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Abstract

We show a general connection between various types of statistical zero-knowledge (SZK)
proof systems and (unconditionally secure) secret sharing schemes. Viewed through the SZK
lens, we obtain several new results on secret-sharing:

• Characterizations: We obtain an almost-characterization of access structures for which
there are secret-sharing schemes with an efficient sharing algorithm (but not necessarily
efficient reconstruction). In particular, we show that for every language L ∈ SZKL (the
class of languages that have statistical zero knowledge proofs with log-space verifiers
and simulators), a (monotonized) access structure associated with L has such a secret-
sharing scheme. Conversely, we show that such secret-sharing schemes can only exist
for languages in SZK.

• Constructions: We show new constructions of secret-sharing schemes with both ef-
ficient sharing and efficient reconstruction for access structures associated with lan-
guages that are in P, but are not known to be in NC, namely Bounded-Degree Graph
Isomorphism and constant-dimensional lattice problems. In particular, this gives us
the first combinatorial access structure that is conjectured to be outside NC but has an
efficient secret-sharing scheme. Previous such constructions (Beimel and Ishai; CCC
2001) were algebraic and number-theoretic in nature.

• Limitations: We also show that universally-efficient secret-sharing schemes, where the
complexity of computing the shares is a polynomial independent of the complexity of
deciding the access structure, cannot exist for all (monotone languages in) P, unless
there is a polynomial q such that P ⊆ DSPACE(q(n)).

1 Introduction

Secret-sharing [30, 8], a foundational primitive in information-theoretic cryptography, enables
a dealer to distribute shares of a secret to n parties such that only some predefined authorized
sets of parties will be able to reconstruct the secret from their shares. Moreover, the shares
of any unauthorized set of parties should reveal no information about the secret, even if the
parties are computationally unbounded. The (monotone) collection of authorized sets is called
an access structure.

We call a secret-sharing scheme efficient if both the sharing algorithm (executed by the
dealer) and reconstruction algorithm (executed by the parties) run in time polynomial in n.
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Associating sets S ⊆ [n] with their characteristic vectors xS ∈ {0, 1}n, we can define a language
LA associated with an access structure A.1 Namely, LA is simply the set of all xS such that
S ∈ A. For an access structure A to have an efficient secret sharing scheme, it must be the case
that the language LA is computable in polynomial time.

A major open question in information-theoretic cryptography is:

Q1: Characterize access structures with efficient secret-sharing schemes.

Indeed, this question has been widely studied [30, 8, 6, 20, 21], culminating with the result of
Karchmer and Wigderson [21] who showed efficient secret sharing schemes for various log-space
classes.2 We refer the reader to Beimel’s excellent survey [4] for more details. In any event, it
is wide open whether all of mP, the class of languages recognized by monotone polynomial-size
circuits, has efficient secret sharing schemes.

Restricting the reconstruction algorithm to be a linear function of the shares gives us a special
kind of secret-sharing scheme called a linear secret-sharing scheme. The Karchmer-Wigderson
secret sharing scheme [21] for log-space classes is a linear secret-sharing scheme. We also know
that linear and even the slightly more general quasi-linear schemes [21, 5] cannot exist for access
structures outside NC, the class of languages computable by boolean circuits of polylogarithmic
depth. Finally, Beimel and Ishai [5] showed non-linear secret-sharing schemes for two specific
access structures associated to algebraic problems (related to computing quadratic residuosity
and co-primality) which are in P but are believed not to be in NC.

We will also study secret-sharing schemes (which we call semi-efficient) where the dealer is
efficient, namely runs in time polynomial in n, however the reconstruction algorithm need not
be efficient. Aside from their theoretical interest, such secret-sharing schemes may find use in
scenarios where sharing happens in the present (and thus has to be efficient) but reconstruction
happens in a future where computational resources might be cheaper. This also justifies our
desire to achieve information-theoretic (unconditional) security since not only the honest parties,
but also the adversary gains more computational resources with time.

Beimel and Ishai [5] show a semi-efficient secret-sharing scheme for the language of quadratic
residuosity modulo a composite, which is believed not to be in P. However, quite surprisingly,
a characterization of access structures with semi-efficient secret-sharing schemes also appears
to be open:

Q2: Characterize access structures with semi-efficient secret-sharing schemes.

As a parenthetical remark, we note that a different interpretation of efficiency is sometimes
used in the secret-sharing literature. Namely, a secret-sharing scheme is termed efficient [22, 11,
9] if the total length of the n shares is polynomial in n. Let us call this notion size efficiency.
This makes no reference to the complexity of either the sharing or the reconstruction algorithms.
In this work, we use the strong interpretation of efficient, namely where both the sharing and
reconstruction algorithms run in time poly(n) and that of semi-efficient where only the sharing
algorithm needs to run in time poly(n). We note that either of these two notions is stronger
than size efficiency.

It is against this backdrop that we begin our study. Our main contribution is to develop
an interactive proof lens to study these questions. As concrete results of this connection, we
obtain an almost-characterization of access structures with semi-efficent secret-sharing schemes

1More formally, we have to speak of a family of access structures {An}n∈N, one for every n. We abuse notation
slightly and denote A, consisting of subsets of n parties, as the access structure.

2We use this as a short-hand to say “secret sharing schemes for access structures A whose associated language
LA can be recognized in log-space”.
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(almost solving Q2), new combinatorial access structures conjectured to lie outside NC which
have efficient secret-sharing schemes (extending [5]), and limitations on an ambitious notion of
universally efficient secret-sharing. We describe our results in detail below.

1.1 Our Results

Our central tool is a special type of two-message interactive proof system (that we call Special
Interactive Proofs). Roughly speaking, the restriction on the proof system for a language L
(aside from the fact that it has two messages) is that the verifier uses a special procedure to
accept or reject. In particular, the verifier V on input x and a uniformly random bit b, comes
up with a message m to send to the prover. The prover wins (the verifier accepts) if he can
guess the bit b, given m. If x ∈ L, the prover should have a distinguishing (and therefore
an accepting) strategy. However, if x /∈ L, the verifier messages for bits 0 and 1 should be
statistically indistinguishable.

Before we proceed, we must clarify what it means to have a secret sharing scheme for a
language L which is not necessarily monotone. We follow the approach of Beimel and Ishai [5]
and define a (monotonized) access structure on 2n parties {Pi,0, Pi,1}i∈[n] associated with L
(more precisely, L∩{0, 1}n): for every i, the pair of parties {Pi,0, Pi,1} is in the access structure,
as is every set of parties {P1,x1 , P2,x2 , . . . , Pn,xn} for all x ∈ L. These are the minimal sets that
make up the access structure AL. Note that the complexity of deciding whether a set S ∈ AL
is precisely the complexity of deciding the language L.

Our research in this direction was motivated by the fact that if, for some language L, AL
has a semi-efficient secret sharing scheme, then L has a special interactive proof: the verifier
simply shares a random bit b according to the sharing algorithm and sends the prover the
shares corresponding to the input, and the prover has to guess b. The honest prover runs the
reconstruction algorithm, and completeness and soundness are guaranteed by correctness and
privacy of the secret sharing scheme, respectively. We then investigated the circumstances under
which the converse might also hold. We were able to show the following:

Theorem 1.1 (Informal). Let L be a language and let AL be the associated access structure.
If L has a special interactive proof with a log-space verifier, then AL has a semi-efficient secret-
sharing scheme. Conversely, if AL has a semi-efficient secret-sharing scheme, then L has a
special interactive proof.

Our proof goes through the notion of partial garbling schemes, defined and studied in the
work of Ishai and Wee [19].

Characterizing Semi-Efficient Secret-Sharing. Using Theorem 1.1, we characterize access
structures that have semi-efficient secret-sharing schemes: we show that all languages in SZKL,
the class of languages with statistical zero knowledge proof systems [29] where the verifier and
simulator run in log-space, have semi-efficient secret-sharing schemes. This follows from the
observation, using a result of Sahai and Vadhan [29], that L has a special interactive proof with
a log-space verifier if and only if L ∈ SZKL. Conversely, it is easy to see that if a language L
has a semi-efficient secret-sharing scheme, then L ∈ SZK, the class of languages with statistical
zero knowledge proof systems with polynomial-time verifier and simulator. Together, this almost
characterizes languages with semi-efficient secret-sharing schemes.

The class SZKL, which is contained in SZK, and hence in AM ∩ coAM, contains several
problems of both historical and contemporary significance to cryptography, such as Quadratic
Residosity, Discrete Logarithm, and the Approximate Closest Vector Problem, as well as other
well-studied problems like Graph Isomorphism. For further details, including those about com-
plete problems and about prospects of basing cryptography on the worst-case hardness of SZKL,
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see [12]. As a result of these containments, our characterization captures as a special case the
Beimel-Ishai secret-sharing scheme for the language of quadratic residuosity modulo compos-
ites [5].

