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Abstract. In this paper, we study stability and linearization of multi-
valued nonlinear feedback shift registers which are considered as logic
networks. First, the linearization of multi-valued nonlinear feedback shift
registers (NFSRs) is discussed, which is to find their state transition ma-
trices by considering it as a logical network via a semi-tensor product ap-
proach. For a multi-valued NFSR, the new state transition matrix which
can be simply computed from the truth table of its feedback function is
more explicit. Second, based on the linearization theory of multi-valued
NFSRs, we investigate the stability of multi-valued NFSRs, and some suf-
ficient and necessary conditions are provided for globally (locally) stable
multi-valued NFSRs. Finally, some examples are presented to show the
effectiveness of the proposed results.
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1 Introduction

It is known that nonlinear feedback shift registers (NFSRs) are the main build-
ing blocks in many fields. For example, the eSTREAM Stream Cipher Project
hardware finalists, Grain [1], Mickey [2] and ,Trivium [3]. In addition, many con-
volutional decoders use NFSRs as their main building blocks [4]. In the process of
decoding, an error tends to induce a successive of further decoding errors. There
are some strategies such as periodic re-synchronization have been proposed to
control this error-propagation. The stability of an NFSR is an alternative to
limit this error propagation.

The theory of NFSRs which is different from LFSRs is not well-understood
due to its complexity and lack of efficient analysis tools, though numerous efforts
have been made over the past decades. It is known that an n-stage LFSR can
use an n-dimensional matrix to describe its state transition. Such a matrix is
called a state transition matrix of the LFSR. For an NFSR, does there also exist
a state transition matrix? The linearization of NFSRs answers this questions.

The Linearization of NFSRs is to find their state transition matrices. This
paper uses a linearization method for NFSRs, namely, the Boolean network ap-
proach (preliminary work was given in [5]). An NFSR was viewed as a finite-state
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automaton in [6] and as a finite-state machine in [7]. In particular, it was viewed
as a Boolean network in [8]. A Boolean network is an autonomous system that
evolves as an automaton through Boolean functions. However, it is different to
any autonomous systems studied in the conventional system theory, where the
system variables take infinite number of reals. Over the last decades Boolean
network have attracted much attention in many communities, ranging from bi-
ology [9] and physics [10] to system science [11], and their resulting monography
[12], and [13, 14].

The semi-tensor product of matrices [11] has been successfully used in the
study of Boolean networks [15, 16], multi-valued and mix-valued logical networks
[17, 18], and some other related fields [19, 20]. In their work, a Boolean function
can be expressed as a multi-linear mapping with respect to its variables, and a
Boolean network is therefore converted into a conventional discrete-time linear
system. In [16], a matrix expression of a Boolean network was investigated. Multi-
valued logical networks were studied, and the controllability of multi-valued
logical control networks was revealed in [17]. In particular, based on the linear
system description of a Boolean network, its global stability was investigated
in [21] via an incident matrix, and it was also studied in [22] via the state
transition matrix. Some sufficient and necessary conditions were given in both
references. In addition, local stability of Boolean networks was addressed in the
latter reference.

This paper investigates the multi-valued NFSR. First, the linearization of
multi-valued NFSRs is discussed which is to find their state transition matrices
by considering it as a logical network via a semi-tensor product approach. Then,
based on the Linearization theory of multi-valued NFSRs (logic network repre-
sentation), we investigate the stability of multi-valued NFSRs, and some suffi-
cient and necessary conditions are provided for globally (locally) stable multi-
valued NFSRs.

The rest of this paper is organized as follows. Section 2 gives some notations
and necessary preliminaries on the semi-tensor product of matrices in the study
of Boolean networks. In Section 3, we present the linearization of multi-valued
NFSRs, and in Section 4, we give the stability of multi-valued NFSRs, and
some sufficient and necessary conditions are provided for globally (locally) stable
multi-valued NFSRs, which is followed by the conclusion in section 5.

2 Preliminaries

This section presents some notations and necessary preliminaries on the semi-
tensor product in the study of logic networks.

