
Non-Interactive Secure Computation
Based on Cut-and-Choose

Arash Afshar1, Payman Mohassel1, Benny Pinkas2?, and Ben Riva2,3??

1 University of Calgary
2 Bar-Ilan University
3 Tel Aviv University

Abstract. In recent years, secure two-party computation (2PC) has been demonstrated to be feasible
in practice. However, all efficient general-computation 2PC protocols require multiple rounds of inter-
action between the two players. This property restricts 2PC to be only relevant to scenarios where both
players can be simultaneously online, and where communication latency is not an issue.
This work considers the model of 2PC with a single round of interaction, called Non-Interactive Secure
Computation (NISC). In addition to the non-interaction property, we also consider a flavor of NISC
that allows reusing the first message for many different 2PC invocations, possibly with different players
acting as the player who sends the second message, similar to a public-key encryption where a single
public-key can be used to encrypt many different messages.
We present a NISC protocol that is based on the cut-and-choose paradigm of Lindell and Pinkas
(Eurocrypt 2007). This protocol achieves concrete efficiency similar to that of best multi-round 2PC
protocols based on the cut-and-choose paradigm. The protocol requires only t garbled circuits for
achieving cheating probability of 2−t, similar to the recent result of Lindell (Crypto 2013), but only
needs a single round of interaction.
To validate the efficiency of our protocol, we provide a prototype implementation of it and show
experiments that confirm its competitiveness with that of the best multi-round 2PC protocols. This is
the first prototype implementation of an efficient NISC protocol.
In addition to our NISC protocol, we introduce a new encoding technique that significantly reduces
communication in the NISC setting. We further show how our NISC protocol can be improved in the
multi-round setting, resulting in a highly efficient constant-round 2PC that is also suitable for pipelined
implementation.

1 Introduction

Secure two-party computation (2PC) is a very powerful tool that allows two participants to compute any
function of their private inputs without revealing any information about the inputs except for the value of
the function. Furthermore, if the execution of the 2PC protocol is completed, it is guaranteed that its output
is the correct output. In this work, unless said otherwise, we only discuss 2PC protocols that are secure even
against malicious (aka active) participants, who might arbitrarily deviate from the protocol that they should
be executing. The investigation of secure two-party protocols began with the seminal work of Yao [Yao86]
that showed the feasibility of this concept. In recent years it was shown that the theoretical framework of
secure two-party computation can be efficiently implemented and can be run in reasonable time, even under
the strongest security guarantees (see, e.g. [PSSW09, SS11, NNOB12, KSS12]).

Non-interactive secure computation (NISC). A major drawback of many 2PC protocols is that they
require several rounds of interaction (e.g., [LP07, LP11] with a constant number of rounds, or [NNOB12]
with a number of rounds that depends on the function). This paper focuses on efficient constructions of
protocols for non-interactive secure computation (NISC) that run in a single round of interaction.

We consider three flavors of NISC. In the first, which we refer to by One-Sender NISC (OS-NISC),
there are only two parties, a receiver and a sender. The receiver sends the first message, the sender replies

? Supported by the Israeli Ministry of Science and Technology (grant 3-9094).
?? Supported by the Check Point Institute for Information Security and an ISF grant 20006317.

with the second message, and then the receiver outputs the result of the computation. This is essentially a
2PC protocol with the additional restriction of having only one round of interaction. (Following [IKO+11],
throughout this work we refer to the party that sends the first message and receives the final output as the
receiver or as P1, and refer to the party that sends the second message as the sender or P2.)

The second flavor of NISC, which we call Multi-Sender NISC (MS-NISC), is an extension of OS-NISC
where the first message can be used for running secure computation with many different senders. I.e., the
receiver broadcasts its first (single) message; each party that wants to participate in a secure computation
with the receiver sends a message back to the receiver; then, after receiving second messages from several
(possibly different) senders, the receiver outputs the results of its computation with all thee senders (or uses
these output values in other protocols). We stress that each sender does not trust other senders, nor the
receiver, and wishes to maintain privacy of its input even if everyone else colludes.

A limitation of MS-NISC is that the receiver has to aggregate and output all the secure computation
results together. The last flavor of NISC, which we call Adaptive MS-NISC, does not have this limitation.
Adaptive MS-NISC is essentially like MS-NISC, except that the receiver outputs each of the secure compu-
tation results as soon as it gets it (thus, allowing the adversary, who might control some senders, to pick its
next inputs based on those results).

In this work we focus on the first two flavors, and only briefly discuss the third flavor where relevant.

Why NISC? Let us begin with a motivating example. Suppose that there is a known algorithm that
receives the DNA data of two individuals and decides whether they are related. People would like to use this
algorithm to find family relatives, but on the other hand they are not willing to publish their DNA data
(which can, e.g., predict their chances of being affected by different diseases). A possible solution is to use
a secure computation that implements the algorithm and is run between any pair of people who suspect
that they might be related. A multi-round protocol for secure computation requires the participants to
coordinate a time where they can both participate in the protocol, and run a secure computation application
that exchanges multiple rounds of communication with the application run by the other party. A solution
using NISC is much simpler and eliminates the synchronization problem: each interested person can publish,
say on his Facebook wall, his first message in the protocol, secretly encoding his DNA data. Those who are
interested in finding out whether they are related to that person can send back the second message of the
protocol. This message can be sent using Facebook or similar services, or even by email. Then, once in a
while, the first person can run the computation with all those who answered him, and find out with whom
he is related.

In the previous example, NISC was preferable since a multi-round protocol would have required the
parties to synchronize the times in which they participate in the protocol (or incur long delays until the
other party is online and sends the next message of the protocol). In general, requiring multiple rounds of
interaction is also very limiting in scenarios in which each round of communication is very expensive and/or
is slow. E.g., if the communication is done using physical means, for example encoded as a QR code on a
brochure sent by snail-mail, or if the other party is a satellite that passes for only a short period above the
receiver.

Previous NISC protocols. A NISC protocol (for all three flavors) for general computation can be con-
structed from Yao’s garbled circuit, non-interactive zero-knowledge proofs (NIZK), and fully-secure one-
round oblivious transfer (OT): P1, who is the evaluator of the circuit, sends the first message of the OT
protocol. P2, who is the circuit constructor, returns a garbled circuit, the second message of the OT proto-
col, and a NIZK proof that its message is correct. (See, for example, [CCKM00, HK07] for such protocols.)
Unfortunately, the NIZK proof in this case requires a non black-box use of cryptographic primitives (namely,
it must prove the correctness of each encryption in each gate of the circuit).