We also show a version of this theorem for efficient (as opposed to semi-efficient) secret-
sharing schemes. In particular:

Theorem 1.2 (Informal). Let L be a language and let AL be the associated access structure.
If L has a special interactive proof with a log-space verifier and a polynomial-time prover, then
AL has an efficient secret-sharing scheme. Conversely, if AL has an efficient secret-sharing
scheme, then L has a special interactive proof with a polynomial-time prover.

Constructions of Efficient Secret-Sharing Schemes. We show new constructions of ef-
ficient secret-sharing schemes for languages that are in P but are not known to be in NC,
namely Bounded-Degree Graph Isomorphism [27, 2], and lattice Shortest and Closest Vector
problems in constant dimensions [25, 17]. Our constructions arise from special interactive proofs
for these languages together with an application of Theorem 1.2. In particular, our construc-
tion for Bounded-Degree Graph Isomorphism gives us the first efficient secret-sharing scheme
for a combinatorial access structure conjectured to be in P \NC (The results of Beimel and
Ishai were for algebraic access structures associated to quadratic residuosity modulo primes and
co-primality). Moreover, our interactive proofs and secret-sharing schemes are simple, natural
and easy to describe.

Limitations on Universally Efficient Secret-Sharing Schemes. Consider secret sharing
schemes that are defined not for a given access structure, but uniformly for some class of access
structures. The sharing algorithm in such a case gets a description of the access structure,
in the form of a circuit or a Turing machine that decides membership in the access structure.
Typically, the sharing algorithm runs for as much time as the Turing machine (and therefore
as much time as required to decide membership). However, there is no a-priori reason why this
should be the case. Indeed, one can reasonably require that the sharing algorithm runs in some
fixed polynomial time t(n), even though the access structure may take arbitrary polynomial time
to decide. (We allow the reconstruction algorithm to run in arbitrary polynomial time to make
up for the deficiency of the sharing algorithm). Can such universally efficient secret-sharing
schemes exist?

Our definition is inspired by the recent progress on (computationally secure) succinct ran-
domized encodings [7, 26, 10, 24]. Indeed, these works show, assuming indistinguishability
obfuscation [3, 14], that P has computationally secure succinct randomized encoding schemes.
One could also reasonably ask: Can such succinct randomized encodings exist unconditionally
for all of P? It was observed in [7] that this cannot be the case under certain complexity-
theoretic assumptions about speeding up non-deterministic algorithms.

Using our interactive proof characterization, we show that unconditionally secure univer-
sally efficient secret-sharing schemes (and succinct randomized encodings) cannot exist for all
languages in P, unless there is a fixed polynomial q such that P ⊆ DSPACE(q(n)) (the class
of languages computable by a deterministic single-tape Turing machine with q(n) space). We
remind the reader that P 6= DSPACE(q(n)) for any fixed q, although non-containment either
way is not known.

1.2 Related Work and Open Problems

In this work, we insist on statistical (or unconditional) security from our secret-sharing schemes.
A number of works relax this to computational security and achieve stronger positive results.
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Settling for computational security and assuming the existence of one-way functions, Yao [36]
and [33] showed an efficient secret-sharing scheme for all monotone languages in P recognized
by polynomial-sized monotone circuits. We mention that even here, we are far from a charac-
terization as there are monotone languages in P that cannot be recognized by polynomial-sized
monotone circuits [28, 31].

Komargodski, Naor and Yogev [23] also exploit the relaxation to computational security, and
show secret-sharing schemes for all of monotone NP, where the sharing algorithm is polynomial-
time, and the reconstruction algorithm is polynomial-time given the NP witness. Their result
relies on strong computational assumptions related to indistinguishability obfuscation [3, 14].

While we show semi-efficient secret-sharing schemes for monotonized access structures corre-
sponding to all languages in SZKL, it remains open to characterize which monotone languages
in SZK have semi-efficient secret-sharing schemes. The central difficulty is that even if a lan-
guage is monotone, there is no reason why the verifier in the SZK proof for the language should
inherit monotonicity-like properties (and indeed, this is hard to even define).

2 Preliminaries and Definitions

Notation. Given a set S, we denote by 2S the set of all subsets of S. Let T = (t1, . . . , tn) and
B = {i1, . . . , im} ⊆ [n]; TB is used to denote the tuple (ti1 , . . . , tim).

We use languages and Boolean functions interchangeably. Given a language L, we overload
L to also denote the corresponding Boolean function, namely, L(x) = 0 if x /∈ L and L(x) = 1
otherwise. Given a randomized algorithm A, we denote by A(x) the random variable arising
from running A on x, and by A(x; r) the output when A is run on x with randomness r.

Given a distribution D over a finite set X and an x ∈ X, we denote by D(x) the probability
mass D places on x, and for a subset S ⊆ X, D(S) =

∑
x∈S D(x). x ← D indicates that x is

a sample drawn according to the distribution D. For a set S, x← S indicates that x is drawn
uniformly at random from S.

We use the notion of statistical distance (also called total variation distance or `1 distance)
between distributions, defined as follows.

Definition 2.1 (Statistical Distance). The statistical distance between two distributions D1

and D2 over the domain X is defined as

d(D1, D2) =
1

2

∑
x∈X
|D1(x)−D2(x)| = max

S⊆X
(D1(S)−D2(S))

Of particular interest to us is the following relationship of statistical distance to the advan-
tage of any unbounded procedure in distinguishing between two distributions given a uniform
prior.

Fact 2.1. Given distributions D1, D2 over a domain X, for functions f : X → {0, 1}, we have:

max
f

Pr [f(x) = b : b← {0, 1}, x← Db] =
1

2
+
d(D1, D2)

2

2.1 Complexity Classes

We briefly define the following complexity classes that are referred to frequently in the rest of
the paper. To start with, P (resp. BPP) is the class of languages decidable in deterministic
(resp. randomized) polynomial time and L is the class of languages decidable in deterministic
logarithmic space.
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Definition 2.2 (P). P is the class of languages L for which there exists a deterministic
polynomial-time Turing machine M such that for any input x, x ∈ L⇔M(x) = 1.

NCk is the class of languages decidable by circuits of depth O((log n)k) (here, n denotes
the input length). A language is in NC if it is in NCk for some k.

Definition 2.3 (NCk). For any k ∈ N ∪ {0}, NCk is the class of languages L for which there
exists a family of boolean circuits {Cn}n∈N such that:

• There is a constant c such that for all n, Cn has depth at most c(log n)k.

• For any input x of length n, x ∈ L⇔ Cn(x) = 1

BPP is the class of languages decidable by probabilistic polynomial-time Turing machines.
Note that in the below definition, the constants 2

3 and 1
3 may be improved to 1− 2−n and 2−n,

respectively, by repetition.

Definition 2.4 (BPP). BPP is the class of languages L for which there exists a probabilistic
polynomial-time Turing machine M such that for any input x:

• x ∈ L⇒ Pr [M(x) = 1] ≥ 2
3

• x /∈ L⇒ Pr [M(x) = 1] ≤ 1
3

DSPACE(p(n)) is the class of languages decidable by deterministic Turing machines run-
ning with space p(n). Thus, L is the union of DSPACE(c log n) over all constants c.

Definition 2.5 (DSPACE). For any function p : N → N, DSPACE(p(n)) is the class of
languages L for which there exists a deterministic Turing machine L such that for any input x:

• x ∈ L⇔M(x) = 1

• M uses at most p(|x|) cells on its work tape.

And finally, SZK consists of languages that have Statistical Zero Knowledge (SZK) proofs,
which are interactive proofs with some additional properties, as described below.

Definition 2.6 (SZK). A language L is in SZK if there exist a tuple of Turing machines
(P, V, S), where the verifier V and simulator S run in probabilistic polynomial time, satisfying
the following:

• (P, V ) is an interactive proof for L with negligible completeness and soundness errors.

• Let (P, V )(x) denote the distribution of transcripts of the interaction between P and V on
input x. For any x ∈ L of large enough size,

d(S(x), (P, V )(x)) ≤ negl(|x|)

The above is actually a definition of honest-verifier Statistical Zero Knowledge, but we know
from [29] that any language with an honest-verifier SZK proof also has an SZK proof against
cheating verifiers. So this follows as a definition of SZK as well. We refer the reader to [32] for
extensive definitions and explanations.

SZKL is the same as SZK, but with the verifier and simulator running with logarithmic
space. In this case too, the above definition is only for honest verifiers, but as this would only
define a larger class, and we show positive results for this class, we will work with this definition.
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2.2 Secret Sharing

Definition 2.7 (Access Structure). Given a set of parties P = {P1, . . . , Pn}, an access structure
A is a monotone collection of subsets of P . That is, if S ∈ A and T ⊇ S, then T ∈ A.