Semi-tensor product (STP) of matrices is an extension of conventional matrix
product to any two arbitrary matrices. Using it, we can give the logic a vector
expression, any logical function can be identified by its structure matrix (or
canonical form), and furthermore a finite-valued or mixed-valued logical network
can be converted to its algebraic form, which is very useful for the structure
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analysis and synthesis of such networks. We refer to [12, 15, 16] and the references
therein for details.

First, we give some notations used in this paper.

– In : identity matrix.
– δin: the i-th column of the identity matrix In.
– Colj(B): the j-th column of a matrix B.
– Lm×n : the set of m × n logical matrices, if A ∈ Lm×n, and columns of A

are of the form of δim.
– Dk = {0, 1, 2, · · · , k − 1},∆n = {δin|i = 1, 2, · · · , n}.
– If L ∈ Lm×n, it can be expressed as L = [δi1m δi2m · · · δinm ]. For the sake of

compactness, it is briefly denoted by L = δm[i1 i2 · · · in].

Next, we give some definitions and results about the semi-tensor product in the
study of logic networks.

Definition 1 [23] Let A = (aij) and B be matrices of dimensions n × m and
p× q, respectively. The Kronecker product of A and B is defined as an np×mq
matrix, given by

A⊗B =


a11B a12B · · · a1mB
a21B a22B · · · a2mB
...

...
...

...
an1B an2B · · · anmB

 .

Definition 2 [12] Let A and B be matrices of dimensions n × m and p × q,
respectively, and let α be the least common multiple of m and p. The (left) semi-
tensor product of A and B is defined as an nα

m × qα
p matrix, given by

AnB = (A⊗ I α
m
)(B ⊗ Iα

p
).

Throughout this paper the default matrix product is the semi-tensor product.
The semi-tensor product is a generalization of the conventional matrix product.
Thus, we can simply call it product and omit the symbol n without confusion.

Definition 3 [24] Let A = [A1 A2 · · · An] and B = [B1 B2 · · · Bn] be matrices
of dimensions m×n and p×n, respectively, where Ai, Bi, i = 1, 2, . . . , n are the
i-th column of matrices A and B respectively. The Khatri-Rao product of A and
B is defined as an mp× n matrix, given by

A ∗B = [A1 ⊗B1 A2 ⊗B2 · · · An ⊗Bn].

where ⊗ represents the Kronecker product.

We consider a map φ is defined by

φ : x ∈ Dk 7−→ X = δk−x
k ∈ ∆k.

Obviously, φ is a bijection. We denote: Dk ∼ ∆k.
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Lemma 1 [12] Suppose
x = X1X2 · · ·Xn

with Xi ∈ ∆k, i = 1, 2, . . . , n. Then x ∈ ∆kn and each Xi is uniquely determined
by x. Moreover, For any j ∈ {1, 2, . . . , kn}, the state x = δjkn ∈ ∆kn and the

state [x1 x2 · · · xn]
T ∈ Dn

k satisfying kn−1x1 + kn−2x2 + · · ·+ xn = kn − j are
one-to-one correspondent.

Lemma 2 [12] For any k-valued function f(x1, x2, . . . , xn) with xi ∈ Dk, i =
1, 2, . . . , n, let [s1, s2, . . . , skn ] be he truth table of f , arranged in the reverse
alphabet order. Then f can be expressed as a multi-linear form:

f(X1, X2, . . . , Xn) = MX1X2 · · ·Xn,

where Xi ∈ ∆k, i = 1, 2, . . . , n, and M = δk[k − s1 k − s2 · · · k − skn ] is called
the structure matrix of f .

A k-valued logic network with n nodes can be described as the following system:

x1(t+ 1) = g1(x1(t), x2(t), . . . , xn(t)),
x2(t+ 1) = g2(x1(t), x2(t), . . . , xn(t)),
...

xn−1(t+ 1) = gn−1(x1(t), x2(t), . . . , xn(t)),
xn(t+ 1) = gn(x1(t), x2(t), . . . , xn(t)).

(1)

where gi : Dn
k → Dk, xi ∈ Dk. Let Gi be the structure matrix of the function gi.

