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An Improvment of the Elliptic Net Algorithm
Binglong Chen and Chang-An Zhao*

Abstract

In this paper we propose a modified Elliptic Net algorithm to compute pairings. By reducing the number of the
intermediate variables which should be updated in the iteration loop of the Elliptic Net algorithm, we speed up the computation
of pairings. Experimental results show that the proposed method is about 14% faster than the original Elliptic Net algorithm
on certain supersingular elliptic curves with embedding degree two.
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1 INTRODUCTION

Pairings on elliptic curves have become one of the most popular cryptographic primitives in public key cryptography.

There are a lot of interesting cryptographic schemes and signatures based on pairings. An excellent survey of pairing-based

applications can be found in [1]. Since the computation of the pairings are the most expensive operation in pairing-based

cryptosystems, reducing the computational complexity of pairing computations has been an important issue in pairing-

based cryptography. Since then, there are much research devoted to the efficient computation of pairings. We refer the

reader to [2], [3] for more information about pairings. To date, there are many variants that have been proposed for

efficiency reasons based on the Tate pairing, such as Duursma-Lee [4], ηT [5], (optimized) ate [6], [7], atei [8], R-ate [9],

pairing lattice [10] and optimal [11] pairings. On the other hand, there are also a few pairing variants constructed via the

Weil pairing, such as the eil pairing [10], the omega pairing [12] and the improved self-pairings [13], [14], [15].

There only exist two polynomial-time algorithms to compute the pairings till now. One is Miller’s algorithm [16], [17]

and the other is the Elliptic Net algorithm [18]. A lot of avenues of optimizing Miller’s algorithm have been investigated,

and now it takes only a few milliseconds to compute pairings by using the optimized Miller’s algorithm.

However, all of optimizations of Miller’s algorithm can be seldom applied directly in speeding up the Elliptic Net

algorithm except simplifying the final exponentiation. There is few work to improve the efficiency of the Elliptic Net

algorithm compared with Miller’s algorithm. How to compute the ate-like pairings based on the Elliptic Net algorithm

has been investigated in [19], [20]. The concept of elliptic nets has been generalized to hyper-elliptic curves for computing

hyper-pairings in [21], [22].

Our goal in this paper is to shorten the theoretical gap in the studying of the Elliptic Net algorithm, and to this end we

propose several efficient techniques for the arithmetic operations involved as follows.

• Observe that in many practical setting, when computing the evaluation of rational functions fr,P (Q), the concrete

parameter r will be chosen reasonably sparse(a good survey of pairing-friendly curves, refer to [23]). This means

that the Double function will be more frequent than the DoubleAdd one in the whole iteration loop of the Elliptic

Net algorithm. Inspired by the work of Rachel Shipsey [24], we can reduce the number of the intermediate
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variables in the original Elliptic Net algorithm proposed by Stange [18]. This saves four multiplications and one

squaring in the each doubling step compared to the original Elliptic Net algorithm. Although the DoubleAdd( or

DoubleSubtraction) step is somewhat slower than the previous one, this disadvantage is amply mitigated by the

proposed doubling because of the sparse form of r.

• It is known that an integer has a non-adjacent form (NAF) representation. In this representation, the density of the

number of non-zero digits in NAF representation will be approximately 1/3 on average, while it is 1/2 in the case

of binary representation. This leads us to give a modified Elliptic Net algorithm in NAF form.

• When computing the pairing evaluation fr,P (Q) where P is a rational point on an elliptic curve over a finite field

Fq , we can choose the prime power q satisfying gcd(q − 1, 3) = 1. Then we can change the value W (2, 0) to 1 by

using the equivalence of elliptic nets as discussed in [18]. This makes the saving of four multiplications in each

iteration loop practically possible.

