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Abstract. Since the discovery of simple power attacks, the cryptographic research community
has developed significantly more advanced attack methods. The idea behind most algorithms
remains to perform a statistical analysis by correlating the power trace obtained when executing
a cryptographic primitive to a key-dependent guess. With the advancements of cryptographic
countermeasures, it is not uncommon that sophisticated (higher-order) power attacks require
computation on many millions of power traces in order to find the desired correlation.

In this paper, we study the computational aspects of calculating the most widely used correlation
coefficient: the Pearson product-moment correlation coefficient. We study various time-memory
trade-off techniques which apply specifically to the cryptologic setting and present methods to
extend already completed computations using incremental versions. Moreover, we show how this
technique can be applied to second-order attacks, reducing the attack cost significantly when
adding new traces to a dataset. We also present methods which allow one to split the potentially
huge trace set into smaller, more manageable chunks in order to reduce the memory requirements.
Our concurrent implementation of these techniques highlights the benefits of this approach as
it allows efficient computations on power measurements consisting of hundreds of gigabytes on
a single modern workstation.

Keywords: Side-channel analysis, CPA, Pearson correlation coefficient, higher-order attacks.

1 Introduction

Since the late ‘90s it is publicly known that the (statistical) analysis of a power trace obtained
when executing a cryptographic primitive might correlate to, and hence reveal information
about, the secret key material used [13]. This active research area has seen a lot of development
over the years: from successfully retrieving the secret key material by inspecting a single power
trace using simple power analysis through differential power analysis [13] to using several time
samples [17, 29, 11] (cf. [14] for a survey on this topic). Eventually this led to the more general
correlation power analysis [6] which might need to inspect a large amount of traces in order to
reveal correlations between the power consumption and the bits of the secret key. Moreover,
the complexity of the attacks used have increased to higher (nth) order analysis [17]. In this
setting one computes joint statistical properties of the power consumption of n samples in
order to try and deduce information about the bits of the secret key material used.

This has led to a significant increase in the number of correlation coefficients one has to
compute. Researchers have reported handling millions [20, 24, 19], ten million [4], a hundred
million [21] and up to three hundred million power traces [3]. This increase of available data
requires more processing power in order to compute the required statistical analysis. This is
illustrated by recent work: e.g. [1, 18] investigates the usage of graphics processing units to
accelerate the computation while [16] explores the sophisticated usage of high-performance
computing in this setting. Although many hardware designers and power analysis experts
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report whether the implementations of their techniques withstand (higher-order) correlation
attacks, it is often not reported how much time was required to mount such attacks.

Over the last decade correlation power analysis (CPA) has become widely used and pre-
ferred over differential power analysis since it performs better and requires fewer traces [5]:
both important characteristics for measuring the effectiveness of an attack. One of the main
ingredients in algorithms based on CPA is the computation of the correlation coefficient. In
this paper we take a closer look at the Pearson product-moment correlation coefficient [23],
simply referred to as Pearson’s ρ, from a computational point of view, taking its role in cryp-
tology into account. Although other correlation coefficients have been considered as well (e.g.
in [2]), Pearson’s ρ has been used in almost all correlation power attacks over the last decade,
since it allows for an efficient correlation computation.

There are a lot of time-memory trade-off techniques one can apply to reduce the compu-
tational cost of Pearson’s ρ in the cryptologic setting. We study some of these techniques in
detail explore the available optimization options when computing correlations in the setting
of higher-order attacks. Additionally, we investigate the setting where additional traces are
added after an initial CPA attack did not reveal any leakage and we present algorithms which
can re-use computations in both the first and second order setting. This study of computa-
tional aspects is complemented with techniques allowing the computation of Pearson’s ρ on
memory constrained devices or, viewed differently, to compute the correlation function on
huge data sets using conventional desktop machines. We demonstrate the effectiveness of our
approach by showing implementation results of the methods used.

2 Preliminaries

Let X,Y be random variables with values uniformly distributed over R, let xi, yi, where
1 ≤ i ≤ n, be n samples of these variables, respectively. In this setting the expected value is
denoted as E[X] = x̄ = 1

n

∑n
i=1 xi, the covariance as σ(X,Y ) = E[(X −E[X])(Y −E[Y ])] =

E[XY ]− E[X]E[Y ], the variance as Var(X) = σ(X,X) = σ2X = E[(X − E[X])2] = E[X2]−
E[X]2 = 1

n

∑n
i=1(xi−x̄)2 =

(
1
n

∑n
i=1 x

2
i

)
−x̄2, and the standard deviation as σX =

√
Var(X).

The typical attack scenario we are concerned with is as follows. We assume we have
selected a specific implementation of a cryptographic algorithm on some device we wish to
attack. Let I(Z, k) represent a target intermediate state of the algorithm with input Z and
where only a small portion of the secret key is used, denoted by k. We assume that the power
consumption of the device at state I(Z, k) is the sum of a data dependent component and
some random noise, i.e. L(I(Z, k))+δ, where the function L(s) returns the power consumption
of the device during state s, and δ denotes some leakage noise. Following [15], we assume that
the noise is random, independent from the intermediate state and is normally distributed
with zero mean. The goal of an attacker is to recover the part of the key k by comparing
some real power measurements of the device with an estimation of the power consumption
under all possible hypothesis for k. However, the adversary does not know the exact leakage
function L. Estimating the leakage function is commonly done using the Hamming weight
model: in this model it is assumed that there is a relationship between the number of bits
set, the Hamming weight or population count, and the power consumption. In a CPA attack,
one tries to correlate the real power consumption with the predicted one in order to find the
correct portion k of the secret key.
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Table 1. Three different strategies to compute Ci,j = ρ(Ti,Kj) for all 1 ≤ i ≤ t, 1 ≤ j ≤ k as is common
in first order CPA. The three versions increasingly use the time-memory trade-off paradigm. The memory
requirement in parentheses for version 2 is in the case where the input cannot be overwritten.

