
Impossible Differential Cryptanalysis of Reduced Round
SIMON

Zhan Chen1, Ning Wang2,3, and Xiaoyun Wang2,3,4*

1 Department of Computer Science and Technology,
Tsinghua University, Beijing 100084, China
z-chen14@mails.tsinghua.edu.cn

2 Key Laboratory of Cryptologic Technology and Information Security,
Ministry of Education, Shandong University, Jinan 250100, China

3 School of Mathematics, Shandong University, Jinan 250100, China
wangning 2014@hotmail.com

4 Institute of Advanced Study, Tsinghua University, Beijing 100084, China
xiaoyunwang@mail.tsinghua.edu.cn

Abstract

Impossible differential is a useful method for cryptanalysis. SIMON is a light weight block
cipher that has attracted lots of attention ever since its publication in 2013. In this paper
we propose impossible differential attack on five versions of SIMON, using bit conditions to
minimize key bits guessed. We calculate keybits and give the exact attack results.

Keywords: SIMON, impossible differential, bit condition

1 Introduction

SIMON [1] is a family of block ciphers designed by the U.S. National Security Agency (NSA)
in 2013. It is designed to have excellent performance on both hardware and software [2]. It has
a feistel structure and 5 different block sizes with different key lengths. Ever since its publica-
tion, SIMON has attracted much cryptanalysis such as differential analysis [3] [4] [5] [6], linear
cryptananlysis [7] [8], impossible differential and zero-correlation linear hull cryptanalysis [7] [9].

Impossible differential attacks were independently introduced by Knudsen [10] and Biham et
al. [11], the aim of impossible differential cryptanalysis is to use differentials that never occur to
eliminate wrong key candidates that result in such a differential.

This paper is organized as follows. We give a brief description of SIMON and some notation-
s in section 2. In section 3, we express a useful property of SIMON concerning bit conditions

*Corresponding author



2

which is used in our attack. In section 4 we give a 19-round impossible differential attack on SI-
MON32. In section 5 we mount 20-round impossible differential attack on SIMON48/72. Section
6 concludes the paper.

2 A brief description of Simon

SIMON is a feistel structure block cipher with block size 2n where n ∈ {16, 24, 32, 48, 64}, and
key size mn where m ∈ {2, 3, 4}, usually denoted as SIMON2n/mn. We list some notations as
follows:

• Xi[n, . . . , 2n− 1, 0, . . . , n− 1] : the input of the i-th round

• Li[n, . . . , 2n− 1] : the left half of the i-th round input

• Ri[0, . . . , n− 1] : the right half of the i-th round input

• 4Xi : the difference of two inputs Xi and X ′i

• ki[0, . . . , n− 1] : the subkey of the i-th round

• X ≪ r : the left rotation of X by r bits

• ⊕ : bitwise exclusive OR

• ∩ : bitwise AND

• % : modular operation

All versions of SIMON with corresponding numbers of rounds are listed in Table 1.

Table 1: The 10 versions of SIMON
Block size (2n) Key size (mn) Number of rounds

32 64 32

48
72 36
96 36

64
96 42
128 44

96
96 52
144 54

128
128 68
192 69
256 72

Simon uses a simple round function F (x) = (x ≪ 1) ∩ (x ≪ 8)⊕ (x ≪ 2). The plaintext
is (L0, R0). After round i, (Li, Ri) are updated to (Li+1, Ri+1) as follows:

Li+1 = F (Li)⊕Ri ⊕ ki

Ri+1 = Li



3

The output of the last round (LNr , RNr) yields the ciphertext.
The key schedules generate a sequence of Nr subkeys {k0, . . . , kNr−1}. The procedure d-

iffers, depending on the value m. The first m subkeys are initialized by the master key. For
i = m, . . . , Nr−1,

ki = c⊕ (zj)i−m ⊕ ki−m ⊕ Yi−m ⊕ (Yi−m ≪ 1),

where

Yi−m =


ki−m+1 ≪ 3, if m = 2,

ki−m+2 ≪ 3, if m = 3,

ki−m+3 ≪ 3⊕ ki−m+1, if m = 4.