Efficient NISC protocols that do not require such non black-box constructions are presented in [IKO+11]
based on the MPC-in-the-head technique of [IPS08]. The complexity of the OS-NISC protocol of [IKO+11]
is |C| ·poly(log(|C|), log(t)) + depth(C) ·poly(log(|C|), t) invocations of a Pseudo-Random Generator (PRG),
where C is a boolean circuit that computes the function of interest, and t is a statistical security parameter.
(Another protocol presented in that work uses only O(|C|) PRG invocations, but is based on a relaxed
security notion.) [IKO+11] also shows an adaptive MS-NISC protocol for a bounded number of corrupted

2

senders. The complexity of that protocol is O((t + Q)|C|) PRG invocations, where Q is the bound on the
number of corrupted senders.

Although the protocols in [IKO+11] are very efficient asymptotically, their practicality is unclear and
left as an open question in [IKO+11]. For instance, the protocols combine several techniques that are very
efficient asymptotically, such as scalable MPC and using expanders in a non black-box way, each of which
contributes large constant factors to the concrete complexity.

Cut and Choose based 2PC. A very efficient approach for constructing 2PC with security against mali-
cious parties is based on the cut-and-choose paradigm. (We refer here to protocols that use cut-and-choose
for checking garbled circuits, as in [LP07], and not to protocols that use cut-and-choose in a different way,
such as the protocols in [IKO+11].) [MF06, LP07, LP11, SS11, MR13, Lin13, sS13] give constructions that
use this paradigm and require O(t|C|) PRG invocations, and some additional overhead that does not depend
on |C|. Indeed, for a fixed circuit, this asymptotic overhead is larger than that of [IKO+11], which requires
only a poly-logarithmic number of PRG calls per gate of the circuit. However, the concrete constants in
the cut-and-choose based protocols are rather small (whereas for [IKO+11] the constants seem fairly large,
e.g., the poly(log(|C|)) factor) making the cut and choose approach of high practical interest as shown in
several implementations (e.g., [PSSW09, SS11, KSS12]). However, all current cut-and-choose based 2PC
constructions require more than one round of interaction.

1.1 Our Contributions

In this paper, we take a major step beyond feasibility results for NISC. Our main contribution is a new
OS-NISC/MS-NISC protocol that we believe to be conceptually simpler than previous NISC protocols, and
extremely practical. The complexity of this protocol is similar or better than those of the best multi-round
2PC protocols based on cut-and-choose. We also describe an implementation and evaluation of our NISC
protocol, that demonstrate its practicality.

We now discuss our contributions in more detail.

Revisiting the NISC setting. In Section 3 we formalize the informal description of the MS-NISC model by
using the ideal/real-model paradigm, defining an ideal functionality that receives an input from the receiver
and inputs from many other senders, and returns to the receiver the outputs of the different evaluations.

Intuitively, one would expect that any OS-NISC protocol can also be a MS-NISC protocol with soundness
that decreases at most polynomially in the number of senders. In the full version of this paper we show that
this intuition is false by describing an attack on the technique of [LP07] for protecting against selective-OT
attacks, which results in an exponential (in the number of senders) decrease in the soundness of the protocol.4

Our protocols. As discussed earlier, the cut-and-choose technique requires several rounds of interaction
since the player who generates the garbled circuits must first send them, and only then see the “cut” and
send the circuit openings. We introduce techniques that allow us to squash this interaction to a single
round in the common random string model (CRS). Until recently, all cut-and-choose based 2PC protocols
(e.g., [LP07, LP11, SS11] required at least ∼ 3t garbled circuits for achieving soundness of 2−t (ignoring
computational soundness). These techniques are sufficient to turn such protocols into NISCs that also use
roughly 3t garbled circuits.

Reducing the number of circuits. Lindell [Lin13] recently introduced a cut-and-choose based 2PC that
requires only t garbled circuits for the same soundness, reducing the number of garbled circuits by (at least)
a factor of three. However, this protocol is inherently interactive since it executes two 2PC protocols, one
after the other, where the second 2PC is used to recover from potential cheating, with no obvious way of
making the protocol non-interactive. We show a new approach that allows working non-interactively with
only t garbled circuits (for soundness 2−t). We believe that our approach has significance also in the multi-
round setting with several advantages over the techniques of [Lin13] such as (1) suitability for pipelining;
and (2) an (arguably) conceptually simpler description.

4 We note that in the OS-NISC protocol of [IKO+11], a variant of the [LP07] technique is used for protecting against
the selective-OT attack. As far as we can tell, our “attack” can be applied to that construction as well, if used for
MS-NISC.

3

Section 1.2 provides a high-level description of the protocol. This protocol is secure under the DDH
assumption in the CRS model. We believe that this protocol is easier to understand than previous NISC
protocols, and because of that, more approachable for people from outside the crypto community. Hopefully,
NISC could gain interest as a model for practical protocols and applications.

We remark that we achieve only the OS-NISC/MS-NISC security notions. The same first message can be
used for many executions of secure computation with many different senders. The only restriction to achieve
adaptive MS-NISC is that once the receiver’s outputs are revealed to the other parties, the receiver must
refresh its first message, which requires computing only t OT queries.

In the full version of this paper we describe how the efficiency of the protocol can be improved if one
permits more than one round of interaction. The resulting 2PC protocol requires only t garbled circuits (for
statistical security of 2−t), O(tn1) symmetric-key operations, and O(tn2 + t2) exponentiations, where ni is
Pi’s input length (and ignoring a small number of seed-OTs).

Reducing communication. In addition to the main protocol, we show how to reduce communication
significantly using a new non-interactive adaptation of the method of Goyal et al. [GMS08] to the NISC
environment (Section 5). This method, based on the usage of erasure codes (specifically, of polynomials),
reduces the communication size to be only slightly higher than the communication required for sending the
garbled circuits that are evaluated (as opposed to sending also the garbled circuits that are checked). For
example, for soundness 2−40, this protocol requires using 44 garbled circuits, and communicating only 19
garbled circuits.