Efficiency analysis indicates that all of the above optimizations can speed up the Elliptic Net algorithm indeed. It

is shown that the presented method can be more efficient than the previously known Elliptic Net algorithm under the

condition the density of non-zero digits of r is less than 0.44 and the cost of one inverse is about equal to that of ten

multiplications. In addition, experimental results show that the proposed algorithm is about 14% faster than the original

Elliptic Net algorithm [18] on certain supersingular elliptic curves with k = 2 at 128-bit security level. To the best of our

knowledge, such a significant improvement of the Elliptic Net algorithm has not been appeared earlier, though it is slower

than the state-of-the-art Miller’s algorithm.

The rest of the paper is organized as follows. In Section 2, we give an overview of the Tate pairing and the Elliptic

Net algorithm. In Section 3, we derive the new Double and DoubleAdd(or DoubleSubtraction) steps in the Elliptic Net

algorithm, and analyze operation counts for one typical iteration. Section 4 provides the efficiency analysis and some

detailed suggestions in pratical implementations. Finally, we draw our conclusion in Section 5.

2 PRELIMINARIES

In this section we first recall the definition of the Tate pairing, and the Elliptic Net algorithm to compute it.

2.1 Pairings

Let Fq be a finite field with q = pm elements, where p is a prime. Let E be an elliptic curve defined over Fq , and let∞ be

the point at infinity. Let r be a prime such that r divides #E(Fq), where #E(Fq) denotes the order of E(Fq). Assume that

r2 does not divide qk − 1 and k is greater than 1, where k is the embedding degree. We denote by E[r] the r-torsion group

of E. Let P ∈ E[r] and Q ∈ E(Fqk). Let DP be a degree zero divisor which is equivalent to (P )− (∞). For every integer

i and point P , let fi,P be a rational function such that (fi,P ) = i(P )− (iP )− (i− 1)(∞). In particular, (fr,P ) = rDP . Let

µr be the r-th roots of unity in Fqk . Then the reduced Tate pairing [25] is defined as follows

e : E[r]× E(Fqk)→ µr,

e(P,Q) = fr,P (Q)
qk−1

r .

Note that most of the pairing variants are constructed from the Tate pairing for efficiency reasons, such as the eta [5], ate [6],

R-ate [9] and optimal [11] pairings. All of Tate-like and ate-like pairings can be calculated by the Elliptic Net algorithm [18],

[19], [20].

2.2 Elliptic net algorithm

Stange first gave the definition of elliptic nets and proposed a polynomial time algorithm to compute the pairings in

2007 [18]. In fact, elliptic nets are a generalization of elliptic divisibility sequences first studied by Ward [26]. An elliptic net
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is a map W from a finitely generated free abelian group A to an integral domain such that the following recurrence holds

for all p, q, r, s ∈ A:
W (p+ q + s)W (p− q)W (r + s)W (r)

+W (q + r + s)W (q − r)W (p+ s)W (p)

+W (r + p+ s)W (r − p)W (q + s)W (q) = 0.

(1)

Theorem 1. [18] Let E be an elliptic curve over a finite field K, r a positive integer, P ∈ E(K)[r] and Q ∈ E(K). Denote

by DQ the divisor equivalent to (Q)− (∞). If WP,Q is the elliptic net associated to E, P, Q, then we have

fr,P (DQ) =
WP,Q(r + 1, 1)WP,Q(1, 0)

WP,Q(r + 1, 0)WP,Q(1, 1)
.

From the properties of elliptic nets, one can obtain the Double and DoubleAdd formulas which can be applied in the

Elliptic Net algorithm. For simplicity, we abbreviate WP,Q(m,n) as W (m,n) from now on. According to the results of [18],

it is essential to update a block centered on i consisting of a first vector of eight consecutive terms centered on term W (i, 0)

and a second vector of three consecutive terms centered on term W (i, 1).