Here c = 2n − 4 and zj is a version-dependent constant sequence. For more details refer to [2].

3 Some Observations of Bit Property

Observation 1 (from [12]) Let4x = x⊕ x′,4y = y ⊕ y′, then

(x ∩ y)⊕ (x′ ∩ y) = 4x ∩ y

(x ∩ y)⊕ (x ∩ y′) = x ∩4y

(x ∩ y)⊕ (x′ ∩ y′) = (x ∩4y)⊕ (4x ∩ y)⊕ (4x ∩4y)

Observation 2 (from [3]) Given two inputs Xi and X ′i of the i-th round, the difference of output
4Xi+1 can be computed without any information of subkeys. Each bit of the difference 4Xi+2

can be computed with no more than one key bits, depending on two bits of4Xi+1.
We know from the round function that

Xi+1[j + n] = Xi[(j + 1)%n+ n]∩Xi[(j + 8)%n+ n]⊕Xi[(j + 2)%n+ n]⊕Xi[j]⊕Ki[j],

so

4Xi+1[j + n] =(4Xi[(j + 1)%n+ n] ∩Xi[(j + 8)%n+ n])

⊕ (Xi[(j + 1)%n+ n] ∩4Xi[(j + 8)%n+ n])

⊕ (4Xi[(j + 1)%n+ n] ∩4Xi[(j + 8)%n+ n])

⊕4Xi[(j + 2)%n+ n]⊕4Xi[j].

When computing4Xi+2[j+n] we need the value (4Xi+1[(j+1)%n+n]),4Xi+1[(j+8)%n+
n]).
If (4Xi+1[(j+1)%n+n],4Xi+1[(j+8)%n+n]) = (0, 0), then4Xi+2[j+n] can be computed
without any keybits.
If (4Xi+1[(j + 1)%n+ n],4Xi+1[(j + 8)%n+ n]) = (0, 1), then only Xi+1[(j + 1)%n+ n]
is needed, we only have to guess ki+1[(j + 1)%n].
If (4Xi+1[(j + 1)%n+ n],4Xi+1[(j + 8)%n+ n]) = (1, 0), then only Xi+1[(j + 8)%n+ n]
is needed, we only have to guess ki+1[(j + 8)%n].
If (4Xi+1[(j + 1)%n + n],4Xi+1[(j + 8)%n + n]) = (1, 1), then we only have to guess
ki+1[(j + 1)%n]⊕ ki+1[(j + 8)%n].

This bit condition reduces the key bits guessed greatly. We will use this property in our attack.



4

4 Impossible Differential Attack on SIMON32/64

We use a impossible differential characteristic of 11 rounds. This path is that, given input dif-
ference 4X = [0000, 0000, 0000, 0000, 0000, 0000, 0000, 0001], after 11 SIMON32/64 rounds,
the output difference cannot be like this: [0000, 0000, 1000, 0000, 0000, 0000, 0000, 0000] or this:
[0000, 0010, 0000, 0000, 0000, 0000, 0000, 0000]. Here we should note that, the input difference
or output difference must have at least one non-zero bit. Since only zero difference propagates into
zero difference, and the plaintext pairs or ciphertext pairs we use all have non-zero difference. Us-
ing a potential zero input difference or output difference may result in better attack than it should
be.

We add four rounds on top and four rounds at the bottom of the first impossible differential
path, and present attack on 19 rounds SIMON32/64. The state of each round is listed in Table 2 :

Table 2: States of SIMON32/64
4L0 = (000?, ??0?, 01??, ???0) 4R0 = (0???, ???1, ????, ??0?)
4L1 = (0000, 0??0, 0001, ??0?) 4R1 = (000?, ??0?, 01??, ???0)
4L2 = (0000, 000?, 0000, 01?0) 4R2 = (0000, 0??0, 0001, ??0?)
4L3 = (0000, 0000, 0000, 0001) 4R3 = (0000, 000?, 0000, 01?0)
4L4 = (0000, 0000, 0000, 0000) 4R4 = (0000, 0000, 0000, 0001)

