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Abstract. Re-Encryption randomized partial checking (RPC) mix nets were intro-
duced by Jakobsson, Juels, and Rivest in 2002 and since then have been employed
in prominent modern e-voting systems and in politically binding elections in order
to provide verifiable elections in a simple and efficient way. Being one of or even
the most used mix nets in practice so far, these mix nets are an interesting and
valuable target for rigorous security analysis.
In this paper, we carry out the first formal cryptographic analysis of re-encryption
RPC mix nets. We show that these mix nets, with fixes recently proposed by
Khazaei and Wikström, provide a good level of verifiability, and more precisely,
accountability: cheating mix servers, who try to manipulate the election outcome,
are caught with high probability. Moreover, we show that all attacks that would
break the privacy of voters’ inputs are caught with a probability of at least 1/4.
In many cases, for example, when penalties are severe or reputation can be lost,
adversaries might not be willing to take this risk, and hence, would behave in a
way that avoids this risk. Now, for such a class of “risk-avoiding” adversaries, we
show that re-encryption RPC mix nets provide a good level of privacy, even if only
one mix server is honest.

1 Introduction

Mix nets often play a central role in modern e-voting systems. In such systems, voters’
ballots, which typically include the voters’ choices in an encrypted form, are posted on a
bulletin board. Then, the ballots are shuffled by a mix net, which consists of several mix
servers, before they are decrypted. This is supposed to hide the link between a voter’s
ballot and her (plaintext) choice, and hence, guarantee the voter’s privacy. In the context
of e-voting, besides privacy, it is also crucial that potential manipulations are detected.
That is, if ballots have been dropped or manipulated by a mix server, this should be
detected. This property is called verifiability.

Many schemes have been proposed in the literature to obtain verifiable mix nets
(see, e.g., [22,18,7,24,10,11,23,1]), some have been shown to provide strong security
properties. However, most of these schemes have not been deployed in real elections
so far, with Verificatum [25] being a prominent exception of a provably secure scheme
which has also been used in practice. The mix nets that are among or even the most used
mix nets in practice to date are so-called re-encryption RPC (random partial checking)
mix nets. These mix nets have been implemented in several prominent e-voting systems,
including Civitas [4] and Prêt à Voter [21], and used in politically binding elections.
For example, in a variant of Prêt à Voter, re-encryption RPC mix nets were recently



employed in an election of the Australian state of Victoria [5]. Some systems, such
as Scantegrity [3], which has also been employed in real political elections, have used
a similar technique. Hence, it is important to understand and analyze the security of
re-encryption RPC mix nets.

Re-encryption RPC mix nets were proposed in 2002 by Jakobsson, Juels, and
Rivest [10], as particularly simple and efficient mix nets. Such mix nets consist of
several mix servers, where the mix servers use a public key encryption scheme with
distributed decryption, with ElGamal being a common choice. Roughly speaking, these
mix nets work as follows. The input to a re-encryption RPC mix net is a list of ciphertexts
(e.g., encrypted votes), where each ciphertext is obtained by encrypting a plaintext under
a common public key. Now, the first mix server shuffles the ciphertexts and re-encrypts
them.1 The resulting ciphertexts form the output of this mix server and the input to the
next one, which again shuffles and re-encrypts the ciphertexts, and so on, until the last
mix server has done this. Then, the mix servers together, in a distributed way, decrypt
each ciphertext in the list output by the last mix server. In order to check whether a
mix server cheated, i.e., manipulated/replaced a ciphertext so that it carries a different
plaintext, so-called random partial checking is performed for each mix server. For this
purpose, every mix server is supposed to reveal some partial information (chosen by
auditors) about the input/output relation. Jumping ahead, our results show that this does
not require zero-knowledge proofs.

We note that in the same paper, Jakobsson, Juels, and Rivest also proposed Chaumian
RPC mix nets, where the input ciphertexts are obtained by nested encryption (using
different public keys for each layer of encryption) and every mix server, instead of
performing re-encryption, peels off one layer of encryption. However, to the best of our
knowledge, this construction has not been used in practice so far.

From the design of RPC mix nets it is clear that they do not provide perfect security:
there is some non-negligible probability that cheating goes undetected and some partial
information about the input/output relation is revealed. As already argued by Jakobsson,
Juels, and Rivest, in the context of e-voting the penalties for cheating would be so severe
that being caught with some (even small) probability should deter a mix server from
cheating.

Only very recently, Chaumian RPC mix nets have undergone first formal crypto-
graphic analysis [16], after Khazaei and Wikström discovered attacks on the verifiability
and privacy of Chaumian RPC mix nets and proposed fixes [12].

Despite their use in practice, so far no formal security analysis of re-encryption RPC
mix nets has been carried out. In [12], Khazaei and Wikström pointed out attacks on
re-encryption RPC mix nets as well, one of which generalizes an attack by Pfitzmann
[20], and proposed fixes, but they did not carry out any formal analysis. In particular, it
was left as an open question whether these fixes are sufficient for verifiability. In this
paper, we prove that with the fixes, one obtains a good level of verifiability (see below).
As for privacy, it was clear that the proposed fixes do not prevent the attacks. However,

1 Re-encryption is an operation that can be performed without knowledge of the private key or
the plaintext. Given a ciphertext Encr

pk(m) obtained using the public key pk, the plaintext m,

and the random coins r, re-encryption yields a ciphertext of the form Encr′
pk(m), i.e., one with

different random coins.
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we can observe that in these attacks on privacy malicious mix servers risk to be caught
with significant probability. In this paper, we formally prove that in fact all attacks that
would break privacy will be caught with high probability and that cheating mix servers
can be blamed individually, which should deter them from cheating, e.g., because of
severe penalties they would face. We further prove that if mix servers want to avoid being
caught (we call them risk-avoiding, see below), then re-encryption RPC mix nets provide
a high level of privacy. More precisely, the contributions of this paper are as follows.

Contributions of this paper. We provide the very first formal security analysis of re-
encryption RPC mix nets. As mentioned, RPC mix nets by design can provide only
restricted forms of verifiability and privacy. Therefore, we need security notions that
allow us to measure the level of security re-encryption RPC mix nets provide. For this
purpose, we use a definition of privacy which has been used in the context of e-voting
before (see, e.g., [15]) and which has also been employed for the analysis of Chaumian
RPC mix nets in [16]. This definition focuses on the level of privacy for individual
senders/voters and basically requires that for every pair of messages an adversary should
not be able to tell which of the two messages a sender has sent. As for verifiability,
we study a stronger notion, namely accountability. While verifiability requires merely
that misbehavior should be detectable, accountability, in addition, ensures that specific
misbehaving parties can be blamed. This is crucial in order to deter parties from misbe-
having. Our definition of accountability for re-encryption RPC mix nets follows the one
proposed in [16], which in turn is based on a general, domain independent definition of
accountability proposed in [14].

We show that re-encryption RPC mix nets, with the fixes proposed by Khazaei and
Wikström, enjoy a reasonable level of accountability. Essentially, our accountability
definition requires that the multiset of plaintexts in the input ciphertexts should be the
same as the multiset of plaintexts in the output. We show that, if in the output k or more
plaintexts have been modified (compared to the input), then this remains undetected with
a probability of at most ( 3

4 )
k. Conversely, if manipulation is detected (which happens

with a probability of at least 1− ( 3
4 )

k), then at least one mix server can (rightly) be
blamed for misbehaving.

As for privacy, in this paper we make the following key observation, which is re-
lated to our result of accountability. If an adversary does not follow the protocol in an
essentially semi-honest way, e.g., he does not perform re-encryption of the ciphertexts,
then he will be caught with a probability of at least 1/4. Hence, whenever an adversary
decides to deviate from this semi-honest behavior, he knows that he takes a relatively
high risk of being caught. So, as mentioned, when penalties are severe and/or reputation
can be lost, this risk will in many cases be sufficiently high to deter adversaries from
deviating from this semi-honest behavior. Therefore, a risk-avoiding adversary, that is an
adversary who wants to avoid being caught, but otherwise might be willing to cheat if
this goes unnoticed, must behave semi-honestly. (Conversely, semi-honest adversaries
are clearly also risk-avoiding.) Now, for such adversaries, we show that re-encryption
RPC mix nets provide a reasonable level of privacy, which, in fact, is quite close to the
ideal case, where the adversary only learns the final output of the mix net.

Structure of this paper. In the next section, re-encryption RPC mix nets are explained
in more detail. We also present a formal model of these mix nets. Accountability for
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re-encryption RPC mixnets is analyzed in Section 4, with the definition presented
in Section 3. In Section 5, we introduce and discuss the notions of semi-honest and
risk-avoiding adversaries mentioned above. We then define and analyze privacy for re-
encryption RPC mixnets in Sections 6 and 7. We conclude in Section 8. Full details and
proofs are provided in the appendix.

