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Abstract

Secure and private computations over RAM are preferred over computations with circuits or Turing
machines. Secure and private RAM executions become more and more important in the scope avoiding
information leakage when executing programs over a single computer as well as over the clouds. In this
paper, we propose a distributed scheme for evaluating RAM programs without revealing any information
on the computation including the program the data and the result. We use the Shamir secret sharing to
share all the program instructions and private string matching technique to ensure the execution of the right
instruction sequence. We stress that our scheme obtains information theoretic security and does not rely on
any computational hardness assumptions, therefore, gaining indefinite private and secure RAM execution of
perfectly unrevealed programs.
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1 Introduction

Cloud computing provides cost-efficient and flexible shared infrastructure and computational services on de-
mand for various customers who need to store and operate on a huge amount of data. Until now, there are
various services providers such as Amazon [1] and Google [13] offering platforms, software, and storage
outsourcing applications. Much attention has been paid to them due to the potential benefits and business
opportunities that clouds could bring [9].

However, cloud computing also introduces security and privacy risks for the clients. For example, some of
the cloud providers are not perfectly reliable and are vulnerable to network attacks and data leakage. Further-
more, even a single computer with the same cloud organization is untrustworthy. There are possible attacks
on a single computer during which information is copied from the bus of the computer and sent to an adver-
sary. Thus, it is vitally important that server processes unrevealed programs over unrevealed data, unrevealed
in information theoretical secure manner.

One of the most important requirements of the cloud clients is to process their data in a confidential way.
Several techniques are applied to address data storage privacy [18, 19, 20, 26] and security computation on
clouds [17, 29]. Among these studies, security in evaluating random access machine (RAM) program is an
important task [22, 2], since many modern algorithms are operating on the von Neumann RAM architecture.
Until now, there are mainly two ways for secure computation of RAM programs, the first is to convert a RAM
program into circuits and the second is to use oblivious RAM, introduced by Goldreich and Ostrovsky [19].
Oblivious RAM schemes are preferred as there is no need to convert the program into a binary circuit which
leads to a huge blowup in program size and its running time.

Even though the propositions for secure RAM evaluation can address various privacy challenges including
two-party [22], multiparty [5, 10] or large-scale computation [6] against semi-honest or malicious adversaries,
they all assume that the processors used by clouds are trustworthy. Thus, in these proposals, the CPU has to
decrypt the input data before processing and then encrypt the output data again. During these years, the semi-
conductor design and fabrication process became global, integrated circuits tend to be increasingly vulnerable
to malicious activities and alterations. An adversary can introduce a special hardware Trojan [28] designed
to disable or destroy a system in the future, or leak confidential information. Similar attack has already been
demonstrated in [3], where a specially designed Trojan in the CPU revealed sensitive information to the adver-
sary.

We assume that there is a client that wants to run a program on the clouds. But the client does not want
to reveal any information about both the program and the data. The cloud with untrusted hardware, that say,
listens to the bus, may extract information on the internal activity of the processor.

Unfortunately, none of the protocols that decrypt data prior to processing and manipulating the data can
avoid information leakage when the adversary acts within the hardware. Thus, one may wish to execute an
encrypted program on encrypted data without decrypting neither the program nor the data. In order to protect
privacy, a straightforward approach is to execute the encrypted instructions in the clouds processors directly.
Fully homomorphic encryption [14, 15] (FHE) is a way to achieve this goal. Several schemes are proposed
to implemented secret program execution over FHE (e.g., [7] [8] [31]). However, the main problem is that
the proposed schemes have high overhead of computation [16] which make FHE more theoretical result than
practical. Moreover, Gentrys scheme and later FHE schemes relied on the hardness assumptions such that of
the ideal lattices, which are only computationally secure, rather than key-less information theoretical secure.
Our Contribution. In this paper, an alternative architecture is proposed with security and privacy that are
based on theoretically security promises. The main technique is a combination of Shamir Secret Sharing [25]
and the recently proposed Accumulating Automata [12].