In the context of a secret-sharing scheme, the access structure consists of all subsets of
parties that are allowed to reconstruct a secret shared among them. Of course, as the access
structure is monotone, it suffices to specify its minimal elements. Along the lines of [5], we
associate with every language L an family of access structures {AL,n}n∈N where AL,n is defined
for 2n parties. We will then study the efficiency of secret sharing schemes for access structures
in such families as a function of n. As will be evident from the definition below, the complexity
of deciding whether a set S ∈ AL,n is exactly the hardness of deciding the language.

Definition 2.8 (Access Structure associated with Language L). For a language L, its associ-
ated access structure, denoted by AL,n, for a set of 2n parties Pn = {Pi,b}i∈[n],b∈{0,1} is defined
by the following minimal elements:

• ∀i : {Pi,0, Pi,1} ∈ AL,n

• ∀x ∈ L ∩ {0, 1}n : {P1,x1 , . . . , Pn,xn} ∈ AL,n

We use the following definition of secret sharing schemes.

Definition 2.9 (Statistical Secret Sharing). An (ε, δ)-Secret Sharing Scheme for n parties
P = {P1, . . . , Pn} and a domain of secrets D under access structure A ⊆ 2P is a pair of
algorithms (S,R), where

• S is the randomized sharing algorithm that takes as input a secret s ∈ D and outputs a
sequence of shares (s1, s2, . . . , sn); and

• R is the deterministic reconstruction algorithm that takes as input a subset of parties
B ⊆ [n] and the corresponding subset of shares (si)i∈B and outputs either a secret s or a
special symbol ⊥.

We require (S,R) to satisfy the following conditions:

1. Correctness: For any B ∈ A and any s ∈ D, the reconstruction algorithm R works:
Pr [R(B,S(s)B) = s] ≥ 1− ε(n)

2. Privacy: For any B /∈ A and any s, s′ ∈ D: d(S(s)B, S(s′)B) ≤ δ(n).

The scheme is said to be semi-efficient if S is computable in poly(n) time, and it is said to be
efficient if both S and R are computable in poly(n) time.

Unless otherwise specified, the domain of secrets for all schemes we talk about in this work
shall be {0, 1}, which is without loss of generality.

Remark 2.1. When we talk about access structures associated with promise problems, we require
no guarantees from a secret sharing scheme for sets corresponding to inputs that do not satisfy
the promise (even though technically they are not part of the associated access structure, and so
privacy would otherwise be expected to hold).

While much of the literature on secret sharing schemes studies the size of the shares (and
call schemes that produce shares of size poly(n) efficient), we use a stronger interpretation of
efficiency. Namely, in all our exposition, the sharing algorithm S is required to run in time
polynomial in n. Thus, we will not discuss the sizes of the shares produced by the schemes,
which is always poly(n).
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2.3 Partial Randomized Encodings

We use the notion of partial randomized encodings (defined as partial garbling schemes in [19]).
They are essentially randomized encodings [18] where part of the input is allowed to be public.

Definition 2.10 (Partial Randomized Encodings). An (ε, δ)-partial randomized encoding (PRE)
of a (bi-variate) function f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ is a pair of (randomized) functions
(Ef , Df ), called the encoding and decoding functions, respectively, that satisfy the following
conditions for all n, n′:

1. Correctness: ∀(x, z) ∈ {0, 1}n × {0, 1}n′:

Pr [Df (x,Ef (x, z)) = f(x, z)] ≥ 1− ε(n)

Note that the decoder gets the first half of the input, namely the public part x, in addition
to the randomized encoding Ef (x, z).

2. Privacy: ∀x ∈ {0, 1}n and ∀z1, z2 ∈ {0, 1}n
′
:

f(x, z1) = f(x, z2)⇒ d(Ef (x, z1), Ef (x, z2)) ≤ δ(n)

Furthermore:

• (Ef , Df ) is local (or locally computable) if Ef can be decomposed into a set of functions

{E(i)
f (xi, z)}i∈[|x|], where E

(i)
f depends only on the ith bit of x and on z.

• (Ef , Df ) is perfect if ε(n) = δ(n) = 0.

• (Ef , Df ) is said to be semi-efficient if Ef is computable in poly(|x|, |z|) time, and it is
said to be efficient if both Ef and Df are computable in poly(|x|, |z|) time.

We can extend the above definition to PREs of randomized functions in a natural way.
Namely, to construct an (ε, δ)-PRE for a randomized function A(x, z; r), simply construct an
(ε, δ)-PRE (EA′ , DA′) for the deterministic function A′(x, (z, r)) = A(x, z; r), and take EA(x, z)
to be the random variable EA′(x, (z, r)) when r is chosen uniformly at random, and have DA

be the same as DA′ . Note that in EA′ , the randomness r used by A is part of the private input.
This is crucial, as revealing r along with x and A(x, b; r) could end up revealing b.

We then have the following lemma, whose proof is in Appendix B.

Lemma 2.2. Let A(x, z) be a randomized function, and (EA, DA) be an (ε, δ)-PRE of A as
described above. Then, for any x and any z1, z2:

d(A(x, z1), A(x, z2)) ≤ δ′ ⇒ d(EA(x, z1), EA(x, z2)) ≤ δ(|x|) + δ′

We also use the following lemma.

Lemma 2.3 ([1, 19]). Every function f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ that can be computed in
L/poly has efficient perfect locally computable PREs, with encoding in NC0 and decoding in
NC2.

Finally, we abuse notation slightly and define partial randomized encodings for languages
(boolean functions) a bit differently, for somewhat technical reasons (instead of calling this
object something different).
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Definition 2.11 (PREs for languages). An (ε, δ)-partial randomized encoding (PRE) of a
language L ⊆ {0, 1}∗ is a pair of (randomized) functions (EL, DL), called the encoding and
decoding functions, respectively, that satisfy the following conditions:

1. Correctness: ∀x ∈ L and b ∈ {0, 1}: Pr [DL(x,EL(x, b)) = b] ≥ 1− ε(|x|).

2. Privacy: ∀x /∈ L, d(EL(x, 0), EL(x, 1)) ≤ δ(|x|).

Semi-efficiency, efficiency and locality are defined as for general partial randomized encodings.

In other words, a PRE for a language L is a PRE for the following function:

fL(x, b) =

{
b if x ∈ L
⊥ otherwise

Using the above equivalence and Lemma 2.3, we have the following:

Lemma 2.4 ([19]). Every language in L/poly has efficient perfect locally computable PREs,
with encoding in NC0 and decoding in NC2.

2.4 Special Interactive Proofs

We define a special type of interactive proof system with two messages. Roughly speaking,
the restriction on the proof system (aside from the fact that it has two messages) is that the
verifier uses a special procedure to accept or reject. In particular, the verifier V on input x and
a uniformly random bit b, comes up with a message m to send to the prover. The prover wins
if he can guess the bit b, given m.

Definition 2.12 (SIP). An (ε, δ)-Special Interactive Proof (SIP) for a language L is a pair
(P, V ), where:

1. V is a PPT algorithm that takes as input an instance x and a bit b, and outputs a message
m; and

2. P takes as input the instance x and the verifier message m, and outputs a bit b′.

We require (P, V ) to satisfy the following conditions, when b← {0, 1}:

1. Completeness: ∀x ∈ L, Pr [P (x, V (x, b)) = b] ≥ 1− ε(|x|).

2. Soundness: ∀x /∈ L, and for any P ∗, Pr [P ∗(x, V (x, b)) = b] ≤ 1/2 + δ(|x|).

While the restrictions imposed on these proofs seem rather severe, they turn out to be quite
general. In fact, it follows from the work of Sahai and Vadhan [29] that the set of languages
with such proofs is exactly the class SZK. See Theorem 2.6.

2.5 Statistical Zero Knowledge

Recall that the class SZK is the set of languages that have statistical zero-knowledge proofs,
and the class SZKL is set of languages that have statistical zero-knowledge proofs where the
verifier and the simulator (for a statistically close simulation) both run in log-space.
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Definition 2.13 (Promise Problems SD, SDL). The promise problem (ε, δ)-Statistical Differ-
ence (SD) is defined by the following YES and NO instances:

SDY ES = {(M1,M2, 1
n) : d(Mn

1 ,M
n
2 ) > 1− ε(n)}

SDNO = {(M1,M2, 1
n) : d(Mn

1 ,M
n
2 ) < δ(n)}

where M1,M2 are deterministic Turing machines, and Mn
1 ,M

n
2 represent the random variables

corresponding to their outputs when the input is distributed uniformly at random in {0, 1}n.
If M1 and M2 are log-space machines, then the language is called (ε, δ)-Statistical Difference

for Log-space Machines, or simply SDL.