Assume that W (1, 0) = W (0, 1) = 1. Then all of W (n, 0) can be updated by the following two formulas,

W(2i−1, 0) = W(i+1, 0)W(i−1, 0)3−W(i−2, 0)W(i, 0)3, (2)

and

W (2i, 0) = (W (i, 0)W (i+ 2, 0)W (i− 1, 0)2 −W (i, 0)W (i− 2, 0)W (i+ 1, 0)2)/W (2, 0). (3)

For obtaining the pairing values, one also requires the following important formula which can be used for computing the

W (i, 1) terms,

W (2i− 1, 1) = (W (i+ 1, 1)W (i− 1, 1)W (i− 1, 0)2−W (i, 0)W (i−2, 0)W (i, 1)2)/W (1, 1), (4)

W (2i, 1) = W (i−1, 1)W (i+1, 1)W (i, 0)2−W (i−1, 0)W (i+1, 0)W (i, 1)2, (5)

W (2i+ 1, 1) = (W (i− 1, 1)W (i+ 1, 1)W (i+ 1, 0)2 −W (i, 0)W (i+ 2, 0)W (i, 1)2)/W (−1, 1), (6)

and

W (2i+ 2, 1) = (W (i+ 1, 0)W (i+ 3, 0)W (i, 1)2 −W (i− 1, 1)W (i+ 1, 1)W (i+ 2, 0)2)/W (2,−1). (7)

On the basis of the above formulas, one can use the Elliptic Net algorithm to compute the pairings. We remark that the

values of W (2, 0), W (1, 1), W (−1, 1) and W (2,−1) heavily affect the efficiency of the Elliptic Net algorithm. Under certain

circumstances, some of these values can be changed to one for accelerating pairing computations by using the equivalence

of elliptic nets [18].

3 DOUBLE AND DOUBLEADD (OR DOUBLESUBTRACTION) STEPS IN THE ELLIPTIC NET ALGORITHM

In this section, we investigate how to modify the basic Double and DoubleAdd steps in the Elliptic Net algorithm by

Stange [18], which leads to a further improvement in certain special cases.

In the practical implementations of pairing-based protocols and schemes, one often chooses the parameter r with a low

Hamming weight for efficiency, which defines the rational function fr,P . Also, many families of pairing-friendly curves

can be constructed flexibly according to the requirements of the concrete applications indeed [23]. For example, one can

generate a supersingular curve over large prime fields with embedding degree two easily. Note that this curve has been

recommended in the IEEE Standard draft for Identity-Based cryptographic techniques using pairings [27]. A resulting

curve defined over Fq has its order divisible by a large prime r which has a low Hamming weight. In addition, the popular

B-N curves can also be constructed with fixed coefficients with a sparse form [28], [29]. When the parameter r that is used

for defining the corresponding Miller function fr,P has a low Hamming weight, we will show that the complexity of the

elliptic net algorithm can be reduced by using the proposed method.
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3.1 New double steps

In the original Elliptic Net algorithm proposed by Stange [18], one needs a block centered on i to consist of a first vector

of eight consecutive terms. There are two functions Double(V ) and DoubleAdd(V ) for updating the block. Observe that

if the integer r has a low Hamming weight this indicates that the Double(V ) function can be used more frequently than

the DoubleAdd(V ) one in the whole iteration loop. This means that faster Double steps may lead to the improvement of

pairing computations although slower DoubleAdd or DoubleSubtraction ones are employed.

In the thesis of Rachel Shipsey [24], it has been pointed out that the first vector centered at i with seven consecutive

terms is sufficient for the doubling steps by the duplication formulas in the computation of elliptic divisibility sequences.

This indicates that the first vector with seven terms may be sufficient for designing the whole Double(V ) function in

pairing computation.

The remaining task is to update the second vector with three consecutive terms W (λ, 1)2i−1≤λ≤2i+1 given the val-

ues of W (λ, 0)i−3≤λ≤i+3 and W (λ, 1)i−1≤λ≤i+1. Observe that updating the second vector only involves the values of

W (λ, 0)i−2≤λ≤i+2 and W (λ, 1)i−1≤λ≤i+1 by using Equations (2)-(7). Therefore, we can design a new Double function with

10 terms.