Secret sharing is used to utilize perfect privacy of the client’s program and processor states and string
matching is used to facilitate instruction execution. We note that the modern instruction set, for example, CISC
and RISC, originally designed for efficiency and performance [21], are too complicated when there is a need
to hide their nature of operation and the sequence of operations they form. Thus we apply One Instruction Set
Computer (OISC) to our model. By applying secret string matching technique [12], we can simulate the OISC
instruction subtract and branch if less than or equal to zero (Subleq) that is proven complete and for which
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there exists a compiler from high-level programming languages to Subleq [23]. The Accumulating Automata
allows us to perform string matching secretly without revealing any information, which is the key to achieving
the security requirement. As a result, our scheme has the following significant characteristics

• Information theoretic security. Until now, most of the secure RAM evaluation protocols assume that there
exists a one-way function which makes them only computationally secure. We use Shamir secret sharing
which could provide information theoretic security for clients. In our scheme, the user’s program is secret
shared and run on independent machines and clouds. Each cloud only needs to perform computation
without communicating with other clouds. Moreover, note that we use the instruction Subleq proven to
be complete in terms of Turing-complete computation. Thus, our model can execute any RAM programs
privately and securely.

• Program protection. During the whole execution of the program, for every instruction, the processors
have to “touch” all the instructions in the memory. Moreover, for every data access, the processors also
have to access all of the data items. The execution mode and access pattern make the client program
“oblivious” to the clouds, thus ensuring both data and program privacy. Still, the operations can be
delegated by the users to powerful machines in the clouds, which perform these linear access to all items
for executing operations without revealing their nature and sequence.

• Error correcting. Notice that the clients run their programs in E independent machines/clouds. Accord-
ing to the conclusion of Ben-Or et al. [4], as long as less than one-third of clouds are malicious (do not
follow the protocol possibly returning wrong results), the client can detect their actions by reconstructing
the final result using Lagrange interpolation.

The rest of the paper is organized as follows: in Section 2, we briefly introduce the settings used in our
paper. Section 3 describes the basic primitives we use in our construction. Explicit application and its security
analysis are given in Section 4. Finally, conclusions are drawn in Section 5.

2 Preliminary

In this section, we briefly introduce the basic ingredients used in the sequel.
Shamir Secret Sharing. Shamir secret sharing (SSS) is an information theoretic secure protocol, which allows
a dealer to secret share a values s among E players. There is a threshold δ for the scheme, such that, the
knowledge of δ or fewer player secrets make the adversary learn no information about s, but if more than δ
players communicate their shares to each other, they can easily recover the secret.

Distribution: The dealer picks a random polynomial f ∈ Fp[x] of degree δ < E such that f(0) = s ∈ Fp.
The dealer also chooses E arbitrary non-zero indices α1, · · · , αE , computes f(αi) for 1 ≤ i ≤ E and send
(αi, f(αi)) to each corresponding players.

Reconstruction: Any δ+ 1 players can reconstruct the polynomial f by applying Lagrange interpolation to
the tuples (αi, f(αi)). They recover the secret by computing f(0) mod p = s.

Shamir secret sharing is additively homomorphic but is not multiplicatively homomorphic. Namely, if we
want to perform multiplication using Shamir secret shares, a special “degree reduction step” is required. We
will discuss this problem more explicitly in the following section.
Private String Matching. Recently, Dolev et al. proposed a secret string matching algorithm using Accumu-
lating Automata [12]. The algorithm runs on several cloud servers. The strings to be compared are originally
secret shared using Shamir secret sharing scheme and therefore stay unknown to the processing servers. During
the whole algorithm, the participating clouds do not communicate with each other.

Unary representation: The comparison of two strings represented in secret shares is different from the
comparison of strings in a plaintext format, as each of the participants cannot judge the compare result inde-
pendently. The authors of [12] demonstrated their scheme over unary letter representation, where each letter is
represented by a binary number with hamming weight 1. For example, letter a-z are expressed by the binary
strings: a = [100 · · · 00], b = [010 · · · 00], c = [001 · · · 00], · · · , z = [000 · · · 01] with each representation
consists of 26 bits. We use the expression S =

∑r
i=0 ui × vi, to compare two letters, where [u0u1 · · ·ur] and
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[v0v1 · · · vr] are two unary representations. It is clear that whenever the two representations are identical, S is
equal to 1, otherwise S is equal to 0. Assume that each cloud has the secret shares of these two representations,
i.e., (α, fi(α)) and (α, gi(α)), where fi(0) = ui and gi(0) = vi. It can compute the following equation to
identify whether the two letters are identical:

r∑
i=1

(fi(α)× gi(α)). (1)

We have following lemma.