Theorem 2.5 ([29]). For every ε(n), δ(n) = 2−n
O(1)

such that δ(n) < (1− ε(n))2, the (ε, δ)-SD
problem is complete for SZK, and the (ε, δ)-SDL problem is complete for SZKL.

We will use the following theorem which is a slightly stronger version of Theorem 2.5. We
describe the proof (which follows from the proof of Theorem 2.5 in [29]) in Appendix C for
completeness.

Theorem 2.6 ([29]). There exist negligible functions ε(n), δ(n) = n−ω(1) such that for any
language L ∈ SZK, L has an (ε, δ)-special interactive proof system (P, V ). Furthermore, if
L ∈ SZKL, then the verifier V can be computed in log-space.

Sketch of Proof. For the main statement, we observe that the complete problem for SZK,
namely (ε, δ)-SD, has a simple (ε/2, δ/2)-special interactive proof which works as follows.

• The verifier V , on input an instance (M0,M1, 1
n) of the SD problem chooses a uniformly

random bit b, and outputs a sample from Mn
b ; and

• The prover’s goal is to guess the bit b.

By Fact 2.1, it follows that the best success probability of any prover in this game is
1+d(Mn

0 ,M
n
1 )

2 .
By the completeness of SD (Theorem 2.5), we get that SZK has (ε, δ)-special interactive proofs
for some ε(n), δ(n) = n−ω(1).

The proof for SZKL works in exactly the same way, except it is now a concern that the
verifier has to first run the SZK-completeness reduction to obtain an instance of the statistical
distance problem SDL, since it is not guaranteed that the reduction runs in log-space. However,
we show that the Sahai-Vadhan reduction indeed does. We refer the reader to appendix C for
more details.

In fact, the connection between languages with special interactive proofs and SZK goes
both ways. Namely,

Fact 2.7. Let (1− 2ε(n))2 > 2δ(n). If a language L has an (ε, δ)-SIP, then L ∈ SZK.

This is because deciding a language L that has an (ε, δ)-SIP (P, V ) is the same as deciding
whether (V(x,0), V(x,1), 1

|r(|x|)|) ∈ (2ε, 2δ)-SD, where V(x,b)(r) = V (x, b; r), and (2ε, 2δ)-SD is in
SZK for ε and δ satisfying the above property.

3 From Zero Knowledge to Secret Sharing and Back

In this section, we show tight connections between languages with special interactive proofs,
partial randomized encodings (PRE), and secret sharing schemes. In particular, we show:
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Theorem 3.1 (Main theorem). For any language L and parameters ε(n) and δ(n), the following
three statements are equivalent:

1. There are parameters ε1 = O(ε) and δ1 = O(δ) such that L has an (ε1, δ1)-special inter-
active proof (P, V ), where the verifier V has a semi-efficient, locally computable, (ε1, δ1)-
PRE.

2. There are parameters ε2 = O(ε) and δ2 = O(δ) such that L has a semi-efficient, locally
computable, (ε2, δ2)-PRE.

3. There are parameters ε3 = O(ε) and δ3 = O(δ) such that for all n, there is a semi-efficient
(ε3, δ3)-secret sharing scheme under the access structure AL,n.

We will prove Theorem 3.1 in Section 3.1, and here we state a number of interesting corol-
laries. The first two corollaries “almost” characterize the languages L whose associated access
structure AL,n (as defined in Definition 2.8) has a semi-efficient secret-sharing scheme. Corol-
lary 3.2 shows that any language in SZKL has a semi-efficient secret-sharing scheme. Corol-
lary 3.3 shows that furthermore, if P/poly has semi-efficient, locally computable PREs, then
any language in the entire class SZK has a semi-efficient secret-sharing scheme. Moreover, it
also says that no language outside SZK has semi-efficient secret-sharing schemes, implying that
our characterization is almost tight.

Corollary 3.2. Let ε(n), δ(n) = n−ω(1) be negligible functions. For any language L ∈ SZKL,
and for every n, there is a semi-efficient (ε, δ)-secret sharing scheme under the associated access
structure AL,n.

Proof. Theorem 2.6 asserts that for any L ∈ SZKL, there is an (ε, δ)-special interactive proof
(P, V ) for some ε(n), δ(n) = n−ω(1), where the verifier algorithm V can be computed in log-
space. Therefore, by Lemma 2.3, V has an efficient (and not just semi-efficient) perfect, locally
computable PRE. Applying Theorem 3.1 (in particular, that (1)⇒ (3)), there is a semi-efficient
(O(ε), O(δ))-secret sharing scheme for AL,n.

Corollary 3.3. Let ε(n), δ(n) = n−ω(1) be negligible functions.

• Assume that P/poly has semi-efficient (ε, δ)-locally computable PREs. Then, for any
language L ∈ SZK, and for every n, there is a semi-efficient (ε, δ)-secret sharing scheme
under the associated access structure AL,n.

• Conversely, if AL,n has a semi-efficient (ε, δ)-secret sharing scheme, then L ∈ SZK.

This follows from the same arguments as corollary 3.2, but with the absence of something
like lemma 2.3 to complete the argument. In fact, one may replace P/poly in corollary 3.3 with
any complexity class C that is closed under the operations involved in the reduction used in
the proof of theorem C.1 (while replacing SZK with the appropriate SZKC). The converse is
true because of Theorem 3.1 and fact 2.7

We also have the following theorem about efficient secret sharing schemes, where both
the sharing and reconstruction algorithms run in time polynomial in n. The difference from
Theorem 3.1 is that here, we require the prover in the special interactive proof to be efficient,
namely run in time polynomial in n. We view this theorem as an avenue to constructing efficient
secret sharing schemes for languages L outside L: namely, to construct a secret-sharing scheme
for AL,n, it suffices to construct special interactive proofs for L wherein the verifier algorithm
can be computed in L.

The proof of Theorem 3.4 follows directly from that of Theorem 3.1.
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Theorem 3.4. For any language L and parameters ε(n) and δ(n), the following three statements
are equivalent:

1. There are parameters ε1 = O(ε) and δ1 = O(δ) such that L has an (ε1, δ1)-special interac-
tive proof (P, V ), where the prover algorithm is computable in polynomial time, and the
verifier V has an efficient, locally computable, (ε1, δ1)-PRE.

2. There are parameters ε2 = O(ε) and δ2 = O(δ) such that L has an efficient, locally
computable, (ε2, δ2)-PRE.

3. There are parameters ε3 = O(ε) and δ3 = O(δ) such that for all n, there is an efficient
(ε3, δ3)-secret sharing scheme under the access structure AL,n.

3.1 Proof of the Main Theorem

We prove Theorem 3.1 by showing that (1)⇒ (2)⇒ (3)⇒ (1).

(1)⇒ (2). Let (P, V ) be an (ε, δ)-special interactive proof for the language L, and let (EV , DV )
be the hypothesized semi-efficient, locally computable (ε, δ)-PRE for V . The PRE for the
language L works as follows:

• EL(x, b) = EV (x, b)

• DL(x, y) = P (x,DV (x, y))

We first show correctness. Let x ∈ L and b ∈ {0, 1}. From the correctness of the PRE for the
verifier algorithm V , we know that:

DV (x,EV (x, b)) = V (x, b)

with probability at least 1 − ε. Now, by the completeness of the special interactive proof, we
know that:

P (x, V (x, b)) = b

with probability at least 1 − 2ε (because this probability is at least 1 − ε when b is chosen at
random).

Putting these together, we have:

DL(x,EL(x, b)) = P
(
x,DV (x,EV (x, b))

)
= P

(
x, V (x, b)

)
= b

with probability at least 1− 3ε.
Next, we turn to privacy. Let x /∈ L. We will show that EL(x, 0) and EL(x, 1) are statistically

close. First, note that by the δ-soundness of the special interactive proof, we know that the
distributions V (x, 0) and V (x, 1) are O(δ)-close. Now, by Lemma 2.2 and using the δ-privacy
of the PRE scheme for V , this means that EV (x, 0) and EV (x, 1) are also O(δ)-close. This
demonstrates privacy of our PRE scheme for L.

Since EL is the same as EV , it is clear that if the PRE scheme (EV , DV ) is locally computable,
so is (EL, DL). Moreover, if (EV , DV ) is semi-efficient, so is (EL, DL). Finally, if (EV , DV ) is
efficient and the prover P in the special interactive proof is computable in polynomial time,
then (EL, DL) is also efficient.

(2)⇒ (3). This implication follows from the work of Ishai and Wee [19]. We provide a proof
here for completeness.