 !1,1 i ! "1,i  !1,1 i

! "0,3 i

! "1,12  i ! "1,2i  !1,12  i

! "0,2 i ! "0,1 i ! "0,i  !0,1 i ! "0,2 i ! "0,3 i

! "0,32  i ! "0,22  i ! "0,12  i ! "0,2i  !0,12  i ! "0,22  i ! "0,32  i

Fig. 1. Updating the block centered at i to 2i

Consequently, we can discard the 8-th term W (i+ 4, 0) of the first vector in the original Elliptic Net algorithm [18] and

then save the cost of updating it. For P ∈ E(Fq) and Q ∈ E(Fqk)(This corresponds to the Miller-lite or Tate-like case), we

can give a new Double(V ) alogrithm as shown in Algorithm 3.1. When the points P and Q are swapped for the ate-like

case, it is not hard to modify Algorithm 3.1 for computing the pairings. For simplicity, we omit this case here.

When counting field operations, we use S and M to respectively represent the cost of a squaring and a multiplication

in the ground field Fq . Let Ss and Ms denote the costs of a squaring and a multiplication in some extension field Fqs

respectively. Assume that the cost of multiplying an element of Fq by one of Fqs takes sM . Then we give an estimate

of each step in the new Double(V ) algorithm as shown in Algorithm 3.1. According to the discussion of [18], the value

W (−1, 1) can be adjusted to 1 but W (1, 1) will be equal to xP − xQ, where xP and xQ denote the x-coordinates of point

P and Q respectively. In summary, the total cost for the new Double(V ) algorithm is 5S + (22 + 6k)M + Sk + 2Mk in

general.

Note that the embedding degree k could be chosen to be even in most cases. This implies that xP −xQ can be contained

in the subfield Fqk/2 exactly and then the total cost can be reduced to 5S + (22 + 6k)M + 1Sk +
3
2Mk as discussed in [18],

[30]. Finally, we summarize all discussions into Table 1. We see that the proposed Double(V ) algorithm will save 1S +4M

compared to the previous results from Table 1. This gain is from neglecting the computation of the term W (2i + 4, 0)

actually.

TABLE 1
Cost of the Double(V ) algorithm for the different methods

Method Operation Count

Elliptic Net algorithm [18] 6S + (26 + 6k)M + Sk + 3
2
Mk

This work 5S + (22 + 6k)M + Sk + 3
2
Mk
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Algorithm 3.1 Double and DoubleAdd/DoubleSubtraction Algorithm
Input: Block V centered at i in which the first vector has seven terms and the second vector has three terms. Array S

and P with 5 elements. W (1, 0) = W (0, 1) = 1, α = W (2, 0)−1, β = W (−1, 1)−1, γ1 = W (2,−1)−1, γ2 = W (2, 1)−1,

δ = W (1, 1)−1, w2 = W (2, 0)2, w13 = W (1, 0) ·W (3, 0) and flag ∈ {−1, 0, 1}
Output: Block centered at 2i if flag = 0, centered at 2i+ 1 if flag = 1 and centered at 2i− 1 if flag = −1

1. S0 ← V [2, 2]2; P0 ← V [2, 1]∗V [2, 3]; //1Sk+1Mk

2. for i := 1 to 5 do

S[i]← V [1, i+ 1]2;

P [i]← V [1, i] ∗ V [1, i+ 2]; // 5 · (1S + 1M)

end for;

3. if flag eq 0 then

for i← 1 to 3 do

V [1, 2 ∗ i− 1]← S[i] ∗ P [i+ 1]− S[i+ 1] ∗ P [i]; //3 · (2M)

V [1, 2 ∗ i]← (S[i] ∗P [i+2]− S[i+2] ∗P [i]) ∗α; //3 · (3M)

end for;

V [1, 7]← S[4] ∗ P [5]− S[5] ∗ P [4]; //2M

V [2, 1]← (S[2] ∗P0−P [2] ∗S0) ∗ δ; //2kM +Mk

V [2, 2]← S[3] ∗ P0 − P [3] ∗ S0 ; //2kM

V [2, 3]← (S[4] ∗ P0 − P [4] ∗ S0) ∗ β; //2kM

else if flag eq 1 then

for i← 1 to 3 do

V [1, 2 ∗ i−1]← (S[i]∗P [i+2]−S[i+2]∗P [i])∗α; //3 · (3M)