Pseudocode add/sub mul div sqrt mem

v
er

si
o
n

0

for 1 ≤ i ≤ t do
t̄ = mean(Ti) t(n-1) t 1
for 1 ≤ j ≤ k do
k̄ = mean(Kj) kt(n-1) kt 1
Ci,j = ρ1(Ti, t̄,Kj , k̄) kt(5n-3) kt(3n+1) kt kt 6

Approximate total 6nkt 3nkt 2kt kt 8

v
er

si
o
n

1

for 1 ≤ i ≤ k do k̄i = mean(Ki) k(n-1) k k
for 1 ≤ i ≤ t do
t̄ = mean(Ti) t(n-1) t 1
for 1 ≤ j ≤ k do
Ci,j = ρ1(Ti, t̄,Kj , k̄j) kt(5n-3) kt(3n+1) kt kt 6

Approximate total 5nkt 3nkt kt kt k

v
er

si
o
n

2

for 1 ≤ i ≤ k do

k̄i = mean(Ki), k̂i = 0 k(n-1) k k
for 1 ≤ j ≤ n do
ki,j = ki,j − k̄i kn (kn)

k̂i = k̂i + k2
i,j kn kn k

for 1 ≤ i ≤ t do
t̄ = mean(Ti) t(n-1) t 1
for 1 ≤ j ≤ k do

Ci,j = ρ2(Kj , k̂j ,Ti, t̄) kt(3n-2) kt(2n+1) kt kt 4
Approximate total 3nkt 2nkt kt kt 2k

(kn)

A power trace denotes the power consumption of the device at t points in time during
a cryptographic operation. The adversary usually monitors a large amount of such traces in
order to cancel the effect of the noise δ. Typically this is done while setting k to a single
byte of the key in order to limit the number of enumerations to 28 = 256. As an example,
when targeting the Advanced Encryption Standard [8] (AES) it is common to target the
intermediate state after the S-box of the first round in the Hamming weight model. Hence,
given a plain-text byte p one computes the estimated power consumption of 28 key guesses
as PM(S(p ⊕ i)) where the power model function PM computes the Hamming weight, the
function S is the AES S-box and 0 ≤ i < 28.

More specifically, let T be a measurement consisting of n traces where each trace recorded
data at t different time points: hence, T consist of elements ti,j ∈ R for 1 ≤ i ≤ t and
1 ≤ j ≤ n. With Ti we denote a finite sequence of length n, Ti = [ti,1, ti,2, . . . , ti,n], which
consists of a single measurement of each trace sampled at time point i. Similarly, we define
the matrix K of k estimated power consumption of key guesses consisting of values ki,j ∈ R
with 1 ≤ i ≤ k and 1 ≤ j ≤ n corresponding to these n traces.

T =


T1

T2
...

Tt

 =


t1,1 t1,2 . . . t1,n
t2,1 t2,2 . . . t2,n

...
...

. . .
...

tt,1 tt,2 . . . tt,n

 , K =


K1

K2
...

Kk

 =


k1,1 k1,2 . . . k1,n

k2,1 k2,2 . . . k2,n
...

...
. . .

...
kk,1 kk,2 . . . kk,n

 (1)
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3 Pearson’s ρ and Time-Memory Trade-Off Techniques

The Pearson product-moment correlation coefficient, or simply Pearson ρ [23], is a well-known
method to measure the linear dependence between two random variables. This correlation is
measured as a value between−1 (total negative correlation) and +1 (total positive correlation)
where a value of zero indicates no correlation. The formula for this correlation is

ρ(X,Y ) =
σ(X,Y )

σXσY
=
E[(X − x̄)(Y − ȳ)]

σXσY
, (2)

and can be computed, using the notation from Section 2, as

ρ(X,Y ) =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
. (3)

There are various strategies to compute Eq. (3). In statistics, the typical setting is to
compute ρ(X,Y ) once or possibly compute multiple correlation coefficients where every com-
putation involves different datasets X and Y . In the setting of CPA, this situation is different:
one wants to correlate the n trace-values at a fixed point in time with the k different key-
guesses (consisting of a vector of n elements each). Hence, one computes the k correlation
coefficients where one of the inputs to ρ is fixed. This allows one to perform precomputations
in order to lower the number of arithmetic operations (at the cost of additional memory).

In Table 1 we outline three approaches based on the time-memory trade-off paradigm.
We assume that, as is the case when performing a first order CPA, we want to compute t · k
correlations as Ci,j = ρ(Ti,Kj) for all 1 ≤ i ≤ t, 1 ≤ j ≤ k. Table 1 states the computational
costs, expressed in terms of additions/subtractions, multiplications, divisions and square root
computations required. The approximate total only shows the accumulated part of the largest
terms where we assume that n > t > k (which is typical for CPA).

Version 0 uses no additional memory. For efficiency reasons the means of the Ti are
computed once before entering the second for-loop and re-used. The ρ1 function is identical
to Eq. (3) with the means precomputed

ρ1(T, t̄,K, k̄) =

∑n
i=1(ti − t̄)(ki − k̄)√∑n

i=1(ti − t̄)2
√∑n

i=1(ki − k̄)2
.

Version 1 precomputes the means of the k different keys, significantly reducing the number
of loads from memory and the number of addition and divisions. When k = 28, a common
choice when targeting an individual byte of the secret key, this is a cheap way, in terms of
memory, to gain performance. Compared to version 0, the number of additions in the most
significant term has been reduced by nkt and we only need half of the divisions.

