
1

A Note on Scalar Multiplication Using Division

Polynomials
Binglong Chen, Chuangqiang Hu and Chang-An Zhao

Abstract

Scalar multiplication is the most important and expensive operation in elliptic curve cryptosystems. In this paper we improve
the efficiency of the Elliptic Net algorithm to compute scalar multiplication by using the equivalence of elliptic nets. The proposed
method saves four multiplications in each iteration loop. Experimental results also indicates that our algorithm will be more
efficient than the previously known results in this line.

Index Terms

elliptic curve cryptosystems, division polynomial, elliptic net, scalar multiplication, side channel attack.

I. INTRODUCTION

Elliptic curve cryptosystems (ECC) proposed by Koblitz [1] and Miller [2] independently play a key role in secure

transmission through an insecure channel. ECC may be a valid candidate in restricted environments such as smart cards

because of short key sizes. Since scalar multiplication is the most vital and expensive operation in the implementation of ECC,

improving the speed of scalar multiplication has always been the most important focus in elliptic curve cryptography.

The basic and classical method to compute scalar multiplication is the double-and-add and tangent-and-chord algorithm. A

lot of important techniques have been presented to accelerate the computation of scalar multiplication in this research. We

refer the reader to the books of [3], [4], [5], [6] for more comprehensive treatments.

On the other hand, Miller pointed out that elliptic curve scalar multiplication can be computed via division polynomials in

polynomial time while he did not give a concrete and explicit algorithm [2]. In fact, division polynomials are closely related

to elliptic divisibility sequences which were studied by Ward [7]. Shipsey provided an explicit method to compute the m-th

term of an elliptic divisibility sequence in polynomial time [8]. Later, Stange generalized the elliptic divisibility sequences

to higher rank and gave the definition of elliptic nets [9]. In some sense, elliptic nets (or elliptic divisibility sequences) can

be regarded as a powerful tool for computation. For example, Shipsey made use of them to solve the elliptic curve discrete

logarithm problem in certain cases [8], Stange proposed the Elliptic Net algorithm to compute the pairings [9] and Kanayama

et al. adapted Stange’s algorithm to compute elliptic curve scalar multiplication [9].

The Elliptic Net algorithm to compute scalar multiplication have three main advantages. First, there are no inverse operations

involved in the whole loop of the algorithm. Therefore, it may be suitable for a restricted environments of computational power.

Second, the cost of the Double step is the same as that of the DoubleAdd step in each iteration loop. In other words, the

cost of each iteration loop is independent of the Hamming weight of the scalar. Hence this algorithm can resist side channel

attacks. Finally, the code of the main loop can be easily written and suitable for different finite fields. However, the efficiency

of this algorithm should be improved compared to that of the classical double-and-add and tangent-and-chord method.

In this paper, we speed up the Elliptic Net algorithm to compute scalar multiplication by using the equivalence of elliptic

nets (or elliptic divisibility sequences). Inspired by the work of [9], we propose a novel Double and DoubleAdd steps for

scalar multiplication on curves in large prime characteristics. In certain cases, the improvement will save four multiplications

B. Chen, C. Hu and C.-A. Zhao are with the School of Mathematics and Computational Science, School of Mathematics and Computational Science, Sun
Yat-sen University, Guangzhou 510275, P.R.China. {mcscbl, zhaochan3}@mail.sysu.edu.cn, huchuangqiang@qq.com

2

in each iteration loop compared to the previous results. This indicates that we can attain higher performance with the increase

of the bit-length of the scalar. We also discuss the case in even characteristic which may be advantageous to design hardware

accelerators to provide the desired performance levels. Experimental results indicate that the proposed algorithm will be more

efficient than the previous results [10] although it is slower than the traditional double-and-add method for scalar multiplication

in Jacobian coordinate systems.

The rest of the paper is organized as follows. In Section II, we recall the definition of elliptic curves and the Elliptic Net

algorithm to compute scalar multiplication. Section III gives our main results. Section IV provides efficiency analysis and

implementation results. Finally, we draw our conclusion in Section V.