Lemma 1. If the two letters are identical, then the result of Equation (1) is the secret share of 1, otherwise the
result of this equation is a secret share of 0.

Proof. Note that ui, vi are the secret bit and would be either 1 or 0. Let f ′i(α) and g′i(α) denote the evaluation
of f(x) and g(x) at point α without the constant term ui, vi, respectively. We can see

fi(α)× gi(α)
= (f ′i(α) + ui)× (g′i(α) + vi)
= f ′i(α)g′i(α) + uig

′
i(α) + vif

′
i(α) + uivi

= F (α) + uivi,

where F (α) = f ′i(α)g′i(α) +uig
′
i(α) + vif

′
i(α). Therefore, fi(α)× gi(α) can be seen as a secret share of uivi.

It is clear that only when ui = vi = 1, fi(α)× gi(α) is a secret share of 1, and otherwise it is a secret share of
0. Note that the hamming weight of unary representation is only 1, one can directly find the finial summation
is at most 1 which conclude the result.

Based on Lemma 1, it is easy to compare a string using Accumulating Automata, which is a type of finite
automata. Only when the string letters are exactly the same, the last node will be set to 1, otherwise this node
will stay 0. One can reconstruct the values of this node to identify whether the string matching is successful or
not.

Binary representation: The main drawback of unary representation is that it has too many redundant bits.
For example if we want to represent the numbers 1 to 1000, we have to use 1000 bits. An alternative method
is to use binary representation. However, comparing two letters in binary form secretly is similar to string
matching and slightly more complicated.

Assume that there are two letters represented as [u0u1 · · ·ur]2 and [v0v1 · · · vr]2, where ui, vi ∈ {0, 1}. We
compare these letters using the Algorithm 1.

Algorithm 1 Secret comparison of two letters using bi-
nary representation

1: for i = 1 to r do
2: si = [ui − vi]2
3: end for
4: S = 0
5: for i = 1 to r do
6: S = S + si − S × si
7: end for
8: return 1− S . Compatible with unary

As a simple example, we consider two binary
strings [1010]2 and [1101]2. According to previous
description, we perform the following computations:

• Bitwise subtract, [1, 0, 1, 0]− [1, 1, 0, 1] = [1−
1, 0− 1, 1− 0, 0− 1] = [0,−1, 1,−1];

• Bitwise squaring, [02, (−1)2, 12, (−1)2] =
[0, 1, 1, 1];

• Bitwise OR, S = 0|1|1|1 = 1;1

It is easy to check that if the two strings are equal, S
is equal to 0 and otherwise to 1. In this example, the value of S is 1. In order to return the same value as the
unary representation, we prefer to return 1−S rather than S. Note that we only use the subtraction/addition and
multiplication in the above algorithm, similarly to the unary case, these operations can also be implemented
using Shamir secret sharing, in particular representing 1 by secret shares as well. However, compared with
unary representation, it requires either more participants or (more) degree reduction operations.

1One can check that Step 6 in Algorithm 1 is equivalent to the bitwise OR operation.
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One Instruction Computer Set. As we previously mentioned, the classic RISC or CISC command list consists
of hundreds of different instructions. If we employ these instructions using the Shamir Secret sharing, we have
to do extra calculations to identify different instructions which may reveal information on the executed program.
Therefore, single instruction architecture (also called One Instruction Set Computer, OISC) is applied here.

OISC is an abstract machine that uses only one instruction. It is proven that OISC is capable of being a
universal computer in the same manner as traditional computers with multiple instructions [23]. This indicates
that one instruction set computers are very powerful despite the simplicity of the design, and can achieve high
throughput under certain configurations [23].

Since there is only one instruction in the system, it needs no identification to determine which instruction
to execute. Thus, we only need to design the implementation of one instruction. Actually, there are several
options for choosing the OISC instruction, such as subtract and branch if not equal to zero (SBNZ), subtract
and branch if less than or equal to zero (Subleq), add and branch unless positive (Addleq). Among these
instructions, Subleq is the most commonly used. Nowadays, there are Subleq complier and Subleq-based
processor [27] which make Subleq a practical and efficient choice. Therefore, in this paper, we focus on how
to simulate Subleq privately and secretly. Comparing the values of two memory words that are represented
by secret shares, is hard to implement, hence we secret share the words bit by bit, perform the arithmetic over
secret shared bits and then branch according to the sign bit of the result. This leads to a novel scheme for
executing secret shared Subleq (SSS-Subleq) programs. The details are presented in Section 3.

