where pk is a public key chosen by C and the secret key is sk = (skj)

log p
j=1 , and the Cramer-Shoup scheme

for commitments Com, of group elements or multiple group elements with randomness reuse, where
the public key is in the CRS. The CRS additionally contains the description of a cyclic group and a
generator g of this group. The construction is presented on Figure 5. First, the client commits to her
secret key (this is the most efficient alternative as soon as n� `) and sends encryptions (ci)i≤n of her
bits. Then, the server commits to his inputs (yi)i and to two random integers (R,R′), computes the
encryption (û, v̂) of gR·IP+R′), re-randomized with a randomness ρ, masked by an iZK to ensure that
the ci’s encrypt bits under the key pk whose corresponding secret key sk is committed (masking one
of the two components of an ElGamal ciphertext suffices). The client replies with gR·IP+R′ , masked
by a SSiZK (this is required for UC security) to ensure that the Com(gyi) contains bits, and that the
masked ciphertext as been properly built. The server then recovers gR·IP+R′ , removes R and R′, and
tries to extract the discrete logarithm IP. If no solution exists in {0, . . . , `}, the server aborts. This last
verification avoids the 2-round verification phase from our generic compiler: if the client tries to cheat on
R · IP+R′, after removing R and R′, the result would be random, and thus in the appropriate range with
negligible probability `/p, since ` is polynomial and p is exponential. We prove in Appendix D.5 that
the above protocol is secure against malicious adversaries in the UC framework with static corruptions,
under the plain DDH assumption, and in the common reference string setting.

Efficiency and Comparison with Other Methodologies. In Appendix A, we provide a detailed
analysis of our inner product protocol in terms of complexity. Then, we estimate the complexity of
this protocol when, instead of using iZK, the security against malicious adversaries in the UC model is
ensured by using the Groth-Sahai methodology [GS08] or Σ-protocols. In this section, we sum up our

14

C
pk, (ci = Epk(gxi))`i=1

S∏`
i=1 c

yi
i · Epk(g

R) ≡ Epk(gIP+R)

gIP+R

C
pk,Com((gskj)log p

j=1), (ci = (ui, vi) = Epk(gxi))`i=1 , ipkC
S

Com((gyi)`i=1, g
R, gR

′
,
∏
uyi
i ,

∏
vyii), (û, v̂), ipkS , cC

gR·IP+R′
·KS , cS

Fig. 5: Semi-Honest and Malicious Protocols for Secure Inner Product Computation

comparisons in a table. The notation > indicates that the given complexity is a lower bound on the real
complexity of the protocol (we have not taken into account the linear blow-up incurred by the conversion
of NIZK into SS-NIZK), and � indicates a very loose lower bound. Details are given in Appendix A.
We stress that with usual parameter, an element of G2 is twice as big as an element of G1 (or G) and
the number of rounds in the major efficiency drawback (see Section 1). The efficiency improvement of
iZK compared to NIZK essentially comes from their “batch-friendly” nature (see Appendix A).

Proofs Pairings Exponentiations Communication Rounds
Σ-proofs 0 38` 20` 5
GS proofs > 14` � 28`(G1) + 6`(G2) > 11`(G1) + 10`(G2) 3
iZK (this paper) 0 67` 21` 3

Moreover, our iZKs do not require pairings, which allows us to use more efficient elliptic curves than
the best existing curves for the Groth-Sahai methodology. With a reasonable choice of two curves, one
without pairing and one with pairing, for 128 bits of security, we get the following results: (counting
efficiency as a multiple of the running time of an exponentiation in G1)

Curve \ Efficiency Pairings Exponentiations in G1 Exponentiations in G2

Curve25519 [Ber06] no pairings 1 7

[BGM+10] ≈ 8 ≈ 3 ≈ 6

Acknowledgments

This work was supported in part by the CFM Foundation and the European Research Council under
the European Community’s Seventh Framework Programme (FP7/2007-2013 Grant Agreement no.
339563 – CryptoCloud).

References

ABB+13. M. Abdalla, F. Benhamouda, O. Blazy, C. Chevalier, and D. Pointcheval. SPHF-friendly non-interactive
commitments. In ASIACRYPT 2013, Part I, LNCS 8269, pages 214–234. Springer, December 2013. (Page 3.)

ABP14. M. Abdalla, F. Benhamouda, and D. Pointcheval. Disjunctions for hash proof systems: New constructions
and applications. Cryptology ePrint Archive, Report 2014/483, 2014. http://eprint.iacr.org/2014/483.
(Pages 4, 10, and 31.)

AIR01. W. Aiello, Y. Ishai, and O. Reingold. Priced oblivious transfer: How to sell digital goods. In EUROCRYPT 2001,
LNCS 2045, pages 119–135. Springer, May 2001. (Page 5.)

BBC+13. F. Benhamouda, O. Blazy, C. Chevalier, D. Pointcheval, and D. Vergnaud. New techniques for SPHFs and
efficient one-round PAKE protocols. In CRYPTO 2013, Part I, LNCS 8042, pages 449–475. Springer, August
2013. (Pages 3, 4, 7, 8, 11, 24, 31, and 32.)

BBP04. M. Bellare, A. Boldyreva, and A. Palacio. An uninstantiable random-oracle-model scheme for a hybrid-
encryption problem. In EUROCRYPT 2004, LNCS 3027, pages 171–188. Springer, May 2004. (Page 2.)

Ber06. D. J. Bernstein. Curve25519: New Diffie-Hellman speed records. In PKC 2006, LNCS 3958, pages 207–228.
Springer, April 2006. (Pages 1, 2, 14, and 16.)

BFI+10. O. Blazy, G. Fuchsbauer, M. Izabachène, A. Jambert, H. Sibert, and D. Vergnaud. Batch groth-sahai.
Cryptology ePrint Archive, Report 2010/040, 2010. http://eprint.iacr.org/2010/040. (Page 19.)

BGM+10. J.-L. Beuchat, J. E. González-Díaz, S. Mitsunari, E. Okamoto, F. Rodríguez-Henríquez, and T. Teruya.
High-speed software implementation of the optimal Ate pairing over Barreto-Naehrig curves. In PAIRING
2010, LNCS 6487, pages 21–39. Springer, December 2010. (Pages 14 and 16.)

BPV12. O. Blazy, D. Pointcheval, and D. Vergnaud. Round-optimal privacy-preserving protocols with smooth
projective hash functions. In TCC 2012, LNCS 7194, pages 94–111. Springer, March 2012. (Page 3.)

http://eprint.iacr.org/2014/483
http://eprint.iacr.org/2010/040

15

BPW12. D. Bernhard, O. Pereira, and B. Warinschi. How not to prove yourself: Pitfalls of the Fiat-Shamir heuristic
and applications to Helios. In ASIACRYPT 2012, LNCS 7658, pages 626–643. Springer, December 2012.
(Page 1.)

BR93. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient protocols. In
ACM CCS 93, pages 62–73. ACM Press, November 1993. (Page 1.)

BR09. M. Bellare and T. Ristenpart. Simulation without the artificial abort: Simplified proof and improved concrete
security for Waters’ IBE scheme. In EUROCRYPT 2009, LNCS 5479, pages 407–424. Springer, April 2009.
(Page 26.)

Bro13. J. Brodkin. Satellite internet faster than advertised, but latency still aw-
ful, February 2013. http://arstechnica.com/information-technology/2013/02/
satellite-internet-faster-than-advertised-but-latency. (Page 1.)

Can00. R. Canetti. Security and composition of multiparty cryptographic protocols. Journal of Cryptology, 13(1):143–
202, 2000. (Page 28.)

Can01. R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. In 42nd FOCS,
pages 136–145. IEEE Computer Society Press, October 2001. (Page 12.)

CGH04. R. Canetti, O. Goldreich, and S. Halevi. The random oracle methodology, revisited. J. ACM, 51(4):557–594,
July 2004. (Page 2.)

CHK+05. R. Canetti, S. Halevi, J. Katz, Y. Lindell, and P. D. MacKenzie. Universally composable password-based key
exchange. In EUROCRYPT 2005, LNCS 3494, pages 404–421. Springer, May 2005. (Page 29.)

CS02. R. Cramer and V. Shoup. Universal hash proofs and a paradigm for adaptive chosen ciphertext secure public-
key encryption. In EUROCRYPT 2002, LNCS 2332, pages 45–64. Springer, April / May 2002. (Pages 3, 4,
and 11.)

DDN91. D. Dolev, C. Dwork, and M. Naor. Non-malleable cryptography (extended abstract). In 23rd ACM STOC,
pages 542–552. ACM Press, May 1991. (Page 1.)

EHK+13. A. Escala, G. Herold, E. Kiltz, C. Ràfols, and J. Villar. An algebraic framework for Diffie-Hellman assumptions.
In CRYPTO 2013, Part II, LNCS 8043, pages 129–147. Springer, August 2013. (Page 9.)

FLS90. U. Feige, D. Lapidot, and A. Shamir. Multiple non-interactive zero knowledge proofs based on a single random
string (extended abstract). In 31st FOCS, pages 308–317. IEEE Computer Society Press, October 1990.
(Page 3.)

FS87. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification and signature problems.
In CRYPTO’86, LNCS 263, pages 186–194. Springer, August 1987. (Page 1.)

GGSW13. S. Garg, C. Gentry, A. Sahai, and B. Waters. Witness encryption and its applications. In 45th ACM STOC,
pages 467–476. ACM Press, June 2013. (Page 5.)

GIKM98. Y. Gertner, Y. Ishai, E. Kushilevitz, and T. Malkin. Protecting data privacy in private information retrieval
schemes. In 30th ACM STOC, pages 151–160. ACM Press, May 1998. (Page 5.)

GL03. R. Gennaro and Y. Lindell. A framework for password-based authenticated key exchange. In EURO-
CRYPT 2003, LNCS 2656, pages 524–543. Springer, May 2003. http://eprint.iacr.org/2003/032.ps.gz.
(Page 3.)

GL06. R. Gennaro and Y. Lindell. A framework for password-based authenticated key exchange. ACM Transactions
on Information and System Security, 9(2):181–234, 2006. (Page 3.)

GMR89. S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof systems. SIAM J.
Comput., 18(1):186–208, 1989. (Page 1.)

GMW87a. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or A completeness theorem for
protocols with honest majority. In 19th ACM STOC, pages 218–229. ACM Press, May 1987. (Pages 1 and 4.)

GMW87b. O. Goldreich, S. Micali, and A. Wigderson. How to prove all NP-statements in zero-knowledge, and a
methodology of cryptographic protocol design. In CRYPTO’86, LNCS 263, pages 171–185. Springer, August
1987. (Pages 1, 4, and 20.)