Version 2 extends the precomputations and computes both (xi − x̄) and
∑n

i=1(xi − x̄)2

for all the k different key-guesses, where ki,j acts as the xi. When overwriting existing input
memory, which effectively centers the samples around zero, this can be computed by only
storing k more items. However, when the input cannot be destroyed because it might be
used in subsequent computations, the additional memory needed to store all the intermediate
values is significant and exceeds kn items. Compared to version 1 the number of additions
is further reduced by 2nkt (halving the number of additions compared to version 0) while
the number of multiplications has been reduced to approximately 2nkt (a reduction by nkt
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Table 2. Two different strategies to compute Ci,j = ρ(Ti,Kj) for all 1 ≤ i ≤ t, 1 ≤ j ≤ k based on the
incremental correlation formula (see Eq. (4)) and exploiting the time-memory trade-off paradigm.

Pseudocode add/sub mul div sqrt mem

v
er

si
o
n

3

for 1 ≤ i ≤ t do
s1 = ti,1, s2 = t2i,1 t 2
for 2 ≤ ` ≤ n do
s1 = s1 + ti,` t(n-1)
s2 = s2 + t2i,` t(n-1) t(n-1)

for 1 ≤ j ≤ k do
s3 = kj,1, s4 = k2

j,1 kt 2
s5 = ti,1kj,1 kt 1
for 2 ≤ ` ≤ n do
s3 = s3 + kj,` kt(n-1)
s4 = s4 + k2

j,` kt(n-1) kt(n-1)
s5 = s5 + ti,`kj,` kt(n-1) kt(n-1)

Ci,j = ρ3(s1, s2, s3, s4, s5) 3kt 7kt kt kt 3
Approximate total 3nkt 2nkt kt kt 8

v
er

si
o
n

4

for 1 ≤ j ≤ k do
sj,3 = kj,1, sj,4 = k2

j,1 k 2k
for 2 ≤ ` ≤ n do

sj,3 = sj,3 + kj,` k(n-1)
sj,4 = sj,4 + k2

j,` k(n-1) k(n-1)
for 1 ≤ i ≤ t do
s1 = ti,1, s2 = t2i,1 t 2
for 2 ≤ ` ≤ n do
s1 = s1 + ti,` t(n-1)
s2 = s2 + t2i,` t(n-1) t(n-1)

for 1 ≤ j ≤ k do
s5 = ti,1kj,1 kt 1
for 2 ≤ ` ≤ n do
s5 = s5 + ti,`kj,` kt(n-1) kt(n-1)

Ci,j = ρ3(s1, s2, sj,3, sj,4, s5) 3kt 7kt kt kt 3
Approximate total nkt nkt kt kt 2k

multiplications). When overwriting existing memory xi with xi − x̄ the Pearson ρ can be
computed as

ρ2(X, x̂, Y, ȳ) =

∑n
i=1 xi · (yi − ȳ)√
x̂ ·∑n

i=1(yi − ȳ)2
.

4 Incremental Pearson

It is well-known that Eq. (3) can be rewritten as

ρ(X,Y ) =
n
∑n

i=1 xiyi −
∑n

i=1 xi
∑n

i=1 yi√
n
∑n

i=1 x
2
i − (

∑n
i=1 xi)

2
√
n
∑n

i=1 y
2
i − (

∑n
i=1 yi)

2
(4)

by computing the means directly (substituting x̄ with 1
n

∑n
i=1 xi) and performing some re-

ordering. This alternative formula allows for different precomputation strategies and, more-
over, has additional benefits which are discussed in this section.

In a similar vein to the approach taken in Section 3 we analyse two different versions
based on the time-memory trade-off paradigm. The two approaches (version 3 and version
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4) discussed here and which compute Eq. (4) are summarized in Table 2. This approach
essentially needs to compute the five values

s1 =

n∑
i=1

xi, s2 =

n∑
i=1

x2i , s3 =

n∑
i=1

yi, s4 =

n∑
i=1

y2i , s5 =

n∑
i=1

xiyi.

Once these have been computed Eq. (4) can be computed as

ρ3(s1, s2, s3, s4, s5) =
(ns5 − s1s3)√

(ns2 − s21)(ns4 − s23)
.

Version 3 in Table 2 computes ρ3 without using additional storage where ti,j acts as the
xi and ki,j as yi. For a fixed Ti the values of s1 and s2 are computed at the beginning
of the for-loop and re-used for the multiple key guesses. However, the values s3, s4 and
s5 are recomputed. Version 4 also pre-computes s3 and s4 at the cost of storing 2k data-
elements. This reduces the number of required additions by a factor three to nkt and the
number of multiplications by a factor two to nkt. It does not make sense to also pre-compute
s5 =

∑n
i=1 xiyi since these results cannot be re-used; this would only costs additional storage

without reducing the number of arithmetic operations.

Incremental first-order CPA. In addition to being computationally more efficient than
the fastest “standard version” variant (cf. the performance data of version 2 in the left plot of
Figure 4) Eq. (4) has another interesting feature. Suppose we perform a CPA attack on a trace
set of size n, but are not able to observe any significant leakage. In the hope of observing some
leakage, an adversary could try and add m additional traces to the measurement. By using
any variant of the “standard version” (version 0, version 1, or version 2), the attacker must
first perform his attack on the set of n traces, then on the larger set containing n+m traces,
duplicating many arithmetic computations. Using a variation of version 4, the adversary can
compute the correlations on the first trace set, but then extend the computations to compute
a CPA on the extended set of n+m traces without using a significant amount of additional
memory. Indeed, Eq. (4) only requires to compute sums of elements of vectors, which can be
stored and later updated by adding the elements of the new traces. This approach is infeasible
using, for instance, version 2.