3 SSS-Subleq Programs and their Execution

Since our architecture is built on Subleq, for any client programs written by high-level languages, it needs to
be compiled into Subleq codes at first [27]. Then the client executes the set of Subleqs over the system. In the
following, we will investigate the implementation details of Subleq using Shamir secret sharing.
The SSS-Subleq Format and Architecture Overview. According to the definition of Subleq, it has three
parameters A,B,C where the contents at address B are subtracted from the contents at address A, and the
result is stored at address B, and then, if the result is not greater than 0, the execution jumps to the memory
address C, otherwise it continues to the next instruction in the sequence. The pseudo code of Subleq is as
follows:

Procedure SUBLEQ(A,B,C)
1: Mem[B] = Mem[B]−Mem[A]
2: if Mem[B]≤ 0 then
3: goto C
4: else
5: goto PC + 1
6: end if

Here, the PC (program counter) is a pointer that
indicates the address of next instruction.

Note that the Subleq contains some importan-
t operations: load, store, subtraction and condition-
al branch. Thus, in order to execute Subleq using
Shamir secret sharing, we have to simulate the fol-
lowing operations using secret shares:

• LOAD(H): Load the instruction in address H to the processor.

• JUMP(C): Transfers control to index C, implement the branching operation.

• READ(X): Read the data at address X .

• WRITE(X,Y ): Write the data Y in address X .

Here, please note that the operation goto PC + 1 and goto C can be implemented by the operation JUMP with
different parameters. Among all these operations, a critical problem is how to find the right address secretly.
Fortunately, secret string matching allows us to implement these operations without revealing any information.
According to the description in Section 2, we have two options for string representation, for simplicity, we use
unary representation to represent the addresses including memory addresses and instruction indices where each
bit of the unary representation is encoded as a secret shared value. The format of the SSS-Subleq instruction
has five parts which are shown in Figure 1.
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index A B C PC + 1

Figure 1: Format of SSS-Subleq

The first block stores the instruction index num-
ber which is equivalent to the instruction address, the
second and the third blocks store the operand ad-
dresses and the fourth to fifth blocks store the branch
index C and the index of next instruction, respective-
ly.

Besides the former operations, there is a need to implement the subtraction between two operands and
determine the next instruction address according to the subtraction result. Therefore, we choose to represent
every operand as a signed number. In order to perform subtraction in an easy way, we use two’s complement
representation where subtraction can be transformed into addition. The most significant bit (MSB) is the sign
bit. Analogous with the address, each bit of the operands is secret shared.

1 A1 B1 C1 2

2 A2 B2 C2 3

…
…

i Ai Bi Ci i+1

…
…

m Am Bm Cm 1

Program table

Memory table

PC

A B C PC+1

Read-Write

Read-only: k ≫ n

1 RW-Mem[1]

…
…

n RW-Mem[n]

n+1 R-Mem[1]

n+2 R-Mem[2]

n+3 R-Mem[3]

…
…

n+k R-Mem[k]

word length: t bits

Figure 2: Architecture

The outline of our RAM architecture is presented Fig. 2. In our architecture, we use a modified Harvard
architecture which not only physically separates storage and signal pathways for instructions and data, but also
separates the read-only and read/write part of data. Note that since Shamir secret sharing is not multiplicatively
homomorphic, degree reduction is needed after several multiplications. This special structure allows us to
implement read and write operations in relatively efficient manner. In particular, the degree of the polynomials
used for the read-only part (possibly big-data corpus) is unchanged throughout the execution(s).

The parameters of our architecture are presented in Table 1.