4L15 = (0000, 0000, 1000, 0000) 4R15 = (0000, 0000, 0000, 0000)
4L16 = (?000, 001?, 0000, 0000) 4R16 = (0000, 0000, 1000, 0000)
4L17 = (0000, 1??0, ?000, 00??) 4R17 = (?000, 001?, 0000, 0000)
4L18 = (?01?, ????, 0000, ???0) 4R18 = (0000, 1??0, ?000, 00??)
4L19 = (1???, ???0, ?0??, ????) 4R19 = (?01?, ????, 0000, ???0)

4.1 Procedure of the attack

Step 1 We build structures as follows: there are 10 necessary conditions on the plaintext, we
divide all the 232 plaintexts into 210 parts, with 10 bits X0[0, 7, 14, 16, 17, 18, 22, 24, 25, 31]
fixed for each part and other 22 bits traversing. Because 4X1 can be computed without
any key bits, we can use this property for data collection. There are 11 conditions on4X1,
only 8 of them need to be considered. The other 3 are certain to hold. By round function
definition, we build 8 equations X1[j + n] = X0[(j + 1)%n+ n] ∩X0[(j + 8)%n+ n]⊕
X0[(j + 2)%n + n] ⊕ X0[j] for X1[17, 18, 19, 20, 24, 25, 26, 27] and solve the equation
system. So for each of the 210 parts, we obtain 28 structures with 10 bits of X0 and 8 bits of
X1 fixed and other 14 bits traversing. In total we get 218 structures.

Step 2 Two structures with three different bits X0[25, 7], X1[27] can form 228 pairs. The 232

plaintexts can form 217+1 structures which is 217+28 = 245 pairs. Encrypt these pairs and
choose pairs whose ciphertexts have zero difference at4X19[23, 25, 1, 8, 9, 10, 11, 15] and
non-zero difference at4X19[16, 2], the expected number of pairs left is 245−10 = 235.

Step 3 Compute 8 bits difference 4X18[1, 2, 3, 4, 10, 11, 12, 13] for the remaining pairs, and s-
elect the pairs that satisfy the required difference. The expected number of pairs left is



5

235 × 2−8 = 227.

Step 4 We want4L2 = (0000, 000?, 0000, 01?0).
1, From property 2, 0 = 4X2[19] = X1[20] ⊕ 4X1[21] ⊕ 4X1[3], where X1[20] =
X0[21] ∩X0[28]⊕X0[22]⊕X0[4]⊕ k0[4]. So k0[4] has one value.

2, From property 2,4X2[20] = (X1[21]∩4X1[28])⊕ (4X1[21]∩X1[28])⊕ (4X1[21]∩
4X1[28])⊕4X1[22]⊕4X1[4].

If (4X1[21],4X1[28]) = (0, 0), and if 4X1[22] ⊕4X1[4] = 1 then these discard these
pairs. If4X1[22]⊕4X1[4] = 0, then k0[5, 12] has 4 values.

If (4X1[21],4X1[28]) = (0, 1) then 4X2[20] = X1[21] ⊕ 4X1[22] ⊕ 4X1[4] where
X1[21] = X0[22] ∩X0[29]⊕X0[23]⊕X0[5]⊕ k0[5], then k0[5] has 1 value.

If (4X1[21],4X1[28]) = (1, 0), then 4X2[20] = X1[28] ⊕ 4X1[22] ⊕ 4X1[4] where
X1[28] = X0[29] ∩X0[20]⊕X0[30]⊕X0[12]⊕ k0[12], then k0[12] has 1 value.

If (4X1[21],4X1[28]) = (1, 1), then 4X2[20] = X1[21] ⊕ X1[28] ⊕ 1 ⊕ 4X1[22] ⊕
4X1[4], so k0[5]⊕ k0[12] has 1 value.

For all the above circumstances, discard the pairs that do not meet requirement, there are
227 × (1− 1

8)left. k0[5, 12] has 16
7 values.

3, From property 2,4X2[21] = (X1[22]∩4X1[29])⊕ (4X1[22]∩X1[29])⊕ (4X1[22]∩
4X1[29])⊕4X1[23]⊕4X1[5]

Similarly, discard unnecessary pairs there are 227 × (1− 1
8)

2 left. k0[6, 13] has 16
7 values.