II. PRELIMINARIES

In this section, we will recall the definition of elliptic curves with Weierstrass equation briefly and the Elliptic Net algorithm

to compute scalar multiplication (i.e., the scalar multiplication algorithm using division polynomials).

A. Elliptic curves

Let K be a field. Denote by Char(K) the characteristic of K. Suppose that E is an elliptic curve over K. If Char(K) ̸= 2, 3,

then the Weierstrass equation of the curve E can be given as follows.

y2 = x3 +Ax+B, 4A3 + 27B2 ̸= 0. (1)

Let m be a positive integer. One can define division polynomials ψm ∈ Z[A,B, x, y] [11] inductively as follows:

ψ0 = 0, ψ1 = 1, ψ2 = 2y,

ψ3 = 3x4 + 6Ax2 + 12Bx−A2,

ψ4 = 4y(x6 + 5Ax4 + 20Bx3 − 5A2x2 − 4ABx− 8B2 −A3).

(2)

For n ≥ 5, we can define ψn recursively:

ψ2m+1ψ1 = ψm+2ψ
3
m − ψm−1ψ

3
m+1 (m ≥ 2),

ψ2mψ2 = ψm(ψm+2ψ
2
m−1 − ψm−2ψ

2
m+1) (m ≥ 3).

(3)

We define two auxiliary polynomials ϕm and ωm by

ϕm = xψ2
m − ψm+1ψm−1

4yωm = ψm+2ψ
2
m−1 − ψm−2ψ

2
m+1.

(4)

Let P = (x1, y1) be a point on E. Then for m ≥ 2

[m]P = (
ϕm(P)

ψm(P)2
,
ωm(P)

ψm(P)3
). (5)

If Char(K) = 2, then the equation of a non-supersingular elliptic curve E is in the form

y2 + xy = x3 + a2x
2 + a6. (6)

In this case, the first few division polynomials ψm ∈ Z[A,B, x, y] [1] will be:

ψ0 = 0, ψ1 = 1, ψ2 = x,

ψ3 = x4 + x3 + a6, ψ4 = x6 + x2a6.
(7)

Similarly, the division polynomials ψn for n ≥ 5 can be defined by Equation (3) recursively. Let P = (x1, y1) be a point on

E. Then for m ≥ 2 [1]

[m]P = (
ϕm(P)

ψm(P)2
, x1 + y1 + (1 + x1 +

y1
x1

)
ψm−1(P)ψm+1(P)

ψm(P)2
+
ψm+1(P)

2ψm−2(P)

ψ2(P)ψm(P)3
), (8)

3

where the polynomial ϕm has the same meaning as in Equation (4). The computation of scalar multiplication [m]P plays a key

role in the implementation of elliptic curve cryptosystems. The classical method is the double-and-add and tangent-and-chord

algorithm. However, Miller also pointed out that scalar multiplication can be computed by using division polynomials [2] in

polynomial time. Kanayama et al. implemented this method [10] which was essentially adapted from the Elliptic Net algorithm

to computing the pairings by Stange [9].

B. Elliptic net algorithm to compute scalar multiplication

In this subsection, we define the elliptic divisibility sequence and recall the Elliptic Net algorithm to compute scalar

multiplication [10].

We define ψ−n(P) = −ψn(P). For any integer n, let W (n) = ψn(P). Then the sequence {W (n)} is exactly an elliptic

divisibility sequence which was first studied by Ward [7]. An elliptic divisibility sequence is defined over the field K if all

of the terms in the sequence {W (n)} belong to K. Two elliptic divisibility sequences {un} and {vn} are equivalent [8], [9]

if there exist two nonzero constants α and β such that un = αβn2

vn.

Stange generalized the concept of elliptic divisibility sequences to higher rank and gave the definition of elliptic nets

associated to an elliptic curve E and arbitrary many points on E [9]. In this sense, the sequence {W (n)} can regarded as

an elliptic net of rank one. Note that Rachel Shipsey provided a double-and-add method of calculating the m-th term of an

elliptic divisibility sequence in polynomial time by using the recurrence formulas (3) in her thesis [8]. In addition, if the terms

Wλ for m− 2 ≤ λ ≤ m+ 2 can be obtained, then the coordinates of [m]P will be determined. Kanayama et al. adapted the

elliptic net algorithm by Stange [9] for computing elliptic curve scalar multiplication. Here we cite Algorithms 1 and 2 of [10]

to compute the terms Wλ for m−2 ≤ λ ≤ m+2 as shown Algorithms 2.1 and 2.2 for convenience. Denote the multiplication,

squaring, and inversion in the finite field by M , S and I , respectively. We also give the cost of each line in Algorithm 2.1.