Table 1: The parameters of a program
Parameter Description

m The number of instructions of the user program

n The number of data items that can be accessed for read and write

k The number of data items that can be accessed for read only

t The bit length of the data stored in the memory

Here, we assume that the client program reads a large number of data items compared with the data items
the program writes to, thus we have k � n. In the following, we will show how to simulate the four basic
operations using the Accumulating Automata technique.
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Operation Details. We start describing the implementation of a function called: compare(U, V, r), where U
and V are secret shares of the unary address consisting of r elements. For example, let U = u1, u2, · · · , ur,
V = v1, v2, · · · , vr denote the secret shares of two such parameters, we compute

compare(U, V, r) =
r∑

i=1

(ui × vi) (2)

Analogous to Equation (1), the above expression testifies whether U, V are identical or not. Based on Lemma
1, it is clear that the result of compare(U, V, r) is a secret share of 1 if U = V , and otherwise, if U 6= V , is 0.

Procedure LOAD(H)
1: for i = 1 to m do
2: Numi ← compare(H, ηi,m)
3: S1 ← S1 +Numi ×Ai

4: S2 ← S2 +Numi ×Bi

5: S3 ← S3 +Numi × Ci

6: S4 ← S4 +Numi × (PCi + 1)
7: end for
8: return S1‖S2‖S3‖S4

Now we describe the details of the four opera-
tions:
Description of LOAD: The initial values of Si are
set to 0, and the symbol ‖ means concatenation of all
values from S1 to S4. H represents the secret shares
of the instruction address which we want to load and
ηi represents secret shares of the i-th instruction ad-
dress. Based on Lemma 1, one can check that on-
ly when the two address are identical, the result of
function compare is 1, otherwise 0. Thus, the value
returned is the right instruction we want to load.

Procedure JUMP(C)
1: PC ← C
2: LOAD(PC)

Description of JUMP: The operation JUMP is near-
ly the same as the operation LOAD. If the program
needs to execute the C-th instruction in the program
table, it just assigns the last part of current instruc-
tion to the PC. Then the program will “jump” to the
destination.

Procedure READ(X)
1: for i = 1 to n+ k do
2: Numi ← compare(X, εi, n+ k)
3: S ← S +Numi × θi
4: end for
5: return S

Description of READ: According to Fig. 2, the for-
mat of the memory table consists of two parts: the
address number εi and data θi. Analogous to the cor-
responding analysis for the LOAD operation, we can
easily check that S is the data whose index number is
equal to X .

Procedure WRITE(X,Y )
1: for i = 1 to n do
2: Numi ← compare(X, εi, n+ k)
3: θi ← θi +Numi × (Y − θi)
4: end for

Description of WRITE: The operation implements
writing the data Y in the address X using secret
shares. Note that only when εi equals X , the Numi

is the secret shares of 1, and then the data Y can sub-
stitute the former data item, otherwise the data will
not be changed.
Implementation of SSS-Subleq. Until now, we have
illustrated the necessary operations needed to imple-
ment Subleq, we next investigate the subtraction of operands when they are represented by secret shares.

According to Subleq definition, we have to compare the result of subtraction with zero for conditional
branch. However, it is difficult to compare two numbers directly since all the numbers are secret shared and the
clouds never know the secrets. Here, we use two’s complement to represent the operands and using the sign
bit to simulate the comparison. In two’s complement, the sign bit of positive integer is 0 and negative integer
is 1. Therefore, when implementing SUBLEQ(A,B,C), we can use the sign bit of Mem[B] −Mem[A] to
(blindly) decide whether to branch or not. The only problem is that the integer 0, for which the sign bit in its
representation is also 0, while it should imply branching. This problem can be fixed by a slight modification:
we use the sign bit of Mem[B] −Mem[A] − 1 instead of sign bit of Mem[B] −Mem[A]. One can check
that the new sign bit is 0 if Mem[B] > Mem[A], and 1 if Mem[B] ≤ Mem[A] which satisfies the branch
condition of Subleq. Moreover, we will show that this sign bit can be obtained during the computation of
Mem[B]−Mem[A] in the following paragraphs.
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Two’s complement subtraction. The advantage of using two’s complement is the elimination of examining
the signs of the operands to determine if addition or subtraction is needed. Therefore, to compute subtraction
β − α, it only need to perform following steps:

• Convert α : Invert every bit of α and add one, denoted by ᾱ+ 1.

• Addition: Perform binary addition and discard any overflowing bit, denoted by β + ᾱ+ 1.