4, From property 2,4X2[26] = X1[18]⊕4X1[28]⊕4X1[10] = X1[18]. And X1[18] =
X0[19] ∩X0[26]⊕X0[20]⊕X0[2]⊕ k0[2]. So k0[2] has 1 value.

5, From property 2, if4X1[28] = 1 then4X2[27] = X1[19]⊕4X1[29]⊕4X1[11], k0[3]
has 1 value.

If4X1[28] = 0 then4X2[27] = 4X1[29]⊕4X1[11]. If4X1[29]⊕4X1[11] = 1 then
discard these pairs. If4X1[29]⊕4X1[11] = 0 then k0[3] has 2 values.

After discarding unnecessary pairs there are 227×(1− 1
8)

2×(1− 1
4) left. k0[3] has 4

3values.

6, Similarly about4X2[28], after discarding unnecessary pairs there are 227 × (1− 1
8)

2 ×
(1− 1

4)
2 left. k0[3] has 4

3 values.

7, Similarly about4X2[29], after discarding unnecessary pairs there are 227 × (1− 1
8)

2 ×
(1− 1

4)
3 = 225.37 left. k0[14] has 4

3 values.

In this step, 8 key bits have in total 1× 16
7 ×

16
7 × 1× 4

3 ×
4
3 = 4049

441 values.

Step 5 We want4R17 = (?000, 001?, 0000, 0000).
As is done in step 4, we discard pairs that do not help in our attack, and calculate keybits.
There are 225.37 × (1 − 1

4)
3 × (1 − 1

8)
2 = 224.15 pairs left and 8 key bits have in total

1× 4
3 ×

4
3 ×

4
3 × 1× 16

7 ×
16
7 = 16384

1323 values.

Step 6 As for4L3 = (0000, 0000, 0000, 0001), there are 224.15 × (1− 1
8)× (1− 1

4)
2 = 223.127

pairs left and the 10 key bits have in total 3× 36
7 × 1× 4

3 ×
8
3 = 384

7 values.



6

Step 7 As for R16 = (0000, 0000, 1000, 0000), there are 2x × (1− 1
4)

2 × (1 − 1
8) pairs left and

the 10 key bits have in total 2× 4
3 ×

16
3 × 2× 16

7 = 4096
63 values.

Step 8 As for R15 = (0000, 0000, 0000, 0000), 6 key bits have in total 32 possible values.

Step 9 As for4L4 = (0000, 0000, 0000, 0000), 6 key bits have in total 32 possible values.

Step 10 In the end we have 227 × (1− 1
4)

10 × (1− 1
8)

6 = 221.693 pairs left. The 49 key bits have
in total 4096

441 ×
16384
1323 ×

384
7 ×

4096
63 × 32× 32 = 228.646 possible values.

That is to say each pair can sieve out 228.646 wrong key bits. There remains 249 × (1 −
228.646

249
)2

21.693
= 249 × 2−3.65 = 245.35 key candidates.

Step 11 Above is the sieving results of the first impossible differential path. We add four rounds
on top and bottom of the second impossible differential path. The number of key bits in-
volved is also 49. 44 of them appeared for the first path. So the 245.35 44-bit keys together
with the other 5-bit keys of the second path is the remaining key candidates.

Similarly we sieve the key candidates using the second path, in the end, the number of
remaining keys is 245.35+5 × (1 − 228.646

245.35+5 )
221.693 = 250.35−1.431 = 248.919. That is to say,

the total 54-bit keys are left with 248.919.

The right key is definitely included in the remaining keys. We have guessed 54 bits, only
have to traverse 10 bit equivalent bits to compute the master key, and test on 2 pairs of
plaintexts.

4.2 Complexity analysis

The data complexity is 232 known plaintexts. The memory complexity is the storing of remaining
key candidates in step 11, which is 248.919 × 54/32 = 249.674 states. The time complexity is
also dominated by Step 11. In step 11, the time complexity is 248.919 × 210 = 258.919 19-round
SIMON32.