Then according to Lemma 1 and Lemma 2, the k-valued logic network can be
equivalently described as a linear system:

x(t+ 1) = Lx(t), (2)

where the state x ∈ ∆kn and the state transition matrix L = G1 ∗G2 ∗ · · · ∗Gn ∈
Lkn×kn .

3 Linearization of Multi-valued Nonlinear Feedback Shift
Register

The following Fig.1 denotes an n-stage NFSR with a feedback functionin f(x1(t),
x2(t), . . . , xn(t)). View the n-stage k-valued NSFR (In the following discussion,
we call it NSFR simply.) as a k-valued logic network, then it can be expressed
as: 

x1(t+ 1) = x2(t),
x2(t+ 1) = x3(t),
...

xn−1(t+ 1) = xn(t),
xn(t+ 1) = f(x1(t), x2(t), . . . , xn(t)).

(3)

where xi ∈ Dk, i = 1, 2, · · · , n, and f : Dn
k → Dk.

Therefore it has a linear representation (1). We have the following results.
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Fig. 1. Nonlinear Feedback Shift Register

Lemma 3 Consider an n-stage NFSR with a feedback function f . Let M =
[M1 M2 · · · Mkn−1 ] be the structural matrix of NFSR which can be got the truth
table of f , arranged in the reverse alphabet order, and L = [L1 L2 · · · Lkn−1 ] be

the state transition matrix. Then we have Colj(Li) = δ
(i−1)k+j
kn−1 Colj(Mi), where

L ∈ Lkn×k,M ∈ Lk×k, j = 1, 2, . . . , k, i = 1, 2, . . . , kn−1.

Proof. View the NFSR as a k-valued logic network. Then the NFSR can be
expressed as the following logic network:

x1(t+ 1) = x2(t),
x2(t+ 1) = x3(t),
...

xn−1(t+ 1) = xn(t),
xn(t+ 1) = f(x1(t), x2(t), . . . , xn(t)),

where xi ∈ Dk, i = 1, 2, . . . , n, and f : Dn
k → Dk. Let Ti be the structure matrix

of xi(t + 1) = xi+1(t), i ∈ 1, 2, . . . , n− 1, and M be the structure matrix of
xn(t+ 1) = f(x1(t), x2(t), . . . , xn(t)). Then it is easy to see that

T1 = [G1 · · ·G1︸ ︷︷ ︸
k1

], G1 = [δ1k · · · δ1k︸ ︷︷ ︸
kn−2

δ2k · · · δ2k︸ ︷︷ ︸
kn−2

· · · δkk · · · δkk︸ ︷︷ ︸
kn−2

],

T2 = [G2 · · ·G2︸ ︷︷ ︸
k2

], G2 = [δ1k · · · δ1k︸ ︷︷ ︸
kn−3

δ2k · · · δ2k︸ ︷︷ ︸
kn−3

· · · δkk · · · δkk︸ ︷︷ ︸
kn−3

],

...

Tn−1 = [Gn−1 · · ·Gn−1︸ ︷︷ ︸
kn−1

], Gn−1 = [δ1k · · · δkk ],

M = [M1 · · · Mkn−1 ].

Then (1) shows that the unique state transition matrix L satisfying L = T1 ∗T1 ∗
· · ·Tn−1∗M , where ”*” is the Khatri-Rao product. Straightforward computations
yield the columns of L satisfying

Colj(Li) = δ
(i−1)k+j
kn−1 Colj(Mi),
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where j = 1, 2, . . . , k, i = 1, 2, . . . , kn−1.

Theorem 4 Let the state transition matrix of NFSR be L = δkn [η1 η2 · · · ηkn ],
the structural matrix be M = δk[p1 p2 · · · pkn ], and [s1 s2 · · · skn ] be the
truth table of the feedback function f . Then ηi = (i (mod kn−1) − 1)k + pi =
i(mod kn−1)k − si.

Proof. We simplify the representation

Colj(Li) = δ
(i−1)k+j
kn−1 Colj(Mi),

where j = 1, 2, . . . , k, i = 1, 2, . . . , kn−1.
Let (i− 1)k + j = m, then straightforward computations show that

ηi = (i− 1)k + pi,
ηi+kn−1 = (i− 1)k + pi+kn−1 ,
ηi+2kn−1 = (i− 1)k + pi+2kn−1 ,
...