V [1, 2 ∗ i]← S[i+1] ∗P [i+2]−S[i+2] ∗P [i+1]; //3 · (2M)

end for;

t1 ← V [1, 4] ∗ V [1, 6]; t2 ← V [1, 5]2;

V [1, 7]← (t1 ∗w2− t2 ∗w13)/V [1, 3]; //1I +3M

V [2, 1]← S[3] ∗ P0 − P [3] ∗ S0; //2kM

V [2, 2]← (S[4] ∗ P0 − P [4] ∗ S0) ∗ β; //2kM

V [2, 3]← (P [5] ∗ S0 − S[5] ∗ P0) ∗ γ1; //2kM + 1Mk

else

for i← 1 to 3 do

V [1, 2 ∗ i]← S[i] ∗ P [i+ 1]− S[i+ 1] ∗ P [i]; //3 · (2M)

V [1, 2 ∗ i+1]← (S[i]∗P [i+2]−S[i+2]∗P [i])∗α; //3 · (3M)

end for;

t1 ← V [1, 2] ∗ V [1, 4]; t2 ← V [1, 3]2;

V [1, 1]← (t1 ∗w2− t2 ∗w13)/V [1, 5]; //1I +3M

V [2, 1]← (S[1] ∗ P0 − P [1] ∗ S0) ∗ γ2; //2kM + 1Mk

V [2, 2]← (S[2] ∗P0−P [2] ∗S0) ∗ δ; //2kM +Mk

V [2, 3]← S[3] ∗ P0 − P [3] ∗ S0; //2kM

end if;

4. return V
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3.2 New DoubleAdd/DoubleSubtraction steps

It is well-known that an integer has a non-adjacent form (NAF) representation. In this representation, the density of

the number of non-zero digits will be approximately one-third on average. Therefore, the non-adjacent form (NAF)

representation of an integer has been suggested for computing the pairings or scalar multiplication in efficiency. This

leads us to consider a modified Elliptic Net algorithm when the parameter r is represented in NAF form. The remaining

task is to design two DoubleAdd(V ) and DoubleSubtraction(V ) functions if the first vector only has 7 consecutive terms

centered at i.

3.2.1 DoubleAdd function

Firstly, we consider how to update the next block V centered at 2i + 1 from the current block centered at i which has the

first vector with 7 terms. In this case, the non-zero digit is 1.

We now restrict that the first vector only has 7 terms W (λ, 0)i−3≤λ≤i+3 centered at i. It follows from the duplication

formula that W (λ, 0)2i−3≤λ≤2i+3 can be updated under such an assumption. However, we hope that the updated first

vector should be centered at 2i + 1. This indicates that W (2i − 3, 0) should be omitted but W (2i + 4) must be calculated

in the new DoubleAdd(V ) algorithm.

It is known that the sequence {W (i, 0)} is an elliptic net of rank one [18](or equivalently, an elliptic divisibility

sequence [24], [26]) and then satisfies the following well-known recursive formula,

W(h+2, 0)W (h−2, 0)=W(h+1, 0)W(h−1, 0)W (2, 0)2 −W (3, 0)W (1, 0)W (h, 0)2. (8)

Replacing h by 2i+ 2 yields the following equality for computing W (2i+ 4, 0),

W (2i+ 4, 0) =
W (2i+ 3, 0)W (2i+ 1, 0)W (2, 0)2 −W (3, 0)W (1, 0)W (2i+ 2, 0)2

W (2i, 0)
. (9)

By Equation (9), we see that W (2i+4, 0) can be computed provided that the values W (λ, 0)2i≤λ≤2i+3 are known. However,

all of W (λ, 0)2i≤λ≤2i+3 can be obtained given the values W (λ, 0)i−3≤λ≤i+3 by Equations (2) and (3).

Since the second vector centered at 2i+1 can be updated provided that all of W (λ, 0)i−1≤λ≤i+3 and W (λ, 1)i−1≤λ≤i+1

are known, it is reasonable that the first vector of the block only has seven terms for constructing the DoubleAdd(V )

algorithm as shown Algorithm 3.1.