5 Impossible Differential Attacks on SIMON48/72

The 12-round impossible differential path we use is that, given input difference [(0000, 0000, 0000,
0000, 0000, 0000), (1000, 0000, 0000, 0000, 0000, 0000)], after 12 round SIMON48 the output d-
ifference cannot be: [(0100, 0000, 0000, 0000, 0000, 0000), (0000, 0000, 0000, 0000, 0000, 0000)].

We add four rounds on top and four rounds at the bottom, and present attack on 20-round
SIMON48/72. The state of each round is listed in the following Table 3:

5.1 Procedure of the attack

Step 1 Same as done for SIMON32/64, we build 232 structures and form 263 pairs. Choose pairs
that satisfy the differences of4X20 and4X19, there remains 231 pairs.



7

Table 3: States of SIMON48/72
4L0 = (?000, 00??, 0000, ???0, ?01?, ??0?) 4R0 = (1000, ???0, ?0??, ????, ????, ????)
4L1 = (?000, 0000, ?000, 00??, 0000, 1??0) 4R1 = (?000, 00??, 0000, ???0, ?01?, ??0?)
4L2 = (0000, 0000, 0000, 0000, ?000, 001?) 4R2 = (1000, 0000, ?000, 00??, 0000, 1??0)
4L3 = (1000, 0000, 0000, 0000, 0000, 0000) 4R3 = (0000, 0000, 0000, 0000, ?000, 001?)
4L4 = (0000, 0000, 0000, 0000, 0000, 0000) 4R4 = (1000, 0000, 0000, 0000, 0000, 0000)

4L16 = (0100, 0000, 0000, 0000, 0000, 0000) 4R16 = (0000, 0000, 0000, 0000, 0000, 0000)
4L17 = (?000, 0000, 0000, 0000, 0?00, 0001) 4R17 = (0100, 0000, 0000, 0000, 0000, 0000)
4L18 = (0100, 0000, 0?00, 000?, ?000, 01??) 4R18 = (?000, 0000, 0000, 0000, 0?00, 0001)
4L19 = (??00, 000?, ?000, 0???, 0?01, ???0) 4R19 = (0100, 0000, 0?00, 000?, ?000, 01??)
4L20 = (?100, 0???, 0?0?, ????, ????, ????) 4R20 = (??00, 000?, ?000, 0???, 0?01, ???0)

Step 2 For4X2,4X3,4X4 and4X18,4X17, X16, discard pairs that are helpful to the attack,
and compute average key bits solved for each pair. In the end we get 231× (1− 1

4)
14× (1−

1
8)

6 = 224.034 pairs left. The 64-bit key has on average 238.966 values.

That is, each pair can sieve out 238.966 wrong keys. There remains 264×(1− 238.966

264
)2

24.034
=

263.278 keys. Sadly we cannot use a second impossible differential path to sieve out more
wrong keys because a cumulation of involved key bits of two paths will exceed 72 bits.

Step 3 The right key is definitely included in the remaining keys. We have guessed 64 bits,
and have to traverse 8 equivalent key bits to compute master key and test on two pairs of
plaintexts.

5.2 Complexity analysis

The data complexity is 248 known plaintexts. The memory complexity is the storing of remaining
key candidates in step 2, which is 263.278 × 64/48 = 263.393 states. The time complexity is
263.278 × 28 = 271.278 20-round SIMON48.

6 Conclusion

For SIMON48/96, SIMON64/96 and SIMON64/128, only one impossible differential path can
be used for the attack. We present impossible differential attacks on SIMON32, SIMON48 AND
SIMON96 with bit-wise precision in this paper. Table 4 is a comparison of previous results and
our new results. We have done a detailed calculation of key bits involved, this means no better
attack can be obtained other than this.

References

[1] Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L. (2012). Perfor-
mance of the SIMON and SPECK families of lightweight block ciphers. http://iauth. org/wp-
content/uploads/2013/01/SimonSpeckPerformance1. pdf.