Implementation and experiments. We describe a prototype implementation of our main protocol, im-
plemented in C for a Linux environment. It is the first working implementation (that we are aware of) of a
NISC protocol, and it allows using our protocol in all the scenarios described above. Additionally, this is also
the first working implementation (that we are aware of) of a 2PC protocol that uses only t garbled circuits
for security of 2−t.

We evaluate the prototype with a circuit that computes an AES encryption and a circuit that computes
SHA256. The resulting performance is significantly better than that of previous cut-and-choose based pro-
tocols. For example, a maliciously secure computation of AES circuit requires about 7 seconds , where the
time needed for generating the first message is very small (e.g., much less than a second).

1.2 High Level Description of the Protocol

Step One: Squashing Cut-and-Choose 2PC to One Round. The starting point for the protocol is the
most straightforward approach based on the cut-and-choose method with 3t garbled circuits. (The constant
3 is chosen for simplifying the description. The exact constants are analysed in [LP11, SS11].) The receiver’s
first message in this case is an OT query of its input using a two-message OT protocol (e.g., [PVW08]).
Namely, if the receiver has n1 input bits it sends the corresponding n1 OT queries. The sender garbles
3t circuits gc1, . . . , gc3t and sends back a message that includes: (1) The 3t garbled circuits; (2) The OT
answers for the receiver’s query, using the input-wire labels that were used for garbling the receiver’s inputs;
(3) The input-wire labels that correspond to the sender’s own input. The receiver is now able to retrieve the
labels of its input-wires and evaluate the 3t garbled circuits by itself. It then takes the majority result to be
its output. This protocol is obviously insufficient. There are three issues that need to be verified: (1) Were
the garbled circuits garbled correctly? (2) Did the sender use the right input-wire labels in the OT? (i.e.,
consistent with the garbled circuits) (3) Was the sender’s input consistent in all 3t circuits? The goal of our
work is to present non-interactive and efficient solutions for these issues.

The standard solution for the first issue, of verifying the garbled circuits, is the cut-and-choose method
[LP07] where the sender proves that a random subset of c · 3t circuits (where c is fixed and publicly known,
e.g. c = 1/2, or c = 3/5 to optimize the success probability) were garbled correctly by revealing the ran-
domness that was used to garble them. Normally, the cut-and-choose method requires more than one round
of interaction. We solve this problem by using OT in the following way (similar to the technique used in
[KSS12, KMR12] for the different purpose of reducing latency). The protocol includes additional 3t OTs,
denoted as the circuit-OTs. In each of these OTs the receiver can choose to either check or evaluate the

4

corresponding circuit: The receiver chooses a random subset of circuits of size c · 3t that it wants to check,
and for each of these circuit it sends an OT query for the 1-bit. For the rest of the circuits it sends an OT
query for the 0-bit. The sender picks 3t keys seed1, . . . , seed3t for a pseudo-random function (PRF) and uses
key seedi to generate all the randomness needed for garbling gci. The sender also picks additional 3t keys
k1, . . . , k3t, and encrypts, under the key ki, the labels of the sender’s input-wires for circuit gci. Now, the
sender answers the circuit-OT queries using the 3t pairs (ki, seedi) as inputs. Observe that if the receiver
wants to check gci it learns the PRF key seedi that allows to reconstruct that circuit (using the same circuit
construction algorithm used by the sender), but it is not able to decrypt the sender’s input-wires labels. If
the receiver wishes to evaluate circuit gci it learns the key ki that enables to decrypt the input-wires labels
of that circuit, but not the seed seedi. In that case the receiver is able to evaluate the circuit but not to
check it. Of course, the sender does not know which circuits are chosen to be checked, due to the security of
the OT protocol.

As for the second issue, how to check that the sender uses consistent labels in the OTs for the receiver’s
input wires, we modify a technique of [KS06, SS11] to work in the NISC setting. Instead of using a regular
OT protocol, we work with an OT in which the second OT message commits the sender to specific inputs.
(I.e., given the second OT message, the sender cannot later claim that it used different inputs than the ones
it actually used.) In practice, the highly efficient OT of [PVW08] is sufficient for our purpose. Since we have
only one round of interaction, we require that all the randomness used for the second message of the OT
queries for circuit gci, is also derived from the PRF key seedi. In case the receiver does not ask to check gci,
this OT is as secure as a regular OT by the security of the PRF. If the receiver chose to check gci, it learns
seedi, and since it knows both the input labels of the circuit and the randomness that should have been used
in the OT it is able to recompute the second OT message by itself and compare it with the message sent by
the receiver. If there is a difference, the receiver aborts, since this means that the sender tried to cheat in
the OT for gci.

For the third issue, i.e. the consistency of the sender’s inputs, we modify a technique of [MF06] for the
NISC setting. We use a commitment scheme that allows proving, very efficiently, that two commitments are
commitments to the same value. (Pedersen’s commitment [Ped92] or an ElGamal based commitment suffice.)
Instead of using random labels for the sender’s input-wires, the sender uses commitments to zero as labels
for the 0-bit inputs and commitments to one as labels for 1-bit inputs. In an interactive setting the sender
decommits all input-wire labels of the checked circuits and proves that it used correct commitments.

In order to execute the protocol in a single round of interaction, we require that the randomness used
for the commitments for the input wires of circuit gci is also generated using the seed seedi. This allows the
receiver to regenerate the commitments by itself in case it chose to check gci. In addition, the sender sends
what we call input commitments, which are a set of commitments of its actual input bits that is not part of
any garbled circuit. The protocol includes commitment equality proofs which prove that each input value in
an evaluated circuit is equal to the value committed in the corresponding input commitment. (These proofs
are secure since the input commitments are never decommitted, as opposed to the other commitments which
are opened in checked circuits). The sender encrypts the commitment equality proofs using ki in order to
hide them from the receiver in the checked circuits. (Otherwise, the receiver could determine the sender’s
input.)

Note that so far our protocol requires 3t garbled circuits and relies on the cut-and-choose guarantee that
the majority of the evaluated garbled circuits are correct.