Let us consider two variants of version 4. In version 5, the 2t values si,1 =
∑n

i=1 xi and
si,2 =

∑n
i=1 x

2
i are precomputed and reused when adding more traces. Similarly, we extend

version 5 to a version 6 where we also precompute and reuse the tk values si,5 =
∑n

i=1 xiyi.
Then the cost of computing the correlation coefficients using n traces first and subsequently
with m+n traces is summarized in the following table where only the largest terms are shown.

version 2 version 5 version 6

Approximate #add 3kt(2n+m) kt(2n+m) kt(m+n)
Approximate #mul 2kt(2n+m) kt(2n+m) kt(n+m)
Approximate #mem kn 2(k+t) kt

Here we assume that version 2 is the high-memory version that cannot replace the input
values in-place as discussed in Section 3. For example, assume the scenario where m = n.
In this case, version 2 requires approximately 9ktn additions and 6ktn multiplications, as
well as a rather large amount of storage of 2kn elements. At the cost of storing 2(k + t)
elements, version 5 reduces the number of additions by a factor three to 3ktn and the number
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of multiplications by a factor two to 3ktn (compared to version 2). If one can spare to store
kt data elements the cost of version 2 is even further reduced: the number of additions by a
factor 4.5 to 2ktn and the number of multiplications with a factor three to 2ktn. Although
these are only constant improvements, they can make a significant difference in practice when
computing CPA on large datasets where both t and n can be very large.

5 Computational Aspects of Second Order CPA

A common measure to protect against side-channel attacks is known as masking (see e.g. [7, 10,
26]) where the secret data is split into multiple shares. One approach to attack such schemes
is to combine these shares in order to find a correlation between the power consumption of the
combination of these shares and the secret material: this is known as higher-order power analy-
sis (see e.g. [17, 29, 11]). In order to combine two power measurements T1 = [t1,1, t1,2, . . . , t1,n]
and T2 = [t2,1, t2,2, . . . , t2,n] as C(T1,T2) = [t1, t2, . . . , tn] one can compute the normalized
product (compute ti = (t1,i − T̄1)(t2,i − T̄2) for 1 ≤ i ≤ n) [7], the absolute difference (com-
pute ti = |t1,i−t2,i| for 1 ≤ i ≤ n) [17] or the sum (compute ti = t1,i+t2,i for 1 ≤ i ≤ n) [28].
As shown in [25, 28] the normalized product approach performs best when Pearson’s corre-
lation coefficient is used and assuming the Hamming weight leakage model. Following these
conclusions we focus exclusively on this combining function in this section in the setting of
second order CPA.

Assuming that we also consider the combination of a power measurement with itself,
there are in total

∑t
i=1 i = t(t+1)/2 possible unique pairs from the t power measurements. In

practice, however, one does not necessarily combine all possible pairs. The computation of the
shares usually occurs within a bounded time span. Therefore we introduce another parameter
when computing higher order attacks, the window size w. This positive integer is an estimation
of the maximum distance between two shares. In the algorithms considered in this section,
given t power measurements and a window size w ≤ t W = W (t, w) = (t − w)w +

∑w
i=1 i =

w(t − w−1
2 ) denotes the number of pairs considered. The smaller the window w, the fewer

computations one has to perform; note that setting w = t is equivalent to computing on
all possible pairs. In the following, similar to the analysis in Sections 3 and 4, we describe
three basic algorithms to perform second-order CPA and list various time-memory trade-off
techniques that can be applied. We exclusively focus on optimizations improving the most
significant term in the computational cost and do not consider various minor optimizations
one can achieve as well.

5.1 Naive Second Order CPA: Version 7

Table 3 outlines the “naive” version of a second-order CPA. This version does not use any
auxiliary memory except one vector of n elements which holds the result of the combining
function C(T1,T2). Following the approach from Section 3 one can reduce the number of
arithmetic operations at the cost of using additional memory by

1. precomputing the k means of Ki, at a cost of approximately kn additions and k divisions,

2. precomputing the k variances of Ki, at a cost of an additional kn additions, kn subtractions
and kn multiplications,

3. if the input can be overwritten, replace the ki,j by ki,j − k̄i, otherwise store the nk
normalized ki,j values,
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Table 3. Second-order CPA with window w and normalized product combining based on Eq. (2).

Pseudocode add/sub mul div sqrt mem

v
er

si
o
n

7

for 1 ≤ i ≤ t do
t̄i = mean(Ti) t(n-1) t 1
for i ≤ j ≤ min(t, i+ w) do
t̄j = mean(Tj) W(n-1) W 1
s̄ = 0 1
for 1 ≤ ` ≤ n do

s` = (ti,` − t̄i)(tj,` − t̄j) 2nW nW n
s̄ = s̄+ s` nW

s̄ = s̄/n W
for 1 ≤ ` ≤ k do
k̄ = mean(K`) kW(n-1) kW
Ci,j,` = ρ1(K`, k̄, s, s̄) kW(5n-3) kW(3n+1) kW kW 6

Approximate total 6nkW 3nkW 2kW kW n

By using optimizations 1 and 2, we obtain a first variant of version 7 (denoted version 7a)
which requires a medium amount of memory: this version precomputes 2k additional values
which significantly reduces the computational cost, reducing the number of addition by a
factor 1.5 (from 6nkW to 4nkW ) and the number of multiplications by a factor 1.5 (from
3nkW to 2nkW ).