Note that the term W (2) is not equal to one generally. Hence this will cost 4M for multiplying with W (2) in each iteration

loop (see Algorithm 2.1). Inspired by this observation and making use of results of Stange [9], we will give an improvement

of Algorithm 2.1 and save 4M in each iteration loop.

Algorithm 2.1 Double and DoubleAdd Algorithm
Input: Block V = [V [0], V [1], · · · , V [7]] centered at k boolean add

Output: Block centered at 2k if add == 0 centered at 2k + 1 if add == 1

1. for i = 0 to 5 do

S[i]← V [i+1]2; P [i]← V [i] ∗V [i+2]; //

6 · (1S + 1M)

end for;

2. if add == 0 then

for i = 1 to 4 do

V [2∗i−2]← S[i−1]∗P [i]−S[i]∗P [i−1]; //4 ·(2M)

V [2∗i−1]← (S[i−1]∗P [i+1]−S[i+1]∗P [i−1])·W (2); //4·(3M)

end for;

else

for i = 1 to 4 do

V [2∗i−2]← (S[i−1]∗P [i+1]−S[i+1]∗P [i−1])·W (2); //4·(2M)

V [2∗i−1]← S[i]∗P [i+1]−S[i+1]∗P [i]; //4·(3M)

end for;

end if;

3. return V

4

Algorithm 2.2 Scalar Multiplication Algorithm via Elliptic Nets
Input: Integer m = (dldl−1 · · · d0)2 with dk = 1. The first few terms a = W (2), b = W (3), and c = W (4) of the elliptic

nets of rank one associated to the point P .

Output: the values of W (m− 2), W (m− 1), W (m), W (m+ 1), and W (m+ 2) in the elliptic nets of rank one associated

to the point P .

1. V ← [−a,−1, 0, 1, a, b, c, a3c− b3]
2. for i := l − 1 to 0 by 1 do

if di = 0 then

V ← Double(V)

V ← DoubleAdd(V)

end if

end for

3. return V [1], V [2], V [3], V [4], and V [5]. // terms W (m− 2), W (m− 1), W (m), W (m+1), and W (m+2) respectively

III. MAIN RESULTS

In this section, our main results will be given. Observe that W (2) will always appear in the Double and DoubleAdd algorithm.

Inspired by the optimization ideas of the Elliptic Net algorithm [9], we will speed up Algorithm 2.2 by changing W (2) to

one. This will save four multiplications in each iteration loop.

The following lemma will turn out to be useful in the sequel.

Lemma 1: Let K be a finite field with q elements, where q satisfies that gcd(q − 1, 3) = 1. Let {W (i)} be the elliptic

divisibility sequence defined over K with W (2) ̸= 0. Then there exists an elliptic divisibility sequence {Ŵ (i)} defined over

K such that Ŵ (2) = 1 which is equivalent to the sequence {W (i)}.
Proof: According to the assumption, the elliptic divisibility sequence {W (i)} is defined over K. Since gcd(q− 1, 3) = 1,

one can find that a cubic root θ of W (2)−1 lies in K, i.e, θ3 =W (2)−1. Let Ŵ (i) = θi
2−1W (i) for any integer i. Then the

sequence {Ŵ (i)} is defined over K since both θ and W (i) belong to K. One can verify that Ŵ (2) = 1. This completes the

proof of Lemma 1.