Before we discuss how to reduce the number of garbled circuits, we note that although our protocol is
not vulnerable to selective-OT attacks, namely attacks where the sender sets incorrect inputs in the OTs
used by the receiver to learn its input labels, we still require the receiver to refresh its first message in case
its outputs are revealed to the sender (or are used in other protocols, which can potentially leak them).
Technically, this happens since a corrupted sender can use an invalid seed for garbled circuit gc1, and valid
circuits otherwise. This sender could then learn the receiver’s first input bit in the circuit-OTs, based on
whether the receiver aborted its execution with this sender. In the adaptive MS-NISC setting, this attack
could be repeated by several corrupted senders, letting the adversary learn secret information about other
bits of the cut-and-choose challenge. As a result, soundness is gone, since the adversary could set the input of

5

the last sender based on the bits of the cut-and-choose challenge. In order to mitigate this attack, we require
the receiver to refresh its first message once its outputs are revealed. Note, however, that some information
about the receiver’s choices in the circuit-OTs is indeed revealed even if the receiver does refresh its first
message. However, these bits are revealed only after the execution of the protocol, thus do not undermine
security. (In fact, in most cut-and-choose 2PC protocols the challenge is always public. E.g., [LP11, SS11].)

Step Two: Reducing the Number of Garbled Circuits. Assume for simplicity that the circuit the
players use has only one output wire, and that the sender has only one input bit. We use the protocol from
the previous section, but with only t garbled circuits, and let P1 pick a random subset of them for verification
(instead of a constant fraction c, as described above). Obviously, if all evaluated circuits output the same
bit, then this bit is the correct output with probability 1 − 2−t (since in order to cheat, the sender must
guess all the checked circuits and all the evaluated ones). However, if some of the evaluated circuits output
different bits, then the receiver knows that the sender is trying to cheat and needs to determine the right
output. Following [Lin13], we would like to provide the receiver in this case with a “trapdoor” that allows
it to recover the sender’s input in case the sender behaves maliciously (but, of course, not in case it behaves
honestly). Then, the receiver can simply use the sender’s input in order to compute the function by itself,
and output the correct result.

As described earlier, the sender’s input-wire labels are commitments to their actual values. Let EGCommit(h;
b, r) = (gr, hrgb) be an ElGamal based commitment for a bit b, given a group G in which DDH is hard, and a
generator g. This is a perfectly-binding commitment, even if the party that commits knows logg(h). However,

knowing logg(h) allows “decrypting” gb, which otherwise is hidden because of the DDH assumption.

In the protocol, the sender picks w, sends h = gw to the receiver, and sets the labels of its input wire
in gci to be EGCommit(h; 0, ri,0) and EGCommit(h; 1, ri,1). Next, the sender picks at random w0, w1 such
that w = w0 + w1, and sends h0 = gw0 and h1 = gw1 . (P1 verifies that h = h0 · h1.) For gci, the sender
sends output recovery commitments h0g

li,0 and h1g
li,1 , where li,0, li,1 are chosen at random.5 Then, it sets

the output wire labels of this circuit to be li,0 and li,1, corresponding to 0 and 1, respectively.

As part of the cut-and-choose stage, if the receiver chooses to check gci, then it learns seedi and can
recover the output wire labels and verify both the input-wire labels and the output recovery commitments.
However, if the receiver chooses to evaluate gci, then the sender also sends it the values w0+ li,0 and w1+ li,1.
(These values are sent encrypted under ki, so the receiver only gets them in case it chose to evaluate gci.)
The receiver verifies that these values are consistent with the output recovery commitments by computing g
to the power of these two values (if this verification fails then the receiver aborts). In addition, the receiver
checks that the li,b it received from the evaluation of gci is a valid decommitment of h0g

li,b . If this check
pass, the receiver marks gci as a semi-trusted circuit. (Note that the probability of marking no circuit as
semi-trusted is 2−t, as it requires the sender to guess the set of evaluated circuits.)

After the receiver evaluates all the circuits chosen for evaluation, it is left with either a single output from
all semi-trusted circuits, or with two outputs from at least two semi-trusted circuits. In the first case, since
with probability 2−t there is at least one good evaluated garbled circuit, that single output is the correct
one. In case there are two different outputs, the receiver initiates the cheating recovery process: Say that gci’s
output is 0 and gci′ ’s output is 1 (and both are semi-trusted). From evaluating gci, the receiver learns li,0,
and from the sender’s message, it learns w0 + li,0. Thus, it can recover w0. Similarly, from gci′ it recovers w1.
Having w = w0 + w1 allows the receiver to decrypt the input-commitments, and recover the sender’s input
as needed. Note that in case the sender is honest, the receiver would get the same output from all evaluated
circuits, and thus would learn only one of w0 and w1.

When there are more than one output wire, different w0, w1 are chosen for each output wire, thus the
receiver learns one value from each pair. See Section 4 for a detailed description of the protocol.

5 Clearly, since P2 knows w0, w1, h0g
li,0 does not bind P2 to h0. Rather, it binds P2 to w0 + li,0.

6

2 Preliminaries: Notations and Primitives

Let Hash(·) be a collision resistant hash function, REHash(·) be a collision-resistant hash function that is a
suitable randomness extractor (e.g., see [DGH+04]), Commit(·) be a commitment scheme, and let Enc(k,m)
be the symmetric encryption of message m under key k.

Garbled Circuits. Our protocol is based on the garbled circuit protocol of Yao [Yao86] and can work
with any garbling scheme (see [LP09, BHR12] and the full version of this paper more details). We only
require that the labels of the output-wires reveal the actual outputs of the circuit (but still consist of random
strings). We use the notation label(gc, j, b) to denote the label of wire j corresponding to bit value b in the
garbled circuit

Commitments with efficient proof-of-equality and trapdoor. We use a commitment scheme that
allows one to efficiently prove that two commitments are for the same bit, without revealing any informa-
tion about the committed bit. Also, we require the commitment scheme to have a “trapdoor” that allows
extracting the committed value.

A commitment that satisfies our requirement can be based on ElGamal. Given finite group G and a
generator g, the committer picks a random element h ∈ G, and sends EGCommit(h,m, r) = (gr, hrgm).
This commitment is computationally-hiding (under the DDH assumption) and perfectly-binding. Given
EGCommit(h,m, r) and EGCommit(h,m, r′), the commiter can prove equality by giving r − r′. Last, given
the “trapdoor” logg(h), one can decrypt the commitment, EGCommit(h,m, r), and recover m.

Batch committing-OT. Batch committing-OT protocol is an OT protocol where the sender has two
tuples of inputs [K0

1 ,K
0
2 , . . . ,K

0
t], [K1

1 ,K
1
2 , . . . ,K

1
t]. The receiver has a bit b and wishes to learn the tuple

[Kb
1,K

b
2, . . . ,K

b
t].