Furthermore, by also applying optimization 3, we obtain the fastest version (denoted
version 7b). This might come at no additional cost in terms of memory if the input can be
overwritten or, if this is not an option, requires storage for nk additional values. This final
trade-off allows us to save another nkW subtractions: a factor two improvement over version
7.

5.2 Naive Second Order CPA using Eq. (4): Version 8

This version of a second order CPA modifies version 7 such that it uses Eq. (4) to compute the
individual correlation coefficients; it is outlined in Table 4. Using this approach, we can directly
benefit from the computation of the temporary vector s = C(T1,T2) to precompute some
values required in Eq. (4) with almost no additional computational cost. Analogue to version
7, the version presented in Table 4 requires almost no additional memory with the exception
of what is needed to store the temporary vector s. One additional optimization improving the
most significant term can be applied based on the time-memory trade-off paradigm

1. precompute the 2k values s3 =
∑n

i=1 k`,i and s4 =
∑n

i=1 k2
`,i, at a cost of 2kn additions

and kn multiplications.

By applying this single optimization, we can improve the computational cost of version 8 at
the price of 2k additional memory (denoted by version 8a). This version halves the number of
multiplication (from 2nkW to nkW ) and reduces the number of additions by a factor three
(from 3nkW to nkW ).

5.3 Incremental Second Order CPA: Version 9

The techniques used in Section 4 can also be applied to higher-order CPAs. In this section we
outline how to achieve this in the second order CPA setting. Using such a version enables one
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Table 4. Second-order CPA with window w and normalized product combining based on Eq. (4)

Pseudocode add/sub mul div sqrt mem

v
er

si
o
n

8

for 1 ≤ i ≤ t do
t̄i = mean(Ti) t(n-1) t 1
for i ≤ j ≤ min(t, i+ w) do
t̄j = mean(Tj) W(n-1) W
s1 = 0, s2 = 0 2
for 1 ≤ ` ≤ n do

s` = (ti,` − t̄i)(tj,` − t̄j) 2nW nW n
s1 = s1 + s` nW
s2 = s2 + s2` nW nW

for 1 ≤ ` ≤ k do
sm = 0 for 3 ≤ m ≤ 5
for 1 ≤ m ≤ n do
s3 = s3 + k`,m nkW
s4 = s4 + k2

`,m nkW nkW
s5 = s5 + smk`,m nkW nkW

Ci,j,` = ρ3(s1, s2, s3, s4, s5) 3kW 7kW kW kW 3
Approximate total 3nkW 2nkW kW kW n

to compute a second order CPA incrementally, resulting in potentially significant savings when
adding more power traces to a power measurement. Obviously, the number of intermediate
results one needs to keep track of increases in this setting. Instead of the five values in
Section 4, one has to store thirteen in this case.

In order to deduce a formula based on these thirteen values, which can be updated incre-
mentally, we replace the variable X with C(T,U): the combination of the two traces T and
U . More precisely, given our choice of combining function, we replace the individual xi with
(ti − t̄)(ui − ū).

ρ(C(T,U), Y ) =
nλ1 − λ2s3√

nλ3 − λ22
√
ns9 − s23

= ρ4(s1, . . . , s13) (5)

The transformation is obtained by expanding the formula and gathering all the individual
terms. This leads to the following values for the variables used in Eq. (5)

λ1 = s10 −
s1s7 + s2s5

n
+
s1s2s3
n2

, λ2 = s4 −
s1s2
n

,

λ3 = s11 −
2s2s12 + 2s1s13

n
+
s22s6 + 4s1s2s4 + s21s8

n2
− 3(s1s2)

2

n3
,

s1 =
∑n

i=1 ti, s2 =
∑n

i=1 ui, s3 =
∑n

i=1 yi,
s4 =

∑n
i=1 tiui, s5 =

∑n
i=1 tiyi, s6 =

∑n
i=1 t

2
i ,

s7 =
∑n

i=1 uiyi, s8 =
∑n

i=1 u
2
i , s9 =

∑n
i=1 y

2
i ,

s10 =
∑n

i=1 tiuiyi, s11 =
∑n

i=1 t
2
iu

2
i , s12 =

∑n
i=1 t

2
iui,

s13 =
∑n

i=1 tiu
2
i .

Table 5 outlines the approach to implement Eq. (5) with some straightforward improvements,
where the ti,m acts as the ti, the tj,m acts as the ui and the k`,m as yi. Again, we can reduce
the number of operations by using more memory. We distinguish the following optimizations

1. precompute the 2k values s3 =
∑n

i=1 yi and s9 =
∑n

i=1 y
2
i , which requires approximately

2kn additions and kn multiplications.
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2. precompute the kt values s5 =
∑n

i=1 tiyi. This precomputation requires approximately
ktn additions and ktn multiplications.

A faster variant of version 9 can be obtained by applying optimization 1 (denoted version
9a) for an additional storage cost of 2k values. This optimization reduces the number of
additions by a factor 5

3 from 5nkW to 3nkW and the number of multiplications by a factor
4
3 from 4nkW to 3nkW . By also including optimization 2 (denoted version 9b) we apply the
time-memory trade-off even further, requiring to store tk additional elements. The effect is
significant, as not only the value s5 is no longer computed in the innermost loop, but the
value s7 now comes for free. Thus, in comparison to version 9, the number of additions is
reduced to kn(t+W ) (which for large values of W means a reduction by a factor five) while
the number of multiplications is reduced to kn(t + 2W ) (which for large values of W means
a reduction by a factor two).

An overview of the cost of the various second order algorithms is given below.