GMY03. J. A. Garay, P. D. MacKenzie, and K. Yang. Strengthening zero-knowledge protocols using signatures. In
EUROCRYPT 2003, LNCS 2656, pages 177–194. Springer, May 2003. (Page 19.)

Gol04. O. Goldreich. Foundations of Cryptography: Volume 2, Basic Applications. Cambridge University Press, New
York, NY, USA, 2004. (Page 20.)

GS08. J. Groth and A. Sahai. Efficient non-interactive proof systems for bilinear groups. In EUROCRYPT 2008,
LNCS 4965, pages 415–432. Springer, April 2008. (Pages 1, 2, 4, 5, 6, 11, 13, 16, and 32.)

HJ12. D. Hofheinz and T. Jager. Tightly secure signatures and public-key encryption. In CRYPTO 2012, LNCS
7417, pages 590–607. Springer, August 2012. (Page 18.)

HK12. D. Hofheinz and E. Kiltz. Programmable hash functions and their applications. Journal of Cryptology,
25(3):484–527, July 2012. (Page 13.)

HKE13. Y. Huang, J. Katz, and D. Evans. Efficient secure two-party computation using symmetric cut-and-choose. In
CRYPTO 2013, Part II, LNCS 8043, pages 18–35. Springer, August 2013. (Page 4.)

II. E. II. ebats. http://bench.cr.yp.to/results-dh.html. (Page 1.)
IKLP06. Y. Ishai, E. Kushilevitz, Y. Lindell, and E. Petrank. Black-box constructions for secure computation. In 38th

ACM STOC, pages 99–108. ACM Press, May 2006. (Page 4.)
Lin13. Y. Lindell. Fast cut-and-choose based protocols for malicious and covert adversaries. In CRYPTO 2013, Part

II, LNCS 8043, pages 1–17. Springer, August 2013. (Page 4.)
LP07. Y. Lindell and B. Pinkas. An efficient protocol for secure two-party computation in the presence of malicious

adversaries. In EUROCRYPT 2007, LNCS 4515, pages 52–78. Springer, May 2007. (Page 4.)

http://arstechnica.com/information-technology/2013/02/satellite-internet-faster-than-advertised-but-latency
http://arstechnica.com/information-technology/2013/02/satellite-internet-faster-than-advertised-but-latency
http://eprint.iacr.org/2003/032.ps.gz
http://bench.cr.yp.to/results-dh.html

16

LP11. Y. Lindell and B. Pinkas. Secure two-party computation via cut-and-choose oblivious transfer. In TCC 2011,
LNCS 6597, pages 329–346. Springer, March 2011. (Page 4.)

LPJY14. B. Libert, T. Peters, M. Joye, and M. Yung. Non-malleability from malleability: Simulation-sound quasi-
adaptive NIZK proofs and CCA2-secure encryption from homomorphic signatures. In EUROCRYPT 2014,
LNCS 8441, pages 514–532. Springer, May 2014. (Page 26.)

Mau09. U. M. Maurer. Unifying zero-knowledge proofs of knowledge. In AFRICACRYPT 09, LNCS 5580, pages
272–286. Springer, June 2009. (Pages 19 and 20.)

MTVY11. T. Malkin, I. Teranishi, Y. Vahlis, and M. Yung. Signatures resilient to continual leakage on memory and
computation. In TCC 2011, LNCS 6597, pages 89–106. Springer, March 2011. (Page 4.)

NY90. M. Naor and M. Yung. Public-key cryptosystems provably secure against chosen ciphertext attacks. In 22nd
ACM STOC, pages 427–437. ACM Press, May 1990. (Page 1.)

Sch90. C.-P. Schnorr. Efficient identification and signatures for smart cards. In CRYPTO’89, LNCS 435, pages
239–252. Springer, August 1990. (Pages 1 and 4.)

sS11. a. shelat and C.-H. Shen. Two-output secure computation with malicious adversaries. In EUROCRYPT 2011,
LNCS 6632, pages 386–405. Springer, May 2011. (Page 4.)

sS13. a. shelat and C.-H. Shen. Fast two-party secure computation with minimal assumptions. In ACM CCS 13,
pages 523–534. ACM Press, November 2013. (Page 4.)

Wat05. B. R. Waters. Efficient identity-based encryption without random oracles. In EUROCRYPT 2005, LNCS
3494, pages 114–127. Springer, May 2005. (Pages 4, 12, and 26.)

Yao86. A. C.-C. Yao. How to generate and exchange secrets (extended abstract). In 27th FOCS, pages 162–167.
IEEE Computer Society Press, October 1986. (Page 1.)

A Details on the Inner Product Protocols

We will now provide a detailed analysis of the performances of our UC-secure protocol to compute the
inner product. Next, we compare the performances to the performances of a similar protocol whose
security is based on the Groth-Sahai methodology [GS08] to illustrate the fact that, in applications
where pairings are not fundamentally required for the protocol (meaning, the semi-honest version of the
protocol can be done without pairings), being able to avoid them allows us to provide way more efficient
solutions. We also provide the performances of a protocol based on the Schnorr proofs (Σ-proofs), which
implies more interactivity.

A.1 Intuition on the Efficiency Improvements

First, let us provide an intuition of the reasons why we can expect some efficiency improvement over
round-efficient protocols in the malicious setting based on NIZK.

Avoiding Pairings Saves Computations. Pairing are an expensive operation; on the best known
curves such as [BGM+10], computing a pairing is roughly three time slower than computing an
exponentiation. Moreover, not every elliptic curve has a pairing, and it turns out that the most efficient
curves, such as [Ber06], have indeed no pairings. In the best curves without pairings, exponentiations in
G are roughly three times faster than exponentiations in G1 in the best curves with pairings, and even
six times faster than exponentiations in G2.

iZK Can be Efficiently Batched. iZK are somewhat “batch-friendly”: batch techniques, which reduce
computation and communication, can always be used with an iZK without requiring more interactions.
To batch a proof in NIZK-based protocols a seed is needed, so the prover has to first commit to his
values, then he receives the seed and computes a short NIZK from it, that he sends back. This adds two
rounds compared to the classical one-flow protocol in which the prover directly sends commitments
plus a NIZK. But with iZKs, things are different: the prover sends commitments and an ipk, and the
verifier replies with the next flow encrypted with ipk. It turns out that the prover and the verifier can
agree on a batched version of the proof before even knowing the seed, so the prover can compute ipk
without knowing the seed, and the verifier can just send the seed together with the masked second
flow. Consequently, we can apply batch techniques to iZK-based protocols to reduce the communication
without adding interactivity.

17

The Conversion of iZK into SSiZK is Efficient. We presented in Section 3 a generic construction
of SSiZK from iZK. It is worth mentioning that this construct is efficient as it only adds a small constant
number of group elements to the original iZK. Conversely, turning NIZK into simulation-sound NIZK
comes at huge cost, a linear blow-up of the size of the proof. As soon as strong security requirements
are considered, such as security in the UC framework, simulation-sound zero-knowledge proofs become,
in the general case, unavoidable.

A.2 Setup

Let us provide some details about the iZK proofs which ensure the security of the inner product protocol
described in Section 4. We work in a cyclic group G of prime order p, where the DDH assumption holds.
We denote by λ the bit length of p, and by g a generator of the group. We also set the Cramer-Shoup
public key to

(
g1, g2, a, b, (hi)

λ+`+2
i=1

)
, together with a universal hash function H(·). Since we apply the

randomness-reuse technique for the Cramer-Shoup encryption, we need as many group elements hi as
the maximal size of the vector we will encrypt. The value λ+ `+ 2 is a clear upper-bound. The group
description and this key (to be used for the commitment) are in the CRS.

Committing to the Secret Key. As described in Section 4, the client has to commit to her secret
key; such a commitment adds O(λ) to the communication complexity of the protocol. However, the
same requirement holds for any secure variant of the inner product protocol (based on the Groth-Sahai
methodology or based on Σ-proofs), so, for the sake of simplicity, we omit this commitment (and the
proof that it is indeed the secret key) in the protocols we are going to compare. The reason is that we
focus on the setting `� λ (for example, in the biometric setting, we can have λ = 128 while ` ≈ 2000)
so this O(λ) will not affect the overall comparison, even though the constants can differ from one
protocol to the other.

A.3 Inner Product Protocol with iZK

Equations for the Language of the First Flow (iLC). These equations ensure that all the
encrypted values are bits. the εi denote random values (used to batch the equations) which do not
appear in the matrix of the SPHF associated to the iZK, so they will be picked by the server once he
received the ciphertexts. iLC is the language of words (uεii , v

εi
i)i≤` such that there exists ((ri, xi)i≤`, µ)

satisfying:

1. for i = 1 to `, uεii = gεiri and vεii = hεirigεixi

2. 1 = (
∏
uεixii) · g−µ and 1 = (

∏
(vi/g)

εixi) · h−µ

The 2`+ 2 equations involve 2`+ 1 witnesses, ((εiri)i≤`, (εixi)i≤`, µ). The witness µ corresponds to∑
εirixi. Omitting the constants, this lead to an iZK with public key ipkC of size 4` and ciphertext cC

of size 4`.

Equations for the Language of the Second Flow (iLS). Let (d1, d2, (ei)i≤`+4, f) denote the
Cramer-Shoup commitments of the values ((gyi)i≤`, g

R, gR
′
,
∏
uyii ,

∏
vyii), and let (û, v̂) denote the

encryption of R · IP + R′. These equations ensure that the first ` committed values are bits, that
the two last committed values are

∏
uyii and

∏
vyii and that (û, v̂) is a randomized encryption of the

inner product additively and multiplicatively randomized by two committed values. The values are
committed using randomness reuse techniques, which makes the commitment four times smaller but
prevents us from batching our equations as we did in the first flow. iLS is the language of words
(d1, d2, (ei)i≤`+4, f, û, v̂) such that there exists ((yi)i≤`, (µi)i≤`+1, r

′, R,R′, ρ) satisfying:

1. d1 = gr
′

1 , d2 = gr
′

2 , f = (abξ)r
′

2. for i = 1 to `, ei = hr
′
i g

yi , 1 = dyi1 g
−µi and 1 = (ei/g)

yih−µii

3. e`+1 = hr
′
`+1g

R, e`+2 = hr
′
`+2g

R′ ans 1 = dR1 g
−µ`+1

4. e`+3 = hr
′
`+3

∏
uyii , e`+4 = hr

′
`+4

∏
vyii

18

5. û = gρeR`+3h
−µ`+1

`+3 , v̂ = hρeR`+4h
−µ`+1

`+4 gR
′

The 3`+10 equations involve 2`+5 witnesses, ((yi)i≤`, (µi)i≤`+1, r
′, R,R′, ρ). The witnesses (µi)i≤`

correspond to the r′yi’s and µ`+1 corresponds to r′R. ρ is the randomness used to randomize the
ciphertext (û, v̂). Omitting the constants, the corresponding SSiZK has a public key ipkS of size 4` and
ciphertext cS of size 6`.