 !1,1 i ! "1,i  !1,1 i

! "0,3 i

! "1,2i  !1,22  i! "1,12  i

! "0,2 i ! "0,1 i ! "0,i  !0,1 i ! "0,2 i ! "0,3 i

! "0,22  i ! "0,12  i ! "0,2i  !0,42  i! "0,12  i ! "0,22  i ! "0,32  i

Fig. 2. Updating the block centered at i to 2i+ 1

It is obvious that the proposed DoubleAdd(V ) step will be more costly than the original DoubleAdd one(see Algorithm

2 of [18]) since the inverse involves in the updating process. However, the new algorithm seems to be attractive possibly

under the condition that the parameter r has a low Hamming weight. We will give a detailed efficiency consideration in

the later section.

We now estimate the cost of the new DoubleAdd(V ) algorithm in the Tate-like case. Compared to the Double(V )

algorithm in the previous section, discarding the computation of W (2i − 3, 0) will save 2M . Now we consider the cost

of computing W (2i + 4, 0). Note that W (2, 0)2 and W (3, 0)W (1, 0) can be precomputed. Therefore we neglect the cost

of computing them. We also remark that the cost of computing W (2i + 3, 0)W (2i + 1, 0) and W (2i + 2, 0)2 can be

ignored since both of them must be calculated in the next iteration loop for updating the first vector. This means that if t1

and t2 in Algorithm 3.1 can be cached then both can be updated directly to S[4] and P [4] in the next loop. Therefore, the

computational cost of computing W (2i+4, 0) will be 1I+3M . This gives that the total cost of the presented DoubleAdd(V )

step will be 5S + (23 + 6k)M + I + Sk + 2Mk in general. We list the above efficiency analysis and the previous results for

comparison in Table 2.
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TABLE 2
Cost of the DoubleAdd(V) algorithm for the different cases

Method Operation count

Elliptic Net algorithm [18] 6S + (26 + 6k)M + Sk + 2Mk

This work 5S + (23 + 6k)M + I + Sk + 2Mk

3.2.2 DoubleSubtraction function

We now consider the case of the non-zero digit −1. This means that we need consider how to move the center of the next

block to 2i− 1 provided that the current block centered at i with the first vector having seven terms is known.

According to the above discussions about DoubleAdd steps, we can discard the term W (2i + 3, 0) and calculate the

term W (2i− 4, 0) by symmetry. In a similar manner, replacing h by 2i− 2 in Equation (8) yields the following equality,

W (2i− 4, 0) =
W (2i− 3, 0)W (2i− 1, 0)W (2, 0)2 −W (2i− 2, 0)2W (3, 0)W (1, 0)

W (2i, 0)
.

In a similar manner, we can update all the terms W (λ, 0)2i−4≤λ≤2i+2 in the first vector.

 !1,1 i ! "1,i  !1,1 i

! "0,3 i

! "1,22  i ! "1,2i !1,12  i

! "0,2 i ! "0,1 i ! "0,i  !0,1 i ! "0,2 i ! "0,3 i

! "0,42  i ! "0,32  i ! "0,22  i ! "0,22  i! "0,12  i ! "0,2i  !0,12  i

Fig. 3. Updating the block centered at i to 2i− 1

We now consider how to update the terms W (λ, 1)2i−2≤λ≤2i in the second vector if the terms W (λ, 1)i−1≤λ≤i+1 are

known. Observe that the term W (2i − 1, 1) and W (2i, 1) can be computed by Equations (4) and (5) in this case. The

remaining task is to compute the term W (2i−2, 1) by using the recurrence relation (1). Replacing p, q, r, and s by (i−2, 0),

(i, 1), (1, 0) and (0, 0) gives the following formula,

W (2i− 2, 1) = (W (i− 1, 1)W (i+ 1, 1)W (i− 2, 0)2 −W (i− 1, 0)W (i− 3, 0)W (i, 1)2)/W (2, 1).