8

Table 4: Summary of impossible differential attacks on SIMON

Cipher Full rounds Attacked rounds
Complexity Source

Time Data Memory

SIMON32/64 32
13 250.1 230 220 [4]
14 244.183 233.291 229.203 [13]
18 261.14 232 247.67 [9]
19 262.56 232 244 [14]
19 258.919 232 249.674 Subsect 4.2

SIMON48/72 36
15 269.079 250.262 245.618 [13]
18 261.87 248 242.12 [9]
20 271.278 248 263.393 Subsect 5.1.2
20 270.69 248 258 [14]

SIMON48/96 36
15 253 238 220.6 [4]
15 269.079 250.262 245.618 [13]
19 285.82 248 266.68 [9]
21 294.73 248 270 [14]
21 294.556 248 286.447 Subsect 5.2.2

SIMON64/96 42
16 291.986 265.248 260.203 [13]
21 295.279 264 272.469 Subsect 6.1.2
21 294.56 264 260 [14]

SIMON64/128 44
16 291.986 265.248 260.203 [13]
22 2126.56 264 275 [14]
22 2125.115 264 298.773 Subsect 6.2.2

[2] Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L. (2013). The
SIMON and SPECK Families of Lightweight Block Ciphers. IACR Cryptology ePrint Archive,
2013, 404.

[3] Ning Wang, Xiaoyun Wang, KetingJia, and Jingyuan Zhao. Differential Attacks on Reduced
SIMON Versions with Dynamic Key-Guessing Techniques. Technical report, Cryptology ePrint
Archive, Report 2014/448, 2014.

[4] Abed, F., List, E., Lucks, S., Wenzel, J. (2013). Differential and linear cryptanalysis of
reduced-round SIMON. Cryptology ePrint Archive, Report 2013/526.

[5] Biryukov, A., Roy, A., Velichkov, V. (2014). Differential analysis of block ciphers SIMON
and SPECK. In International Workshop on Fast Software Encryption-FSE.

[6] Sun, S., Hu, L., Wang, P., Qiao, K., Ma, X., Song, L. (2014). Automatic security evaluation
and (related-key) differential characteristic search: Application to SIMON, PRESENT, LBlock,
DES (L) and other bit-oriented block ciphers. In Advances in Cryptology-ASIACRYPT 2014
(pp. 158-178). Springer Berlin Heidelberg.

[7] Alizadeh, J., Alkhzaimi, H. A., Aref, M. R., Bagheri, N., Gauravaram, P., Kumar, A., Lau-
ridsen, M. M., and Sanadhya, S. K. (2014). Cryptanalysis of Simon variants with Connections.



9

In Radio Frequency Identification: Security and Privacy Issues (pp. 90-107). Springer Interna-
tional Publishing.

[8] Alizadeh, J., Alkhzaimi, H. A., Aref, M. R., Bagheri, N., Gauravaram, P., Lauridsen, M.
M. Improved linear cryptanalysis of round reduced SIMON. IACR Cryptology ePrint Archive,
Reprot 2014/681, 2014. http://eprint. iacr. org/2014/681. pdf.

[9] Wang, Q., Liu, Z., Varıcı, K., Sasaki, Y., Rijmen, V., Todo, Y. (2014). Cryptanalysis of
Reduced-round SIMON32 and SIMON48. In Progress in Cryptology–INDOCRYPT 2014 (pp.
143-160). Springer International Publishing.

[10] Knudsen, L. (1998). DEAL-a 128-bit block cipher. complexity, 258(2).

[11] Biham, E., Biryukov, A., Shamir, A. (1999, January). Cryptanalysis of Skipjack reduced to
31 rounds using impossible differentials. In Advances in Cryptology-Eurocrypt’99 (pp. 12-23).
Springer Berlin Heidelberg.

[12] Kühn, U. (2002, January). Improved cryptanalysis of MISTY1. In Fast Software Encryption
(pp. 61-75). Springer Berlin Heidelberg.

[13] AlKhzaimi, H., Lauridsen, M. M. (2013). Cryptanalysis of the SIMON Family of Block
Ciphers. IACR Cryptology ePrint Archive, 2013, 543.

[14] Boura, C., Naya-Plasencia, M., Suder, V. (2014). Scrutinizing and improving impossible dif-
ferential attacks: Applications to clefia, camellia, lblock and simon. In Advances in Cryptology-
ASIACRYPT 2014 (pp. 179-199). Springer Berlin Heidelberg.