ηi+(k−1)kn−1 = (i− 1)k + pi+(k−1)kn−1 .

(4)

where i = 1, 2, . . . , kn−1.
Therefore ηi = (i (mod kn−1) − 1)k + pi, i = 1, 2, · · · , kn. Moreover, since si =
k−pi, we have ηi = (i (mod kn−1)−1)k+pi = (i (mod kn−1)−1)k−si, where
i = 1, 2, . . . , kn.

4 Stability of Multi-valued Nonlinear Feedback Shift
Registers

In the beginning of this section, we first briefly review some existing basic defi-
nitions and properties about the stability of NFSRs.

The state diagram of an n-stage, k-valued NFSR is a directed graph con-
sisting of kn nodes and kn directed edges. Each node corresponds to a state of
the NFSR, and an edge from state X to state Y means that X is shifted to
the state Y. X is called a predecessor of Y, and Y is called the successor of
X. Every state of an NFSR has a unique successor, but may have no predeces-
sor or a single predecessor or two predecessors. The state with two predecessors
is called a branch state, while the state without predecessors is called a start-
ing state. A sequence of p distinct states, X1,X2, · · · ,Xp, is called a cycle of
length p if X1 is the successor of Xp, and Xi+1 is a successor of Xi for any
i ∈ {1, 2, · · · , p−1}. Similarly, a sequence of p distinct states, X1,X2, · · · ,Xp is
called a transient of length p, if the following conditions are satisfied: (1) none
of them lies on a cycle; (2) X1 is a starting state; (3) Xi+1 is a successor of Xi

for any i ∈ {1, 2, · · · , p− 1}; (4) the successor of Xp lies on a cycle.
We consider g = [g1 g2 · · · gn],x = [x1 x2 · · · xn] ∈ Dn

k , (1) can be expressed
as:

X(t+ 1) = g(X(t)). (5)
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View the n-stage k-valued NSFR as a k-valued logic network, then it can be
expressed as (5). For any positive integer N , let gN+1(X(t)) = g(gN (X(t))),
which indicates that the state g(X(t)) is shifted N + 1 times from X(t).

Definition 4 A state X(t) is called an equilibrium state of the logic network
(5), if g(X(t)) = X(t). If the logic network (5) is a representation of an k-
valued NFSR, then its equilibrium state is also called an equilibrium state of the
NFSR.

Obviously, the logic network (5) has k possible equilibrium states, i = [i i · · · i], i =
0, 1, · · · , k − 1. Without loss of generality, throughout this paper, we assume 0
is an equilibrium state of the logic network representation (5) of an NFSR, or
equivalently, the feedback function f of the NFSR satisfies f(0) = 0. For the
equilibrium state i, through a coordinate transformation

X̄(t) = X(t)⊕ k − i,

the logic network (5) becomes

X̄(t+ 1) = g(X̄(t) + k − i) + k − i. (6)

It is easy to see that 0 is the equilibrium state of the logic network (6).

Definition 5 An n-stage NFSR is globally stable to the equilibrium state 0, if
for any state X(t), there exists a positive integer N such that the state transition
function of its logic network representation (5) satisfies gN (X(t)) = 0, that is,
0 is the unique equilibrium state and there are no cycles in the state diagram of
the NFSR.

Definition 6 An n-stage NFSR is locally stable to the equilibrium state 0,
if there exists some state X(t) ̸= 0 such that for some positive integer N
the state transition function of its Boolean network representation (1) satisfies
gN (X(t)) = 0.

Since an n-stage NFSR has an equivalent logic network representation in a linear
system (2), accordingly, we give an equivalent definition of globally (locally)
stable NFSR as follows.

Definition 7 An n-stage NFSR is globally stable to the equilibrium state 0, if
for any state x(t), there exists a positive integer N such that the state transition
matrix L of its logic network representation (2) satisfies LNx(t) = δk

n

kn .

Definition 8 An n-stage NFSR is locally stable to the equilibrium state 0, if
there exists some state x(t) ̸= δk

n

kn such that for some positive integer N the state
transition matrix L of its logic network representation (2) satisfies LNx(t) = δk

n

kn .