Therefore, it is reasonable to design a DoubleSubtraction function on the basis of a block which has the first vector

with seven terms and the second vector with three terms. We summarize the results into Algorithm 3.1. In addition, we

remark that the cost of the DoubleSubtraction step is the same as that of the DoubleAdd one. On the basis of Algorithm 3.1

which consists of the basic Double and DoubleAdd/DoubleSubtraction, it is easy to give a modified Elliptic Net algorithm

shown as Algorithm 3.2. Note that the initial index of every vector in a block will be one, not zero in our algorithm.

4 EFFICIENCY COMPARISONS AND IMPLEMENTATION RESULTS

In this section, we will analyze the whole operation count of computing the pairings by using the proposed Double and

DoubleAdd steps, and compare it with the original Elliptic Net algorithm given by Stange in [18].

4.1 Efficiency comparison

Assume that P ∈ E(Fq) and Q ∈ E(Fqk). Now we consider the efficiency of computing fr,P (Q) by using the proposed

method and the previous one [18], respectively. Let N be the bit length of r. Denote by ρ be the density of non-zero digits

of the integer r in NAF representation. On the basis of the above assumption, we can estimate the cost of of computing the
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Algorithm 3.2 Elliptic Net Algorithm in NAF form
Input: Points P ∈ E(Fq) and Q ∈ E(Fqk). Initial terms a = W (2, 0), b = W (3, 0), c = W (4, 0), d = W (2, 1), e =

W (−1, 1), f = W (2,−1), g = W (1, 1), h = W (2, 1) of an elliptic net satisfying W (1, 0) = W (0, 1) = 1 and an integer

m = (dldl−1 · · · d0)2 is represented in NAF form with dl = 1 and di ∈ {0,±1} for 0 ≤ i ≤ l − 2.

Output: W (m, 0) and W (m, 1)

1. V ← [[−a,−1, 0, 1, a, b, c], [1, g, d]]
2. for i := l − 1 to 0 by 1 do

if di = 0 then

V ← Double(V )

else if di = 1 then

V ← DoubleAdd(V )

else

V ← DoubleSubtraction(V )

end if

end if

end for

3. return V [1, 4] and V [2, 2] //terms W (m, 0) and W (m, 1) respectively

Tate-like pairing fr,P (Q) by using the two different methods and determine the critical value of the density ρ. The total

cost of the modified Elliptic Net algorithm is

ρN(5S + (23 + 6k)M + I + Sk + 2Mk) + (1− ρ)N(5S + (22 + 6k)M + Sk +
3

2
Mk)

=N(5S + (22 + 6k)M + Sk +
3

2
Mk) + ρN(M + I +

1

2
Mk).

Similarly, the total cost of Stange’s algorithm [18] is

ρN(6S + (26 + 6k)M + Sk + 2Mk) + (1− ρ)N(6S + (26 + 6k)M + Sk +
3

2
Mk)

=N(6S + (26 + 6k)M + Sk +
3

2
Mk) +

1

2
ρNMk.

Therefore, the proposed algorithm will be faster than the original Elliptic Net algorithm by Stange [18] under the condition

that
N(6S + (26 + 6k)M + Sk +

3

2
Mk) +

1

2
ρNMk

−N(5S + (22 + 6k)M + Sk +
3

2
Mk)− ρN(M + I +

1

2
Mk)

=N(S + 4M)− ρN(M + I) > 0.

i.e.,

ρ <
S + 4M

M + I
.

Assume that 1S = 0.8M. In table 3, we present the maximal value of the density ρ such that the proposed algorithm

will be more efficient than the previous results for computing the Tate-like(or Miller-lite) pairings. It is well-known that

for a randomly chosen n-bit integer the density of non-zero digits will be 1/3 on average by using NAF representation.

This indicates that the proposed method will be most probably faster than the original Elliptic Net algorithm under the

assumption of I = 10M .