Given a locally computable (ε, δ)-PRE (EL, DL) for a language L, let the set of functions

{E(i)
L (xi, b)}i∈[n] be the local decomposition of EL(x, b). The following is the secret sharing

scheme (S,R) for the access structure AL,n:
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• Sharing : Let s ∈ {0, 1} be the secret bit to be shared. S(s) works as follows:

1. For each i, pick si,0, si,1 ∈ {0, 1} at random such that si,0 ⊕ si,1 = s, and give si,b to
the party Pi,b.

2. Select bits {s0, . . . , sn} at random such that
⊕n

i=0 si = s. For each i ∈ [n], give si to
both Pi,0 and Pi,1.

3. Choose a random string r, compute ψi,b ← E
(i)
L (b, s0; r) for every i ∈ [n] and b ∈

{0, 1}, and give ψi,b to party Pi,b.

• Reconstruction: Any authorized set B ∈ AL,n reconstructs the secret as follows:

– If B contains Pi,0 and Pi,1 for some i, the secret s can be retrieved as s = si,0 ⊕ si,1.

– If not, then B = {Pi,xi} for some x ∈ L. This means that between them, the parties

contain EL(x, s0; r) = {E(i)
L (xi, s0; r)}i∈[n]. Output

DL(x,EL(x, s0; r))⊕
⊕
i∈[n]

si

as the secret.

For correctness, note that there are two possible types of authorized sets B in AL,n. If the
set B contains parties Pi,0 and Pi,1 for some i, they recover the secret as si,0 ⊕ si,1. If not, the
authorized set contains the parties P1,x1 , . . . , Pn,xn for some x = (x1, x2, . . . , xn) ∈ L. By the
correctness of the PRE scheme for L, we know that DL(x,EL(x, s0; r)) = s0 with probability
at least 1− ε. Thus, the recovered secret is

DL(x,EL(x, s0; r))⊕
⊕
i∈[n]

si =
⊕

i∈{0,1,...,n}

si = s

with probability at least 1− ε.
For privacy, there are again two types of sets B that are not present in AL,n. If there is an

i such that the set of parties B does not contain either of Pi,0 and Pi,1, then B’s shares look
completely random due to the absence of any information about si. The other case is when
B = {Pi,xi} for some x /∈ L. In this case, d(S(0)B, S(1)B) is exactly the distance between
EL(x, 0) and EL(x, 1) due to how the si’s are picked, which is at most δ by the privacy of the
randomized encoding of L.

It is also easy to see from the definition of S and R that if (EL, DL) is semi-efficient, then
so is (S,R); and the same if it is efficient.

(3)⇒ (1). Given an (ε, δ)-secret sharing scheme (S,R) for the access structure AL,n, we con-
struct a special interactive proof (P, V ) for L, as follows:

• The verifier V , on input x and a bit b, outputs S(b)Bx , where Bx = {Pi,xi}.

• The prover P on input x and the verifier message m, outputs R(Bx,m), where Bx =
{Pi,xi}.

For completeness, we have that for any x ∈ L, when b← {0, 1},

Pr [P (x, V (x, b)) = b] = Pr [R(Bx, (S(b)Bx) = b] ≥ 1− ε

by the correctness of secret sharing scheme, as Bx ∈ A(L.n).
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For privacy, we have that for any x /∈ L, when b← {0, 1}, for any P ∗,

Pr [P ∗(x, V (x, b)) = b] ≤ 1 + d(V (x, 0), V (x, 1))

2
≤ 1

2
+
δ

2

by privacy of the secret sharing scheme, as Bx /∈ AL,n.
V is a PPT algorithm if (S,R) is semi-efficient, and P is computable in polynomial time

if (S,R) is efficient. Also, V is local because it can be split into the collection {V (i)(xi, b) =
S(b){Pi,xi}}, so it serves as its own semi-efficient locally computable PRE.

4 Positive Results on Efficient Secret Sharing

In this section we present efficient secret sharing schemes for access structures associated with
Bounded-Degree Graph Non-Isomorphism, Lattice Closest Vector in small dimensions, and Co-
Primality. These are obtained by the application of Theorem 3.4 (in particular, the implication
(1)⇒ (2) in the theorem).

Useful throughout this section is the fact that arithmetic over integers (and rational num-
bers) may be performed in NC1 (see [35] for details).

4.1 Bounded-Degree Graph Non-Isomorphism

Notation. Given an upper triangular matrix M ∈ {0, 1}n×n, denote by G(M) the undirected
graph whose adjacency matrix is (M + MT ), and for a symmetric matrix M , the undirected
graph whose adjacency matrix is M . The degree of a graph, deg(G), is the maximum degree of
any vertex in the graph. If G1 and G2 are isomorphic, we denote this as G1 ≡ G2.

Definition 4.1 (dBDGNI). d-Bounded Degree Graph Non-Isomorphism is the promise problem
given by the following sets of YES and NO instances over pairs of upper triangular matrices:

dBDGNIY ES = {(M0,M1)|G(M0) 6≡ G(M1); deg(G(M0)), deg(G(M1)) ≤ d}
dBDGNINO = {(M0,M1)|G(M0) ≡ G(M1); deg(G(M0)), deg(G(M1)) ≤ d}

While Graph (Non-)Isomorphism is not known to be in P, there is a classical polynomial
time algorithm known for dBDGNI due to Luks [27]. However, it appears to be a long open
question whether dBDGNI is in NC (or even in RNC) [2].

Theorem 4.1. For every constant d and every n, there is an efficient (perfect) secret sharing
scheme for the access structure AdBDGNI,n. The complexity of the reconstruction algorithm grows
as nO(d), whereas sharing runs in time polynomial in n.

Proof. We prove this by showing a special interactive proof for dBDGNI where the verifier runs
in log-space (and therefore, has efficient perfect locally computable PREs) and the prover runs
in polynomial time. This satisfies statement (1) in Theorem 3.4, and hence implies the existence
of the required secret sharing scheme.

The SIP proof (P, V ) works along the lines of the classical SZK proof for Graph Non-
Isomorphism [16], as follows:

• The verifier V ((M0,M1), b), on input upper triangular matrices M0,M1 ∈ {0, 1}n×n and
bit b, selects a random permutation matrix P ∈ Sn, and outputs P (Mb +MT

b )P T .

• The prover P ((M0,M1),M), checks whether G(M) ≡ G(M0). If so, it outputs 0, else 1.
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Note that the operation P (M +MT )P T is equivalent to permuting the vertices of the graph
G(M) by the permutation P .

Perfect completeness of this protocol follows from the fact that if M0 6≡ M1, then the
verifier’s output M will be such that G(M) is isomorphic to exactly one of G(M0) and G(M1),
and P can identify which by running the algorithm for dBDGNI [27].

The protocol is perfectly sound because if M0 ≡ M1, then the distribution of the verifier’s
output is the same whether b = 0 or 1, and P has probability exactly 1/2 of guessing b correctly.

The complexity of the verifier V in the above protocol is that of selecting a random permuta-
tion and performing two matrix multiplications, both of which can be done in log-space. Hence
by Lemma 2.3, V has efficient perfect locally computable PREs. The prover P is computable in
polynomial time because all the prover does is run the (polynomial time) algorithm for dBDGNI.

(That the running time of reconstruction algorithm of the resulting secret sharing scheme is
nO(d) can be seen by tracing its dependence on the running time of the algorithm for dBDGNI
- the one in [27] runs in time nO(d) - in the proof of Theorem 3.1.)

4.2 Lattice Closest Vectors

Notation. For a full-rank (over Q) matrix B ∈ Zd×d, let Λ(B) denote the integer lattice (of
dimension d) whose basis is B, and P(B) denote the fundamental parallelepiped of the same
lattice (the parallelepiped formed by the column vectors of B and the origin). We denote by
B(y, δ) the set of points in the ball of radius δ centered at the point y (note that as we work
with discretised space and not with Rd, the number of points in this set is finite).

Given full-rank matrix B ∈ Zd×d, a vector y ∈ Zd, δ ∈ Z+ and γ ∈ [0, 1], the (decision version
of the) gap closest vector problem in d dimensions (GapCVPγ,d) asks whether the Euclidean
distance of y from (any point in) Λ(B) is at most (γδ) or at least δ.

While classical algorithms due to Gauss, and Lenstra, Lenstra and Lovasz (from [25]) show
that for any d, GapCVPγ,d is in P for any γ, it is not known to be (and conjectured not to be)
in NC. We are interested in the complement of this problem, as defined below.

Definition 4.2 (coGapCVPγ,d). For any d ∈ Z+ and γ ∈ [0, 1], coGapCVPγ,d is the promise

problem defined by the following YES and NO instances over triples (B, y, δ), where B ∈ Zd×d
is full-rank over Q, y ∈ Zd and δ ∈ Z+:

coGapCVPY ESγ,d = {(B, y, δ) | ∀x ∈ Λ(B) : ||y − x|| > δ}
coGapCVPNOγ,d = {(B, y, δ) | ∃x ∈ Λ(B) : ||y − x|| ≤ γδ}

The following theorem asserts the existence of efficient secret sharing schemes under access
structures associated with the above problem. A number of lemmas used in its proof may be
found in Appendix A.