Communication Complexity. omitting the constants, the total communication complexity of the
protocol, counting the ciphertexts, the commitments, the iZK and the SSiZK, is 2`+4`+4`+`+4`+6` =
21`.

Computational Complexity. Exponentiations are required to compute the ciphertexts, the commit-
ments, and elements of the iZK involved in the two iZKs: (hp, tp, H, tH, projH, tprojH). Recall that as
(xi, yi)i≤` are bits, exponentiations with these values are free.

– First iZK: 4× 5` (for hp and tp), plus 2× 2` (for H and tprojH), plus 2× 2` (for tH and projH),
plus 2× 2` (for the ElGamal ciphertexts). Hence 30` exponentiations in total.

– Second iZK: 4× 6` (for hp and tp), plus 2× 2` (for H and tprojH), plus 2× 4` (for tH and projH),
plus 2× ` (for the commitments). Hence 37` exponentiations in total.

Omitting the constants, the execution of the whole protocol requires 67` exponentiations.

A.4 Inner Product Protocol with Groth-Sahai NIZKs

Unlike our iZK-based protocol, we do not intend to fully construct a UC-secure protocol for the inner
product with the Groth-Sahai methodology, but rather to provide a lower bound on the complexity of
such a protocol, which is enough to assess our claim that iZKs provide consistent efficiency improvement
over the Groth-Sahai methodology to design UC-secure protocols whose semi-honest version does not
originally involve pairings. Notice that we can apply batch techniques to reduce drastically the number
of equations needed for the NIZK of the first flow, as the client cannot gain knowledge from the second
flow by cheating (IP is randomized by R and R′), but the same cannot be done for the second flow
because the client cannot send the decrypted value without being sure that the server was honest.

Simulation-Soundness for Groth-Sahai NIZKs. The inner product protocol involves quadratic
equations and pairing product equations. While very efficient (quasi-adaptive) simulation-sound NIZKs
have been designed for linear equations, to our knowledge, the best simulation-sound NIZKs for quadratic
equations and pairing product equations are those of [HJ12]. However, the conversion of a NIZK into a
simulation-sound NIZK with this method incurs a huge additive overhead (because of the signature) and
a linear blow-up of the size of the NIZK. As the conversion of NIZK into simulation-sound NIZK involves
precise computations and optimizations, we have not attempted to evaluate it in this section; as a
consequence, all the estimations are (loose) lower bounds on the real complexity of a Groth-Sahai-based
UC-secure inner product protocol.

Communication Complexity. To prove that all the committed values are bits, which is a quadratic
equation, the xi’s have to be committed over G1 and G2, and the randomness of the ElGamal ciphertexts
(ri)i≤` has to be committed over G2. These commitments and the ciphertexts represent in total 4`
group elements over G1 and 4` group elements over G2. However, all the equations (checking that
the ElGamal ciphertexts are well-formed, checking that values committed over G1 and G2 are indeed
the same, checking that all the xi are bits) can be batched. For the second flow, the server has to
send commitments of the yi’s over G1 and G2, together with encryptions of the yi’s (required for
the simulatability, but randomness reuse can be applied here to reduce linearly the number of group
elements) and commitments over G2 of the randomness of the encryptions of the yi’s. Moreover, proving
that the yi are bits involves ` quadratic equations, which represents 2` elements over G1 and 2` elements
over G2. As we explained, we cannot batch those equations without adding two rounds to the protocol.

19

The proof that the ciphertexts do indeed encrypt the committed values costs ` group elements over G1

and proving that values committed over G1 and G2 are indeed the same costs at least ` elements over
G1. Thus, the second flow contains at least 7` group elements over G1 and 6` group elements over G2.

Total. the communication complexity of the whole execution of a UC-secure inner product protocol
using the Groth-Sahai methodology is lower bounded by 11` group elements over G1 and 10` group
elements over G2. G2 being approximately twice as big as G1 with usual settings, this represents roughly
31` elements over G1, which is 50% more than the iZK-based protocol.

Pairings and Exponentiations. Counting the number of exponentiations of Groth-Sahai proofs
is quite involved, as this number is quadratic O(`2) in the general case, but linear in nearly every
specific application, if the correct optimizations are used. Instead of counting the exponentiations, we
focus on a loose lower bound by counting only the exponentiations required to compute ciphertexts
and commitments, without even considering the computations required for the construction and
the verification of the proofs. this leads to a lower bound of 28` exponentiations over G2 ans 6`
exponentiations over G1. Moreover, several paper have lowered the number of pairing needed to verify
the proofs; even if we consider that the verification of all the proofs can be batched into a single
verification of a pairing-product equation, using the optimizations of [BFI+10], at least 4` pairings are
required for the first flow. For the second flow, which cannot be batched, verification (using [BFI+10]) of
one pairing-product equation, two multi-scalar multiplication equations and one quadratic equation is
lower bounded by (4 + 2+ 2+ 2)` = 10` pairings. The overall number of pairings is thus lower-bounded
by 14`. As we can choose more efficient curves, with fast exponentiations, by avoiding the need of
pairings, even these very loose values represent considerably more computations that the exponentiations
required by the iZK-based protocol.

A.5 Inner Product Protocol with Schnorr Σ-Protocols

Let us now provide an estimation of the cost of an UC-secure protocol for the inner product relying on
Σ-Protocols (i.e., protocols with a three-move structure, namely (commitments, challenge, response)).
There are two ways of designing such a protocol:

1. One can rely on the OR trick to prove, for each ciphertext (u, v), that either (u, v) or (u, gv−1) is
an encryption of 0 (a DDH tuple).

2. Alternatively, one can commit to (x2i)i≤`, prove that the commitments contains the square of the
encrypted values (using a Chaum-Pedersen proof of same discrete logarithm with different bases),
and then batch all the proofs by proving a statement of the form

∑`
i=1 λi(xi − x2i) = 0, for a

random tuple of values (λi)i≤` chosen by the verifier after the prover has committed.

We will focus on the second technique for our estimation; both techniques seem roughly equivalent in
terms of communication and computation. The commitment scheme used in this protocol is the Pedersen
commitment scheme, which can be seen as the second part of an ElGamal ciphertext: c(m; r) = hrgm.
The reader might refer to [Mau09] to get an intuition of the cost of the different proofs we are going to
construct, as all our proofs can be seen as proving the knowledge of a preimage of a group homomorphism,
which fits into the framework of [Mau09]. Moreover, all those proofs can be turned into simulation-sound
ZK proofs at a small, constant additive cost, using the generic transformation of [GMY03]. The protocol
goes as follow: (we omit the constants when we provide the number of elements exchanged)

Protocol.

1. The client sends ` ElGamal ciphertexts (ui, vi)i≤` and ` commitments (wi)i≤` of the squares of the
encrypted values. He also generates 3` randomness for the proof, hash them using a collision-resistant
hash function, and commits to this value.

2. The server replies with a challenge c, ` ElGamal ciphertexts of his own values (required for the
simulatability) plus the randomness (R,R′) (with his key), ` commitments of the squares of his
values and an encryption (with the client key) of (R · IP+R′).

20

3. The client sends a proof, which contains 3` scalars and 3` openings of the randomness whose hash
value he committed to in the first flow. he also sends a challenge c′.

4. The server checks that the openings are correct, and if they are, that the proofs hold, i.e.that the
values where indeed bits and that (λi)i≤`, the values λi being computed from the challenge c with
a pseudo-random generator. Then, he sends himself a similar proof, ensuring his values are bits
(3`+ 3` elements), plus a proof that the randomized scalar product was correctly computed (2`
elements).

5. If the openings and the proofs are correct, the client sends the decrypted randomized inner product
to the server.

For details on how Σ-protocols can be built for statements such as “I know openings of commitments
such that one of them opens to the product of the two other committed values”, the reader might
refer to [Mau09]. We enhance the security of the original Σ-protocols by adding commitments to the
randomness and revealing the openings after receiving the challenge; such enhanced protocols can be
proven secure against malicious verifiers, and so are truly zero-knowledge.

Efficiency. The communication complexity can be easily counted from our description of the protocol:
(2 + 1 + 2 + 1 + 3 + 3 + 3 + 3 + 2)` = 20`. The computational complexity, counted as a number of
exponentiations and omitting constant values and other operations, is 38`:

– 2`+ ` for the ciphertexts and Pedersen commitments of the first flow.
– 3`+ 3` for the random ciphertexts and Pedersen commitments hashed and committed in the first

flow.
– 2`+ ` for the ciphertexts and Pedersen commitments of the second flow.
– 3`+3` for the random ciphertexts and Pedersen commitments hashed and committed in the second

flow.
– 3`+ 2` to check the opening of the random ciphertexts and Pedersen commitments hashed and

committed in the first flow.
– 3` + 2` to check the proofs (3` for the commitments of squares of encrypted values, 2` for the

batched proof of bit values)
– 3`+ 2` to check the opening of the random ciphertexts and Pedersen commitments hashed and

committed in the second flow.
– 3` + 2` to check the proofs (3` for the commitments of squares of encrypted values, 2` for the

batched proof of bit values).
– 2` to check the proof that the inner product was correctly computed.

B Semi-Honest to Malicious Transformation

In the seminal work [GMW87b], Goldreich, Micali and Wigderson have proven that there exists a
compiler which, given any two-party semi-honest interactive protocol, outputs an “equivalent protocol”
for the malicious model. This compiler (which we call GMW compiler) is formally described in [Gol04].
It is divided in three phases: the Input-Commitment Phase, where the players commit to their own
inputs; the Coin-Generation Phase, where the players run an augmented coin-tossing protocol to generate
unbiased random tapes while providing commitments on them for later validity proofs; and the Protocol
Emulation Phase, where zero-knowledge proofs are used to ensure semi-honest behavior of all the players,
from the committed inputs, the committed random tapes and the flows. This last phase is the one on
which we focus in this section.

Indeed, while NIZK could be used to prove correct generation of the flows, they would either be quite
inefficient (with general NIZK constructions) or require strong settings and assumptions (assumptions
in bilinear groups for Groth-Sahai NIZK). On the other hand, interactive zero-knowledge proofs imply a
blow-up in the interactivity of the protocol.