In the sequel, an NFSR is globally (resp. locally) stable means an NFSR is
globally (resp. locally) stable to the equilibrium state 0. From their definitions,
it is easy to see that a globally stable NFSR must be locally stable, but not the
vice versa.
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Definition 9 An NFSR is called a globally stable maximum transient NFSR if
it is globally stable and has a single starting state.

Some properties of local stability are next given.

Theorem 5 An NFSR is locally stable if and only if the feedback function sat-
isfies f(0, · · · , 0) = 0, and there are at least i ∈ {1, 2, · · · , k − 1} such that
f(i, 0, · · · , 0) = 0.

Proof. Necessity: Clearly, according to Definition 6, f(0, · · · , 0) = 0 is a neces-
sary condition for a locally stable NFSR. For any NFSR whose feedback function
f satisfies f(0, · · · , 0) = 0, the state 0 has only two possible predecessors: itself
and [i 0 · · · 0], i ∈ {1, 2, · · · , k− 1}. If the NFSR is locally stable, then there ex-
ists some state X(t) ̸= 0 such that for some integer N , gN (x(t)) = 0. Thus, 0 has
a predecessor different to itself. Hence, here there are at least i ∈ {1, 2, · · · , k−1}
such that f(i, 0, · · · , 0) = 0.

Sufficiency: f(0, · · · , 0) = 0 implies that 0 is an equilibrium state of the
NFSR. If there are at least i ∈ {1, 2, · · · , k − 1} such that f(i, 0, · · · , 0) = 0,
then [i 0 · · · 0] is a predecessor of 0. In other words, there exists a state x(t) =
[i, 0, · · · , 0] such that g(x(t)) = 0, which implies that the NFSR is locally stable.

Theorem 6 Let L = δkn [η1 η2 . . . ηkn ] be the state transition matrix of the
logic network representation (2) in a linear system of an n-stage NFSR. Then the
NFSR is locally stable, then ηkn = kn and there are at least i ∈ {1, 2, · · · , k− 1}
such that η(k−i)kn−1 = kn.

Proof.The result follows from (4) in Theorem 4 and Theorem 5.

Theorem 7 Let L = δkn [η1 η2 . . . ηkn ] be the state transition matrix of the
logic network representation (2) in a linear system of an n-stage locally stable
NFSR. Assume the initial state of system (2) be x0 = δrkn , if
(1)colkn(L) = δk

n

kn ;
(2)there exists an integer l, such that colr(L

l) = δk
n

kn .

Proof. Clearly, according to Definition 8, f(0, · · · , 0) = 0 is a necessary condi-
tion for a locally stable NFSR, i.e., skn = 0, according to (4) in Theorem 4, we
have ηkn = kn, i.e., colkn(L) = δk

n

kn ,
There exists an integer l, such that colr(L

l) = δk
n

kn . thus Llδrkn = δk
n

kn .
This completes the proof.

Next, some properties of global stability are next given.

Theorem 8 If the NFSR is globally stable maximum transient, then there exists
a unique i ∈ {1, 2, · · · , k − 1} such that f(i, 0, · · · , 0) = 0.

Proof. If the NFSR is globally stable maximum transient, then other states
have unique predecessor and successor, except the starting state and the state 0.
the state 0 has only two types of possible predecessors: itself and [i, 0, · · · , 0], i ∈
{1, 2, · · · , k−1}, moreover the NFSR is globally stable maximum transient, thus
0 has a unique predecessor different to itself.
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Theorem 9 Let L = δkn [η1 η2 . . . ηkn ] be the state transition matrix of the logic
network representation (2) in a linear system of an n-stage NFSR. If the NFSR is
globally stable maximum transient, then there exists a unique i ∈ {1, 2, · · · , k−1}
such that ηkn = η(k−i)kn−1 = 0.

Proof. As the NFSR is globally stable maximum transient, then there exists a
unique i ∈ {1, 2, · · · , k − 1} such that f(i, 0, · · · , 0) = f(0, 0, · · · , 0) = 0, thus
skn = s(k−i)kn−1 = 0. The result follows from Theorem 4.