Note that we also need the sign bit of β−α−1. As described above, using two’s complement representation,
the subtraction β − α is converted to β + ᾱ+ 1. Similarly, the subtraction β − α− 1 is implemented as

β − α− 1 = β + ᾱ+ 1− 1 = β + ᾱ.

The similarity allows us to implement these two subtractions together.

Algorithm 2 The two’s complement subtraction using Shamir secret sharing
1: procedure SSS-SUB(A,B)
2: Input: A = [at−1at−2 · · · a1a0], B = [bt−1bt−2 · · · b1b0] where ai, bi are secret shares of bits of two’s

complement represented number.
3: Output: R = [rt−1rt−2 · · · r1r0] where R = B −A, and the sign bit of B −A− 1
4: a0 = 1− a0 . Invert of the least significant bit
5: carry[0] = a0 · b0
6: r0 = a0 + b0 − 2 · carry[0] . Addition of the least significant bit
7: for i = 1 to t do
8: ai = 1− ai . invert each bit A→ Ā
9: ri = ai + bi − 2aibi

10: carry[i] = aibi + carry[i− 1] · ri . The carry bit
11: ri = ri + carry[i− 1]− 2 · carry[i− 1] · ri . The result bit
12: end for
13: sign = rt−1 . The sign bit of B −A− 1, used for branch
14: carry[0] = r0 . Add 1 to the result obtain B −A
15: r0 = 1− r0
16: for i = 1 to t do
17: carry[i] = ri · carry[i− 1]
18: ri = ri + carry[i− 1]− 2 · carry[i]
19: end for
20: return (R‖sign)
21: end procedure

The algorithm for two’s complement subtraction using Shamir secret sharing is given in Algorithm 2.
According to the proof of Lemma 1, we know the multiplications and additions/subtractions of the shares cor-
respond to those of the secrets. Thus one can easily check that Algorithm 2 implements the two’s complement
subtraction.

Algorithm 3 The Shamir secret sharing based Subleq
1: procedure SSS-SUBLEQ(A,B,C)
2: R1 ← READ(A)
3: R2 ← READ(B)
4: R‖Num = SSS-SUB(R1, R2)
5: WRITE(B,R)
6: JUMP(Num · C + (1−Num) · (PC + 1))
7: end procedure

Subleq can be implemented with secret shares
by Algorithm 3. In step 6, we can check that if
the value represented by R2 is less than R1, then
Num = 1, PC = C, elseNum = 0, PC = PC+1.
Therefore, the expression of Step 6 implement the
conditional branch of Subleq.
Degree Reduction. The main bottleneck of our
scheme is the multiplication with shares used in the
basic operations, as the Shamir secret sharing is ad-
ditional homomophic but not multiplicatively homomorphic. Note that multiplying two polynomials gives a
polynomial with a degree that is equal to the sum of the degrees of the source polynomials. This implies that
the client has to use more shares to reconstruct the secret after multiplication.
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Algorithm 4 Polynomial degree reduction for secret shares
1: procedure DECREASE(P (x), d, d∗)
2: Let u1, · · · , uE be E participants, D be the randomizer and R be the reducer.
3: Let P (x) ∈ Fp[x] of degree d is the polynomial for secret s.
4: D randomly selects polynomial f(x) of degree d and g(x) of degree d∗, where f(x) and g(x) have the

same constant term.
5: for i = 1 to E do
6: D sends (f(ui), g(ui)) to ui.
7: ui computes P (ui) + f(ui) and sends it to R.
8: end for
9: R interpolates and computes a polynomial Q(x) = P (x) + f(x).

10: for i = 1 to E do
11: R sends to ui the coefficients qj of Q(x) with degree more than d∗.
12: ui computes S = P (ui) + f(ui)−

∑d
j=d∗+1 qju

j − g(ui).
13: return S.
14: end for
15: end procedure

We observe that the READ, JUMP and LOAD increase the polynomial degrees related to each secret shared
bit stored in the registers, the subtraction and WRITE increase the degrees related to the data items stored in
the memory. Therefore, we have to process the degree reduction for these data items at a certain time. In [11],
Dolev et al. proposed a method for reducing the polynomial degree without revealing the original secret. In our
model, we define a reducer that is in charge of reducing the polynomial degrees and a randomizer in charge of
generating random polynomials for all the participants. Note that the codes of the reducer and the randomizer
should be executed independently in order to protect the secret s, but either of them can be executed by the
dealer machine. The polynomial degree reduction algorithm appears in Algorithm 4.2