2 Re-encryption RPC Mix Net

In this section, we first recall the definition of a re-encryption RPC mix net [10] with
improvements suggested in [12] and then provide a formal model of this protocol.

2.1 Description of the Protocol

Cryptographic primitives. The protocol uses a commitment scheme, which we assume
to be computationally binding and perfectly hiding, with Pedersen commitments being
an example [19] (but a computationally binding and computationally hiding scheme
would do as well) and an IND-CPA secure, distributed public-key encryption scheme
S , where a set of parties (in our case the mix servers) independently generate their
public and private key shares and the public key shares are then combined to obtain the
public key. Ciphertexts obtained using this public key can only be decrypted when all the
above parties participate in the decryption process (all private key shares are necessary
for decryption). We assume that given a public key and a ciphertext, it can be decided
efficiently whether the ciphertext in fact belongs to the space of possible ciphertexts (this
typically means that one has to be able to decide whether certain group elements in fact
belong to a given group). As usual for re-encryption mix nets, the encryption scheme
S is also assumed to allow for re-encryption (with the appropriate hiding property, i.e.
semantic security under re-encryption) and the following standard non-interactive proofs,
where for some we require merely the soundness and completeness property, for others
we in addition require the zero-knowledge property (NIZKPs) or also the knowledge
extraction property:
– a NIZKP of knowledge of the private key share (for a given public key share),
– a NIZKP of knowledge of the plaintext (for a given ciphertext and a public key),
– a non-interactive proof of correct re-encryption (such a proof would typically simply

reveal the random coins used for re-encryption),2

– a NIZKP of correct decryption (more precisely, for distributed decryption, one needs
to prove that a given decryption share is correct).

Additionally, for the privacy result, we require that the used distributed encryption
scheme allows for decryption share extractability;3 this is straightforward for example
in the case of ElGamal and, in fact, was used in the privacy proof of the Helios voting

2 Note that here the zero-knowledge property and knowledge extraction are not necessary.
3 This property, roughly, states that, given a plaintext m, its encryption c, and all the private key

shares but one, it is possible to compute all valid decryption shares, including the one for which
the private key share is not given.
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system [2]. Precise security definitions for the used cryptographic primitives are provided
in Appendix A.

Set of participants. The set of participants of the protocol consists of a public, append-
only bulletin board B, n senders S1, . . .Sn, m mix servers M0, . . . ,Mm−1, and some number
of auditors. In the variant we consider here, we follow the most common practice to let
mix servers play also the role of decryption servers. Alternatively, we could consider
separate entities in the role of the decryption servers, which would not change the results
provided in this paper.

The role of the auditors is to provide randomness for the auditing phase. Each auditor
outputs a random bit string (more precisely, he first commits to his random bit string and
later opens the commitment). An honest auditor outputs a bit string chosen uniformly at
random. The bit strings produced by the auditors are combined to one bit string, say by
the XOR operation. So, if at least one auditor is honest, the resulting bit string is chosen
uniformly at random. We will indeed assume, both for verifiability/accountability and
for privacy, that at least one auditor is honest. We note that sometimes heuristics are
implemented by which this assumption can be dropped (see [10]). However, as pointed
out in [12], this may lead to some problems.

Typically, pairs of mix servers are audited. For the sake of presentation, it is therefore
convenient to assume that one mix server performs two mixing steps. We will consider
such mix servers in this paper.

Now, a re-encryption RPC mix net works in the following phases: setup, submit,
input validation, mixing, and auditing, where the auditing may be carried out either
before or after the decryption phase. It turns out that for the results presented in this
paper, it does not matter which variant (with audit before or after decryption) we consider.
Note, however, that in general it might matter; it is the case, for instance, for Chaumian
mix nets [16].

Setup phase. In this phase, every mix server Mi runs the key generation algorithm of
S to generate its private/public key pair (ski, pki). The public key pki is then posted
on the bulletin board along with NIZKP of knowledge of the corresponding private key.
The public keys pk1, . . . , pkm of all the mix servers are then combined to obtain the
encryption key pk to be used by the senders.

Submit phase. In this phase, every (honest) sender Si chooses her input plaintext mi
and encrypts it using the public key pk to obtain her encrypted input. The sender also
produces a NIZKP of knowledge of the plaintext. The ciphertext along with the zero-
knowledge proof is posted by the sender on the bulletin board.

Input validation. It is checked whether the NIZKP of knowledge of the public keys are
checked (otherwise, the protocol is aborted). It is also checked whether the ciphertexts
are valid and whether their NIZKPs of knowledge of plaintexts are; invalid entries are
eliminated (such entries might have been produced by dishonest senders). Moreover,
for every set of entries with the same ciphertext, only one entry in this set is kept (the
remaining ones are dropped). Note that input validation can be performed by any party.

All the ciphertext submitted by the senders and not rejected in the input validation phase
constitute the input C0 to the mixing phase, described below. Let l be the number of
entries in C0.
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Fig. 1. Mixing by M j. Solid bold lines represent audited links and dashed lines represent not
audited links.

Mixing phase. In what follows, we refer by C0[i] to the i-th element of the sequence
C0; similarly for other sequences. As mentioned above, the sequence of ciphertexts C0 is
the input to the first mix server M0 which processes it, as described below, and posts its
output (which, again, is a sequence of ciphertexts) on the bulletin board B. This output
becomes the input to the next mix server M1, and so on. We will denote the input to the
j-th mix server by C2 j and its output by C2 j+2, reserving C2 j+1 for intermediate output
(see Figure 1). Recall that one mix server performs two mixing steps.

The output C2m of the last mix server Mm−1 is the output of the mixing stage. It is
supposed to contain re-encryptions of the input C0 (in random order).

The steps taken by every mix server M j are as follows (see also Figure 1):

1. Validation. M j checks whether its input C2 j contains exactly l entries and, if so,
whether all these entries are valid ciphertexts (recall that we assume that this is
possible). If this is not the case, the server stops without producing any output and
the whole protocol is aborted (except for the judging procedure; see Section 2.2).

2. First mixing. M j uniformly at random chooses a permutation π2 j of {1, . . . , l} and
posts the sequence C2 j+1 of length l on B, where, for every i ∈ {1, . . . , l}, C2 j+1[i] is
the result of the re-encryption of C2 j[π2 j(i)].

3. Second mixing. M j, again, uniformly at random chooses a permutation π2 j+1 of
{1, . . . , l} and posts the sequence C2 j+2 of length l on B, where C2 j+2[i] is the result
of the re-encryption of C2 j+1[π2 j+1(i)]. The sequence C2 j+2 is posted by M j on B.

4. Posting commitments. M j posts two sequences of commitments on B: commitments
to the values π2 j(1), . . . ,π2 j(l) and commitments to the values π−1

2 j+1(1), . . . ,π
−1
2 j+1(l)

(in this order).

Auditing phase. The outputs of the mix servers are (partially) audited in order to detect
potential misbehaviors. As already noted, depending on the protocol variant, this phase
may be performed before or after the decryption phase. In the former case we can further
consider a variant where auditing of every mix server is performed directly after this
server produces its output or a variant where all the mix servers are audited directly
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before the decryption phase. In either case, if auditing is done before decryption and
misbehavior is detected, the decryption phase is not executed. As already noted, our
results do not depend on which variant is chosen.

Independently of which variant is chosen, the steps taken in the audit for every
individual mix server M j are the same. First, using the randomness produced by the
auditors, for an initial empty set I j and for every i ∈ {1, . . . , l} it is randomly decided,
independently of other elements, whether i is added to I j ⊆ {1, . . . , l} or not. Provided
that the random bit strings jointly produced by the auditors are distributed uniformly
at random, the probably that i belongs to I j is 1

2 . Now, for every i ∈ {1, . . . , l} the mix
server M j does the following, depending on whether i belongs to I j or not:

If i ∈ I j, then the mix server M j is supposed to open (by posting appropriate informa-
tion on B) the left link for i, i.e., M j is supposed to open its i-th commitment from its first
sequence of commitments, which should be a commitment on the value π2 j(i). The mix
server also has to post a non-interactive proof of correct re-encryption demonstrating
that indeed C2 j+1[i] is obtained by re-encrypting C2 j[π2 j(i)]. (As mentioned before, this
proof does not have to be zero-knowledge; it could simply reveal the random coins used
to perform the re-encryption.)

If i /∈ I j, then, symmetrically, the mix server is supposed to open the right link
for i, i.e., M j is supposed to open its i-th commitment from its second sequence of
commitments, which should be a commitment on the value π−1

2 j+1(i). As before, the mix
server also has to post a non-interactive proof of correct re-encryption demonstrating
that indeed C2 j+2[π

−1
2 j+1(i)] is obtained by re-encrypting C2 j+1[i].