Approx. #add Approx. #mul Approx. #mem

Version 7 6nkW 3nkW n
Version 7a 4nkW 2nkW n
Version 7b 3nkW 2nkW n or nk
Version 8 3nkW 2nkW n
Version 8a nkW nkW n
Version 9 5nkW 4nkW 14
Version 9a 3nkW 3nkW 2k
Version 9b nk(t+W) nk(t+2W) kt

Incremental Second Order CPA. As stated in Section 5.3, version 9 has the potential
to reuse computations when adding more power traces to the power measurement. Indeed,
keeping track of a few values allows for a much more efficient computation of the correlation
coefficients when adding a batch of new traces to the power measurement. We consider the
setting similar to the one in Section 4: the attacker first performs a second order CPA on
a set of n traces. Next, an additional m traces are added to the power measurement and
a computation on all the m + n traces is performed. Let us consider a variant of version 9
(denoted version 9c) consisting of an extension of version 9b in which we also store the kW
values

s10,i,j,` =

m+n∑
a=1

ti,atj,ak`,a, for 1 ≤ i ≤ t, i ≤ j ≤ min(t, i+ w), and 1 ≤ ` ≤ k.

The total cost of computing the kW correlation coefficients using first n and then n + m
traces with several attack variants is summarized in the following table.

version 7b version 8a version 9b version 9c

Approx. #add 3kW(2n+m) kW(2n+m) k(t+W)(2n+m) k(t+W)(n+m)
Approx. #mul 2kW(2n+m) kW(2n+m) k(t+2W)(2n+m) k(t+2W)(n+m)
Approx. #mem k(n+m) n+m kt kW

Considering a scenario where m = n, i.e. in which an attacker adds n new traces to a set
of n traces (working with 2n traces in total), version 7b requires 9nkW additions and 6nkW
multiplications, and requires memory for 2kn elements, as the values cannot be modified in-
place just as in the first order setting. Using much less memory, version 8a can compute this
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Table 5. Second-order CPA with window w and normalized product combining based on Eq. (5). Note that
the operation count for ρ4 is an upper bound. This count can be reduced by simplifying Eq. (5). However, this
does not reflect on the most significant term.

Pseudocode add/sub mul div sqrt mem

v
er

si
o
n

9
for 1 ≤ i ≤ t do
s1 = 0, s6 = 0 2
for 1 ≤ j ≤ n do
s1 = s1 + tj,i nt
s6 = s6 + t2j,i nt nt

sl = 0 for l ∈ {2, 4, 8, 11, 12, 13} 6
for i ≤ j ≤ min(t, i+ w) do

for 1 ≤ ` ≤ n do
s2 = s2 + t`,j nW
s8 = s8 + t2`,j nW nW
s4 = s4 + t`,itj,` nW nW
s12 = s12 + t2`,it`,j nW nW
s13 = s13 + t`,it

2
`,j nW nW

s11 = s11 + t2`,it
2
`,j nW nW

for 1 ≤ ` ≤ k do
sl = 0 for l ∈ {3, 5, 7, 9, 10} 5
for 1 ≤ m ≤ n do
s3 = s3 + km,` nkW
s9 = s9 + k2

m,` nkW nkW
s5 = s5 + tm,ikm,` nkW nkW
s7 = s7 + tm,jkm,` nkW nkW
s10 = s10 + tm,itm,jkm,` nkW nkW

Ci,j,` = ρ5(s1, . . . , s13) 13kW 24kW 7kW kW 7
Approximate total 5nkW 4nkW 7kW kW 20

second order CPA using 3nkW additions and 3nkW multiplications, resulting in a reduction
of a factor three in the number of additions and a factor two in the number of multiplications
compared to version 7b. Version 9b slightly increases the computational cost of version 8a, but
requires kt memory, which in practice is generally (much) smaller than 2n (typically k = 28

and t ≈ 103 while n ≈ m > 107). Finally, version 9c reduces the number of additions and
multiplications even further by a factor 1.5 with respect to version 9b: this comes at the cost
of using less than w times more memory than version 9b (since kW < kwt).

6 Memory Constrained CPA

Reducing the computation time when computing the correlation coefficient is just one impor-
tant characteristic in a state-of-the-art CPA implementation. Due to the common practice of
collecting a large number of samples per trace (the variable t) and collecting a large number
of traces (the variable n), values around n ≈ 108 are not uncommon [21, 3], the size of the
main memory available in common desktop machines is in most cases insufficient to load the
entire measurement at once. In this section, we present some methods to efficiently partition
the data under such memory constraints. These methods allow to perform CPA attacks on
a large set of power traces on widely available desktop machines and do not significantly
increase the computation time (in terms of number of arithmetic operations) compared to the
setting where sufficient memory would be available.
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Fig. 1. A sliding window approach when splitting the data across the time samples.

6.1 Split across the Time Samples

The most natural, and straightforward, way of reducing the memory requirement is to split
the measurement across the time samples. The idea is to consider the entire set of traces at
once but for a reduced number of time samples at a time. Consider the set of power traces as
the matrix T (see the definition from Section 2) consisting of n power traces, each of which
consists of t power measurements. Let s < t be the number of time samples such that s × n
elements in the trace file can be loaded into the main memory. When splitting across the time
samples, one could load s samples at a time, compute the correlation, then move to the next
s samples, and repeat the process until all correlations have been computed.

However, when computing correlations in an h-th order correlation attack scenario, one
typically defines a window size 1 ≤ w < s such that all possible combinations of h time
samples within this window are considered. A sliding window approach can be used in order
to compute all required combinations while keeping a maximum of s time samples at a time in
memory. This approach starts by reading the first s time samples into memory, then at each
step loads and analyses the next (s − w) samples in the following way. Starting at the first
time sample, we combine it with all the samples within the window size w. We then increase
the start position incrementally, ensuring that the last sample considered, starting at position
s − w, can still read the entire window, until the s-th sample, into memory. After having
computed the correlation coefficient of these w(s − w) combinations with the key guesses,
the first (s− w) time samples are discarded, the last w samples are moved to the beginning
and the next batch of (s − w) samples for all n traces are read until we have covered all t
measurements. This approach is illustrated in Figure 1.