Theorem 4.2. For every c, d, n, and any γ =
(
1− Ω( 1

nc )
)
, there is an efficient (o(1), o(1))-

secret sharing scheme under the access structure AcoGapCVPγ,d,n.

Proof. We prove this theorem by constructing a (o(1), o(1))-Special Interactive Proof for coGapCVPγ,d
with a log-space verifier and a poly time prover. As the verifier is computable in log-space, it
has efficient perfect locally computable PREs, by Lemma 2.3. The existence of such an SIP,
along with Theorem 3.4, implies the efficient secret sharing schemes we need.

Our SIP is a slight modification of the protocol of Goldreich and Goldwasser [15]. Let A be
the logspace program promised by Lemma A.2. The protocol is as follows:

• The verifier gets as input the instance (B, y, δ) and a bit b, and does the following:
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– It picks bits b1, . . . , bk such that b1⊕· · ·⊕bk = b (for k determined later in the proof).

– For each i ∈ [k], if bi = 0, it picks z′i ← A(0, δ/2, 1n), else z′i ← A(y, δ/2, 1n).

– For each i, it sets zi = z′i mod P(B).

– It outputs (z1, . . . , zk).

• The prover gets as input (B, y, δ) and the verifier’s output (z1, . . . , zk).

– For each i ∈ [k], it checks if the distance of zi from the lattice Λ(B) is at most δ/2.

– If so, it sets b′i = 0, else b′i = 1.

– It outputs b′ = b′1 ⊕ · · · ⊕ b′k as its guess.

If y is δ-far from the lattice, all points in the set B(y, δ/2) are more than δ/2-far from
the lattice. By Lemma A.2, except with probability 1

2n , this is also true of samples from
A(y, δ/2, 1n). Points from A(0, δ/2, 1n), on the other hand, are always within δ/2 from the
lattice. These properties are not affected by reducing modulo P(B).

Hence, except with negligible probability, the prover can guess each bi correctly by running
the algorithm from [25]. By the union bound, the prover can in fact guess all bi’s, and hence b,
correctly except with negligible probability, and hence the protocol is (1− o(1))-complete.

If y is less than γδ from the lattice, let x be the lattice point closest to y. By Lemma A.3,

d(B(x, δ/2),B(y, δ/2)) = 1− c′′(1− γ)d

for some constant c′′. Using guarantees from Lemma A.2, we have:

d(A(x, δ/2, 1n), A(y, δ/2, 1n)) ≤ d(B(x, δ/2),B(y, δ/2)) + negl(n)

≤ 1− c′(1− γ)d

for another constant c′.
On reducing modulo P(B), this distance does not increase, since the set of points in the

intersection of any two sets remain in the intersection after reduction. Also, after the reduction,
A(x, δ/2, 1n) and A(0, δ/2, 1n) are the same. Hence, for each i ∈ [k],

d(zi|bi = 0, zi|bi = 1) = d(A(0, δ/2, 1n) mod P(B), A(y, δ/2, 1n) mod P(B))

≤ d(A(x, δ/2, 1n), A(y, δ/2, 1n))

≤ 1− c′(1− γ)d

Considering what the verifier does - choosing b1, . . . , bk that XOR to b and selecting zi’s appro-
priately - Lemma A.4 tells us that:

d((z1, . . . , zk)|b = 0, (z1, . . . , zk)|b = 1) = d(zi|bi = 0, zi|bi = 1)k

≤ (1− c′(1− γ)d)k

As long as γ =
(
1− Ω( 1

nc )
)

for some c, we can choose k as some poly(n) to make this quantity
negligible, meaning that the distributions of verifier messages when b = 0 and b = 1 are
negligibly close. This means the prover cannot guess b with non-negligible probability, giving
us the required o(1)-soundness.

The verifier here runs the logspace program from Lemma A.2 and the reduction modulo P(B)
on its output, which can also be done in logspace by Lemma A.5. As a constant number of
compositions of logspace programs still gives a logspace program, the verifier can be computed in
logspace. The prover simply runs the algorithm from [25] several times, and is hence computable
in polynomial time.
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4.3 Co-Primality

Efficient secret sharing schemes for non-co-primality and semi-efficient ones for quadratic non-
residuosity were shown by Beimel and Ishai [5] as an illustration of the power of non-linear secret
sharing schemes over linear ones. We note that these follow as implications of our Theorem 3.1
given the existence of SZK proofs for these languages with logspace verifiers (which are indeed
known to exist).

We demonstrate here, as an example, the case of Non-Co-Primality, which is in P, but again,
as noted in [5], not known to be in NC.

Definition 4.3 (NCoP). The language Non-Co-Primality (NCoP) consists of pairs of positive
integers that are not co-prime, represented as strings, that is,

NCoP = {(u, v) | u, v ∈ Z+, gcd(u, v) > 1}

Theorem 4.3 asserts the existence of statistically correct, statistically private efficient secret
sharing schemes under the access structure associated with NCoP.

Theorem 4.3. For every n, there is an efficient (ε, δ)-secret sharing scheme under the access
structure ANCoP,n from some ε(n), δ(n) = o(1).

Proof. Again, we prove this by demonstrating a (o(1), o(1))-SIP for Non-co-primality where the
prover is efficient and the verifier has efficient perfect locally computable PREs. This implies
what we need, by Theorem 3.4.

We denote by |u| the length of the representation of u as a boolean string. Below, we assume
|u| ≥ |v|. The SIP proof (P, V ) is roughly as follows, for some m = Θ(|u|):

• The verifier V takes as input (u, v) and a bit b.

– If b = 1, it outputs m random multiples of u modulo v; that is, it picks m random
numbers {ri}i∈[m] ← {0, 1}|u| and outputs {(riu)(mod v)}.

– If b = 0, it outputs m random numbers in [v].

• The prover P takes as input (u, v) and the verifiers message, which is a set of m numbers
{ai}i∈[m]. If gcd({ai}) = 1, the prover outptus 0, else 1.

The above SIP is complete because if gcd(u, v) > 1, then if b = 1, all multiples of u modulo
v will be divisible by gcd(u, v), and the prover will always output 1, and if b = 0, with high
probability the gcd of m random numbers in [v] will be 1 and the prover will output 0. It
is sound because when gcd(u, v) = 1, the distribution of multiples of u (drawn from a large
enough range) modulo v is negligibly close to uniform, and the cases b = 0 and b = 1 are
indistinguishable.

The verifier V is computable in L, as all it does is multiply n-bit numbers, and so has
efficient perfect locally computable PREs, by Lemma 2.3. The prover is efficient, as all it has
to do is compute the gcd of some numbers.

5 Negative Results on Universally Efficient Secret Sharing

In this section, we show that a natural strengthening of efficient secret-sharing, that we call
universally efficient secret-sharing, cannot exist for all of P, if for every polynomial t, P 6⊆
DSPACE(t(n)).

17



Notation. Below, by L we denote both a language in a class C, and its standard representation
as a member of this class, say, for example, as a Turing machine that decides the language in
case C = P. For a function f that takes two arguments (as f(x, y)), by f(x, ·), we denote f
curried with x, that is, the function g(y) = f(x, y); this extends naturally to the case where f
takes more than two arguments.

Definition 5.1 (Universal Secret Sharing). An (ε, δ)-Universally Efficient Secret Sharing Scheme
(USS), or simply a universal secret sharing scheme, for a class of languages C over a do-
main D is a pair of (randomized) algorithms (S,R) such that for any L ∈ C and any n,
(S(L, 1n, ·), R(L, 1n, ·, ·)) is an (ε, δ)-secret sharing scheme under the access structure AL,n over
the domain D.

For any polynomial t, a universal secret sharing scheme is said to be t-semi-efficient if for
any L ∈ C, S(L, 1n, ·) is computable in time t(n). The scheme is said to be t-efficient if both
S(L, 1n, ·) and R(L, 1n, ·, ·) are computable in time t(n).

Theorem 5.1. Let, for all n, 1 − ε(n) > δ(n). If a class of languages C has t-semi-efficient
(ε, δ)-universal secret sharing (USS) schemes, then there exists t′ such that t′(n) = O(t(n)) and
C ⊆ DSPACE(t′(n)).

Sketch of Proof. Suppose (S,R) is a t-semi-efficient (ε, δ) USS scheme for the class C. Theorem
5.1 follows from applying lemma 5.2 to each language L ∈ C, using the fact that by definition,
(S(L, 1n, ·), R(L, 1n, ·, ·)) is an (ε, δ)-secret sharing scheme for AL,n where the sharing algorithm
runs in time t(n).