4.2 Implementation results

In this section, experimental results are given for computing the Tate pairing using the the different techniques. There are

many choices of pairing friendly curves for implementing the pairing. The chosen curve here will be supersingular elliptic

curves over large prime fields with embedding degree k = 2, which are recommended in some industry standards(or
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TABLE 3
Maximal value of the density ρ for the proposed method

Density I = 10M I = 20M I = 30M

ρ 0.44 0.23 0.15

drafts), such as IEEE P1363.3 draft [27] and RFC 5091 [31]. Curves of this form adopt many advantages that have been

clarified in [32]. In particular, the order of the subgroup of points defined over the base field can be chosen flexibly.

Our running environment specifications are listed as follows: Ubuntu Kylin 14.04 64bits, Core i5-4670 CPU 3.40GHz×
4, and memory, 8GB. The code was written in Magma [33]. The concrete parameters for the supersingular elliptic curve

with embedding degree 2 are given as follows.

• r = 2255 + 241 + 1; (256 bits)
• p = 12 · (21280 + 231 + 215) · r − 1; (1539 bits)
• Fp2 = Fp[i]/(i

2 + 1);
• E : y2 = x3 − 3x over Fp.

Notice that the prime p satisfies gcd(p − 1, 3) = 1. This implies that every nonzero element in Fp has a cube root.

In particular, one can find an element η in Fp such that η3 = W (2, 0)−1. By using the equivalence of the elliptic nets,

we can change W (2, 0) to 1 and then save four Fp multiplications in each iteration as discussed in [18]. Assume that

1M2 = 3M and 1S2 = 2M . Here we assume that 1I = 10M and 1S = 0.8M . In the whole comparison, we neglect the

pre-computations since the point P can be fixed for many pairing-based cryptographic protocols.

The overall cost of the iteration loop by using the proposed method on the above curve will be

253 · (5S + (18 + 6k)M + Sk +
3

2
Mk) + 2 · (5S + (19 + 6k)M + I + Sk + 2Mk)

=253 · 40.5M + 2 · 53M = 10352.5M.

In a similar manner, the cost of the whole iteration loop in Stange’s algorithm [18] will be

253 · (6S + (22 + 6k)M + Sk +
3

2
Mk) + 2 · (6S + (22 + 6k)M + Sk + 2Mk)

=253 · 45.3M + 2 · 46.8M = 11554.5M.

From a performance point of view it is essential to compare the running time of the iteration loop with the orginal Elliptic

Net algorithm given by Stange in [18]. We also give the cost of computing fr,P (Q) using Miller’s algorithm in projective

coordinates for benchmarks. In Miller’s algorithm, the computational cost of each doubling step is 8M +4S+Mk+Sk and

that of each addition step is 11M+3S+Mk, respectively [30], [34]. The overall operation count of Miller’s algorithm will be

about 4164M . Table 4 summarizes the above estimation of the computational cost and some running times for calculating

the pairings at 128-bit security level. All of the timings are shown in milliseconds. Our experimental results indicate that

the presented method in this paper is about 14% faster than the previous Elliptic Net algorithm [18]. This shows that

the proposed method will efficiently increase performance under the condition that the corresponding parameter r has a

low Hamming weight. However, it is still substantially slower than Miller’s algorithm in projective coordinate systems.

This indicates that Miller’s algorithm is still a valid candidate for practical pairing-based implementations and more

optimizations about the Elliptic Net algorithm should be required.

5 CONCLUSION

In this paper, we showed how using the property of elliptic nets to design new doubling and addition steps in the Elliptic

Net algorithm can reduce the cost of the running time when computing the pairings. Our experimental results indicated

that under the condition that the loop parameter r has low Hamming weight, one can attain higher performance using the

proposed method than using the previous Elliptic Net algorithm. While the modified Elliptic Net algorithm is somewhat
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TABLE 4
Cost of computing fr,P (Q) by the different methods-128 security level

Method Operation Count Time(ms)
Stange’s algorithm [18] 11554.5M 37.8

This work 10352.5M 33.2
Miller’s algorithm 4164M 14.9

expensive compared to Miller’s algorithm in projective coordinate systems, it can be still implemented quite efficiently on

modern personal computers. We believe that this work will lead to more developments of the Elliptic Net algorithm in

future.
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