We use a variant of the batch committing-OT protocol of [SS11] (which is based on the highly efficient one-
round, UC-secure OT of [PVW08]). The protocol is secure under the DDH assumption. Let G be a group
of prime order p in which the DDH assumption is assumed to hold, and let (g0, g1, h0, h1) be a common
reference string (CRS) where g0, g1, h0, h1 are random elements in G. The receiver picks r ∈ Zp at random
and sends g = (gb)

r, h = (hb)
r to the sender. For i = 1 . . . t and b′ ∈ {0, 1}, the sender picks at random

ri,b′ , si,b′ ∈ Zp and sends Xi,b′ = g
ri,b′

b′ h
si,b′

b′ and Yi,b′ = gri,b′hsi,b′Kb′

i . For i = 1 . . . t, the receiver retrieves
Kb

i = Yi,b/X
r
i,b.

After executing the above protocol, if the receiver asks the sender to reveal both its inputs K0
i ,K

1
i for

some i, the sender returns the values K0
i ,K

1
i , ri,0, si,0, ri,1, si,1 and the receiver verifies that the values

Xi,0, Yi,0, Xi,1, Yi,1 that it received were properly constructed using these values.
For simplicity and generality, in our NISC protocols we denote by COT1(b) the first message that is

sent (from the receiver to the sender) in an invocation of the committing-OT protocol for the receiver’s
input bit b, and similarly denote the second message (that is sent from the sender to the receiver) by
COT2([K0

1 ,K
0
2 , . . . ,K

0
t] , [K1

1 ,K
1
2 , . . . ,K

1
t], COT1(b)).

In the full version of this paper we give further details about the security of this protocol, and discuss
the CRS in case there are many invocations of MS-NISC with different senders.

3 The NISC Model

The OS-NISC notion is essentially like 2PC with one round of interaction, thus the security definition is
exactly as for multi-round 2PC (e.g., [Gol04]), with the additional restriction on the number of rounds in
the real execution.

For defining MS-NISC, we use the ideal/real paradigm (in the standalone setting), and use the ideal
functionality from Figure 1. See the full version of this paper for a formal definition. Throughout this work
we assume that senders cannot see or tamper with other senders’ messages to avoid malleability concerns.
In the full version of this paper we discuss how to correctly encrypt those messages if this is not the case.
(Note that in many applications there is only one sender and then malleability is not an issue. E.g., if the
sender is a satellite that sends messages periodically. In this case there is only one sender that sends many
messages, and no malleability issues occur.)

7

Assume that f(⊥, ·) = f(·,⊥) = ⊥.

– Initialize a list L of pairs of strings.
– Upon receiving a message (input, x) from P1, store x and continue as following:
• Upon receiving a message (input, y) from Pi, insert the pair (Pi, y) to L. If P1 is corrupted,

send (Pi, f(x, y)) to the adversary. Else, send (messageReceived, Pi) to P1.
• Upon receiving a message (getOutputs) from P1, send (

{
(Pi, f(x, y))

}
(Pi,y)∈L

) to P1, and

halt.

Fig. 1. MS-NISC functionality F .

4 An OS-NISC/MS-NISC Protocol

The protocol is in the CRS (common reference string) model, which is a necessary requirement for the one-
round OT protocol that we use [PVW08]. (Unlike other results that are presented in the OT-hybrid model,
we use this specific OT protocol which is currently the most efficient fully-secure, simulation-proven OT. We
preferred to use a concrete instantiation of OT in order to be able to use a committing variant of OT, in
which the OT sender is committed to its OT inputs after it sends its OT message. Still, our techniques can
be used with any committing-OT protocol that is proved secure using simulation and that can be executed
concurrently without sacrificing security.) Since the nature of NISC is mostly for indirect communication
(e.g, using a Facebook wall), we favor a solution that has a minimal communication overhead.

For high level description of the protocol, we refer the reader to Section 1.2. The detailed protocol is
described in Figures 2-4. Its concrete efficiency analysis and proof of the following theorem are in the full
version of this paper.

Theorem 1. Assume that the Decisional Diffie-Hellman problem is hard in the group G and that PRF,
REHash, Commit and Enc are secure. Then, the protocol of Figures 2-4 is a multi-sender non-interactive
secure computation for any function f : {0, 1}n1 × {0, 1}n2 → {0, 1}m computable in polynomial time. The
complexity of the protocol is O(t(n1 +n2 +m)) expensive operations and O(t(n1 +n2 +m+ |C|)) inexpensive
operations.

The protocol is described for a single sender. When there are more senders (or one with several inputs), each sender
executes the steps that are described below for P2.

Preliminaries: As defined in Section 2, we denote by COT1() the first message sent in an invocation of the
committing-OT protocol, and denote the second message of that protocol as COT2(). Also, denote by
EGCommit(h; b, r) the ElGamal commitment (which supports an efficient proof-of-equality) to bit b. Let G
be a group of size p with generator g.

Inputs: P1 has input x and P2 has input y. Let f : {0, 1}n1 × {0, 1}n2 → {0, 1}m be the function of interest and
let C(x, y) be a circuit that computes f . The input wires of P1 and P2 are denoted by the sets INc(1) and
INc(2), respectively. The output wires are denoted by the set OUTc.

P1’s message:

– Picks a random t-bit string where ti denotes the i-th bit of this string. We define T such that i ∈ T if and
only if ti = 1.

– For all circuits i ∈ [t] publishes COT1(ti). Denote these as the circuit-OT queries.
– For all inputs j ∈ INc(1) publishes COT1(xj), where xj is P1’s input bit for the j-th input wire. Denote

these as the input-OT queries.

Fig. 2. The OS-NISC/MS-NISC Protocol: Preliminaries and P1’s message.