In particular, Theorem 5.1 implies that if P had a t-semi-efficient USS scheme, then it would
be contained in DSPACE(t(n)) for some polynomial t(n).

Lemma 5.2. Let, for all n, 1−3ε(n) > 3δ(n). If, for some language L, there is an (ε, δ)-secret
sharing scheme (S,R) for AL,n for all n, where S runs in time t(n), then L ∈ DSPACE(t′(n)),
where t′(n) = O(t(n)).

The proof below is adapted from that of a more general statement from [13].

Proof. We start by using Theorem 3.1 to recognize the existence of an (ε′, δ′)-SIP (P, V ) for L
where V runs in time t(n), where ε′ = 3ε and δ′ = 3δ (the constant 3 comes out of the proof of
Theorem 3.1), and we have 1− ε′(n) > δ′(n).

In order to decide whether x ∈ L, it is sufficient to determine whether any P ′ can guess b
given V (x, b) with probability ≥ (1− ε′(|x|)) or only ≤ (1/2 + δ′(|x|)/2). This is equivalent to
whether d(V (x, 0), V (x, 1)) is ≥ (1 − ε(|x|)) or ≤ δ(|x|). But d(V (x, 0), V (x, 1)) itself can be
computed in space O(t(|x|)) as follows.

First, for any v of length at most t(|x|), Prr [V (x, b; r) = v] can be computed by iterating
over the possible values of r – note that |r| ≤ t(|x|)– and simulating V to see if it outputs v,
and counting the number of r’s for which it does. This requires only O(t(|x|)) space because V
can be simulated in this much space, and the count of r’s is at most 2t(|x|).

So for each v, we can also compute

p(v) := |Prr [V (x, 0; r) = v]− Prr [V (x, 1; r) = v]|

in O(t(|x|)) space. What we need is the sum
(∑

v:|v|≤t(|x|) p(v)
)

. To compute this, we simply

iterate over all the v’s, storing at the end of each iteration only the sum
(∑

v′:v′≤v p(v)
)

. As

each p(v) ≥ 2−t(|x|), and the cumulative sum is at most 1, this adds at most O(t(|x|)) space to
what is needed for each iteration. Hence, the entire computation of d(V (x, 0), V (x, 1)) can be
done in space t′(|x|) = O(t(|x|)), and hence L ∈ DSPACE(t′(n)).
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Appendix A Lemmas for Section 4.2

In this section we prove several facts that are used in the proof of theorem 4.2 concerning the
Gap Closest Vector Problem, which were stated in appendix A.

An issue that needs to be addressed at the onset of a discussion of a problem such as
GapCV P is that of precision, that is, how many bits will be used to represent numbers and
vectors. Arguments and algorithms that are guided by intuition from the behaviour of real
quantities tend to work only when the set of numbers representable is dense enough. But one
is also constrained by being unable to use more than a polynomial number of bits of precision
for efficiency.

Below, as in section 4.2, for any d-dimensional vector y and r ∈ Q+, we denote by B(y, r) the
set of points in the ball of radius r centered at y that are representable using whatever scheme
it is that we use to represent vectors. In general, this will be as a tuple of rational numbers, but
in turn only those rational numbers that are representable given the number of bits of precision
we use. By l bits of precision, we mean that the number of bits used to represent the fractional
part of rational number is l.

Another concern is that a number of intuitive propositions that one takes for granted in 2
or 3 dimensions break completely in higher dimensions. The fact that we are only interested
in low-dimensional spaces alleviates such concerns significantly, and we are able to make use of
the following results, some of which would not hold in higher dimensions.

The following lemma is implied by, among others, [34], and states that the number of integer
points in a d-dimensional sphere is more or less what one would expect it to be, namely, of the
order of the volume of the sphere.

Lemma A.1. For any d, the number of integer points in a d-dimensional sphere of radius r
centered at the origin is Θ(rd).

This implies that if we use l bits of precision, then for any d, there are constants c1 and c2

such that for any point y ∈ Zd and r ∈ Q:

c1(r2l)d ≤ |B(y, r)| ≤ c2(r2l)d
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We shall next look at the task of sampling a point uniformly at random from such a ball
B(y, r), and make use of the above bounds to do so easily by rejection sampling. Hereon we
shall use l, as above, to denote the number of bits of precision.

Lemma A.2 (Sampling from balls). For y ∈ Zd and r ∈ Q, let B(y, r) be the uniform distribu-
tion over the points in B(y, r). There is a (randomized) logspace program A such that, for any
k, d(A(y, r, 1k), B(y, r)) ≤ 1

2k
.

Proof. Let s be the integer such that 2s−1 ≤ 2r ≤ 2s. A repeatedly samples random points
in the d-dimensional hypercube of side 2s centered at the origin until it finds a point that is
at a distance of at most r from the origin, or until it fails ck times for some constant c to be
determined. If it finds such a point, it shifts the point by y and outputs it, else it outputs y.

To see that this may be done with only logspace, note that selecting a random point from
the hypercube of side 2s simply involves picking s+ l random bits, and checking that the chosen
point, say (x1, . . . , xd), is within distance r is the same as checking that

∑d
i=1 x

2
i ≤ r2, which can

be done in NC1 (because squaring, addition of a constant number of integers and comparison
can be), and hence in L.

Conditioned on A finding a point in the ball, its output is distributed the same as B. Hence,
d(A(y, r, 1k), B(y, r)) is at most the probability that A fails to do so, which is:(

1− no. points in ball

no. points in hypercube

)ck
=

(
1− |B(y, r)|

2d(s+l)

)ck
≤
(

1− c1r
d2ld

(4r)d2ld

)ck
=
(

1− c1

4d

)ck
where c1 is the constant from the bound on |B(y, r)| above and the term inside the brackets at
the end is a constant, and so c can be chosen so that the whole thing is at most 1

2k
, giving us

what we need.

The following lemma states, in a sense, that balls whose centers are close (relative to their
radii) have significant overlap. What shall be salient to us here is that if the fractional distance

between the centers is noticeably bounded away from 1 (that is, (1− γ) = Ω
(

1
poly(n)

)
), then so

is the distance between uniform distributions over these balls.

Lemma A.3. There is a constant c such that for any γ ∈ [0, 1), r ∈ Q+ and d-dimensional
vector y, if ||y|| ≤ γr, then d(B(0, r/2),B(y, r/2)) = 1− c(1− γ)d.

Proof. Let B0 = B(0, r/2) and B1 = B(y, r/2) for notational convenience.

As we are concerned with uniform distributions over these sets, we have d(B0, B1) = |B0\B1|
|B0| .

Considering B0 and B1 as balls in Rd, it is easy to see that it is possible to embed a ball of
radius (1 − γ) r2 in B0 ∩ B1 (its center is at y/2). Let B′ be the set of points situated in the
space of this ball. This implies that |B0 \B1| = |B0| − |B0 ∩B1| ≤ |B0| − |B′|.
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Using the bounds on sizes of balls obtained earlier, we have:

d(B0, B1) =
|B0 \B1|
|B0|

≤ 1− |B
′|

|B0|

≤ 1− c1(1− γ)d(r/2)d2ld

c2(r/2)d2ld

= 1− c1

c2
(1− γ)d

We will also be using the following lemma from [29] (which was, in fact, originally used there
to prove lemma C.2).

Lemma A.4 (Yet another XOR lemma). Given distributions X0, X1 over the same domain
and k ∈ Z+, define distributions Y0, Y1 by the following sampling procedure for Yb:

• Select bits b1, . . . , bk such that b1 ⊕ · · · ⊕ bk = b.

• For each i ∈ [k], sample ci ← Xbi.

• Output (c1, . . . , ck).

Then, d(Y0, Y1) = d(X0, X1)k.

Another procedure that we shall need to perform is that of reducing a vector modulo the
fundamental parallelepiped P(B) of a lattice Λ(B). This too can be performed in logarithmic
space, as evidenced by the following lemma.

Lemma A.5. Given a full-rank (over Q) matrix B ∈ Zd×d and vector y ∈ Qd, y mod P(B)
can be computed in logspace.

Proof. As B is full rank, there is a vector x ∈ Qd such that Bx = y. x may be written as x1 +x2

for some x1 ∈ Zd and x2 ∈ [0, 1)d. What we wish to compute is y mod P(B) = Bx2. We shall
do so by first computing x as B−1y, taking the fractional parts of each of its coordinates to get
x2 and then computing Bx2.

As B is of constant dimension d, its inverse can be computed in NC1 by the standard
method of computing determinants of its minors. B−1y and Bx2 can also be computed in
NC1, as addition and multiplication of any constant number of integers (or rationals) can be
done in NC1. x2 can also be obtained from x in NC1, as it simply involves one addition or
subtraction per co-ordinate of x. Thus, y mod P(B) can be computed in NC1 given B and y,
and hence in logspace.