An observer (or a judge) can now verify correctness of the data output by M j in the
audit phase. Firstly, the observer verifies that commitments are opened correctly. Sec-
ondly, one verifies that the opened indices (both from the first and the second sequence)
do not contain duplicates (if they do, this means that the mix server has not committed to
a permutation, but to some other, non-bijective function). Finally, one verifies the proofs
of correct re-encryption. As pointed out in [12], the second step, which often has been
omitted in implementations and is not mentioned in [10], is crucial for accountability
and privacy.

The auditing described above guarantees that for a message from the sequence
C2 j+1 either the connection to some message from C2 j or to some message from C2 j+2
is revealed, but never both. Otherwise, an observer could follow the path of an input
message to the corresponding output message (see also Figure 1 for an illustration).
Nevertheless, some information about the link between the input and the output is
revealed. For example, in Figure 1 an observer knows that the input values x1,x2 map to
y2,y3 in some way and that x3,x4 map to y1,y4 in some way, and hence, for instance, she
learns that x4 does not map to y2 or y3.
Decryption phase. In this phase, the mix servers jointly decrypt every ciphertext from
the output of the mixing phase (that is from C2m) and provide NIZKP of correct decryp-
tion (see Appendix A for the details of the distributed encryption scheme).

2.2 Modeling Re-encryption RPC Mix Nets

We now provide a formal model of re-encryption RPC mix nets, based on a computational
model with interactive Turing machines. The computational model follows the one used
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in [14,15], which we briefly recall before presenting our model of re-encryption RPC
mix nets and which in turn is based on the IITM model [13,17].

Because, as we have mentioned, it does not matter for the results presented in this
paper if the audit is done before or after decryption, we will focus here on the first variant
(where auditing is carried out directly before the decryption phase).

The Computational Model A process is a set of probabilistic polynomial-time inter-
active Turing machines (ITMs, also called programs), which are connected via named
tapes (also called channels). Two programs with channels of the same name but opposite
directions (input/output) are connected by such channels. A process may have external
input/output channels, those that are not connected internally. In a run of a process, at
any time only one program is active. The active program may send a message to another
program via a channel. This program then become active and after some computation
can send a message to another program, and so on. A process contains a master program,
which is the first program to be activated and which is activated if the active program did
not produce output (and hence, did not activate another program). If the master program
is active but does not produce output, a run stops.

We write a process π as π = p1 ‖ · · · ‖ pl , where p1, . . . , pl are programs. If π1 and
π2 are processes, then π1 ‖ π2 is a process, provided that the processes are connectible:
two processes are connectible if common external channels, i.e., channels with the same
name, have opposite directions (input/output).

A process π where all programs are given the security parameter ` is denoted by
π(`). The processes we consider are such that the length of a run is always polynomially
bounded in `. Clearly, a run is uniquely determined by the random coins used by the
programs in π.

Based on these notions of programs and processes, protocols and instances of proto-
cols are defined as follows.

A protocol P specifies a set of agents (also called parties or protocol participants)
and the channels these agents can communicate over. Moreover, P specifies, for every
agent a, a set Πa of all programs the agent a may run and a program π̂a ∈Πa, the honest
program of a, i.e., the program that a runs if a follows the protocol.

Let P be a protocol with agents a1, . . . ,an. An instance of P is a process of the form
π = (πa1 ‖ . . . ‖ πan) with πai ∈Πai . An agent ai is honest in the instance π, if πai = π̂ai .
A run of P (with security parameter `) is a run of some instance of P (with security
parameter `). An agent ai is honest in a run r, if r is a run of an instance of P with honest
ai.

A property γ of P is a subset of the set of all runs of P. By ¬γ we denote the
complement of γ.

As usual, a function f from the natural numbers to the interval [0,1] is negligible
if, for every c > 0, there exists `0 such that f (`)≤ 1

`c , for all ` > `0. The function f is
overwhelming if the function 1− f is negligible. A function f is λ-bounded if, for every
c> 0 there exists `0 such that f (`)≤ λ+ 1

`c , for all ` > `0.

Re-encryption RPC Mix Nets Modeled as Protocols We model a re-encryption RPC
mix net as a protocol in the sense of Section 2.2. The set of agents of such a protocol is
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as introduced in Section 2.1 plus two additional agents, the judge J and the scheduler
Sch.

The programs of all agents are defined to have channels between each pair of agents.
While not all channels are necessarily used by honest agents, they may be used by
dishonest agents.
Scheduler. The honest program π̂Sch of the scheduler will be the master program. It
triggers all agents in the appropriate order, according to the phases. It is part of every
instance of the protocol and we assume that it is given information about which agents
are honest and which are dishonest in order to schedule the agents in the appropriate
way. In particular, the scheduler can schedule agents in a way advantageous for the
adversary (dishonest agents) so that we obtain stronger security guarantees. For example,
the scheduler first schedules honest senders to post their inputs on the bulletin board and
then schedules dishonest senders. By this, the input of dishonest senders (the adversary)
may depend on the input of honest senders. Also, the scheduler triggers the judge after
each protocol phase, to allow this agent to blame parties in the case of misbehavior. We
also let π̂Sch create common reference strings (CRSs) for all the required NIZK proofs,
by calling the setup algorithms of the non-interactive zero-knowledge proof systems
used in the protocol, and provide them to all parties.
The bulletin board. The honest program of the bulletin board B accepts messages from
all agents. A message received from an agent is stored in a list along with the identifier
of the agent who posted the message. On request, B sends this list to an agent.
Auditors. For simplicity of presentation, we will simply assume one honest auditor
A. The honest program π̂A of A, whenever triggered by the scheduler posts its random
output on the bulletin board, as described in Section 2.1.
Sender. The honest program π̂S of a sender S implements the procedure described
in Section 2.1: when triggered by the scheduler it first randomly picks a plaintext p
according to some fixed probability distribution µ and then encrypts p as described and
posts the resulting ciphertext along with an appropriate NIZKP on the bulletin board.4

The honest program that is executed once p has been chosen is denoted by π̂S(p). As
we will see, µ does not play any role for accountability, in which case we could simply
assume the input to be provided by the adversary; this distribution, however, matters for
our privacy result. It models prior knowledge of the adversary about the distribution of
messages that honest senders send. In reality, in the context of e-voting, the adversary
might not know this distribution precisely (only estimates according to election forecasts,
for example). But assuming that the adversary knows this distribution precisely only
makes the security guarantees that we prove stronger.
Mix server. The honest program π̂M j of a mix server M j implements the procedure
describe in Section 2.1. It is triggered by the scheduler for the different phases (setup,
mixing, auditing, decryption).
Judge. The honest program of the judge π̂J whenever triggered by the scheduler, reads
data from the bulletin board and verifies it as described in Section 2.1. If a mix server Mi
provides wrong output or if it simply declines to output the required data, the judge posts

4 We will always assume that all plaintexts chosen by (honest) senders have the same length. This
assumption is needed in order to prove privacy; it is not needed for accountability.
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a message dis(Mi), asserting that Mi misbehaved, i.e., Mi has not followed the prescribed
protocol. More precisely, M j is blamed in the following cases:

(a) the output produced by M j has a wrong format (i.e. wrong number of entries, missing
commitments or proofs, etc.),

(b) M j has not output proper ciphertexts,
(c) M j does not produce the required openings (which includes checking that the open-

ings that come from one sequence of commitments have different values) or the
proofs provided in the audit phase are invalid (i.e., do not verify),

(d) the proofs provided by M j in the decryption or setup phase are invalid.

Trust assumptions. We assume that the scheduler, the bulletin board, the auditor, and
the judge are honest. Formally, this means that the set Πa of each such agent a consists
of only the honest program π̂a of that agent. All the other agents can (possibly) be
dishonest. For a dishonest agent a, the set of its programs Πa contains all probabilistic
polynomially-bounded programs.

We denote re-encryption RPC mix nets modeled as above with m mix servers and n
senders that use a probability distribution µ to determine their choices by Pmix(n,m,µ).
To study privacy, by P j

mix(n,m,µ) we denote the variant of the protocol, where the j-th
mix server is assumed to be honest (which, again, formally means that the set of all
programs of M j contains its honest program only).

3 Defining Accountability of RPC Mix Nets

As mentioned in the introduction, our definition of accountability for re-encryption RPC
mix nets follows the one proposed in [16], which in turn is based on a general domain
independent definition of accountability proposed in [14]. As demonstrated in [14],
accountability implies verifiability. Therefore, we mostly focus here on accountability,
providing only a short discussion on verifiability.

The (general) definition of accountability of a protocol from [14] is stated with respect
to a property γ of the protocol (recall the definition of a property from Section 2.2), called
the goal, a parameter λ ∈ [0,1], and an agent J of the protocol who is supposed to blame
protocol participants in the case of misbehavior (resulting in the violation of the goal γ).
The agent J, sometimes referred to as a judge, can be a “regular” protocol participant or
an (external) judge. It is worth noting that our results demonstrate that, for re-encryption
RPC mix nets, every party (also external observers) can play the role of the judge, who
needs to examine publicly available information only.