We present another compiler (see Figure 6) which is divided in four phases: there are still the
Input-Commitment Phase and the Coin-Generation Phase, which end up with commitments of the inputs
and of the unbiased random tapes of the two players, as in the GMW compiler. Note that if inputs

21

should belong in a non-trivial language, validity of the commitments has to be proven as in the next
phase. These are constant-round phases, which are then followed by the Protocol Emulation Phase: each
flow x from the initial protocol is combined with an iZK, and so with a public key ipk, so that the
other player can mask all the subsequent flows with K (or derivative masks) encapsulated in c. More
precisely, from the ephemeral key K, we write k(i) for PRG(i)(K), and each flow is masked by all the
previous keys, and so we use the next block from the PRG for any new mask. Hence, as soon as one
player tries to cheat, all the subsequent flows sent by the other player will be masked by a random
value. Eventually, a Verification Phase provides an explicit validity check: the two players have to prove
they were able to extract all the ephemeral keys, which guarantees their semi-honest behavior during
the whole protocol.

Proof Sketch. For the security proof, we first assume we are dealing with a deterministic function: on
private inputs x and y, the first player receives f(x, y) and the second receives g(x, y). For the sake of
simplicity, we also make the assumption that the semi-honest protocol provides execution traces with
formats (size and number of flows) that are independent of the inputs. Eventually, we make use of
extractable commitments.

We are thus given a simulator Sim for the semi-honest protocol P. And we describe a simulator
Sim′ for the compiled protocol P ′: If both players are honest, Sim′ simply runs the simulator Sim to
generate all the basic flows, and generates all the iZK proofs as well as the verification flows, but using
random keys K for deriving the masks. If one player is malicious, Sim′ first extracts its inputs and
random coins from the extractable commitment, sends the inputs to the ideal functionality to learn the
outcome and provides it to Sim to generate the basic flows of the honest player. This time, valid iZK
proofs for the flows of the honest player have to be generated since the malicious player will be able to
check them, and Sim′ has to be able to immediately detect dishonest behavior of the malicious player
in order to replace all the subsequent flows by random flows: the trapdoor for the iZK, in the CRS,
allows Sim′ to extract the ephemeral key even without a witness, and then to get back the plaintext
sent by the malicious player; from the inputs and the random tape of the malicious player, as well as
the previous flows already exchanged, Sim′ can anticipate and check the flow that should have been
generated with a semi-honest behavior. As soon as a cheating attempt is detected, in the real world,
the subsequent masks would become random looking to the malicious player, Sim′ can thus safely send
random flows (the masked parts).

C More Efficient iZK Constructions

In this section, we describe several ways to get slightly more efficient constructions of iZK at the cost of
some (very reasonable) additional requirements.

C.1 Reducing the Size of the Ciphertext Using Entropy Extractors

In the generic framework constructed in Section 3, the ciphertext c of the iZK contains a random integer
ζ, which is fundamental to ensure the 2-universality property. However, the actual requirement on ζ is
quite simple: we want to ensure that the adversary will not be able to guess it before we send it. If the
adversary was able to guess ζ, then he could have sent a tprojH corresponding to a linear combination
of the lines of the matrix, and then tprojH would contain additional information about the secret key,
breaking the zero-knowledge property of the iZK. To ensure that the adversary will not guess the ζ
in advance, it is not necessary to send the ζ among with the other elements of the ciphertext c, as it
already contains a lot of entropy: one can add the description of an entropy extractor Ext in the CRS,
and the value ζ will be directly computed as ζ = Ext(hp). This saves one element in c.

C.2 More Efficient Construction with Word-Dependent CRS

In section 3, we have seen how to add a trapdoor in a SPHF to ensure the validity of the projection key.
In many cases, it is possible to add the trapdoor in a slightly more efficient way, if we accept to use
word-dependent CRS. (the trapdoor CRS only works for one word x∗ = (u∗, e∗) chosen before the CRS

22

xA1

xB1

xA2

xB2

...

xAn

xBn

Protocol Our Compiler GMW Compiler

Input-Commit Phase:

Protocol-Emulation Phase:

CommitA

CommitB

Coin-Generation Phase:

xA1, ipkA1

xB1 + k
(0)
A1 , ipkB1, cA1

xA2 + k
(0)
B1, ipkA2, cB1

...

xB2 + k
(0)
A2 + k

(1)
A1 , ipkB2, cA2

xAn + k
(0)

B(n−1) + · · ·+ k
(n−2)
B1 , ipkAn, cB(n−1)

xBn + k
(0)
An + · · ·+ k

(n−1)
A1 , ipkBn, cAn

Verification Phase:

k
(0)
Bn + · · ·+ k

(n−1)
B1 , cBn

k
(1)
An + · · ·+ k

(n)
A1

CommitA

CommitB

xA1, ZK-proof

· · ·

· · ·

· · ·

...

xBn, ZK-proof

Fig. 6: Semi-honest to malicious compilers

23

ExpiZK-zk-b(A, crs,K)
(x∗, w, st)

$← A(crs) . only for word-dependent CRS
x∗ ← ⊥ . only for re-usable CRS
(icrs, iT) $← iTSetup(crs, x∗)

(`, st)
$← A(crs) . only for word-dependent CRS

(`, x∗, w, st)
$← A(st, icrs, iT) . only for re-usable CRS

if R(x∗, w, st) = 0 then return 0

if b = 0 then
(ipk, isk)

$← iKG`(icrs, x∗, w)
else

(ipk, itk)
$← iTKG`(iT , x∗)

(c, st)
$← A(st, icrs, iT , ipk)

if b = 0 then
K ← iDec`(isk, c)

else
K ← iTDec`(itk, c)

return A(st,K)

Fig. 7: Experiments ExpiZK-zk-b for zero-knowledge of iZK

is generated). Instead of adding three columns and three rows to the matrix Γ (to obtain the matrix
Γt), it may be possible to only add one row. The second part of the construction ensuring the validity
of the projection keys hpt remains the same.

For example, in Example 6, the CRS can contain a row R = (R1, R2, R3, R4) which is (u∗s, e∗s, 1, 1)
in the trapdoor mode for x∗, or (gs, hs, 1, 1) in the normal mode (with s a random scalar in Z∗p). In the
trapdoor mode, s is the trapdoor for x∗. The DDH (or the semantic security of ElGamal) ensures that
the two setups are indistinguishable. We then have (if we omit the 2-universal trick at the end):

Ĉt = Ĉ = (u, e, 1, 1)

Γt =

(
Γ

R

)
=


g h 1 1
1 g u e/g
1 1 g h
R1 R2 R3 R4

 .

In normal mode, the last row R is s times the first row of Γt, and so the new element in the projection
key, hpt,4 = R • hk gives no more information than the first element hpt,1 = hp1 (from an information
theoretic point of view). That is why the smoothness does still hold in normal mode.

In trapdoor mode, we remark that hpt,4 = R • hk = (u∗hk1e∗hk2)s. This is exactly the hash value of
x∗ raised to the power of s (if hp is valid). So knowing the trapdoor s and hpt,4 enables to compute the
hash value of C∗.

Formal Construction of iZK with Word-Dependent CRS. We suppose to have two setup
algorithms:

– iSetup(crs) generates a row vector R ∈ G1×n which is linearly depend of the rows of any matrix Γ
for any C (we recall that Γ may depend on C). Then it returns icrs = (crs, R).

– iTSetup(crs, x∗) generates a row vector R ∈ G1×n and a trapdoor a row vector λ∗ ∈ Zk+1
p so that:

λ∗ •
(
Γ
R

)
= Ĉ.

In other word λ∗ is a witness for the language defined by
(
Γ

R

)
and θ. Then it returns icrs = (crs, R)

and iT = λ∗.

24

Then we do the same construction as in Section 3.3, except we use the following matrices Γ ′t (x), Ĉt,
λt(ζ, iw), and λt(ζ, iT):

Ĉt = (Ĉ, ζ • Ĉ) Γ ′t =

(
Γ
R

)
λt(ζ, iw) = (λ, 0, ζ • λ, 0) λt(ζ, iT) = (λ∗, ζ • λ∗).

If the two setup iSetup and iTSetup are indeed indistinguishable, we prove the construction to be secure
in Appendix D.3. The proof is very similar to the one for the generic construction in Appendix D.1.

When it is usable, this construction is slightly more efficient than the generic one with re-usable
CRS, since the resulting matrix Γt has 4 less columns and 4 less rows.

D Proofs

D.1 Proof of the iZK Construction of Section 3

Correctness. Straightforward.

Setup Indistinguishability. The only difference between iSetup and iTSetup is that in the former
(g′, h′, u′, e′) is a random tuple, while in the later (g′, h′, u′, e′) is a DDH tuple. Hence the setup
indistinguishability holds under plain DDH in G.

Soundness. Let us consider a CRS icrs = (crs, g′, h′, u′, e′) generated by iSetup(crs). We need to show
that, for any C = x /∈ L = iL (i.e., such that Ĉ is linearly independent of rows of Γ) and any
iZK = tp ∈ G2n+6, the distribution of K = H · tprojH is statistically close to uniform over G, even
given c = (ζ, hp). For that purpose, we will prove something stronger: with overwhelming probability
over ζ, the distribution of H is uniform even given hp, ζ, tprojH.

The key idea for the demonstration is to apply the same argument than in the demonstration of the
smoothness of the generic construction of [BBC+13] on a well chosen matrix Γs such that the projection
key for this matrix is exactly hps = (hp, tprojH), but the language is not changed (with overwhelming
probability over ζ). As hp = Γt • hk and tprojH = tp • hk, we can set

Γs =

(
Γt
tp

)
, hps = (hp, tprojH) = Γs • hk.

Let us prove that with overwhelming probability over ζ, Ĉt is linearly independent of rows of Γs. This
will prove that with overwhelming probability, H = Ĉt • hk looks uniformly random in G, even given
hps = (hp, tprojH).

More precisely, let us prove that there is at most one value ζ ∈ Zp such that Ĉt = (g′−1, 1, . . . , 1,
g′−ζ , 1, . . . , 1) is linearly dependent of rows of Γs. Let us suppose by contradiction, that there exists
ζ 6= ζ ′, λs = (λ1,λ2, µ), and λ′s = (λ′1,λ

′
2, µ
′) such that (g′−1, 1, . . . , 1, g′−ζ , 1, . . . , 1) = λs • Γs, and

(g′−1, 1, . . . , 1, g′−ζ , 1, . . . , 1) = λ′s • Γs. This implies

(g′−1, 1, . . . , 1) = λ1 • Γ ′ + µ • tp1 (3a)

(g′−ζ , 1, . . . , 1) = λ2 • Γ ′ + µ • tp2 (3b)

(g′−1, 1, . . . , 1) = λ′1 • Γ
′ + µ′ • tp1 (3c)

(g′−ζ
′
, 1, . . . , 1) = λ′2 • Γ

′ + µ′ • tp2 (3d)

with 1 = g0 ∈ G and tp1, tp2 ∈ Gn+3 such that tp = (tp1, tp2), and

Γ ′ =


1 Γ

g′ 1 1 Ĉ

1 g′ h′ 1 . . . 1

g′ u′ e′ 1 . . . 1

 ∈ G(k+3)×(n+3).