8

– Picks w ∈R Zp and sends h = gw. Here, w would be the “trapdoor” to P2’s inputs.
– Sends EGCommit(h; yj , rj), for all j ∈ INc(2), where yj is its input bit for input-wire j, and rj is chosen

randomly. We call these the input-commitments.
– Sends hj,0 = gwj,0 and hj,1 = gwj,1 , where wj,0 ∈R Zp and wj,1 = w−wj,0, for all output wires j ∈ OUTc. We

call these the output-commitments.
For all i ∈ [t],

Generate garbled circuit:
• Picks a random value seedi.
• Computes ui,j,b = EGCommit(h; b, ri,j,b) for all j ∈ INc(2) and b ∈ {0, 1}, where ri,j,b =

PRFseedi(“EGCommitment” ◦ j ◦ b).
• Sends the garbled circuit gci, which is generated using a pseudo-random function PRFseedi in the

following way:
∗ For all j ∈ INc(2) and b ∈ {0, 1}, let label(gci, j, b) = REHash(ui,j,b). Namely, the label for bit b

of the jth wire is associated with the value of EGCommit(h; b, ·) computed with randomness that
is the output of a PRF keyed by seedi. Note that given ui,j,b, P1 can compute REHash(ui,j,b) by
itself and get the corresponding label.

∗ The garbled circuit is constructed in a standard way, where all other labels in the circuit are
generated by a PRF keyed by seedi. (E.g., the 0-label of wire j is PRFseedi(“label” ◦ j ◦ 0).)

• Sends the set of commitments
{

[Commit(ui,j,πi,j),Commit(ui,j,1−πi,j)] | πi,j ∈R {0, 1}
}
j∈INc(2)

. The

randomness of the commitments is derived from a PRF keyed by seedi as well. Denote by dui,j,b the
decommitment of ui,j,b.

Preparing and sending the cheating recovery box:
Sends the cheating recovery box, for all output wires j ∈ OUTc, which includes:
• Two output recovery commitments hj,0g

Ki,j,0 , hj,1g
Ki,j,1 , where Ki,j,0,Ki,j,1 ∈R Zp.

• Two encryptions Enc(label(gci, j, 0),Ki,j,0),Enc(label(gci, j, 1),Ki,j,1). (Note that given label(gci, j, b),
one can recompute hj,0g

Ki,j,b .)
Preparing and sending proofs of consistency:
• Let inputsi be the set

{
ui,j,yj , dui,j,yj

}
j∈INc(2)

, and let inputsEqualityi be the set
{
rj − ri,j,yj

}
j∈INc(2)

(namely, P2’s input labels and their proof of equality with the input-commitments).
• Let outputDecomi be the set

{
([wj,0 +Ki,j,0], [wj,1 +Ki,j,1])

}
j∈OUTc

(namely, the discrete logarithms

of hj,0g
Ki,j,0 and hj,0g

Ki,j,1).
• Picks a random key ki and sends the encryption Enc(ki, inputsi ◦ inputsEqualityi ◦ outputDecomi).

Sending the garbled values of P1’s inputs:
Let inp-qj be the input-OT query for input-wire j of P1. P2 sends the OT answer, which includes the
garbled values of either the 0 or 1 labels for the corresponding input wire. Namely, it sends the value
COT2([label(gc1, j, 0), . . . , label(gct, j, 0)], [label(gc1, j, 1), . . . , label(gct, j, 1)], inp-qj). Moreover, we require
that all the randomness used in the OT for the answers of the i-th circuit is generated from PRFseedi .
(E.g., set ri,1 of the j-th wire of the i-th circuit to be PRFseedi(“OT” ◦ 1 ◦ “r” ◦ i ◦ j).)

Circuits cut-and-choose:
Let circ-qi be the circuit-OT query for circuit i, P2 sends COT2([ki], [seedi], circ-qi). Namely P1 receives
seedi if it asked to open this circuit, and ki if it is about to evaluate the circuit.

Fig. 3. The OS-NISC/MS-NISC Protocol: P2’s response.

9

After receiving responses from all senders, P1 processes all of them together and outputs a vector of outputs. For
each response it does the following:

– Decrypts all OT answers.
– Verifies that hj,0 · hj,1 = h for all j ∈ OUTc.
– For all opened circuits i ∈ T , checks that seedi indeed correctly generates gci (with its commitments), and the

answers of the input-OT queries. (Otherwise, it aborts processing this response.) It also checks the cheating
recovery boxes and aborts if there is a problem.

– For all circuits i ∈ [t] \ T , decrypts inputsi, inputsEqualityi, outputDecomi.
• Checks that inputsi and inputsEqualityi are consistent with the input-commitments. (I.e., checks that ui,j,yj ·

(g
ri−ri,j,yj , h

ri−ri,j,yj) = EGCommit(h; yj , rj)). Also, verifies the decommitments dui,j,yj . (Otherwise, it
aborts.)

• Checks that outputDecomi are correct discrete-logs of the elements of the set
{
hj,bg

Ki,j,b
}
j∈OUTc,b∈{0,1}

.

(Otherwise, it aborts.)
• Evaluates circuit gci. Say that it learns the labels {li,j}j∈OUTc . P1 tries to use these labels to decrypt the

corresponding encryptions Enc(label(gci, j, b),Ki,j,b) from the cheating recovery box. Then, it checks if the
result is a correct “decommitment” of the output recovery commitment hj,bg

Ki,j,b (where the b values are
the actual output bits it received from gci). If all these steps pass correctly for all output wires, we say
that circuit gci is semi-trusted.

– If the outputs of all semi-trusted circuits are the same, P1 outputs that output.
Otherwise,
• Let gci, gci′ be two semi-trusted circuits that have different output in the jth output wire, and let li,j and
li′,j be their output labels. From one of li,j and li′,j , P1 learns wj,0 and from the other value it learns wj,1
(since it learns Ki,j,b,Ki′,j,1−b from the cheating recovery boxes, and wj,b +Ki,j,b, wj,1−b +Ki′,j,1−b from
outputDecomi, outputDecomi′).

• P1 computes w = wj,0 + wj,1 and decrypts P2’s input-commitments. Let y be the decrypted value of P2’s
input.

• P1 outputs f(x, y).

Fig. 4. The OS-NISC/MS-NISC Protocol: P1’s computation.

10

5 Reducing the Communication Overhead

Goyal et al. [GMS08] suggest a method that significantly reduces the communication overhead of 2PC
protocols based on cut-and-choose. In their protocol, as in ours, P2 picks a different seed for each garbled
circuit and uses a pseudo-random function, keyed with that seed, to generate all the randomness needed for
garbling that circuit. P2 does not send the circuits to P1 but only “commits” to them by sending the hash
of each circuit. Then, when P2 is asked to open a subset of the circuits, it sends to P1 the seeds used for
constructing these circuits, as well as the actual garbled tables of the evaluated circuits. P1 uses the seeds
to reconstruct the checked circuits and verify that they agree with the desired functionality and with the
hashes that were sent in the initial step (the hashes are computed with a collision resistant hash function
Hash(·) and therefore prevent a circuit from being changed after its hash is received).