Appendix B Proof of Lemma 2.2

In this section, we restate and prove lemma 2.2. This essential lemma extends the privacy
properties of PREs to the case of PREs of randomized functions - while the original definition
of PREs (for deterministic functions) states that if for some x, f(x, z1) = f(x, z2), then Ef (x, z1)
and Ef (x, z2) are statistically close, lemma 2.2 states that even for a randomized function g, if
g(x, z1) and g(x, z2) are statistically close, then so are Eg(x, z1) and Eg(x, z2).
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Note that PREs for randomized functions are defined as described in section 2: To construct
an (ε, δ)-PRE for a randomized function A(x, z; r), simply construct an (ε, δ)-PRE (EA′ , DA′)
for the deterministic function A′(x, (z, r)) = A(x, z; r), and let EA(x, z) be the random variable
EA′(x, (z, r)) when r is chosen uniformly at random, and have DA be the same as DA′ .

Lemma B.1. Let A(x, z) be a randomized function, and (EA, DA) be an (ε, δ)-PRE of A as
described above. Then, for any x and any z1, z2:

d(A(x, z1), A(x, z2)) ≤ δ′ ⇒ d(EA(x, z1), EA(x, z2)) ≤ δ(|x|) + δ′

Proof. As above, consider the deterministic function A′(x, (z, r)) = A(x, z; r). By definition,
d(EA(x, z1), EA(x, z2)) = d(EA′(x, (z1, r)), EA′(x, (z2, r))), which is given by:∑

v̂

|Pr [EA′(x, (z1, r)) = v̂]− Pr [EA′(x, (z2, r)) = v̂]|

where r is distributed uniformly over its domain. We wish to prove that this expression is small.
From the privacy of PREs, we have promises on the behaviour of EA′ on inputs for which A′ has
the same output value. Towards exploiting this, we expand the above expression, conditioning
on possible values of A′ to get:

∑
v̂

∣∣∣∣∣∑
v

Pr
[
A′(x, (z1, r)) = v

]
Pr
[
EA′(x, (z1, r)) = v̂

∣∣∣A′(x, (z1, r)) = v
]

−
∑
v

Pr
[
A′(x, (z2, r)) = v

]
Pr
[
EA′(x, (z2, r)) = v̂

∣∣∣A′(x, (z2, r)) = v
]∣∣∣∣∣

For the same reason - so that we may compare EA′ on points where A′ has the same output
value - we add and subtract (

∑
v Pr [A′(x, (z1, r)) = v]) to the factor in the second term above

and use the triangle inequality to say that what we have is at most:

∑
v

Pr
[
A′(x, (z1, r)) = v

](∑
v̂

∣∣∣Pr
[
EA′(x, (z1, r)) = v̂

∣∣∣A′(x, (z1, r)) = v
]

−Pr
[
EA′(x, (z2, r)) = v̂

∣∣∣A′(x, (z2, r)) = v
]∣∣∣ )

+
∑
v

∑
v̂

Pr
[
EA(x, (z2, r)) = v̂

∣∣∣A(x, (z2, r)) = v
]
·

|Pr [A(x, (z1, r)) = v]− Pr [A(x, (z2, r)) = v]|

The first summand above is a convex combination of several terms, each of which is at most
δ(|x|) by the privacy guarantee of EA′ (as each of these terms is some convex combination of
the distance between EA′ on input values for which A′ produces the same output). The second
summand is simply equal to d(A′(x, z1), A′(x, z2)) = δ′. Hence the whole thing is at most
(δ(|x|) + δ′), which is what we wanted to prove.

Appendix C A Refined Completeness Theorem for SZKL

In this section, we complete the proof sketch of Theorem 2.6. In order to do so, we shall first
demonstrate Lemma C.1.
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Lemma C.1 ([29]). There exist negligible functions ε(n), δ(n) = n−ω(1) such that every language
L in SZKL reduces to (ε, δ)-SDL. Furthermore, there is a logspace program DL such that, if
an instance x is mapped to the instance (C0, C1) by the above reduction, DL(b, x, r) = Cb(r).

Given DL from Lemma C.1 for a language L ∈ SZKL, we can prove Theorem 2.6 by
constructing a special interactive proof (P, V ) for L as follows:

• V (x, b; r) = DL(b, x, r)

• P (x,m) outputs 0 if Pr [DL(0, x, r) = m] > Pr [D(1, x, r) = m], and 1 otherwise.

Note that the above is an (ε/2, δ/2)-SIP proof for L where the verifier can be computed in
logspace.

We shall now sketch a proof of Lemma C.1, for which we shall need the following amplifica-
tion lemma for statistical distance of distributions.

Lemma C.2 (Polarization Lemma, [29]). Let α, β ∈ [0, 1] be constants such that α2 > β.
Given two logspace machines X0, X1 : {0, 1}n → {0, 1}m, there are logspace machines Y0, Y1 :
{0, 1}n′ → {0, 1}m′ (where n′, m′ grow polynomially with n, m) that use X0, X1 only as black-
boxes such that:

d(X0, X1) ≥ α⇒ d(Y0, Y1) ≥ 1− 2−n
′

d(X0, X1) ≤ β ⇒ d(Y0, Y1) ≤ 2−n
′

Both the above lemmas are not stated in precisely this manner in either [29] or [32], but
these extensions follow easily from the proofs of statements that are indeed made in these works.
Sketch of Proof. of Lemma C.1 (The lemma follows directly from the proof of completeness
of SD for SZK presented in [32], noticing that the reduction from any L ∈ SZK to SD,
outlined below, leads to logspace machines if one starts with an L ∈ SZKL, as L has a logspace
simulator.)

Suppose L has an SZK proof (P, V ) in which, on inputs of length n, the total communication
is t(n) over v(n) messages, V uses r(n) bits of randomness, and there is a logspace simulator
S that achieves deviation µ(n) ≤ 1/(Ct(n)2), for some constant C to be determined. Let Si
denote the distribution of the output of S (on a given input) truncated to the first i rounds. We
assume, without loss of generality, that the prover speaks first, messages alternate, and that the
last message of the verifier consists of all its randomness. We shall describe now distributions
that witness the reduction of L to SDL. Proofs and further details may be found in [32], chapter
3.

Define the following distributions:

X : S2 ⊗ S4 ⊗ · · · ⊗ S2v

Y1 : S1 ⊗ S3 ⊗ · · · ⊗ S2v−1 ⊗ Ur−7

Y2 : Run S 8ln(tv + 2) times, and if the transcript is rejecting in

a majority of these, output Utv+2, else output nothing.

Y : Y1 ⊗ Y2

We may arrange, again without loss of generality, for a given input length n of L, for both
X and Y to use at most m′ bits of randomness and have output length n′. Let q = 9km′2 for
some constant k to be determined later.
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Let X ′′ = ⊗qX and Y ′′ = ⊗qY , and m′′ and n′′ be the (upper bound on) number of bits
of randomness used and output length of X ′′ and Y ′′. Let H = Hm′′+n′′,m′′ be a family of 2-
universal hash functions from {0, 1}m′′+n′′ → {0, 1}m′′ . Define now the following distributions:

A : Choose r ← {0, 1}m′′ , h← H, y ← Y , let x = X ′′(r). Output (x, h, h(r, y)).

B : Choose x← X ′′, h← H, z ← {0, 1}m′′ . Output (x, h, z).

As proven in [32], if x ∈ L, then d(A,B) ≥ 1−O(2−k), and if x /∈ L, d(A,B) ≤ 2−Ω(k). Note
that all steps involved so far, including evaluating the hash function, may be done in logspace,
meaning that there is a randomised logspace program that on input x can sample A (or B).

This lets us apply Lemma C.2 to (A,B) to get distributions (A′, B′) which are still sam-
pleable in logspace given x (as they are logspace programs that only use the samplers for A and
B as blackboxes), and are such that if x ∈ L, d(A′, B′) ≥ 1− 2−r and if x /∈ L, d(A′, B′) ≤ 2−r,
where r (a polynomial in |x| and Ω(|x|)) is the amount of randomness used by the sampler for
A′ (or B′). This gives us the reduction to SDL.

We now define DL to simply emulate the above steps. On input (b, x, r), where |r| is
a function of |x| resulting from above operations (DL is undefined on input lengths that do
not obey this relation between |x| and |r|), if b = 0, DL runs the logspace sampler for A′

with input x and randomness r, and simliarly the sampler for B′ if b = 1. Note that DL

is still in logspace, and that if x ∈ L, d(DL(0, x, r), DL(1, x, r)) ≥ 1 − 2−|x|, and if x /∈ L,
d(DL(0, x, r), DL(1, x, r)) ≤ 2−|x|.
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