25

Then, we get:

(g′−µ
′+µ, 1, . . . , 1) = (µ′ • λ1 − µ • λ′1) • Γ

′ (µ′•(3a) − µ•(3c))

(g′−ζµ
′+ζ′µ, 1, . . . , 1) = (µ′ • λ2 − µ • λ′2) • Γ

′ (µ′•(3b) − µ•(3d))

If µ′ = µ, −ζµ′ + ζ ′µ = ζ ′ − ζ 6= 0, otherwise −µ′ + µ 6= 0. By dividing the first equation by −µ′ + µ in
the latter case, or the second equation by −ζµ′ + ζ ′µ in the former case, we get that there exists some
vector λ′ ∈ Zk+3

p such that:
(g′−1, 1, . . . , 1) = λ′ • Γ ′.

But since (g′, h′, u′, e) is not a DDH tuple, λ′ has to be of the form (?, . . . , ?, 1, 0, 0), which means that
Ĉ is a linear combination of rows of Γ , i.e., C ∈ L , which is not the case.

Therefore, our construction is sound (and the two distributions we consider in the definition in
Section 2.3.

Zero-Knowledge. Let x∗ ∈ iL = L be a word with witness iw∗. For the zero-knowledge property, we
(the challenger playing the role of the prover) generates a public key ipk = tp, where tp is a projection
key, associated to a random hashing key tk, for the language of valid hp’s. Then, the adversary (playing
the role of the verifier) sends a ciphertext c(ζ, hp). There are two cases:

– either there exists hk ∈ Z2n+6
p such that hp = Γt • hk. In this case, we have

projH := λt(ζ, iw
∗) • hp = λt(ζ, iw

∗) • Γt • hk = Ĉt • hk
= λt(ζ, iT) • Γt • hk = λt(ζ, iT) • hp := trapH

(this property actually can be seen as coming from the correctness of the SPHF with projection key
hp);

– or, there does not exist hk ∈ Z2n+6
p such that hp = Γt • hk. In this case, hp is not valid and

tH = Γ ᵀ
t • tk (with tk ∈ Z2k+6

p) looks uniformly random for the adversary (before he sees projH · tH
or trapH · tH in the game), since the only information he sees about tk is tp = Γ ᵀ

t • tk, but hp is
linearly independent of rows of Γ ᵀ

t . This property on tH can actually be seen as the smoothness
property of the SPHF with projection key tp. Then projH · tH and trapH · tH looks both uniformly
random to the adversary, and cannot be distinguished.

Therefore, our construction is perfect zero-knowledge.

D.2 Details and Proof of the SSiZK Construction of Section 3.4

Details. Let us first write down the complete matrices Ĉt and Γt(x):

θt(x, ζ) = Ĉt = (g′−1, 1, . . . , 1, g′−ζ , 1, . . . , 1) ∈ G1×(2n+10)

Γ ′t(`, x) =



1 Γ (x) 1
g′ 1 1 Ĉ 1 1

1 g′ h′ 1 . . . 1 1 1

g′ u′ e′ 1 . . . 1 1 1

1 1 1 1 . . . 1 g′ h′

1 1 1 1 . . . 1 u′′ e′′

g′ 1 1 1 . . . 1 g′ 1


∈ G(k+6)×(n+5)

Γt(`, x) =

(
Γ ′t(`, x) 1

1 Γ ′t(`, x)

)
∈ G(2k+12)×(2n+10),

λt(ζ, iw) = (λ(iw),−1, 0, 0, 0, 0, 0, ζλ(iw),−ζ, 0, 0, 0, 0, 0)
λt(ζ, iT) = (0, . . . , 0, r′,−1, 0, . . . , 0, ζr′,−ζ) with iT = r′,

with u′′ =W1(H(`, x)) and e′′ =W2(H(`, x)).

26

Proof.

Correctness. Straightforward.

Setup Indistinguishability. The only elements added to the CRS (v1,i, v2,i)i have exactly the same
distribution when generated by iSetup and iTSetup. So it is equivalent to the setup indistinguishability
of our iZK construction (see Appendix D.1), and is implied by the DDH assumption.

Zero-Knowledge. The proof is exactly the same as for our iZK construction (see Appendix D.1).

Soundness. Both iSetup and iTSetup output a CRS icrs, such that (g′, h′, v1,i, v2,i) is a DDH tuple, and
so is (g′, h′, u′′, v′′). From the definition of Ĉt and Γt, a word (x, g′, h′, u′, v′, u′′, v′′) is in the extended
language corresponding to Ĉt and Γt if and only if x ∈ iL , or (g′, h′, u′, v′) is a DDH tuple, or (g′, 1)
is in the subspace generated by (g′, h′) and (u′′, v′′). But the latter subspace is exactly the subspace
generated by (g′, h′) (as (g′, h′, u′′, v′′) is a DDH tuple). Hence, (g′, 1) is never in that subspace (as g′

and h′ are supposed to be generators), and the last case of the disjunction is never satisfied.
Therefore, the extended language is actually the same as for our iZK construction, and the soundness

can be proved in the same way as in Appendix D.1.

Simulation-Soundness. Let us now prove the simulation-soundness by exhibiting a sequence of indistin-
guishable games. An overview of the proof is given in Section 3.4.

We consider an adversary A against the simulation soundness. In each game Gi, we start by picking
a random bit b, run some experiment, and output some bit b′. We denote by Advi the advantage of the
adversary in the game Gi:

Advi = 2 · Pr[b′ = b]− 1.

Finally, we write negl any negligible quantity in K.
We recall that we suppose that Setupcrs also outputs some additional information or trapdoor Tcrs,

which enables to check, in polynomial time, whether a given word x is in iL or not. This makes the
check x∗ ∈ iL ∗.

Game G0: In this first game, we pick a random bit b, run the experiment ExpiZK-ss-b(A, crs,K), and
outputs the bit b′ (output by the experiment). The advantage Adv0 is exactly the advantage of the
adversary A in the simulation soundness experiments.

Game G1: In this game, instead of picking DDH tuples (g′, h′, v1,i, v2,i) in iTSetup, we pick v1,i and
v2,i uniformly at random in G. Under the DDH assumption, Adv0 ≤ Adv1 + negl.

Game G2: Similarly to the proof in [LPJY14], in this game, we pick g′′, h′′
$← G, and set, for

i = 0, . . . , 2K:

r′i
$← Zp r′′i

$← Zp (4)

v1,i ← g′
r′i · g′′r

′′
i · g′ρ

′
i v2,i ← h′

r′i · h′′r
′′
i , (5)

with ρ′0 = µζ ′ − ρ0, ρ′i = −ρi (for i = 1, . . . , 2K), µ $← {0, . . . , 2K}, r′i, r′′i
$← Zp, ρi $← {0, . . . , ζ ′},

for i = 0, . . . , 2K, with ζ ′ = 2(q + 1) and q the number of simulated proofs (i.e., queries (`, x) to
oracle O). This game is perfectly indistinguishable from the previous one, as the distribution of the
vk,i’s is exactly the same: Adv1 = Adv2.

Game G3: In this game, we abort if for some query (`, x) to O, ρ′0 +
∑2K

i=imiρ
′
i = 0, with m =

m1‖ . . . ‖m2K = H(`, x) ∈ {0, 1}2K; or if for m∗ = m∗1‖ . . . ‖m∗2K = H(`∗, x∗) ∈ {0, 1}2K, ρ′0 +∑2K
i=1m

∗
i ρ
′
i 6= 0. Using the same analysis as in [Wat05,BR09,LPJY14]: Adv22/(27(q + 1)(2K+ 1)) ≤

Adv3.
Game G4: In this game, we choose g′′, h′′ so that (g′, h′, g′′, h′′) is a random DDH tuple (instead of a

random tuple as before). Under the DDH assumption, Adv3 ≤ Adv4 + negl.

27

Game G5: In this game, we set, for i = 0, . . . , 2K:

r′i
$← Zp v1,i ← g′

r′i · g′ρ
′
i v2,i ← h′

r′i , (6)

with ρi defined as in G2. This game is perfectly indistinguishable from the previous one, as the
distribution of the vk,i’s is exactly the same: Adv4 = Adv5.

Game G6: In this game, for any query (`, x) to O, we generate ipk = tp as usual, but for a subsequent
query (ipk = tp, c = (ζ, hp)) to O, we compute trapH (in iTDec) as trapH = λ′ • hp instead of
trapH = λt(ζ, iT) • hp, where

λ′ =

(
0, . . . , 0,−

r′0 +
∑2K

i=1 r
′
i

α
,
1

α
,−1, 0, . . . , 0,−ζ

r′0 +
∑2K

i=1 r
′
i

α
,
ζ

α
,−ζ

)
,

and

m = H(`, x) α = ρ′0 +

n∑
i=1

miρ
′
i.

This vector λ′ is well defined as α 6= 0 from the abort condition in G3. Furthermore:(
r′0+

∑2K
i=1 r

′
i

α
1
α

)
•
(

g′ h′

W1(m) = v1,0
∏2K
i=1 v

mi
1,i W2(m) = v2,0

∏2K
2=1 v

mi
1,i

)

=

(
g′(−r

′
0−

∑2K
i=1mir

′
i)/αg′(r

′
0+

∑2K
i=1mir

′
i+ρ
′
0+

∑2K
i=1 ρ

′
i)/α

h′(−r
′
0−

∑2K
i=1mir

′
i)/αh′(r

′
0+

∑2K
i=1mir

′
i)/α

)ᵀ

=
(
g′(ρ

′
0+

∑2K
i=1 ρ

′
i))/α h′0

)
=
(
g′ 1

)
so that

λ′ • Γt = Ĉt.

Finally, a proof similar as the one for the zero-knowledge property of our iZK construction (see
Appendix D.1) shows that Adv5 ≤ Adv6 + negl.

Game G7: In this game, we generate the CRS using iSetup (i.e., (g′, h′, u′, e′) is now a random tuple
instead of a DDH tuple). This is possible as iT was not used in the previous game. Under the DDH
assumption, Adv6 ≤ Adv7 + negl.
In this last game, we remark that Ĉ∗t (corresponding to the challenge `∗, x∗) is linearly independent of
rows of Γt(`∗, x∗), as x∗ /∈ iL , (g′, h′, u′, e′) is not a DDH tuple, and (g′, h′,W1(`

∗, x∗),W2(`
∗, x∗)) is a

DDH tuple. Then, similarly as in the soundness proof above, we get that Adv7 = negl (statistically).