Lemma 2: Let K be a finite field with q elements and Char(K) ≥ 5. Suppose that gcd(q − 1, 3) = 1. Let E be an elliptic

curve over K defined by Equation (1): y2 = x3+Ax+B. Assume that P = (x1, y1) is a rational point on E(K). Let {W (i)}
be the elliptic divisibility sequence with W (2) ̸= 0 associated to E and P from the division polynomials. Choose θ such that

θ3 = W (2)−1 = (2y1)
−1. Define a sequence {Ŵ (i)} by Ŵ (i) = θi

2−1W (i) with Ŵ (2) = 1 over K. Then the coordinates

of [m]P = (xm, ym) can be calculated from the sequence {Ŵ (i)}, i.e.,

xm = x1 − θ−2 Ŵ (m− 1)Ŵ (m+ 1)

Ŵ (m)2

and

ym =
y1(Ŵ (m− 1)2Ŵ (m+ 2)− Ŵ (m+ 1)2Ŵ (m− 2))

Ŵ (m)3
.

Proof: Note that W (i) = θ1−i2Ŵ (i) for any integer i and θ3 = (2y1)
−1. By Equation (5) we get

xm = x1 −
W (m− 1)W (m+ 1)

W (m)2

= x1 −
θ1−(m−1)2Ŵ (m− 1)θ1−(m+1)2Ŵ (m+ 1)

θ2(1−m2)Ŵ (m)2

= x1 − θ−2 Ŵ (m− 1)Ŵ (m+ 1)

Ŵ (m)2

5

and
ym =

W (m− 1)2W (m+ 2)−W (m+ 1)2W (m− 2)

4y1W (m)3

=
θ2(1−(m−1)2)+1−(m+2)2Ŵ (m− 1)2Ŵ (m+ 2)− θ2(1−(m+1)2)+1−(m−2)2)Ŵ (m+ 1)2Ŵ (m− 2)

4y1θ3(1−m2)Ŵ (m)3

=
y1(Ŵ (m− 1)2Ŵ (m+ 2)− Ŵ (m+ 1)2Ŵ (m− 2))

Ŵ (m)3
.

This completes the proof of the lemma.

For an elliptic curve over finite fields with even characteristic, we can also obtain the similar results as follows. For our

interests, we just consider the non-supersingular elliptic curves although it is also clear in the case of supersingular curves.

Lemma 3: Let K be a finite field with q elements and Char(K) = 2. Suppose that gcd(q − 1, 3) = 1. Let E be an elliptic

curve over K defined by Equation (6): y2 + xy = x3 + a2x
2 + a6. Assume that P = (x1, y1) is a rational point on E(K).

Let {W (i)} be the elliptic divisibility sequence with W (2) ̸= 0 associated to E and P from the division polynomials. Choose

θ such that θ3 = W (2)−1 = x−1
1 . Define a sequence {Ŵ (i)} by Ŵ (i) = θi

2−1W (i) with Ŵ (2) = 1 over K. Then the

coordinates of [m]P = (xm, ym) can be calculated from the sequence {Ŵ (i)}, i.e.,

xm = x1 + θ−2 Ŵ (m− 1)Ŵ (m+ 1)

Ŵ (m)2

and

ym = x1 + y1 + (1 + x1 +
y1
x1

)θ−2 Ŵ (m− 1)Ŵ (m+ 1)

Ŵ (m)2
+
x1Ŵ (m+ 1)2Ŵ (m− 2)

Ŵ (m)3
.

Proof: The calculation can be done by a similar way in the proof of Lemma 2.

On the basis of the above lemmas, one can compute the terms of the sequences {Ŵ (i)}. It should be remarked that the

whole elliptic divisibility sequence with Ŵ (1) = Ŵ (2) = 1 can be defined over K under the condition gcd(q − 1, 3) = 1.

This will save the cost of multiplying with Ŵ (2). In the next section, we will give a detailed efficiency analysis.

IV. EFFICIENCY CONSIDERATION AND IMPLEMENTATION RESULTS

In this section, the efficiency of the proposed method will be given. Also, we will compare it with the previous methods and

show some experimental results for implementation of scalar multiplication based on the elliptic divisibility sequences (or the

elliptic net). We will consider the implementation of elliptic curve cryptosystems over finite fields in large prime characteristic.