Trying to apply this modification in the NISC setting encounters a major obstacle: In order for P2 to
send only the gates of the evaluated circuits, it must learn, based on P1’s first message, which circuits are
evaluated. Since P2 learns this information before it sends any message to P1, it is able to set its evaluated
and checked circuits in a way that fools P1’s checks.

When communication is through a third-party service. A simple solution can be based on the
observation that in many applications of NISC the communication channel is actually implemented through
a third-party service, e.g., a Facebook wall. In those cases, P2 could upload all circuits to the service, along
with their hash values. Then, P1 downloads only the circuits for evaluation and the hashes of all circuits.
Assuming that the service hides from P2 which circuits were actually downloaded by P1, the result is secure,
and the communication of P1 and of the service (but not of P2) depends only on the number of evaluated
circuits.

A more general solution. We describe a solution that does not depend on any third party. The solution
requires that the number of evaluated circuits is known to P2 (e.g., for soundness 2−40 the players can use
44 circuits and evaluate 19 of them. Communication would roughly be the size of 19 garbled circuits.)

The protocol is based on the usage of erasure codes, and in particular of polynomials. Say that P2 garbles
t circuits and that P1 evaluates ct of them for some known constant c < 1. Also, let b be some convenient
block length and denote the number of blocks in the description of a garbled circuit by l. P2 garbles the
t circuits, and then computes l polynomials p1(·), p2(·), . . . , pl(·) such that pj(i) equals to the j-th block
of garbled circuit gci. The degree of each polynomial is t − 1. Then, for each polynomial pi, P2 sends to
P1 ct values, 〈pi(t + 1), pi(t + 2), . . . , pi(t + ct)〉. It also sends to P1 hashes of all garbled circuits. P1 then
picks the (1 − c)t circuits that it wishes to check, and receives from P2 the PRF seeds that were used for
generating them. Using these seeds, P1 reconstructs the checked garbled circuits, checks that they agree with
the hash values and validates their structure. Afterwards, P1 uses polynomial interpolation to recover the
polynomials p1(·), p2(·), . . . , pl(·). Using these polynomials it retrieves the garbled circuits that it chose to
evaluate, verifies that they agree with the hash values that P1 has sent, and continues with the protocol.

The main advantage of this technique is that it enables to reduce communication even without knowing
P1’s challenge. The overall communication overhead of this method is as the size of the ct evaluated circuits,
which matches the communication overhead of [GMS08], but allows us to use this technique in the NISC
setting. The proof of security of the resulting protocol is almost identical to the proof of Theorem 1 (except
that the hash is also checked by the simulator) and therefore omitted.

6 Evaluation

Prototype implementation. Our prototype consists of several modules which communicate through files
(for making the protocol suitable for asynchronous communication mechanisms like e-mail). It does not
use the communication reduction techniques of Section 5. The prototype makes use of several libraries,
namely RELIC-Toolkit [AG], JustGarble [BHKR13], and OpenSSL [OPE]. Relic-toolkit is chosen for its fast
and efficient implementation of elliptic curve operations and is used to implement our OT and ElGamal
based commitments. We use the binary curve B-251, which (roughly) provides 124-bit security. (Computing

11

a single elliptic curve multiplication, which corresponds to a single exponentiation in our protocol, costs
about 120,103 CPU cycles for a fixed base and 217,378 cycles for a general base.) JustGarble is chosen for
its fast implementation of garbling and evaluating circuits. ([BHKR13] advocates using fixed-key AES as
a cryptographic permutation, and its implementation takes advantage of the AES-NI instruction set.) We
modified JustGarble to read the circuit format of [TS], and read/write garbled circuits from/to a file (and
not only the circuit structure). Lastly, we use the AES implementation from OpenSSL, to realize a PRF.

The setup. To evaluate our prototype we used two circuits, one for AES with non-expanded key (with 8,492
non-XOR gates and 25,124 XOR gates) and one for SHA256 (with 194,083 non-XOR gates and 42,029 XOR
gates). The circuits were taken from [TS] (and slightly modified). In both circuits, each party has a 128 bit
input value. The output of the AES circuit is 128 bit long, while SHA256 has a 256 bit output.

The experiments were run on a virtual Linux machine with a 64bit, i7-4650U CPU @ 1.70GHz and 5.4GB
of RAM. (For a more accurate comparison, our code utilizes only a single core of the CPU. The average
CPU frequency during the experiments was about 2.3GHz.) We measured clock cycles of each module of
the system using the RDTSC instruction, and used the clock_gettime() system function to calculate the
running time. Each experiment was run 10 times and the average run time was calculated in both cycles and
seconds.

Performance. The experiments were done with statistical security parameter t = 40 and label length of 128
bits. Garbling was performed with the Free-XOR [KS08] and Garbled Row Reduction [PSSW09] techniques.
(We also tested the protocol without those techniques. The results were slower by at most 10%.)

See Figure 5 for the running times of the main parts of our prototype. (Recall that when interacting
with more than one sender, the receiver P1 has to generate the first message only once. Then, for each
sender, its running time will be similar to the time it takes it to process the sender’s response in the single
sender scenario that we examined.) The values represented in Figure 5 contain all operations, including I/O
handling.

Observe that as the circuit size grows, the I/O portion becomes significant. For example, for the AES
circuit, where every garbled circuit was stored in a 3 MB file, the total I/O time for the protocol is 0.53
seconds, whereas for the SHA256 circuit, where each circuit is stored in a 31 MB file, the total I/O time is
4.89 seconds. (For AES the I/O time was about 8% of the total time, whereas for SHA256 it was around
38% of the total time. This is expected since both functions have inputs of the same size, while the SHA256
circuit is much bigger.) The costs of garbling and evaluation of a garbled circuit are quite small (e.g., garbling
takes less than 100 million cycles for the SHA256 circuit). The more significant overhead comes from I/O
operations and the exponentiations done in the protocol.