D.3 Proof of iZK Construction for Word-Dependent CRS of Appendix C.2

Correctness. Straightforward.

Setup Indistinguishability. This is an assumption for this construction.

Soundness. The proof is very similar to the one in Appendix D.1. As usual, we write C = x and L = iL .
We just need to prove that there is at most one value ζ ∈ Zp such that Ĉt = (Ĉ, ζ • Ĉ) is linearly

dependent of rows of Γs when C /∈ L , where Γs is defined by Γs =
(
Γt
tp

)
. Let us suppose by contradiction,

that there exists ζ 6= ζ ′, λs = (λ1,λ2, µ), and λ′s = (λ′1,λ
′
2, µ
′) such that (Ĉ, ζ • Ĉ) = λs • Γs, and

(Ĉ, ζ • Ĉ) = λ′s • Γs. This implies

Ĉ = λ1 • Γ ′ + µ • tp1 (7a)

ζ • Ĉ = λ2 • Γ ′ + µ • tp2 (7b)

Ĉ = λ′1 • Γ
′ + µ′ • tp1 (7c)

ζ • Ĉ = λ′2 • Γ
′ + µ′ • tp2 (7d)

28

with tp1, tp2 ∈ Gn such that tp = (tp1, tp2), and

Γ ′ =

(
Γ
R

)
.

Then, we get:

(−µ′ + µ) • Ĉ = (µ′ • λ1 − µ • λ′1) • Γ
′ (µ′•(7a) − µ•(7c))

(−ζµ′ + ζ ′µ) • Ĉ = (µ′ • λ2 − µ • λ′2) • Γ
′ (µ′•(7b) − µ•(7d))

If µ′ = µ, −ζµ′ + ζ ′µ = ζ ′ − ζ 6= 0, otherwise −µ′ + µ 6= 0. By dividing the first equation by −µ′ + µ in
the latter case, or the second equation by −ζµ′ + ζ ′µ in the former case, we get that there exists some
vector λ′ ∈ Zk+1

p such that:

Ĉ = λ′ • Γ ′ = λ′ •
(
Γ
R

)
.

But since R is linearly dependent of rows of Γ , when the CRS is generated by iSetup, this means that
Ĉ is also a linear combination of rows of Γ , i.e., C ∈ L , which is not the case. Hence the soundness
property holds.

Zero-Knowledge. The proof is almost identical to the one in Appendix D.1.

D.4 Proof of Construction of ZK Arguments from iZK

We formally prove that the construction of ZK from iZK given in Remark 1 is correct. Let us first
recall the definition of an interactive protocol. Let us consider a language L . A n-round interactive
protocol (P,V) is any pair of randomized algorithms (not necessarily computationally bounded). The
interaction between P and V on a word x ∈ X is depicted in Fig. 8. The verifier can do two other
actions: accept or reject the word x at any time. We write (P,V)(x) = 1 if the verifier accepts during
the interaction and (P,V)(x) = 0 otherwise.

Now, we recall the definition of a zero-knowledge proof: a zero-knowledge proof on a word C ∈ L is
an interactive protocol (P,V) verifying the following properties:

– Completeness. (P,V) is complete, if for any C ∈ L :

Pr [(P,V)(x) 6= 1] ≤ negl (K);

– Soundness. (P,V) is sound, if for any C ∈ X \L , for any prover P ′:

Pr
[
(P ′,V)(x) = 1

]
≤ negl (K);

– Zero-Knowledge. (P,V) is zero-knowledge, if for any probabilistic polynomial-time adversary
playing the role of the verifier, honestly or not, there exists a polynomial time simulator Sim able
to simulate the view of this adversary without using a witness. The view 〈P,V〉(x) of a verifier is
the tuple (m1, . . . ,mn, r) of the exchanged messages and its random tape. More formally, (P,V) is
computationally zero-knowledge if, for all C ∈ L , for any PPT A, the distributions 〈P, A〉(x) and
Sim(x) are computationally indistinguishable.

Hence, the completeness and the soundness of the zero-knowledge protocol from iZK directly follows
from the completeness and the soundness of the underlying iZK; the zero-knowledge is straightforward
too: the existence of a simulator is ensured because a simulator is explicitly given by the underlying
iZK. The simulator simply uses the trapdoor instead of the witness, and the proof of perfect simulation
directly follows from the zero-knowledge property of the underlying iZK.

D.5 Proof of Security of our Inner Product Protocol in the UC Model

In this section, we prove that (the malicious version of) our scheme in Section 4 is secure in the UC
model [Can00], with authenticated channels and static corruptions.

29

(stv,m1)
$← V(x,⊥)

m1

(stp,m2)
$← P(x,m1)

m2

(stv,m3)
$← V(stv,m2)

m3

(stp,m3)
$← P(stp,m3)

...
mn

V(stv,mn)

(a) n is even

(stp,m1)
$← P(x,⊥)

m1

(stv,m2)
$← V(x,m1)

m2

(stp,m3)
$← P(stp,m2)

m3

... (stv,m3)
$← V(stv,m3)

mn

V(stv,mn)

(b) n is odd

Fig. 8: Interactive protocol execution for a word x ∈ X

Details on the Scheme. Here are some implicit details related to UC for the scheme in Section 4: all
flows contains an identifier (1 for the first flow, 2 for the second flow and 3 for the third flow). Every flow
not formatted correctly is ignored. Every commitment is supposed to be labeled with an identifier of the
commitment (1 for the one of the first flow and 2 for the one of the second flow), the identifier of C and
S, the session and sub-session identifiers sid and ssid. We use the labeled version of the Cramer-Shoup
encryption scheme [CHK+05] for that purpose. We recall that this scheme is IND-CCA secure.

Ideal Functionality. The ideal functionality is depicted in Fig. 9. Basically, the client C sends its
input (xi)

`
i=1 ∈ {0, 1}`, then the server sends its input (y1)

`
i=1, and finally, when the adversary or

simulator Sim specifies it, the server gets back the inner product IP of (xi) and (yi). Corruptions of the
client or the server are supposed to be static, i.e., before the first message Client-Send is sent (for a
given session (sid, ssid, C,S)). The authentication and the flow identifiers above ensure that if one of the
player is honest at the beginning, he remains honest during all the session and the adversary in the
real world cannot modify his flow (though he may drop them as usual and attempt a denial-of-service
attack).

Proof of Security. We exhibit a sequence of games. The sequence starts from the real game, where the
adversary A interacts with real players and ends with the ideal game, where we have built a simulator
Sim that makes the interface between the ideal functionality F and the adversary A.

Game G0: This is the real game, where the simulator knows the inputs of all the honest players and
honestly play their role (on their behalf).

Game G1: We first deal with the case when C and S are both honest. In that case, the simulator Sim
replaces all commitments and ciphertexts of C and S by commitments and ciphertexts of random
values. In addition, except if the adversary A drops some flows, the simulator Sim never abort
on behalf of S and outputs the correct inner product IP =

∑`
i=1 xi · yi he can compute since he

still knows the inputs (xi) of C and (yi) of S. Sim also sends to the message Result-Send when

30

The functionality FIP is parametrized by a security parameter k. It interacts with an adversary Sim and a set of
parties via the following queries:
Upon receiving a query (Client-Send, sid, ssid, C,S, (xi)

`
i=1) from party C (client): Ignore the message if

(xi)
`
i=1 /∈ {0, 1}`. Record the tuple (sid, ssid, C,S, (xi)) and send (Client-Sent, sid, ssid, C,S) to Sim. Ignore further

Client-Send-message with the same (ssid, C,S) from C.
Upon receiving a query (Server-Send, sid, ssid, C,S, (yi)`i=1) from party S (client): Ignore the message if
(yi)

`
i=1 /∈ {0, 1}`. Ignore the message if (sid, ssid, C,S, (xi)) is not recorded (for some (xi)) and replace this record by

(sid, ssid, C,S, (xi), (yi)); otherwise mark the record as used and send (Server-Sent, sid, ssid, C,S) to Sim. Ignore
further Server-Send-message with the same (ssid, C,S) from S.
Upon receiving a query (Result-Send, sid, ssid, C,S) from the adversary Sim: ignore the message
if (sid, ssid, C,S, (xi), (yi)) is not recorded (for some (xi) and (yi)); otherwise remove the record and send
(Result-Sent, sid, ssid, C,S, IP) to S (and to Sim if S is corrupted), with IP =

∑`
i=1 xi·yi. Ignore further Result-Send-

message with the same (ssid, C,S) from Sim.

Fig. 9: Ideal Functionality for Inner Product FIP

required. This game is indistinguishable from the previous one under the IND-CPA property of the
encryption scheme and the commitment scheme.
We remark that now, we do not need to know the exact inputs of honest players.

Game G2: We now deal with sessions between a malicious client C and a honest server S. Sim first
extracts the commitment of the bits of the secret keys skj , and recovers sk. If these commitments
do not contains bit or if these bits do not correspond to a valid secret key sk (i.e., such that the sent
public key pk = gsk), then Sim chooses KC uniformly at random. Otherwise, Sim uses this secret
key to decrypt the ciphertexts ci for i = 1, . . . , `, and get bits xi. If the corresponding plaintexts
are not bits, then Sim chooses KC uniformly at random. This game is statistically indistinguishable
from the previous one, thanks to the soundness of the iZK.

Game G3: We now replace the CRS of the two iZK (which were generated by iSetup) by a CRS
generated by TSetup and we remember the corresponding trapdoors iT . This game is computationally
indistinguishable from the previous one, thanks to the setup indistinguishability of the iZK.

Game G4: We now simulate all the iZK using iTKG and iTDec made by the simulator. This game is
statistically indistinguishable from the previous one, thanks to the zero-knowledge property of the
iZK.

Game G5: We now deal again with sessions between a malicious client C and a honest server S in
this game and the following ones. We replace the commitment of gyi , gR and gR′ by commitments
of random values. This game is computationally indistinguishable from the previous one, thanks to
the IND-CCA property of the Cramer-Shoup encryption scheme used for the commitment (and the
fact that extractions are always done with different labels), and the fact that the random coins
used by these commitments are no more necessary to decrypt the iZK ciphertexts cC (thanks to the
previous game).

Game G6: Sim directly generates c as an encryption of gRIP+R′ , by computing IP as
∑`

i=1 xi · yi
(xi being extracted by the encryption ci and yi being given as inputs to S). This is perfectly
indistinguishable to the previous game.