In the following, we always assume that the cardinality of the finite field q satisfies (q − 1, 3) = 1. This implies that

we can use the equivalent elliptic divisibility sequence {Ŵ (i)} for scalar multiplication. Note that in the implementation of

elliptic curve cryptosystems the rational point P will be often chosen to be a public parameter and W (2) is only related to

the coordinates of the point P . Thus we neglect the cost of computing the cubic root of W (2).

As in the above lemmas, let θ be an element of K such that θ3 =W (2)−1. Then we have

Ŵ (1) = 1, â = Ŵ (2) = 1, b̂ = Ŵ (3) = θ8 ·W (3),

ĉ = Ŵ (4) = θ15 ·W (4), Ŵ (5) = â3ĉ− b̂3 = ĉ− b̂3.

Then the initial vector should be changed to

[−1,−1, 0, 1, 1, Ŵ (3), Ŵ (4), Ŵ (5)] = [−1,−1, 0, 1, 1, b̂, ĉ, ĉ− b̂3],

in Algorithm 2.2.

It is easy to see that the main advantage of Algorithm 2.1 is to resist side channel attack. However, further optimization

will be required compared to the classical method for elliptic curve scalar multiplication. Here we give some possible ways

of further optimization for large prime characteristic and even characteristic, respectively.

6

A. Large prime characteristic

In this subsection, we will focus on the optimization of scalar multiplication on elliptic curves over finite fields with large

prime characteristic. On the one hand, the number of the terms of the vector which should be updated can be reduced to seven,

which still makes Algorithms 2.1 and 2.2 work correctly (see [12] for details). This adjustment will make each Double step

save the cost of 1S + 4M , but each DoubleAdd step involves one inverse operation. Therefore it only works in the case of

the scalar m with low Hamming weight and does not consider the resistance of side channel attacks when computing [m]P .

On the other hand, there exist some possible trade-offs arising from different squaring/multiplication ratios in the case of

large prime characteristic. Note that the values V [i]2 for 1 ≤ i ≤ 6 will be computed first in Algorithm 2.1. If the cost of

dividing by 2 can be neglected, then we can compute

V [i] · V [i+ 2] = ((V [i] + V [i+ 2])2 − V [i]2 − V [i+ 2]2)/2

for 1 ≤ i ≤ 4. This observation will convert 4M to 4S in the cost of Algorithm 2.1.

We will consider the implementation on elliptic curves over a finite field K = Fq , where q is a large prime satisfying

(q − 1, 3) = 1. It should be remarked that there exist certain elliptic curves satisfying this property, for example, the NIST

elliptic curve P-192 used in [10]. We summarize the cost of operations for Double and DoubleAdd steps by using different

methods in Table I.

TABLE I
COMPARISON OF THE COST OF OPERATIONS FOR Double AND DoubleAdd STEPS IN LARGE PRIME CHARACERISTIC

Method Double DoubleAdd

Affine [4] 2M + 2S + I 4M + 3S + 2I

Affine-Jacobian(A = −3) [13] 4M + 4S 12M + 7S

Algorithm 1 [10] 26M + 6S 26M + 6S

This work 22M + 6S 22M + 6S

B. Even characteristic

Now we consider the cost of operations for Double and DoubleAdd steps on elliptic curves over F2n , where n is odd. In

real implementations n is actually chosen to be an odd prime. Therefore, the proposed method can be applied in this case

since gcd(2n − 1, 3) = 1. It is seen that squaring/multiplication trade-offs can not be used. However, the cost of one squaring

can be neglected compared to that of one multiplication. We summarize the cost of operations for Double and DoubleAdd

steps in Table II and cite the basic methods in affine and Jacobian coordinate systems for benchmarks.

TABLE II
COMPARISON OF THE COST OF OPERATIONS FOR Double AND DoubleAdd STEPS IN EVEN CHARACERISTIC

Method Double DoubleAdd

Affine [4] M + I 2M + 2I

Affine-Jacobian [4] 5M 15M

This work 22M 22M

C. Implementation results

We implement the different methods to compute scalar multiplication on the NIST elliptic curve P-192 over finite fields

with large prime characteristic used in [10](or see pages 261-262 of [4]). Our running environment specifications are listed

7

as follows: Windows 7 64bits, Intel(R) Xeon(R) CPU E5-1620 v3 @ 3.50GHz× 8, and memory, 16GB. The code was written

in c++ and based on NTL library [14]. The bit-length of the scalar m is 191. From Table III, we see that the proposed

method will be more efficient than the previous algorithm [10] indeed while it is slower than the traditional double-and-add

and tangent-and-chord method. This shows that more improvements will be required for the Elliptic Net algorithm to compute

scalar multiplication .