6.2 Split across the Traces

Another approach to partition the measurement in order to reduce the memory requirement,
is to use a limited number of traces at a time but consider the entire range of time samples.
One example of such a partitioning was already discussed in Section 4 and Section 5.3 in
the setting of the incremental versions for computing Pearson’s correlation coefficient. This
approach is illustrated in Figure 2. In this subsection we show how this partitioning can
be conducted using the work by Dunlap [9] where it is studied how to combine correlation
coefficients from different sets given the means, standard deviation and correlation of these
sets.
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Fig. 2. Loading the entire range of time samples into memory while processing a batch of traces at-a-time.

This approach does not update the value of the correlation coefficient continuously, by
adding new traces, but instead computes the correlation coefficient of a set consisting of fewer
traces and combines these results to compute the (estimation of the) correlation coefficient
when taking all traces into account. This approach also reduces the memory requirement
significantly since a much smaller set of traces needs to be kept in memory at a time. Note
that in this case, as we have access to the entire range of time samples, we do not need to use
the sliding window approach presented in the previous section. Let

T =


t1
t2
...

tn

 and K =


k1

k2
...

kn


be two vectors that we want to correlate in a correlation power analysis attack. T represents
a vector from the matrix T at a fixed time point and K denotes a vector from the matrix of
estimated power consumption K for a given key guess (as defined in Eq. (1)).

We then split the vector T into m groups Mj having respective sizes sj . Hence we have∑m
j=1 sj = n. Similarly, we split the vector K into m partitions Lj of sizes sj . Thus, the

sizes of the groups Mj and Lj are equal, for all 1 ≤ j ≤ m. Now, for each group of traces
Mj , we compute the m standard deviations σMj , the m means M̄j and the m correlation
coefficients with the corresponding groups from K, r(Mj ,Lj). The same is done for the m
standard deviations σLj and the m means L̄j .

In the following we present formulas which compute directly the final correlation given
these values. Note however that in an actual implementation, the individual values should be
combined incrementally to save on storage. The sizes sj of the groups of traces Mj and Lj

are selected such that the sj · t+ sj · k measurement values fit into memory.
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Fig. 3. Combining the approach from Fig. 2 and Fig. 1 into block-partitioning. Load part of the range of time
samples using part of the traces at-a-time.

In [9], Dunlap present the following result, which we summarize in our setting, to compute
the correlation coefficient of the larger trace set based on the mean, standard deviation and
correlation coefficients of the smaller sets

ρ(T,K) =

∑m
i=1 si

(
σMiσLiρ(Mi,Li) + M̃iL̃i

)
√∑m

i=1 si

(
σ2Mi

+ M̃2
i

)√∑m
i=1 si

(
σ2Li

+ L̃2
i

) . (6)

We refer to this approach as exact combining. The M̃i (L̃i) are defined as the difference
between the mean of the measurements of an individual time sample in M̄i (L̄i) and the
mean of all the measurements of this time sample in T (K); i.e.

M̃i = M̄i −
∑m

j=1 sjM̄j∑m
j=1 sj

, L̃i = L̄i −
∑m

j=1 sjL̄j∑m
j=1 sj

.

Note that Eq. (6) computes exactly the same correlation coefficient as if directly computing
on the larger trace files using Eq. (3) and is not an approximation.

If it is known that all si are equal, i.e. we have evenly split-up n traces in m groups of
size n/m, and we assume that all means of the individual smaller groups of traces Mj are
equal and the means of the smaller groups of key guesses Lj are equal then Eq. (6) can be
simplified (cf. [9]) to

ρ(T,K) =

∑m
i=1 σMiσLiρ(Mi,Li)√∑m

i=1 σ
2
Mi

√∑m
i=1 σ

2
Li

. (7)

We refer to this approach as approximate combining. Moreover, if one makes the assumptions
that the standard deviations of all the Mj are also equal and that all the standard deviations
for all the Lj are equal, then Eq. (7) simplifies further to

ρ(T,K) = m−1
m∑
i=1

ρ(Mi,Li). (8)

We refer to this approach as the arithmetic mean.
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Fig. 4. Performance data when using n = 107, k = 28, and t = 29. The left plot shows first-order CPA results
computing 217 correlation coefficients while the plot on the right computes a second-order CPA using w = 4
computing W (t, w) · 256 ≈ 219 correlation coefficients. The reported timings including the loading time of the
data from disk to memory.

6.3 Block Partitioning

One can combine the approaches from Section 6.1 and Section 6.2. Using such a block-
partitioning approach, we only consider a subset of the time samples and a subset of the
traces. Then, similar to Section 6.1, we compute the correlation coefficients of these subsets,
and store them in order to combine them with the correlation factors of the next chunks
later. The combining of these correlation coefficients can be done following the approach from
Dunlap presented in Section 6.2. This technique allows us to perform correlation attacks on
very large data sets even when the available memory is limited. This approach is illustrated
in Figure 3.