Game G7: Sim now aborts on behalf of S if the last flow if not gRIP+R′ instead of just aborting
when it is not such that gRIP′+R′ with IP′ ∈ {0, . . . , `}. In addition, if S does not abort, instead of
computing IP from the last flow (and so potentially getting IP′), Sim directly outputs IP. We remark
that for any IP and any fixed value for u, for any value of the last flow different than gRIP+R′ , the
probability this flow is gRIP′+R′ with IP′ ∈ {0, . . . , `} (so with IP 6= IP′), when R and R′ are chosen
uniformly at random conditioned by u = RIP+R′, is at most `/p, which is negligible. Since the
adversary A does not know R and R′ but only RIP+R′, this game is statistically indistinguishable
from the previous one.

Game G8: Sim now generates c as an encryption of gS for a random S and aborts when the last flow
is not gS . This game is perfectly indistinguishable from the previous one.

Game G9: Sim now sends (Client-Send, sid, ssid, C,S, (xi)) in behalf of C to the ideal functionality
with (xi) the extracted values of the malicious client C. If S does not abort, Sim also sends
(Result-Send, sid, ssid, C,S) to the ideal functionality. In addition Sim let the ideal functionality

31

generate the output for S. This game is perfectly indistinguishable from the previous one, since
both will output the same value IP.

Game G10: We now deal again with sessions between a honest client C and a malicious server S in
this game and the following ones. Sim now returns gRIP+R′ in the last flow (if C did not abort)
instead of decrypting c. This game is perfectly indistinguishable from the previous one.

Game G11: In this game, we now replace the commitments of skj by commitments of random values.
This game is computationally indistinguishable from the previous one under the IND-CCA property
of the commitment scheme. We remark that we do not use anymore sk.

Game G12: In this game, Sim now encrypts random values in ci instead of the xi’s. This game
is computationally indistinguishable from the previous one under the IND-CPA property of the
commitment scheme. We remark that we do not use anymore the xi’s.

Game G13: Sim now extracts the commitment of the bits yi, together with gR and gR′ . If yi are not
bits or if the ciphertext c received by S (under pk for which Sim knows the secret key sk) does not
contain gRIP+R′ (with IP =

∑`
i=1 xi · yi, with the extracted yi’s and the xi given as inputs to C),

then Sim chooses KS uniformly at random. This game is statistically indistinguishable from the
previous one, thanks to the simulation-soundness of the second iZK.

Game G14: Sim now sends (Server-Send, sid, ssid, C,S, (yi)) in behalf of S to the ideal functionality
with (yi) the extracted values of the malicious server S. If C does not abort, Sim also sends
(Result-Send, sid, ssid, C,S) to the ideal functionality, and get the value of IP. This game is
perfectly indistinguishable from the previous one, since the computed value of IP (as

∑`
i=1 xi · yi

with (xi) the input of C and (yi) extracted from S) is always equal to the value IP returned by the
functionality.

Game G15: In last game, Sim does not use anymore the inputs given to the honest parties. So this
game is exactly the game in the ideal world.

E Other Constructions of iZK

In this appendix, we give details on the construction of iZK from Trapdoor SPHFs (TSPHFs) and from
NIZK, announced in Remark 2. These constructions are here for the sake of completeness and have the
disadvantage to require strong assumptions such as the random oracle model or pairing (at least for
currently known over cyclic groups).

E.1 Construction of iZK from TSPHFs

With the same Language iL = L for the TSPHF and the iZK. Let us suppose we have a
TSPHF (see [BBC+13] for a complete description of TSPHFs and notations we use in this section) on a
language iL = L . Then we can construct an iZK as follows:

– iSetup(crs) and iTSetup(crs) generates icrs := tcrs as the common reference string for the TSPHF.
The second algorithm also outputs the trapdoor iT of the TSPHF.

– iKG(icrs, x, iw) outputs (ipk, isk) := (⊥, iw);
– iTKG(iT , x) outputs (ipk, itk) := (⊥, iT);
– iEnc(ipk, x) computes the keys hk $← HashKG(tcrs) and hp← ProjKG(hk, tcrs, x), as well as the hash

value H ← Hash(hk, tcrs, x). It then outputs (c := hp,K := H);
– iDec(isk = iw, c = hp) first checks hp is a valid projection key (using the algorithm VerHP for

TSPHF) and aborts (by returning ⊥) is that is not the case. It then outputs K = projH ←
ProjHash(hp, tcrs, x, iw);

– iTDec(itk = iT , c = hp) first checks hp is a valid projection key (using the algorithm VerHP for
TSPHF) and aborts (by returning ⊥) is that is not the case. It then outputs K = projH ←
THash(hp, tcrs, x, iT).

This scheme is not strictly speaking an iZK as we defined it in Section 2, since it only has computational
soundness and computational zero-knowledge (in general). However, with TSPHFs based on disjunctions
of two SPHFs in [ABP14], soundness and zero-knowledge would be statistical (but not with the original
TSPHFs in [BBC+13]). Proofs are straightforward and are left to the reader.

32

For any NP Language. Using the same methods as in Appendix F, we can also get iZK for any NP
language defined by a circuit (or an ABP) by considering an augmented language L where words also
contain commitments of wires of the circuits or of intermediate values of the ABP. There exist TSPHF
for these languages: the proof is similar to the one for the existence of such iZK (first an SPHF in the
generic framework [BBC+13] is constructed, and then it is converted into a TSPHF).

E.2 Construction of iZK from NIZK

A TSPHF can be constructed from an SPHF and a Groth-Sahai [GS08] NIZK as explained in [BBC+13].
That gives a construction of iZK from NIZK.

F iZK for Languages Defined by a Computational Structure

F.1 Efficient iZK for Languages Represented by a Computational Structure

We have shown that a SPHF for some language L yields an iZK for the same language iL = L .
However, if the class of NP languages handled by SPHFs is sufficient for many applications, there is
still a large variety of useful languages which are not captured by the framework we presented above.
We thus now (informally) explain how to construct iZK for any languages just from their representation
through a given computational structure.

Of course, every NP language can be represented by the most general computational structure,
the circuit. However, more efficient, but more restricted computational structures are widely used in
cryptography, such as Boolean branching programs, arithmetic formulas, etc. A computational structure
of particular interest is the model of Arithmetic Branching Programs (ABP). They provide a very
compact way to represent multivariate polynomials and capture, among others, the two structure
previously given.

A language iL represented by a computational structure can be converted into a language L
which can be handled by the generic framework for SPHFs, by essentially extending the words with
commitments to particular elements of the computational structure itself. Thus, on a given language,
we can construct an iZK whose size is essentially the size of the most efficient computational structure
which can represent the language.

In the following, we present the main ideas of how to construct an iZK for any NP language
defined by a circuit, and also for any language defined by an ABP. We stress that they represent the
most commonly used, and the most interesting, computational structures, but iZK can be constructed
for others computational structures, depending of our need — other constructions exist for other
representations of languages and these examples aim at illustrating the way such constructions can be
made.

For any NP Language Defined by a Circuit. Let us build an iZK for an NP language L defined
by a (polynomial-size) circuit C that evaluates a function F : a word x is in L if and only if there exists
a witness iw verifying F (x, iw) = 1. We remark that any NP language can be defined by such a circuit.

The idea for the iZK construction is the following: the prover sends (as part of the public key ipk)
ElGamal ciphertexts encrypting both all the bits of iw and all the values of the wires of the circuit C
when evaluated on x and iw. Then he uses an SPHF to implicitly prove that:

– encryption of input bits of iw indeed contain bits (which is our Example 4);
– encryption of the output wire of the circuit really contains 1 (which is similar to our Example 3);
– each gate is evaluated correctly.

All these properties are guaranteed together by the conjunction of all the languages, as in our Example 5.
It is thus indeed sufficient to show how to handle every individual language with the generic framework
for SPHFs. The resulting scheme is an iZK for the NP language defined by C , secure under plain DDH.
It is straightforward to extend it to be secure under weaker assumptions such as DLin.

33

For Languages Defined by an ABP. ABP is an efficient computational model that captures, among
others, the computation of Boolean formulas, Boolean branching programs and arithmetic formulas. It
also gives a very compact representation of multivariate polynomials. A branching program is defined
by a directed acyclic graph (V,E) with two special vertices µ, ν ∈ V and a labeling function Φ. An ABP
computes a function F : F`p → Fp (p is a prime power) as follows: Φ assigns to each edge of E either a
constant value or an affine function in any number of the input variables of F , and F (z) is the sum
over all the path from µ to ν of the product of all the values along the path. The evaluation of F can
be performed by assigning a value to each node, when nodes are sorted topologically (i.e., in such an
ordering, a node appears always after its predecessors). The last node is ν and its value if the value
F (z).

In our case, we use ABP to define an NP language in the following way: a word x is in the language
L if there exists a witness iw such that F (x, iw) = 0. The prover sends (as part of the public key
ipk), ElGamal ciphertexts encrypting both all the bits of iw and all the values of the nodes when Φ is
instantiated with x and iw. Then, as above, he uses a SPHF to implicitly prove that:

– encryption of input bits of iw indeed contain bits;
– encryption of the last node ν really contains 0;
– each value for the nodes are computed correctly; the plaintext is just the sum of the values of the

previous nodes multiplied by affine evaluations on the input (x, iw).

Every individual language can be efficiently represented by an SPHF, and then conjunctions help to
conclude, under the DDH assumption.

F.2 iZK for any NP Language Defined by a Circuit

In every construction described below, we consider that the additively homomorphic ElGamal encryption
scheme is used. We will denote Epk(a; r) the encryption of a under the public key pk and with randomness
r.

Notations. Let F : {0, 1}` → {0, 1} be a function computed by a circuit C on a basis B of boolean
gates (with two input wires, without loss of generality), given by its directed acyclic graph (V,E). F
takes as input z = (x, iw) where x ∈ {0, 1}`x and iw ∈ {0, 1}`iw such that `x + `iw = `. Nodes or gates v
in V are either an input gate corresponding to some bit xi of x, iwi of iw, or a constant bit, or a boolean
gate in the basis B. Let s = |V | be the size of the circuit. We consider the partial order on the set of
gates V defined by u 4 v if there is a path from the gate u to the gate v (the graph is acyclic). Then,
we index the gates V = (vi)

s
i , in an order-preserving way, such that for i = 1, . . . , `, vi corresponds to

the input bit zi of z and, if vi 4 vj , then i ≤ j. For each internal gate vi, with i > `, we denote by
{i1, i2} = P(i) the indexes of the two preceding gates whose outputs are the inputs of vi. The output
bit of the gate vi when evaluated on z = (x, iw) is denoted Ai (for input gates, the output bit is just
the value of the input).