TABLE III
TIMINGS OF SCALAR MULTIPLICATION BY DIFFERENT METHODS IN LARGE PRIME CHARACTERISTIC

Method Time(ms)

Jacobian coordinate [13] 2.41

Algorithm 2 of [10] 4.66

This work 4.32

V. CONCLUSION

In this paper, we showed how to speed up the computation of Double and DoubleAdd steps by using division polynomials

when computing scalar multiplication. The Elliptic Net algorithm to compute scalar multiplication can be implemented

efficiently on personal modern computers and resist side channel attacks while it is slower than the classical double-and-

add and tangent-and-chord method. We hope that this work may lead to more developments of scalar multiplication in this

line.

ACKNOWLEDGMENTS

The work of Binglong Chen is partially supported by the by the NSFC(Grant No. 11025107). The work of Chang-An Zhao

is partially supported by the NSFC (Grant No. 61472457).

REFERENCES

[1] N. Koblitz, “Constructing elliptic curve cryptosystems in characteristic 2,” in Advances in Cryptology-CRYPT0 90, ser. Lecture Notes in Computer
Science, A. J. Menezes and S. A. Vanstone, Eds. Springer Berlin Heidelberg, 1991, vol. 537, pp. 156–167.

[2] V. Miller, “Use of elliptic curves in cryptography,” in Advances in Cryptology CRYPTO 85 Proceedings, ser. Lecture Notes in Computer Science,
H. Williams, Ed. Springer Berlin Heidelberg, 1986, vol. 218, pp. 417–426.

[3] I. F. Blake, G. Seroussi, and N. Smart, Elliptic curves in cryptography. Cambridge university press, 1999, vol. 265.
[4] D. Hankerson, S. Vanstone, and A. J. Menezes, Guide to elliptic curve cryptography. Springer Science & Business Media, 2004.
[5] H. Cohen and G. Frey, Eds., Handbook of elliptic and hyperelliptic curve cryptography. CRC Press, 2005.
[6] S. D. Galbraith, Mathematics of public key cryptography. Cambridge University Press, 2012.
[7] M. Ward, “Memoir on elliptic divisibility sequences,” American Journal of Mathematics, pp. 31–74, 1948.
[8] R. Shipsey, “Elliptic divisibility sequences,” Ph.D. dissertation, Goldsmiths, University of London, 2001.
[9] K. E. Stange, “The Tate pairing via elliptic nets,” in Pairing-Based Cryptography - Pairing 2007, ser. Lecture Notes in Computer Science, T. Takagi,

T. Okamoto, E. Okamoto, and T. Okamoto, Eds. Springer Berlin Heidelberg, 2007, vol. 4575, pp. 329–348.
[10] N. Kanayama, Y. Liu, E. OKamoto, K. Saito, T. Teruya, and S. Uchiyama, “Implementation of an elliptic curve scalar multiplication method using

division polynomials,” IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, vol. E97.A, no. 1, pp. 300–302,
2014.

[11] J. Silverman, The arithmetic of elliptic curves. Springer-Verlag, New York, 1986.
[12] B. Chen and C.-A. Zhao, “An improvement of the Elliptic Net algorithm,” preprint, 2015.
[13] H. Cohen, A. Miyaji, and T. Ono, “Efficient elliptic curve exponentiation using mixed coordinates,” in Advances in Cryptology ASIACRYPT98, ser.

Lecture Notes in Computer Science, K. Ohta and D. Pei, Eds. Springer Berlin Heidelberg, 1998, vol. 1514, pp. 51–65.
[14] V. Shoup, “NTL: A library for doing number theory,” available from http://shoup.net/ntl/index.html.