Different from the original algorithm presented in [11], we use the random polynomials f(x) of degree
d instead of d∗. It is clear that adding f(x) to P (x) can hide all the coefficients of P (x) which prevent the
reducer from obtaining any information about the secret s. We also use another random polynomial g(x) of
degree d∗, where the constant term of f(x) and g(x) are identical. In the end of Algorithm 4, each cloud
subtracts g(ui) from the result which will keep the secret s unchanged (the change in the values of other
coefficients of the polynomial does not influence the secret value). To protect the secrets, for every degree
reduction, the random polynomial f(x), g(x) should be updated. In practical implementation, the dealer (with
no randomizer) can secret share these polynomials to the clouds in advance or let clouds interact with the
randomizer, thus supplies on-line these f(x) and g(x) pairs upon requests and the degree reduction process is
performed with no involvement of the dealer during the execution.

Algorithm 5 The SSS-Subleq plus degree reduction
1: procedure SSS-SUBLEQ-DR(A,B,C)
2: Decrease(A‖B‖C‖PC + 1, 3`, `)
3: R1 ← READ(A)
4: R2 ← READ(B)
5: R‖Num = SSS-SUB(R1, R2)
6: DECREASE(R‖Num, ∗, `)
7: WRITE(B,R)
8: JUMP(Num · C + (1−Num) · (PC + 1))
9: end procedure

In our proposed architecture, the read/write mem-
ory is separated from the read-only memory. This
design is more convenient for degree reduction com-
pared with the classic architecture. Here, we perform
the reduction step before the WRITE and JUMP op-
erations. Compared with the whole memory space,
the read/write registers are very small, thus, the num-
ber of items for which we need to reduce the degree
is relatively small. Assume that both the addresses
and data items are secret shared using the polynomi-
als of the same degree `, plus degree reduction step,
the Subleq can be implemented as in Algorithm 5. In step 6, we use ∗ instead of the exact degree parameter, as
each secret shared bit of R has different polynomial degree.

2The original algorithm is designed for bivariate polynomial, we modified it accordingly.

8



4 Applications

In our model, we assume that a client wants to outsource a program in clouds and the program is compiled
into Subleq-based program. The address is encoded using unary representation and the data item is encoded
using two’s complement representation. The dealer picks random polynomials of degree ` to share every bit of
the address and data. Then the dealer sends the secret shared program to E clouds. The integer E should be
greater than the highest polynomial degree generated during Algorithm 5. Note that the participating clouds do
not communicate with each other and are possibly not aware concerning the number and identity of the other
participants.

Initial stage. The PC of each cloud is initially set by the dealer. The values of the PC are the secret
shares of the first address of the client’s program. In case there is no randomizer in the system, the dealer
can guarantee that each cloud has enough precomputed values of polynomials to be used for degree reductions
during the execution.

Execution stage. In this stage, the clouds have to perform the following works:

• Program Execution: Each cloud executes the secret shared program independently and does not commu-
nicate with other clouds.

• Degree Reduction: Each cloud performs Algorithm 4 to reduce the polynomial degree of the shares which
increased during the Subleq procedure. Furthermore, every cloud may record the communication with
the randomizer and reducer for audit, revealing possible malicious reducers. A possible strategy is to use
several reducers simultaneously. After each cloud received the answers from the reducers, they could
compare these results and notified the client/dealer whether the reducers were malicious or not. Similarly
the actions of the randomizer can be monitored, say by forwarding the values sent by the randomizer to
the reducer, requesting to the reducers to reveal all coefficients, and not use these values, requesting new
values from the randomizer.

Memory refresh. Although we decreased the polynomial degree of the shared secret before write, the
operation WRITE does increase the polynomial degree by ` each time. Thus, the read/write part of memory
needs to be refreshed at intervals (e.g., every ten WRITE operations). Note that this part of memory can be
relatively small compared with the whole memory, so it will not lead to too much bandwidth usage.