Extended Language for F . We want an iZK for iL = {x ∈ {0, 1}`x | ∃iw ∈ {0, 1}`iw , F (x, iw) = 1}.
However, this language cannot be directly handled by the SPHF framework, and we have to extend it
first: we consider the extended language L of words of iL along with the encryption of the output
bits Ai of the gates vi for i > `x (hence including the input gates corresponding to the bits of iw but
excluding those corresponding to the bits of x, which are anyway already known). Witness for the new
language will be the random coins for all the ciphertexts, together with the values Ai for i > `x. We
recall that Ai = xi for i = 1, . . . , `x.

Formally, for a gate vi, let (βi, β+i , β
×
i) be three integers such that, on input (x, y), the output of

the gate is (βi + β+i (x+ y) + β×i xy). This models all the (symmetric) binary gates: XOR = (0, 1,−2),
OR = (0, 1,−1), AND = (0, 0, 1), NAND = (1, 0,−1), while the unary gate NOT is just XOR 1. For
i = `x + 1, . . . , s, we consider a ciphertext ci = E(Ai; ri) of Ai with random coins ri. We now consider
the language L of the words C = (x, (ci)

s
i=`iw+1) such that there exist witnesses (Ai, ri)si=`iw+1 satisfying:

As = 1, for all i = `x + 1, . . . , s, ci encrypts the bit Ai with random coins ri, and, for i = `, . . . , s, Ai

34

Algorithm 1 Dynamic ABP Computation
1: procedure DAC(F, x) . F is an ABP and x is its input
2: A0 ← 1
3: for i = 1 to |V | do
4: Ai ← 0
5: for all vj ∈ prec(vi) do
6: Ai ← Ai + Φ((vj → vi), x) ·Aj . A0 is set as the value of the predecessor of v1
7: return (Ai)2≤i≤|V | . A|V | = F (x)

verifies the appropriate relation with Ai1 and Ai2 , for {i1, i2} = P(i). However, there are quadratic
relations, we thus need additional variables to linearize the system.

Now, let us show how to construct an SPHF on this language L which can be automatically used
to construct an iZK using the framework defined in Section 3 for the above language iL . Concretely,
we use an ElGamal encryption in basis g, with public key h, and we write ci = (c1i = gri , c2i = hrigAi).
C = (x, (ci)

s
i=`iw+1) is in L if and only if there exist (Ai)

s
i=`x+1 ∈ {0, 1}s−`x , (ri)si=`x+1 ∈ Zs−`xp ,

(µi)
s
i=`x+1 ∈ Zs−`xp and (µ′i)

s
i=`+1 ∈ Zs−`p , such that:

gri = c1i and hri · gAi = c2i

(c1i)
Ai · g−µi = 1 and (c2i /g)

Ai · h−µi = 1

for i = `x + 1, . . . , s and:

(c1i2)
Ai1 · g−µ′i = 1 and gβ

+
i Ai1 · gβ

+
i Ai2 · (c2i2)

β×i Ai1 · h−β
×
i µ
′
i · g−Ai = g−βi for i = `+ 1, . . . , s

for i = `+1, . . . , s, with {i1, i2} = P(i), since the second of equations ensures µi = riAi and Ai(Ai−1) =
0 (i.e., Ai is a bit), while the third one ensures µ′i = ri2Ai1 and Ai = βi + β+i (Ai1 +Ai2) + β×i Ai1Ai2 .
These linear equations (in the exponents) directly provides the matrix Γ (C), while θ(C) is defined by
the right-hand sides of the relations. This then leads to an SPHF over L , based on the plain DDH.

F.3 iZK for any NP Language Defined by an ABP

Notations: Let F : Z`p → Zp be a function computed by an ABP given by its directed acyclic graph
(V,E), two special vertices µ, ν ∈ V and a labeling function Φ : E × Z`p → Zp. F takes as input
z = (x, iw), where x ∈ Z`xp and iw ∈ Z`iwp such that `x + `iw = `. Let s = |E| be the size of the ABP. We
denote by (u→ v) the edge from the vertex u to the vertex v. We consider the partial order on the set
of vertices V defined by u 4 v if there is a path from the gate u to the gate v (the graph is acyclic).
Then, we index the vertices V = (vi)s in an order-preserving way: vi 4 vj ⇒ i ≤ j, µ = v1 and ν = v|V |.
For each node v 6= µ, we denote by prec(v) the set of direct predecessors of v, i.e., the vertices u such
that (u→ v) ∈ E. Algorithm 1 describes the way the ABP is evaluated in an input x. When the input
x can be seen as a pair of tuples x = (x, iw) ∈ Z`xp × Z`iwp = Z`p, we consider the problem, for a given x,
of the existence of a witness iw such that F (x, iw) = 0. We want to build an iZK on the language of the
words x with such witnesses iw.

Extended Language for F . As above, we want an iZK for iL = {x ∈ Z`xp | ∃iw ∈ Z`iwp , F (x, iw) = 0}.
We can extend it, as above, with the ciphertexts ci of all the witnesses iwi and ai of all intermediate
values Ai of the dynamic ABP computation (except the special vertices A1 = 1 and A|V | = 0). Then the
witnesses are (ri)

`iw
i=1 and (si)

|V |−1
i=2 , the random coins for the encryption. We now consider the language

L of the words (x, (ci)`iwi=1, (ai)
|V |−1
i=2) such that there exist witnesses ((ri, iwi)`iwi=1, (si, Ai)

|V |−1
i=2) satisfying:

for all i = 1, . . . `iw, ci encrypts the scalar iwi with random coins ri, for i = 2, . . . , |V | − 1, ai encrypts
the scalar Ai with random coins si, and Ai verifies the appropriate relation w.r.t. its predecessors, as
well A1 = 1 and A|V | = 0, which introduces again quadratic relations.

As above, using ElGamal encryption, we can write ci = (c1i = gri , c2i = hrigiwi) and ai = (a1i =

gsi , a2i = hsigAi). The word C = (x, (ci)
`iw
i=1, (ai)

|V |−1
i=2) is in L if and only if there exist (iwi)i=1,...,`iw ∈ Z`iwp ,

35

(ri)i=1,...,`iw ∈ Z`iwp , (Ai)
|V |−1
i=2 ∈ Z|V |−2p , (si)

|V |−1
i=2 ∈ Z|V |−2p , and µi,j ∈ Zp, for i = 2, . . . , |V | − 1 and

j = 1, . . . , `iw (but actually for all the values iwj that appears in labels on edges leaving from vi), such
that:

gri = c1i and hri · giwi = c2i for i = 1, . . . , `x

gsi = a1i and hsi · gAi = a2i for i = 2, . . . , |V | − 1

(a1i)
iwj · g−µi,j = 1 for i = 2, . . . , |V | − 1, for j = 1, . . . , `iw

g
∑

vj∈prec(vi)
Ai·Φ((vj→vi),x)−Ai

= 1 for i = 2, . . . , |V |, with A|V | = 0

where x = (x, iw). We recall that Φ(vj → vi) is an affine function (or a constant) in x (known by
both players) and iw (encrypted in the ci’s). So quadratic terms Aiiwj can be computed using the
intermediate value µi,j , as above, that implicitly corresponds to riiwj to remove extra terms in h
introduced by (a2i)

iwj : (a2i)
iwj · h−µi,j is indeed gAiiwj when the first row is enforced.

A Concrete Example. Let us consider the following language iL = {(x1, x2) ∈ Z2
p | ∃iw ∈ Zp, (iw2 −

x1)(iw
2 − x2) = 0} of pairs of integers modulo p such that at least one of the elements of the pair is a

square. This language can be efficiently represented by the following ABP:

v1

−x1

v3

−x2

v5

iw
v2

iw iw
v4

iw

Applying the dynamic ABP computation algorithm, we get A1 = 1, A2 = iw, A3 = iwA2−x1A1 = iw2−x1,
A4 = iwA3, and A5 = (iw2 − x2)A3 = (iw2 − x1)(iw

2 − x2). Thus, we construct the extended language
of words L ′ = {(x1, x2), (c1, c2), (a1i , a2i)4i=2} such that there exists (µi)4i=2 ∈ Z3

p so that the plaintexts
iw, and (A2, A3, A4) satisfy:

gr = c1 and hr · giw = c2

gsi = a1i , h
si · gAi = a2i and (a1i)

iw · g−µi = 1 for i = 2, 3, 4

giw · g−A2 = 1 and (a22)
iw · h−µ2 · g−A3 = gx1

(a23)
iw · h−µ3 · g−A4 = 1 and (a24)

iw · h−µ4 = gx2

We have 15 equations and 11 witnesses (iw, r, (Ai)42, (si)42, (µi = siiw)
4
2). However, in this particular

example, we can drop three equations and two witnesses: as the value A2 is exactly the witness iw,
we can use drop (c1, c2) and use (a12, a

2
2) instead. In addition, we can remove the two first equations

and the equation giw · g−A2 = 1: we now have 12 equations and 10 witnesses ((Ai)42, (si)42, (µi = siiw)
4
2).

We stress the fact that in particular applications with a “good” structure, it is often possible to get
optimizations on the theoretical size of the corresponding iZK. This leads to a iZK with public key of
size |ipk| = 30 and ciphertexts of size |c| = 24 (using the optimization of C).

	Implicit Zero-Knowledge Arguments and Applications to the Malicious Setting
	Introduction
	Definition of Implicit Zero-Knowledge Arguments
	Notations
	Definition
	Security Requirements

	Construction of Implicit Zero-Knowledge Arguments
	Review of the Generic Framework of SPHFs over Cyclic Groups
	Limitations of Smooth Projective Hash Functions
	iZK Construction
	SSiZK Construction

	Application to the Inner Product
	Details on the Inner Product Protocols
	Intuition on the Efficiency Improvements
	Setup
	Inner Product Protocol with iZK
	Inner Product Protocol with Groth-Sahai NIZKs
	Inner Product Protocol with Schnorr Sigma-Protocols

	Semi-Honest to Malicious Transformation
	More Efficient iZK Constructions
	Reducing the Size of the Ciphertext Using Entropy Extractors
	More Efficient Construction with Word-Dependent CRS

	Proofs
	Proof of the iZK Construction of Section 3
	Details and Proof of the SSiZK Construction of Section 3.4
	Proof of iZK Construction for Word-Dependent CRS of Appendix C.2
	Proof of Construction of ZK Arguments from iZK
	Proof of Security of our Inner Product Protocol in the UC Model

	Other Constructions of iZK
	Construction of iZK from TSPHFs
	Construction of iZK from NIZK

	iZK for Languages Defined by a Computational Structure
	Efficient iZK for Languages Represented by a Computational Structure
	iZK for any NP Language Defined by a Circuit
	iZK for any NP Language Defined by an ABP