Module or part name #Cycles Time #Cycles Time

AES circuit SHA256 circuit

Init 42 0.02 44 0.02
P1’s message 71 0.03 73 0.03
P2’s response 8216 3.55 17651 7.59
P1’s computation 6452 2.79 11771 5.10

Cheating recovery 0.7 < 0.01 0.7 < 0.01

Total time - 6.39 - 12.74
I/O time - 0.53 - 4.89

Fig. 5. Running times for the prototype with statistical security parameter t = 40 and label length = 128. Time is
in seconds and cycles are measured in millions of cycles. Running times include file operations.

In addition, we ran the experiment for AES with t=80 and got, as expected, that the costs are roughly
twice those of the experiment with t=40. (Specifically, with t=80, it takes P1 78 million cycles to compute
its message, 16,518 million cycles for P2 to compute its response, and 12,870 million cycles for P1 to compute
the output).

12

Due to lack of space, a comparison with previous multi-round 2PC implementations appears in the full
version of this paper. We note here that although there is no standard benchmark for comparing 2PC
implementations, it is clear that our NISC implementation is competitive with the best known interactive
implementations.

Acknowledgements. The fourth author would like to thank Ran Canetti for helpful comments about this
work, and to Yuval Ishai for introducing him to the work of [IKO+11]. We thank an anonymous EURO-
CRYPT reviewer for suggesting a simplification of the cheating-recovery commitments.

References

[AG] D. F. Aranha and C. P. L. Gouvêa. RELIC is an Efficient LIbrary for Cryptography.
http://code.google.com/p/relic-toolkit/.

[BHKR13] M. Bellare, V. T. Hoang, S. Keelveedhi, and P. Rogaway. Efficient garbling from a fixed-key blockcipher.
In IEEE S&P, 2013.

[BHR12] M. Bellare, V. T. Hoang, and P. Rogaway. Foundations of garbled circuits. In CCS, pages 784–796.
ACM, 2012.

[CCKM00] C. Cachin, J. Camenisch, J. Kilian, and J. Müller. One-round secure computation and secure autonomous
mobile agents. ICALP, pages 512–523. Springer-Verlag, 2000.

[DGH+04] Y. Dodis, R. Gennaro, J. Hstad, H. Krawczyk, and T. Rabin. Randomness extraction and key derivation
using the cbc, cascade and hmac modes. In CRYPTO, pages 494–510. Springer, 2004.

[GMS08] V. Goyal, P. Mohassel, and A. Smith. Efficient two party and multi party computation against covert
adversaries. In EUROCRYPT, pages 289–306. Springer, 2008.

[Gol04] O. Goldreich. Foundations of Cryptography: Volume 2, Basic Applications. Cambridge University Press,
New York, NY, USA, 2004.

[HK07] O. Horvitz and J. Katz. Universally-composable two-party computation in two rounds. CRYPTO, pages
111–129. Springer-Verlag, 2007.

[IKO+11] Y. Ishai, E. Kushilevitz, R. Ostrovsky, M. Prabhakaran, and A. Sahai. Efficient non-interactive secure
computation. In EUROCRYPT, pages 406–425. Springer, 2011.

[IPS08] Y. Ishai, M. Prabhakaran, and A. Sahai. Founding cryptography on oblivious transfer — efficiently. In
CRYPTO, pages 572–591, 2008.

[KMR12] S. Kamara, P. Mohassel, and B. Riva. Salus: a system for server-aided secure function evaluation. In
CCS, pages 797–808. ACM, 2012.

[KS06] M. S. Kiraz and B. Schoenmakers. A protocol issue for the malicious case of yaos garbled circuit
construction. In In Proceedings of 27th Symposium on Information Theory in the Benelux, pages 283–
290, 2006.

[KS08] V. Kolesnikov and T. Schneider. Improved garbled circuit: Free xor gates and applications. In ICALP,
pages 486–498, 2008.

[KSS12] B. Kreuter, A. Shelat, and C.-H. Shen. Billion-gate secure computation with malicious adversaries. In
USENIX Security, pages 14–14, 2012.

[Lin13] Y. Lindell. Fast cut-and-choose based protocols for malicious and covert adversaries. In CRYPTO, pages
1–17, 2013.

[LP07] Y. Lindell and B. Pinkas. An efficient protocol for secure two-party computation in the presence of
malicious adversaries. In EUROCRYPT, pages 52–78. Springer, 2007.

[LP09] Y. Lindell and B. Pinkas. A proof of security of Yao’s protocol for two-party computation. J. Cryptol.,
22(2):161–188, April 2009.

[LP11] Y. Lindell and B. Pinkas. Secure two-party computation via cut-and-choose oblivious transfer. In TCC,
pages 329–346. Springer, 2011.

[MF06] P. Mohassel and M. K. Franklin. Efficiency tradeoffs for malicious two-party computation. In PKC,
pages 458–473. Springer, 2006.

[MR13] P. Mohassel and B. Riva. Garbled circuits checking garbled circuits: More efficient and secure two-party
computation. In CRYPTO, pages 36–53, 2013.

[NNOB12] J. B. Nielsen, P. S. Nordholt, C. Orlandi, and S. S. Burra. A new approach to practical active-secure
two-party computation. In CRYPTO, pages 681–700. Springer, 2012.

[OPE] OpenSSL: The open source toolkit for SSL/TLS. www.openssl.org.

13

[Ped92] T. P. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing. CRYPTO,
pages 129–140. Springer-Verlag, 1992.

[PSSW09] B. Pinkas, T. Schneider, N. P. Smart, and S. C. Williams. Secure two-party computation is practical.
In ASIACRYPT, pages 250–267, 2009.

[PVW08] C. Peikert, V. Vaikuntanathan, and B. Waters. A framework for efficient and composable oblivious
transfer. In CRYPTO, 2008.

[SS11] A. Shelat and C.-H. Shen. Two-output secure computation with malicious adversaries. In EUROCRYPT,
pages 386–405. Springer, 2011.

[sS13] a. shelat and C.-h. Shen. Fast two-party secure computation with minimal assumptions. In CCS, pages
523–534. ACM, 2013.

[TS] S. Tillich and N. Smart. Circuits of Basic Functions Suitable For MPC and FHE.
http://www.cs.bris.ac.uk/Research/CryptographySecurity/MPC/.

[Yao86] A. C.-C. Yao. How to generate and exchange secrets. In SFCS, pages 162–167. IEEE Computer Society,
1986.

14