Informally speaking, accountability requires two conditions to be satisfied (see below
for the formal definition):

(i) (fairness) J (almost) never blames protocol participants who are honest, i.e., run
their honest program.

(ii) (completeness) If, in a run, the desired goal γ of the protocol is not met—due to
the misbehavior of one or more protocol participants—, then J should blame those
participants who misbehaved, or at least some of them individually. The probability
that the desired goal is not achieved but J nevertheless does not blame misbehaving
parties should be bounded by λ.
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This general definition of accountability is instantiated in [16] for Chaumian RPC mix
nets, by fixing the specific goal γ and the parties who should be blamed if γ is not
achieved. We now provide a similar instantiation for re-encryption RPC mix nets.

The goal. As far as accountability (also verifiability) is concerned, we expect from an
re-encryption RPC mix net that the output corresponds to the input, i.e., the plaintexts
in the input ciphertexts and the plaintexts in the output of the mix net should be the
same (as multisets). This, however, can be guaranteed only for input coming from honest
senders. Dishonest senders, for example, might provide invalid NIZKPs of knowledge of
the plaintexts, and hence, such input would be dropped during input validation. Below,
we formally describe this goal as a set of runs γ0. Moreover, we generalize this goal by
considering a family of goals γk, for k≥ 0, where γk is achieved if the output corresponds
to the input up to k changed entries. In other words, for the goal γk we tolerate up to k
changes. This is useful for the study of re-encryption RPC mix nets because, due to the
nature of random partial checking, changing a small number of entries can go unnoticed
with some probability. However, this probability should decrease very quickly with an
increasing number k of manipulated entries.

To formally specify the goal γk, we consider a run r of an instance π of Pmix(n,m,µ)
(with n senders). Let s1, . . . ,sl (for l ≤ n) be those senders that are honest in r, x =
x1, . . . ,xl be the plaintext input of these senders in r, and y = y1, . . . ,yp (with p≤ n) be
the output of the mix net in r (if any), i.e., the sequence of plaintexts output by the mix
net after the decryption phase. We define r to belong to γk (in other words, γk is achieved
in r), if there exists a subsequence x′ of the honest inputs x of size l− k such that x′,
treated as a multiset, is contained in y (again, treated as a multiset), i.e., for each element
a of x′, the number of a’s in x′ is less than or equal to the number of a’s in y. Hence, we
require the output to contain l− k elements from the honest input, while the remaining
plaintexts, up to n− (l− k), can be provided by the adversary. If in r no final output
was produced (because, for example, the process was stopped as a mix server refused to
produce output), then r does not belong to γk, i.e., r does not achieve γk.5

Parties to be blamed. We require that if the goal γk is not achieved, then the judge
should blame at least one mix server, i.e., post dis(Mi) for at least one i. By the fairness
property for accountability, it follows that at least this mix server definitely misbehaved.
By this, every mix server risks to be blamed in the case it misbehaves, i.e., does not follow
the prescribed protocol. Note that we do not require the judge to blame all misbehaving
servers. This requirement would be too strong, because not all kinds of misbehavior
(i.e., deviations from the prescribed protocol) can be detected by the judge. However,
the above guarantees that at least one mix server is (rightly) blamed in the case that γk
is not achieved. The above requirement also implies that a sender cannot break the goal
γk: if γk is not achieved, this must be due to a misbehaving mix server. This is important
for the robustness of the mix net: otherwise, dishonest senders could spoil the mixing
process.

5 Our proof of accountability shows that accountability holds true even for a slightly stronger
goal, which says that all (but k) entries that made it through the input validation phase, have to
make it to the output of the mix net. One can observe, using the cryptographic properties of the
primitives, that honest entries will (except with negligible probability) always make it through
the input validation. For Chaumian RPC mix nets this stronger goal cannot be achieved.

11



In the following formal definition of accountability for mix nets, we say that, if the
judge posts dis(a), for some agent a, then the judge stated the verdict dis(a). Moreover,
given an instance π of a protocol P, we say that a verdict dis(a) is true in π if and only
if a is not honest in π (in the sense of Section 2.2). We write Pr[π(`) 7→ J : dis(a)] to
denote the probability that in a run of π(`) the judge J states the verdict dis(a). We write
Pr[π(`) 7→ ¬γk ∧¬(J : dis(Mi) for some i)] to denote the probability that in a run of π(`)

the goal γk is not satisfied, i.e., the run does not belong to γk, and nevertheless J does
not state a verdict dis(Mi) for any i. Both probabilities are taken over the runs of π(`), i.e.,
the random coins used by the agents in π.

Definition 1. (Accountability for RPC mix nets) Let P=Pmix(n,m,µ) be a re-encryption
RPC mix net protocol with an agent J (the judge), λ ∈ [0,1], and k ≥ 0. We say that P
provides λ-accountability with tolerance k (and w.r.t. J), if the following two conditions
are satisfied.

(i) (Fairness) For all instances π of P and all verdicts dis(a) which are not true in π,
the probability Pr[π(`) 7→ J : dis(a)] is a negligible function in `.

(ii) (Completeness) For every instance π of P, the probability Pr[π(`) 7→ ¬γk ∧¬(J :
dis(Mi) for some i)] is a λ-bounded function in `.

The above definition requires that the judge never (more precisely, only with negligible
probability) blames mix servers that behave honestly, i.e., run their honest program. It
also requires that the probability that the goal γk is not satisfied, and hence, more than
k inputs of honest senders have been manipulated or no output was produced by the
mix net, but the judge nevertheless does not blame any single mix server, is bounded
by λ. We will see that for re-encryption RPC mix nets (the optimal/minimal) λ will be
bigger than 0. This is unavoidable because of the nature of random partial checking,
some misbehavior might go unnoticed with some non-negligible probability. One of the
important contributions of this work is to determine the optimal λ, and hence, precisely
measure the level of accountability re-encryption RPC mix nets provide.
Verifiability. Accountability and verifiability are tightly related as shown in [14]. Ac-
countability is a stronger property than verifiability and subsumes it. While for verifia-
bility one only requires protocol participants to be able to see whether something went
wrong or not, accountability additionally demands that, if something went wrong, it
is possible to blame specific misbehaving parties. Accountability therefore provides a
strong incentive for parties (mix servers in our case) to carry out correct computations,
which is of high practical importance. This cannot be said for verifiability alone. Ac-
countability, as we will see, is a fundamental requirement that justifies the notion of
risk-avoiding adversaries (see Section 5).

4 Analysis of Accountability of Re-encryption RPC Mix Nets

In this section, we provide formal results for the level of accountability (and hence,
verifiability) re-encryption RPC mix nets provide. This is the first rigorous analysis of
accountability/verifiability for re-encryption RPC mix nets in the literature. Our results
show that level of accountability these mix nets have is reasonably high and provides a
strong deterrent for potentially malicious mix servers.
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We start, in Section 4.1, with a description of some attacks on the accountabil-
ity/verifiability of re-encryption RPC mix nets. We then present our formal results, which
show that these mix nets have a good level of accountability/verifiability. In particular,
they show that there are no worse attacks than those described in Section 4.1.

4.1 Attacks

C2 j C2 j+1 C2 j+2

Fig. 2. Example attack on account-
ability.

The most obvious way in which a mix server can
cheat is when it replaces an input ciphertext by an
arbitrary other ciphertext, without actually performing
re-encryption, and hence, possibly without preserving
the plaintext. This kind of cheating is (not) detected
with probability 1

2 , and if the mix server cheats in this
way for k+ 1 input ciphertexts of honest senders at
the same time (and hence, violates γk), its probability
of not being caught is ( 1

2 )
k+1.

There are, however, more subtle ways of cheating
which result in dishonest mix servers being caught
less likely (see [12]). For example, in the attack illus-
trated in Figure 2 a dishonest mix server M j, for two
positions p and q in its intermediate sequence C2 j+1
of ciphertexts, sets both C2 j+1[p] and C2 j+1[q] to be
re-encryptions of the same entry C2 j[π2 j(p)] (an hon-
est M j would set C2 j+1[q] to be a re-encryption of C2 j[π2 j(q)]). Moreover, in its first
sequence of commitments, both at positions p and q it commits to the value π2 j(p) (an
honest M j would at position q commit to π2 j(q)). As a result of this manipulation, one
of the entries from C2 j is dropped (the black node in the example) and substituted by
another one (the gray entry).

This attack can be detected only with probability 1
4 , because detection requires that

both p and q are audited to the left (both p and q belong to I j). Furthermore, one mix
server can apply this attack for multiple pairs of positions and it can also be performed
by many mix servers in order to manipulate/replace many honest input ciphertexts.
Performing the attack on k+ 1 different pairs of ciphertexts (by the same mix server
or different mix servers) results in the violation of γk and this remains undetected with
probability

( 3
4

)k+1
.