7 Benchmark Results and Experiments

In order to compare the different approaches and see if the arithmetic instruction counts di-
rectly corresponds to performance speedups in practice, we implemented the different versions
to compute the Pearson correlation coefficient from Section 3, Section 4 and Section 5. Our
implementations allow computations to be computed concurrently using POSIX threads with
the pthreads software library [22]. Our benchmark platform is an Intel Xeon (CPU E5-2650
v2), which has eight CPUs, equipped with 32GB of memory. The (parts) of the measurement
file which needs to be loaded into memory is stored on a local 256 GB solid state disk (SSD)
(Liteonit LCS-256M6S). As a reference we use a power measurement consisting of many time
samples, from which we only use a smaller range of t = 29 samples, and where n = 107 traces
have been collected. Each measurement is represented in an 8-byte double-precision floating-
point format. All intermediate computation performed are using double-precision floating-
point arithmetic. All algorithms discussed in the previous sections can be made to compute
the various correlation coefficients concurrently without too much overhead. By dividing the
calculations in multiple threads we can reduce the computation time, taking advantage of the
wide availability of multi-core machines.

7.1 First order CPA

In the left plot in Fig. 4 we show the performance results when using parameters n = 107, k =
28, and t = 29: i.e. computing 217 correlation coefficients using 107 traces. The correctness of
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Fig. 5. Experimental results when computing the correlation coefficient using the arithmetic mean (Eq. (8)),
approximate combining (Eq. (7)), and exact combining (Eq. (6)) approach. The number of chunks m is varied
when using a total number of traces of 105. The top graphs show the computed correlation and the bottom
graphs the error percentage to the real correlation coefficient.

the implementation is verified with a slow (naive) single-threaded implementation of Pearson’s
correlation coefficient. The left plot of Fig. 4 shows performance results when varying the
number of cores used in the computation for the five different version. These performance
numbers are in-line with the arithmetic counts from Table 1 and Table 2. The fastest “naive”
version (version 2) performs almost identical compared to version 3. As expected from Table 2
version 4 performs best. These performance numbers include the time required to load the
data from the SSD into memory which, on average, required 2.0 minutes. Hence, when ignoring
the loading of the data, we observe a factor 1.9 speed-up when using two CPU cores, a factor
3.6 speed-up when using four CPU cores, and a factor 6.9 speed-up when using eight CPU
cores compared to running on a single core considering version 4 of the algorithm.

7.2 Second order CPA

We also implemented the various approaches from Section 5. The right plot of Fig. 4 reports
the performance results for the fastest variants of version 7, version 8, and version 9. Since
all the data-types used are 8-byte double-precision floating points these tn = 29 · 107 values
require over 38 GB of data: too big to load entirely into memory. Since a single time sample,
consisting of 107 8-byte values, does fit into memory (this is just over 76 MB) we split the
data across the time samples (as outlined in Section 6.1) and load them in batches of s = 64
time samples (which corresponds to batches of 4.9 GB). Extracting the correct s time samples
of the power measurement file and loading this into memory requires 58 seconds per batch.
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As expected from counting the number of required arithmetic instructions, version 8a
performs the best among the considered variants which compute second order CPA. However,
version 9b is considerably slower compared to the other two versions. Due to the relatively
small windows size used (w = 4), version 9b computes a factor of 1.13 more multiplications
compared to version 7b. However, the number of additions required in version 9b is reduced by
a factor 1.60 compared to version 7b. Note that version 9b needs much more memory accesses
in the innermost loop when computing the value of s10: three memory loads are required at
every iteration. We have conducted experiments which confirm that these increased number
of (random) memory accesses explain the performance difference observed in practice.

7.3 Combining using Dunlap’s approach

Figure 5 displays experimental results when applying the different combining approaches. For
this experiment we used a (leaky) power measurement where n = 105. We varied the number
of groups of traces (chunks) where we evenly divided the number of traces as si = m/n for
all i. Figure 5 shows the (estimated) correlation coefficient when using all n traces computed
using Eq. (8), Eq. (7), and Eq. (6), respectively. In all three settings, as expected, more
variation is observed as the number of chunks increases. The error percentage compared to
the correct correlation coefficient is also shown in Figure 5; in all three settings the error is
well below one percent (i.e. insignificant). Note that the values obtained when using Eq. (6),
which is not an approximation, still exhibit a small error (of less than 0.2 percent). This can
be explained by the propagation of errors due to the finite precision which is used. Hence, in
all three settings this allows us to split the number of traces in 200 chunks (each only holding
500 traces), compute the correlation coefficient on these smaller datasets and combine them
such the result has an error less than 0.3 percent.

8 Conclusions and Future Work

Computing the Pearson product-moment correlation coefficient in the setting of (higher-order)
correlation power attacks allows one to perform a number of precomputations which are not
available in other (non-cryptologic) research areas. We have outlined different techniques
to reduce the number of arithmetic operations and enable the attacker to add new traces
incrementally without much computational overhead. Specifically, we have studied second-
order attacks and demonstrated how they can be extended to the setting of adding traces on-
the-fly. Furthermore, we have shown how one can compute on large datasets using commonly
available computer architectures equipped with a modest amount of memory. In this latter
setting we have used techniques from Dunlap [9] to combine the correlation coefficient from
different small sets into the (estimate of the) correlation coefficient of the combination of
these sets. Our benchmark and performance results show that the implementation of these
techniques behave as expected and give a significant speed-up (both in performance and
memory consumption).

A similar analysis can be performed on higher order correlation power attacks. An in-
teresting exercise would be to derive incremental formulas for these higher order attacks,
comparable to Eq. (4) for first order or Eq. (5) for second order, allowing to add traces
on-the-fly. Similarly, it would be interesting to study the usage of different correlation coeffi-
cient functions when computing (higher order) CPA and applying the time-memory trade-off
paradigm. Examples include Spearman’s rank correlation coefficient [27] or Kendall’s rank
correlation coefficient [12] (e.g. as applied in [2]).
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