Dealer

Cloud 1

Cloud 2

Cloud E

Reducer 

Randomizer 

Figure 3: The outline of Our RAM model

In Fig. 3, we give the outline of the pro-
gram execution. The communication between
the clouds and the dealer, and the communi-
cation between the clouds and the reducer(s)
are all bidirectional. The dealer sends the se-
cret shares of the client program and receives
and reconstructs the program results executed
by clouds. Moreover, we can use more than
one reducer in order to check the integrity of
the results and identify which reducer is mali-
cious.
Storage and Bandwidth. The storage of each
cloud consists of the secret shares of the pro-
gram instructions and the data. Notice that se-
cret share of one bit needs one or multi-word size storage which is denoted by ω(1).

Data table. Each row of the data table consists of the index and data item, it totally requires (n + k)(n +
k + t)ω(1) words storage. As we previously assumed that the size of read-only table is much bigger than that
of the read/write table, i.e., k � n, the storage requires roughly O(k2)ω(1) words.

Instruction table. The cloud stores an instruction table of size m, and each instruction consists of five parts.
This requires O(m) blocks storage with each block requires O(3m+ 2n+ 2k)ω(1) words.

Degree reduction table. According to the corresponding description of Algorithm 4, if a randomizer (or
several randomizers) are used to produce secret shares of random polynomials on-line, no tables are needed.
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Otherwise every cloud needs to store a certain amount of shares which are pre-computed and dispatched by
the dealer. These values could be generated and managed by a special database. The size of this database is
dependent on the execution length of the program.

Bandwidth. For each Subleq, the clouds need to reduce the polynomial degrees of their data twice via
communication with the reducer (and the randomizer). For each degree reduction from d to d∗, every cloud
first obtains two shared evaluations from the randomizer, and then sends the reducer one word and receive
d − d∗ coefficients from it, resulting in a total of approximately O(k + m + t)ω(1) words bandwidth used
per cloud for one Subleq. In addition, the read/write memory needs to be refreshed at interval, it will result in
O(kt)ω(1) words bandwidth usage. Therefore, in the worst case, the bandwidth of each cloud is O(kt)ω(1).
Security Analysis Sketch. We note that during the whole procedure of our model, all of the information are
secret shared in E clouds and no original information will be leaked to the cloud itself. Besides this, our model
has two characteristics:

Security against adversary eavesdropping. For every LOAD operation, we had to compare the values stored
in PC with all the indices in program table. It “touches” every position in the program table. Even through
the adversary could eavesdrop on all the contents of PC, registers, etc., the adversary could not know which
instruction in the table was executed. The same thing also happens in read/write operations. The characteristic
is similar to the schemes that are based on fully homomorphic encryption, but is information-theoretically
secure.

Security against malicious clouds. Informally, a malicious server can corrupt data in storage; and devi-
ate from the prescribed protocol, particularly, not performing execution correctly. However, the program is
outsourced to E clouds. Even if some of them output the wrong answers, the client can compare the results
interpolated from different set of answers and obtain the correct result, or better off, use [30].
Unary vs. Binary. In our scheme, we use the unary representation for the instruction and data addresses.
This type of representation is inappropriate if the clients program is very large because of its redundant bits.
In a secret shared form, we have to use n words to represent these n bit which will lead to many operations
over Fp. As described in Section 2, we can use binary representation as a substitution. Compared with unary
representation, binary representation can express exponentially more numbers with the same number of bits.
However, using binary representation to perform secret string matching is more complicated and will require
more degree reduction operations. In practical implementation, one can choose the representation based on the
consideration of their memory and computation capacity.

5 Conclusions

We discussed a novel model for outsourcing arbitrary computations that provide confidentiality, integrity, and
verifiability. Unlike the former RAM-based secure computation models, our scheme hides the client program
and data all the time and manipulates the secrets directly. Therefore, no confidential information would be
revealed. The setting is particularly interesting in the scope of big data that is stored in secret sharing fashion
over the clouds, and there is a need to repeatedly compute functions over the data without reconstructing the
data from the shares.

An important observation is that the dealer (and reducer(s)) may share common roots of all polynomials,
unknown to the participating clouds, where addition and multiplications keep the roots unchanged. These
unknown roots can serve as additional keys, the number of possible roots grows exponentially with the degree
of the polynomials.

Lastly, implementation of interactive program is possible by reading and writing specific memory locations
during the execution.
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