Theorem 10 Let L be the state transition matrix of the logic network represen-
tation (2) in a linear system of an n-stage NFSR. If the NFSR is globally stable,
then there exists an integer N such that each columns of LN are equal to δk

n

kn .

Proof. As the equilibrium state 0 ∈ Dn
k is uniquely corresponding to the state

δk
n

kn ∈ ∆kn , that an n-stage NFSR is globally stale to the equilibrium state
0 is equivalent to that the n-stage NFSR is globally stable to the state δk

n

kn .
Clearly, any state of an n-stage globally stable NFSR with one more starting
states must be shifted fewer times to reach the equilibrium state 0 than the n-
stage globally stable maximum transient NFSR. For an n-stage globally stable
maximum transient NFSR, the starting state x0 = δikn , must shift kn − 1 times
to go through all other states and finally reaches the state δk

n

kn . (or equivalently,
the state 0) and keeps staying at this state. Therefore, N = kn− 1 is the largest
power such that each column of LN is equal to δk

n

kn .

Theorem 11 Let L = δkn [η1 η2 . . . ηkn ] be the state transition matrix of
the logic network representation in a linear system of an n-stage NFSR. Then,
δjkn , j ∈ {1, 2, · · · , kn} is a branch state if and only if there exist at least two dif-
ferent elements a1, a2 in the set {0, 1, · · · , k−1} such that ηa1kn−1+i = ηa2kn−1+i =
j and i = ⌈ j

k ⌉.

Proof. (Sufficiency) ηa1kn−1+i = ηa2kn−1+i = j, then Lδa1kn−1+i = Lδa2kn−1+i =

δjkn , thus δ
j
kn , j ∈ {1, 2, · · · , kn} is a branch state.

(Necessity) If δjkn is a branch state. According to Lemma 1, the state δjkn is

uniquely corresponding to the state X = [X1 X2 · · · Xn]
T ∈ Dn

k satisfying
kn−1X1 + kn−2X2 + · · · + Xn = kn − j. The state X is a branch state, then
it has at least two possible predecessor: [k − 1 − a1, X1, · · · , Xn−1]

T and [k −
1− a2, X1, · · · , Xn−1]

T , where a1, a2 ∈ {0, 1, · · · , k − 1} and a1 ̸= a2. Since the
matrix L uniquely corresponds to the truth table of the feedback function that
is arranged in the reverse alphabet order, accordingly we arrange all kn states
in Dn

k of the NFSR in the reverse decimal order as well. Thus, it is easy to
see that if we denote as Xa1kn−1+i = [k − 1 − a1, X1, · · · , Xn−1]

T , and then
Xa2kn−1+i = [k − 1− a2, X1, · · · , Xn−1]

T . According to Lemma 1, we have

kn − a1k
n−1 + i = (k − 1− a1)k

n−1 +X1k
n−2 + · · ·+Xn−1. (7)

kn − j = X1k
n−1 +X2k

n−2 + · · ·+Xn. (8)



10 Haiyan Wang, Dongdai Lin

According to (7) and (8), we have

kn−j = k(X1k
n−2+X1k

n−2+· · ·+Xn−1)+Xn = k(kn−1−i)+Xn = kn−ki+Xn.

It yields ki = j +Xn, Since Xn ∈ {0, 1, · · · , k − 1}, we conclude that i = ⌈ j
k ⌉.

Fig. 2. The State Diagram of The Example

In the end of this section, an example is given to show the effectiveness of
the results obtained in this paper.

Example Consider the following three 2-stage 3-valued NFSRs. The state 0
is their equilibrium state.

Consider a nonlinear feedback shift register with a feedback function:

f1(x1, x2) = x1 + x2 + x2
1 + 2x2

1x
2
2. (9)

Using the vector form, 0 ∼ δ33 , 1 ∼ δ23 , 0 ∼ δ13 , we obtain from (9):

f1(x1, x2) = δ3[1 0 0 0 2 2 2 1 0]x1x2 = M1x1x2.

The state diagram in Fig.2 (a) shows it is locally stable. According to (4) in
Theorem 4, we have:

x(t+ 1) = δ9[2 6 9 3 4 7 1 5 9]x(t) = L1x(t).