4.2 Formal Analysis of Accountability

We now state and prove the precise level of accountability/verifiability re-encryption
RPC mix nets have. While from the above it is clear that the probability of more than
k manipulations of honest entries (violation of γk) going unnoticed may be as high as
( 3

4 )
k+1, we prove that this probability is not higher, and hence, there are no worse attacks.

Security assumptions. Recall from Section 2.2 that we assume that the scheduler, the
judge, the auditor, and the bulletin board are honest. However, none of the mix servers
nor the senders are assumed to be honest. The assumptions about the primitives used in a
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re-encryption RPC mix nets have already been summarized in Section 2.1. However, for
accountability, weaker assumptions are sufficient. It suffices if the commitment scheme is
computationally binding. The distributed public-key encryption does not have to be IND-
CPA secure, but has to guarantee that encrypting the same message twice yields different
ciphertexts with overwhelming probability (this is implied by IND-CPA security). The
non-interactive proofs do not have to be zero-knowledge. (Of course, privacy will require
stronger properties, in fact the ones stated in Section 2.1.)

Now, the following theorem holds true for re-encryption RPC mix nets as modeled in
Section 2.2, independently of whether auditing is done before and after decryption.

Theorem 1. Let P= Pmix(n,m,µ) be a re-encryption RPC mix net. Then, under the above
security assumptions, P provides λk-accountability with tolerance k, where λk =

( 3
4

)k+1
;

P does not provide λ-accountability for any λ < λk, i.e., λk is optimal.

This theorem implies that even if all mix servers are dishonest, the probability that more
than k inputs of honest voters have been manipulated, but the judge nevertheless does
not blame any mix server, is bounded by

( 3
4

)k+1
. For example, the probability that more

than 10 manipulations go undetected is less than 4.5%. Moreover, if manipulation is
detected, at least one mix server is blamed (and rightly so) for its misbehavior.

The proof of Theorem 1 follows a similar line of reasoning as the one for Chaumian
RPC mix nets [16]. However, due to the different structures and cryptographic primitives
used, the proofs of course differ in the details. Below we provide a sketch of the proof of
Theorem 1; a complete proof can be found in Appendix B.

Proof (Proof sketch). Proving fairness (the first condition of the definition of account-
ability which in this context means that a mix server that runs the honest program is
never blamed), is straightforward. Also, as we have already explained, the strategy of the
adversary that drops exactly k+1 honest entries as described above breaks the goal γk.
The probability that using this strategy the adversary successfully removes k+1 honest
entries without this fact being noticed is λk. This shows that the constant in the theorem
is optimal.

The main part of the proof is to show that no other strategy of the adversary is better
than the aforementioned strategy. To this end, we first define the set (event) G of, so
called, good runs of the system. Intuitively, G contains those runs where cryptography
is not broken: no non-interactive proof of a false statement is accepted by the judge
(soundness property of proofs) and no commitment is opened in more than one way
(computational binding property of commitment schemes); the latter property, at first,
does not seem to be a property of just one run, but by rewinding the adversary we can
look at various behaviors of the adversary when mix servers are challenged in different
ways during the audit. In fact, even for the non-interactive proofs different challenges
are taken into account. Based on the assumptions for the cryptographic primitives, it is
not hard to see that the set G has overwhelming probability. Hence, in what follows, it
suffices to restrict our attention to runs in G only.

Before we proceed, we introduce the following notation. Recall that a run r is
determined by the random coins the dishonest parties (the adversary) and the honest
parties use. Let ω denote the random coins used in r and let ω j denote the random coins
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a

b

b′

c

c′

C2 j C2 j+1 C2 j+2
Fig. 3. An example configuration induces by ω j. Dashed red lines
represent unsafe links, while solid black lines represent safe links.
Note that a safe (black) link indicates the correct re-encryption rela-
tion. Thus, for instance, a, b, b′, c, and c′ must be all encryptions of
the same plaintext. Assuming that all the entries in the left column
are honest, the right column might contain only two distinct honest
entries. In this case, the mix server is nevertheless not blamed if no
red link is audited and, moreover, if the two links pointing to a are
not audited at the same time.

used in r, except for those used to audit the j-th mix server (these coins determine which
links M j has to open when M j is audited). Alternatively, ω j can be seen as the event
containing all those ω′ that coincide with ω, except for the coins used to audit M j. We
show that if ω j ∩G 6= /0, then ω j ⊆ G. (This follows quite easily by the definition of G.)

We show that the proof of the theorem boils down to proving the following statement,
for all ω j ⊆ G: Under the condition that runs are in ω j, the probability p j,k j that the j-th
mix server drops k j honest entries (i.e., the number of honest entries in its output is by k j
smaller than the number of such entries in its input) and this mix server is nevertheless
not blamed by the judge is not bigger than

( 3
4

)k j .
The key observations for proving the above statement are the following. First, because

the considered runs (that is runs in ω j) are good, the commitments produced by M j
determine functions π2 j and π2 j+1 (the commitments are consistently opened to the
values of these functions, which do not have to be permutations, though, as the adversary
might not have committed to permutations). This determines some fixed links between
the ciphertexts of C2 j (the input to M j) and C2 j+1 as well as some fixed links between the
ciphertexts of C2 j+1 and C2 j+2 (the output of M j). Second, if such a link is not correct
(the two ciphertext are not re-encryptions of each other), and this link is audited, then M j
is blamed by the judge (as for runs in G, M j does not produce a proof of a false statement
that nevertheless is accepted by the judge). We call such links unsafe.

By the above observations, every ω j (more specifically the output of M j in ω j before
the audit) determines a unique configuration, like, for example, the one presented in
Figure 5. Now, the evaluation of the probability p j,k j is purely a matter of combinatorial,
but still non-trivial reasoning, as the probability space is just the space of possible audit
challenges for M j. This mainly requires to calculate the probability of the adversary being
(not) blamed in the audit, which depends on whether or not unsafe links or collisions (i.e.,
links pointing to the same entry) are discovered (see also the explanation in Figure 5,
which illustrates the reasoning for the concrete example). ut

5 Privacy and Risk-avoiding Adversaries

As observed in [12], and partly already in [20], in the general case, that is, for arbitrary
probabilistic polynomial-time adversaries, there are attacks on the privacy of votes for
re-encryption RPC mix nets, which allow the adversary to see how one or more voters
voted. These attacks use homomorphic properties of the encryption scheme and generate
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collisions (links that point to the same entry) as illustrated in Figure 2. In all these attacks,
the adversary, however, risks to be caught cheating with a probability of at least 1/4.
As mentioned before, this risk of being caught should deter mix servers from dishonest
behavior in many real-life applications (elections), as mix servers that are caught cheating
would face severe penalties and, maybe just as deterrent, lose reputation.

As already mentioned in the introduction, this motivates us to study the class of
“risk-avoiding” adversaries. In this section, we formally define and discuss this class.
We also prove that risk-avoiding adversaries are tightly connected with semi-honest
adversaries, which we also formally introduce in the context of re-encryption RPC mix
nets. In Section 7, we then prove that re-encryption RPC mix nets provide a reasonable
level of privacy for risk-avoiding adversaries.

One key observation is that if an adversary does not follow the protocol in an (es-
sentially) semi-honest way, then he will always be caught with a probability of at least
1/4. We now first formalize what we mean by semi-honest behavior in our context and
show that it is always risky in a run to deviate from this behavior. We later show that
risk-avoiding adversaries are forced to behave in a semi-honest way.

Semi-honest behavior. In a nutshell, semi-honest behavior is a behavior which does
not deviate from the protocol in important aspects.

Let π be an instance of the protocol Pmix(n,m,µ). Let us recall that an instance
is a combination of programs of all parties, including potentially dishonest ones (the
adversary). Let r be a run of π.

Now, we say that the j-th mix server behaves semi-honestly in the run r, if this mix
server produces correct output in the setup phase, the mixing phase, and the decryption
phase, that is:

(a) M j outputs its public key share along with a valid NIZK proof of knowledge of
the private key shere, where “valid proof” (here and below) means that the proof is
accepted by the judge in r.

(b) If M j obtains a valid input C2 j (consisting of valid ciphertexts), then M j outputs
C2 j+1 and C2 j+2 such that the sequences C2 j, C2 j+1, and C2 j+2 all have the same
length l. Moreover, M j outputs two sequences of commitments to l values each.
If M j is audited M j provides valid non-interactive proofs of correct re-encryption
and provides valid openings to the commitments that need to be opened without
collisions. In other words, in the mixing phase in run r, M j produces output that the
judge approves.

(c) If M j obtains a valid input sequence C2 j of length l (consisting of valid ciphertexts),
then M j outputs C2 j+1 and C2 j+2 such that there exist permutations π2 j and π2 j+1
on the set {1, . . . , l} such that C2 j+1[i] is a re-encryption of C2 j[π2 j(i)] and C2 j+2[i]
is a re-encryption of C2 j+1[π2 j+1(i)].

(d) In the decryption phase, for every ciphertext m to be decrypted, M j outputs a de-
cryption share h for this ciphertext and the (common) public key, along with a valid
NIZKP of correctness of the decryption share.

We say that an adversary behaves semi-honestly in a run, if every dishonest mix server
(which is controlled by the adversary) behaves semi-honestly in this run; honest mix
servers obviously behave semi-honestly.
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Intuitively, semi-honest behavior means (i) that a mix servers provides output in such
a way that it is approved by the judge (Conditions (a), (b), and (d)). By the assumptions
on the cryptographic primitives (see Section 2.1), this will imply that in an overwhelming
set of runs the statements provided by the mix server are in fact true and knowledge can
in fact be extracted from the mix server. Most importantly, (ii) that means the mix server
in fact shuffles and re-encrypts the input ciphertexts (Condition (c)).

Now, the following lemma shows that under any circumstances not being semi-honest
is always risky. Let B j denote the event that M j is blamed by the judge and let ω and ω j
be like in the proof of Theorem 1.

Lemma 1. For all ω (and hence, for all runs), such that M j violates Conditions (a), (b),
or (d) in the run determined by ω, we have that

Pr [B j | ω] = 1. (1)

Furthermore, for all ω, except for negligibly many, such that M j violates Condition (c) in
the run determined by ω, we have that

Pr [B j | ω j]≥
1
4
. (2)

Proof. The first statement of the lemma, by the judgment procedure, is trivial, so we will
focus on the second one. We prove it using very similar reasoning as the one used in the
proof of using Theorem 1 (see Section 4.2).

We proceed by showing that (2) holds true for all ω ∈G such that, in the run induced
by ω, M j violates condition (c) of semi-honest runs, where G is the set of good runs
defined in the proof of Theorem 1. Recall that this set has an overwhelming probability.
For each such ω, we can follow the reasoning of the proof of Theorem 1 to conclude that
ω j induces a configuration such as the one presented in Figure 5.

Now, because we have assumed that M j violates condition (2), one can quite easily
conclude that there must be some unsafe links or some collisions in this configuration
(see for the definitions of unsafe links and collisions in the proof Theorem 1). But this
is caught with a probability of at least 1/4: an unsafe link is detected with a probability
of 1/2 (this is the probability that such a link is audited, i.e., asked to be opened) and a
collision is detected with a probability of at least 1/4 (this is the probability that at list
two of the links pointing to the same entry are asked to be opened). ut

The interpretation of Lemma 1 is as follows: in (almost) any run if the adversary M j
decided to not shuffle and re-encrypt the ciphertexts in the expected way in this run,
then (he knows that) in the audit phase he will be caught with a probability of at least
1/4. In other words, in no such run there is a way for M j to outsmart the system by not
performing the expected task (namely shuffling and re-encrypting the input) but getting
caught with only small (< 1/4) probability.

Therefore, if for an adversary (dishonest mix servers) the risk of being caught, and
hence, the risk of facing severe penalties and loss of reputation, is too high, such a
“risk avoiding” adversary would behave semi-honestly, i.e., would not deviate from the
behavior described in (a) to (d). Of course, a mix server could flip a coin in order to
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decide whether to behave semi-honestly or not in certain stages of the run. This would
bring the overall risk of being caught down, but only in a very artificial way. Indeed, for
an adversary that decided not to take the (high) risk of being caught in the first place,
such a behavior appears very unreasonable. If the coin flip made him behave in a non
semi-honest way, he knows that he then will be caught with high probability, a risk the
adversary wanted to avoid. Hence, it seems reasonable to assume that an adversary for
whom the risk of being caught once it deviates from semi-honest behavior is too high
(and this risk is always at least 1/4), should never decide to deviate from the semi-honest
behavior. Thus, it is reasonable to expect that such an adversary behaves semi-honestly
with overwhelming probability. We will now see that this class of adversaries coincides
with the class of risk-avoiding adversaries.
Risk-avoiding adversaries. Risk-avoiding adversaries are adversaries that behave in
such a way that the probably of their being caught is negligible. This class of adversaries
was introduced in [16]. We now first recall this definition and then link this notion to
semi-honest behavior. (This was not done in [16], but is crucial for our reasoning and
result.)

Let π be an instance of Pmix(n,m,µ). We say that the adversary in π (who subsumes all
dishonest parties in π) is risk-avoiding in this instance, if the probability that π produces
a run where the judge states a verdict dis(a) for some dishonest party a is negligible as a
function in the security parameter `.

Note that, in general, risk-avoiding adversaries do not need to behave semi-honestly:
if in a protocol misbehavior goes unnoticed (because there are no, or insufficient, detec-
tion mechanisms), then an adversary can freely depart from the protocol and still never
get blamed. In our case, however, by Lemma 1, risk-avoiding adversaries are forced to
behave semi-honestly:

Lemma 2. Let π be an instance of Pmix(n,m,µ). Then, the adversary in π is risk-avoiding
if and only if he behaves semi-honestly with overwhelming probability.

Proof. Lemma 1 implies that a risk-avoiding adversary must behave semi-honestly with
overwhelming probability. Otherwise, if the adversary does not behave semi-honestly
with non-negligible probability p, he will be caught (according to the judging procedure)
with probability at least p/4 (up to some negligible factor). Conversely, it is easy to
see that if in a run the adversary behaves semi-honestly, then in this run he will not be
blamed by the judge. ut

In the proof of the privacy result (see Section 7), we will also use the following,
technical result which takes the statement of Lemma 2 one step further: while Lemma 2
guarantees that a risk-avoiding adversary is semi-honest, and hence, shuffles and re-
encrypts in every mixing step, the following result states in addition that, when such a
system is simulated, suitable permutations can be extracted, by means of rewinding, by
the simulator.

Lemma 3. Let π be an instance of Pmix(n,m,µ) such that the adversary in π is risk-
avoiding. There exists a simulator T which faithfully6 simulates π and additionally

6 i.e., the simulated runs of π are exactly the same as the runs of the original system π; note that
the adversary (who subsumes all dishonest parties in π) is simulated in a black-box manner,
while the honest parties in π are explicitly given.
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outputs (on some distinct tape) permutations π′0, . . .π
′
2m such that in an overwhelming

set of runs, for each mix server M j, the permutations π′2 j,π
′
2 j+1 satisfy Condition (c)

of semi-honest runs, by which we mean that the properties stated for π2 j and π2 j+1 in
Condition (c) are satisfied for π′2 j and π′2 j+1, respectively.

Proof. The simulator T simulates honest parties, and in particular, honest mix servers
directly itself, and hence, T just knows their permutations. We now show how T extracts
permutations from the dishonest mix server M j in such a way that, for an overwhelming
set of runs, Condition (c) of semi-honest runs is satisfied for M j with these permutations.
The same method can be applied independently to all dishonest mix servers.

The simulator is defined in such a way that it faithfully simulates the system, and
performs additional steps explicitly described below, to extract the permutations for M j.
That means, in particular, that the simulator keeps complete (simulated) state of the
sytem it simulates and the simulated runs, when restricted to this simulated state, strictly
correspond to the runs of the original system.

For a sequence of random coins ω, we define by ω̄ j the sequence of random coins
that coincide with ω, except for the random coins used by auditors to challenge M j. These
random coins are complementary in ω̄ j in that, whenever in ω the j-th mix server is
requested to open the i-th index to the left, then in ω̄ j the j-th mix server is requested to
open this index to the right, and vice versa. Note that ω̄ j is in ω j (as is ω).

Let us consider a simulated run for some ω ∈ ω j ⊆ G, where G are defined just as in
Lemma 1 (Theorem 1). The set of such ω’s has an overwhelming probability, as stated in
the proof of Theorem 1. Further, let us consider only those ω for which ω j induces a good
configuration—i.e. a configuration without unsafe links and collisions—and, moreover,
where M j correctly opens commitments and provides valid proofs for all audited links,
both in ω and ω̄ j. This is still an overwhelming set of runs. Indeed, the probability that
a run induces a bad configuration must be negligible for a risk-avoiding adversary (if
the set of such runs had some non-negligible probability p, then the mix server would
be blamed with a probability of at least p/4). Similarly, the probability that either ω
or ω̄ j does not correctly open a commitment or does not provide a valid proof must be
negligible as well (if the set of such ω has probability q, then the mix server is blamed
with probability at least q/2).

For all ω as above (and hence, for all ω except for some negligible set), the extraction
procedure detailed below is well defined. This procudere allows the simulator to extract
the configuration for M j induced by the run (i.e., all links of this configuration). Since
for the considered runs, the configurations are good, it follows that extracted links form
permutations (no collisions). Also, the ciphertexts connected by a link are re-encryptions
of each other (links are safe). Hence, Condition (c) of semi-honest runs is satisfied for
M j with for these extracted permutations, which completes the proof.