L2
1 = δ9[6 7 9 9 3 1 2 4 9], L3

1 = δ9[7 1 9 9 9 2 6 3 9], L4
1 = δ9[1 2 9 9 9 6 7 9 9].

f(0, 0) = 0, 0 is a unique equilibrium state. According to Theorem 5, Theorem
6, f(2, 0) = f(2, 1) = 0, and η3 = η9 = 9. According Theorem 7, the initial state
x0 = δ89 , therefore Col8(L

4) = δ99 .
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Consider a nonlinear feedback shift register with a feedback function:

f2(x1, x2) = x1 + x2 + 2x1x
2
2 + 2x2

1x
2
2. (10)

Using the vector form, 0 ∼ δ33 , 1 ∼ δ23 , 0 ∼ δ13 , we obtain from (10):

f2(x1, x2) = δ3[2 3 3 3 1 3 1 2 3]x1x2 = M2x1x2.

The state diagram in Fig.2 (b) shows it is locally stable. According to (4) in
Theorem 4, we have:

x(t+ 1) = δ9[2 6 9 3 4 9 1 5 9]x(t) = L2x(t).

L2
2 = δ9[6 9 9 9 3 9 2 4 9], L3

2 = δ9[9 9 9 9 9 9 6 3 9], L4
2 = δ9[9 9 9 9 9 9 9 9 9].

δ99 is a branch state, according to Theorem 11, there exist at least two different
elements η3, η6 such that η3 = η6 = 9. According Theorem 10, there exists an
integer N = 4 such that each columns of L4

2 are equal to δ99 .
Consider a nonlinear feedback shift register with a feedback function:

f3(x1, x2) = 2x1 + x2 + x2
1 + x1x

2
2 + x2

1x
2
2. (11)

Using the vector form, 0 ∼ δ33 , 1 ∼ δ23 , 0 ∼ δ13 , we obtain from (11):

f3(x1, x2) = δ3[2 3 1 3 1 3 1 2 3]x1x2 = M3x1x2.

The state diagram in the last picture of Fig.2 shows it is globally stable maximum
transient. According to (4) in Theorem 4, we have:

x(t+ 1) = δ9[2 6 7 3 4 9 1 5 9]x(t) = L3x(t).

L2
3 = δ9[6 9 1 7 3 9 2 4 9], L

3
3 = δ9[9 9 2 1 7 9 6 3 9], L

4
3 = δ9[9 9 6 2 1 9 9 7 9], L

2
3 =

δ9[9 9 9 6 2 9 9 1 9], L3
3 = δ9[9 9 9 9 6 9 9 2 9], L4

3 = δ9[9 9 9 9 9 9 9 6 9], L4
3 =

δ9[9 9 9 9 9 9 9 9 9]. According Theorem 8, there exists a unique state [1 0] such
that f(1, 0) = 0. there exists an integer 8 such that each columns of L8

3 are equal
to δ99 .

Remark 1 In [25], we know the starting state of a globally stable maximum
transient NFSR is [0 0 · · · 1] when k = 2. While k > 2, the starting state of
a globally stable maximum transient NFSR is not unique. For example, when
k = 3, n = 2, we consider two nonlinear feedback shift registers with feedback
functions f(x1, x2) = 2x1 + x2 + x2

1 + x1x
2
2 + x2

1x
2
2 and f(x1, x2) = 2x1 + x2 +

2x2
1+2x1x

2
2+x2

1x
2
2 respectively. They are both globally stable maximum transient,

but their starting states are [0 1] and [0 2] respectively.

5 Conclusion

In this paper, we considered the stability and linearization of multi-valued NF-
SRs. the linearization of multi-valued NFSRs is to find their state transition
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matrices by considering it as a logical network via a semi-tensor product ap-
proach. The new state transition matrix which can be simply computed from
the truth table of its feedback function is easier to compute and is more ex-
plicit. Then, based on the linearization theory of multi-valued NFSRs, globally
(locally) stable multi-valued NFSRs were investigated. Some sufficient and neces-
sary conditions were given. These results provide a method to construct globally
or locally stable NFSRs, and are also helpful to analyze the state diagram of a
NFSRs.
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