It remains to specify the extraction procedure. The additional steps carried out by the
simulator are as follows. In the run determined by some ω as above, T halts the simulation
when M j is given an audit challenge and provides an answer (at this point the simulator
gets to know one half the links of the configuration). Then the simulator rewinds the
simulation to the point just before the audit and challenges the mix server with the
complementary challenge from ω̄ j. In this way, the simulator obtains full knowledge of
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the configuration (that is, all the links). The simulator then rewinds the simulation again
to the point where it has been halted and resumes the simulation. ut

6 Definition of Privacy for RPC Mix Nets

As already mentioned in the introduction, we use a definition of privacy which has been
used in the context of e-voting before (see, e.g., [15]) and which has also been employed
for the analysis of Chaumian RPC mix nets in [16].

As opposed to (very strong) simulation-based definitions, see, for instance, [11] and
a related game-based definition in [2], the above mentioned definition allows one to
measure the level of privacy a protocol provides. The ability to measure the level of
privacy is absolutely essential in the context of RPC mix nets, because such protocols do
not achieve perfect privacy: it is in the very nature of these protocols that the adversary
can learn some information from a protocol run. Therefore, it is essential to be able to
precisely tell how much he can actually learn. (See also [16] for more discussion on this
topic).

More specifically, in the context of e-voting, the privacy definition we adopt formal-
izes the inability of an observer to distinguish whether some voter v (called the voter
under observation) voted for candidate j or candidate j′, when running her honest voting
program (as specified by the voting protocol). Analogously, here we formalize privacy
for RPC mix nets as the inability of an adversary to distinguish whether some sender
under observation submitted plaintexts p or p′, when running her honest program.

As already mentioned in Section 2.2, for studying privacy, we consider the protocol
P j

mix(n,m,µ), where the j-th mix server is assumed to be honest, all other mix servers may
be dishonest. Among the n senders, we consider one sender s to be under observation.
(The task of the adversary is to figure out whether this sender sent plaintext p or p′.)

Now, given a sender s and a plaintext p, the protocol P j
mix(n,m,µ) induces a set of

instances of the form (π̂s(p) ‖ π∗) where π̂s(p) is the honest program of the sender s
under observation that takes p as its unencrypted input (as defined in Section 2.2) and
π∗ is the composition of programs of the remaining parties (scheduler, auditor, judge,
senders, mix servers), one program π ∈ Πa for each party a. Recall that according
to the definition of P j

mix(n,m,µ), if a is the scheduler, the auditor, the judge, or the
j-th mix server, then Πa contains only the honest program of that party, as they are
assumed to be honest. All other parties are potentially dishonest and may run arbitrary
(adversarial) probabilistic polynomial-time programs. Since these adversaries might not
try to avoid accusations by the judge, this most general class of adversaries has been
called venturesome in [16]. The attacks by Khazaei and Wikström demonstrate that for
venturesome adversaries privacy of re-encryption RPC mix nets cannot be guaranteed.
In order to define privacy w.r.t. risk-avoiding adversaries, we simply restrict the set of
programs π∗ to those that are risk-avoiding (see Section 5). In a system (π̂s(p) ‖ π∗)
with a sender s under observation, π∗ is required to be risk avoiding for all choices of
the plaintexts p in the considered space of plaintexts.

Privacy for re-encryption RPC mix nets (w.r.t. venturesome or risk-avoiding adver-
saries) is now defined as follows, where we use the following notation: Pr[(π̂s(p) ‖
π∗)(`) 7→ 1] denotes the probability that the adversary (i.e., some dishonest agent) writes
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the output 1 on some dedicated channel in a run of π̂s(p) ‖ π∗ with security parameter
` and some plaintext p. The probability is over the random coins used by the agents in
π̂s(p) ‖ π∗.

Definition 2. For P j
mix(n,m,µ) as before let s be the sender under observation, l <

n−1, and δ ∈ [0,1]. We say that P j
mix(n,m,µ) with l honest senders achieves δ-privacy

(w.r.t. risk-avoiding adversaries), if

Pr[(π̂s(p) ‖ π∗)(`) 7→ 1]−Pr[(π̂s(p′) ‖ π∗)(`) 7→ 1] (3)

is δ-bounded as a function of the security parameter `, for all valid input plaintexts7

p, p′ and all (risk-avoiding) programs π∗ of the remaining parties such that (at least) l
senders are honest in π∗.

Since δ typically depends on the number l of honest senders, privacy is formulated
w.r.t. this number. Note that a smaller δ means a higher level of privacy. However, δ
cannot be 0, not even in an ideal protocol, as detailed in the following subsection: there
is, for example, a non-negligible chance that all honest senders sent the same message.
In this case, the adversary knows the message sender s has sent, and hence, can easily
distinguish between s having sent p or p′.

Privacy for the Ideal Mix Net Protocol. Before, we provide the analysis of the level
of privacy provided by re-encrypted RPC mix nets, we first recall results for the ideal
ideal mix net from [16], where the optimal δid

l,µ is determined in this case. The level of
privacy for re-encryption RPC mix nets can be expressed in terms of this value.

In the ideal mix net, the senders submit their input plaintexts on a direct channel to
the ideal mix net. The ideal mix net then outputs the submitted messages after having
applied a random permutation. Honest senders choose their inputs according to the
distribution µ.

The level of privacy provided by the ideal mix net depends on the number l of honest
senders and the probability distribution µ on valid input plaintexts.

To define δid
l,µ, we need the following terminology. Let {p1, . . . , pk} be the set of valid

plaintexts. Since the adversary knows the input plaintexts of the dishonest senders, he
can simply filter out these plaintexts from the final output and obtain the so-called pure
output r = (r1, . . . ,rk) of the protocol, where ri, i ∈ {1, . . . ,k}, is the number of times
the plaintext pi occurs in the output after having filtered out the dishonest inputs. Note
that, if l is the number of honest senders, then r1 + · · ·+ rk = l+1 (l honest senders plus
the sender under observation).

We denote by Out the set of all pure outputs. Let Ai
r denote the probability that the

choices made by the honest senders yield the pure output r, given that the sender under
observation submits pi. Further, let M j, j′ = {r ∈ Out : A j

r ≤ A j′
r }. Now, the intuition

behind the definition of δid
l,µ is as follows: If the observer, given a pure output r, wants to

decide whether the observed sender submitted p j or p j′ , the best strategy of the observer
is to opt for p j′ if r ∈M j, j′ , i.e., the pure output is more likely if the sender submitted
p j′ .

7 Recall that valid input plaintexts all have the same length.
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This leads to the following level of privacy provided by the ideal mix net protocol
with l honest senders and the probability distribution µ:

δid
l,µ = max

j, j′∈{1,...,k}
∑

r∈M j, j′

(A j′
r −A j

r),

with example values depicted in Figure 4. (Note that A j′
r - A j

r depend on l and µ.)

7 Analysis of Privacy Re-encryption RPC Mix Nets

We now provide the formal analysis of the level of privacy re-encryption RPC mix nets
provide in the case of a risk-avoiding adversary.

We note that in our analysis of privacy, we assume merely that one of the mix servers
is honest; clearly, if all mix servers are dishonest there cannot be any privacy.

As already illustrated in Section 2.1, it is in the very nature of re-encryption RPC
mix nets that some information about the input to a mix server is mapped to its output.
Consequently, even a risk-avoiding adversary obtains some partial information about
how the input of the honest mix server is mapped to its output. Hence, even in this case
privacy cannot be as in the ideal case. Note that for the other mix servers (controlled by
the adversary), the adversary has full knowledge about the mapping from the input to the
output.

7.1 Privacy for Risk-Avoiding Adversaries

For the following result, our cryptographic assumptions are as described in Section 2.1.
The results hold true independently of whether auditing of the mix servers is done before
or after the decryption phase.

Theorem 2. The protocol P j
mix(n,m,µ) with l honest senders achieves δl,µ-privacy w.r.t.

risk-avoiding adversaries, where

δl,µ =
1
2l ·

l

∑
i=0

(
l
i

)
δid

i,µ .

Moreover, δl,µ is optimal, i.e., this protocol does not achieve δ-privacy w.r.t. risk-avoiding
adversaries for any δ < δl,µ.

Example values for δl,µ are depicted in Figure 4. As can be seen, for risk-avoiding
adversaries, the level of privacy provided by re-encryption RPC mix nets is only slightly
worse than the level of privacy in the ideal mix net. Recall that our result holds true under
the pessimistic assumption that among all mix servers, there is one honest mix server
only.

Proof. Let us consider an instance of the system P j
mix(n,m,µ) with l honest senders

(where, by the definition of P j
mix the j-th mix server is honest). We will represent such

an instance as A ‖ P, where P represents all the honest programs, while the dishonest
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Fig. 4. Level of privacy (δl,µ) for P j
mix(n,m,µ) w.r.t. risk-avoiding adversaries and in the ideal case

δid
l,µ, uniform distribution of input plaintexts. These figures have been obtained by straightforward

calculations using the δ-formulas as provided in the theorems. For non-uniform distributions, δl,µ
is close to ideal as well.

parties are represented by A, the risk-avoiding adversary. We have to show that for all
valid input plaintexts p and p′, we have that

|Pr[(A ‖ P(p))(`) 7→ 1]−Pr[(A ‖ P(p′))(`) 7→ 1]|

is a δl,µ-bounded function in the security parameter `, where P(p) means that the sender
under observation uses p as its plaintext. We denote this function by Advpriv

A,P,p,p′(`) and
call it the advantage of A.

We first define what we call audit groups for an overwhelming set of runs.
Consider a run of the instance A ‖ P which is semi-honest and for which the extractor

from Lemma 3 can extract correct permutations, namely permutations that satisfy (c) in
the definition of semi-honest behavior. This set of runs has overwhelming probability.

For such a run, we can split the input entries into two groups: those for which
M j opens the left link and those for which M j opens the right link. More precisely,
each input entry C0[i] is linked to C2 j+1[i′] (an entry in the middle column of M j) with
i = (π2 j ◦π2 j−1 ◦ · · · ◦π0)(i′), where πk are permutations extracted from the run,8 (and
thus satisfying condition (c) of semi-honest runs) and ◦ denotes function composition
(( f ◦g)(x) = g( f (x))). Note that, by the definition (c) of semi-honest runs, C2 j+1[i′] is a
re-encryption of C0[i]. Now, if the auditors request M j to open the left link for the index
i′, then we say that i belongs to the left audit group IL; otherwise we say that i belongs to
the right audit group IR.

We further say that IL is the audit group of the sender under observation if the (index
of the) entry of this sender belongs to IL. Similarly for IR.

8 Formally, to determine these permutations, one needs to consider the corresponding run of the
system A ‖ P simulated by the simulator from Lemma 3.
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From the program A, we derive a program A∗ in the following way: A∗ simulates
A and also runs the extractor from Lemma 3 in order to extract permutations for the
mix servers subsumed by A (as just mentioned, by Lemma 3, this can be in such a way
that, with overwhelming probability, for the extracted permutations, Condition (c) in the
definition of semi-honest behavior is true). This allows A∗ to determine the audit group of
the sender under observation and learn which (encrypted and then later decrypted) output
entries are linked to this group (without knowing specifically which output entry is linked
to which sender in this group). Let Q denotes the multi-set of all the plaintexts (decrypted
entries) linked to this group. For example, if x3 in Figure 1 is the (re-encrypted) entry of
the server under observation (A∗, knowing the extracted permutations, knows at which
position the entry of the sender under observation is delivered), then {y1,y4} are entries
of the senders from the audit group of the sender under observation. This group of entries,
given the extracted permutations, can be easily linked to the output of the mix net, when
they get decrypted and the multi-set Q is given.

Now, A∗ accepts the run (outputs 1) if and only if the following is true: the prob-
ability that the choices of |Q| − 1 honest senders (made according to the probability
distribution µ) yield Q, given that the sender under observation chooses p, is bigger than
the probability that the choices of |Q|−1 honest senders yield Q, given that the sender
under observation chooses p′.

In the following lemma, we write f ≤neg f ′, if there exists a negligible function ν(`)
such that f (`) ≤ f ′(`)+ ν(`) for all `. Later we also use f =neg f ′ to mean f ≤neg f ′

and f ′ ≤neg f . The lemma says that the advantage of A is not bigger than the advantage
of A∗.

Lemma 4. For a risk-avoiding adversary A and for all valid p and p′, we have that

Advpriv
A,P,p,p′ ≤neg Advpriv

A∗,P,p,p′ .

The proof of this lemma is postponed to Section 7.2.

Now, the proof of Theorem 2 proceeds as follows. By Lemma 4, it suffices to prove that
Advpriv

A∗,P,p,p′ ≤neg δl,µ.
By Lemmas 2 and 3, there is an overwhelming set SHP of runs of A∗ ‖ P such that

these runs are semi-honest and such that the permutations A∗ extracts from the dishonest
mix servers satisfy Condition (c) of semi-honest behavior. For these runs, the mixing
runs through successfully (as the runs are semi-honest) and the multi-set Q contains the
plaintexts chosen by the senders in the audit group of the sender under observation (as
the permutations satisfy (c)).

By the above, it is easy to see that, the computations carried out by A∗ yield the
constant from the theorem, i.e., Advpriv

A∗,P,p,p′ =neg δl,µ. Indeed, i in the definition of δl,µ
represents the number of entries of honest senders that are, in a given run of the system,
in the same audit group as the entry of the sender under observation. We consider all
the possible cases, from i = 0 (the entry of the sender under observation is alone in its
audit group, and hence, the adversary can easily see her choice) to i = l (all the honest
entries are in the same group as the entry of the sender under observation; in this case,
privacy of the sender under observation is maximally protected). The probability that i
honest senders belong to the same audit group as the sender under observation is

(l
i

) 1
2l ,
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as it is decided independently for every honest entry if it belongs to the audit group of
the sender under observation or not. Moreover, under the condition that the sender under
observation is in an audit group with i honest senders, the situation corresponds to that
of the ideal mix net with i honest senders. Hence, in this case, the level of privacy is δid

i,µ.
Moreover, for the given audit group, A∗ follows the best strategy as described for the
ideal case (see Section 6). Therefore, we in fact obtain Advpriv

A∗,P,p,p′ =neg δl,µ.
Optimality of δl,µ is obvious now since if A is the benign adversary (which in partic-

ular is risk-avoiding), we have, by the above, that Advpriv
A∗,P,p,p′ =neg δl,µ. This concludes

the proof of the theorem. ut

7.2 Proof of Lemma 4

We will use the convention that the choice of the sender under observation depends on a
bit b: if b = 0, this sender uses p, if b = 1, he uses p′. This bit is chosen with uniform
probability. Using this convention, to conclude the proof, we have to show that

Pr[A ‖ P 7→ b] ≤neg Pr[A∗ ‖ P 7→ b], (4)

where (A ‖ P 7→ b) denotes the event that A, interacting with P, correctly guesses the bit
b, and similarly for (A∗ ‖ P 7→ b).

It suffices to consider the (overwhelming) event SHP defined above. For such runs,
the events introduced below are well defined. Such runs are, by definition, semi-honest
and therefore, as already mentioned, not aborted (the mixing and decryption are com-
pleted) and all the entries make it to the output. As the systems (A ‖ P) and (A∗||P)
diverge only in the way decisions are made, SHP applies to both systems, and a run in
SHP for (A ‖ P) corresponds to a run in SHP for (A∗||P). Note that a run of (A ‖ P) is
semi-honest if and only if the corresponding run of (A∗||P) is semi-honest.

W.l.o.g. let the sender under observation be the 0-th sender. We denote by (0∈ L) and
(0 ∈ R) the events that the entry of the sender under observation belongs to the left and
the right audit group, respectively, with the notion of an audit group introduced above.
Note that the events (0 ∈ L) and (0 ∈ R) are the same independently of whether we
consider the system (A ‖ P) or (A∗ ‖ P) (these systems diverge only after these events are
determined). Moreover, we can observer that every run in SHP of (A ‖ P) and (A∗ ‖ P)
belongs to either (0 ∈ L) or (0 ∈ R). Therefore, to complete the proof it is enough to
show both of the following inequalities:

Pr[(A ‖ P 7→ b),(0 ∈ L)] ≤neg Pr[(A∗ ‖ P 7→ b),(0 ∈ L)]

and
Pr[(A ‖ P 7→ b),(0 ∈ R)] ≤neg Pr[(A∗ ‖ P 7→ b),(0 ∈ R)].

In what follows, we prove the first inequality. The proof for the second one is very
similar.

Let IL be a set containing 0 and, possibly, some indices of honest senders, and Q by
a multiset of plaintexts of size |IL|. We will consider events of the form X = IL, Q, where
IL and Q (by abuse of notation) represent to the following events:
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– IL denotes the set of all runs of (A ‖ P) (and analogously for (A∗ ‖ P)) where the set
of indices of honest senders that are in the left audit group, including the sender under
observation, is IL. Note that IL ⊆ (0 ∈ L).

– Q represents the set of all runs of (A ‖ P) (and analogously for (A∗ ‖ P)) where the
multiset of plaintexts chosen by the senders in IL is Q.

Note again that the events X , IL, and Q, are the same independently of whether we
consider the system A ‖ P or the system A∗ ‖ P (the systems A and A∗ diverge only when
all those events have already been determined).

Note that for different choices of the index set IL and the multiset Q of plaintexts,
one obtains a different event X . In this sense, X denotes an element of a family of events
of the described form. Note that the number of elements in this family is fixed, finite and
independent of the security parameter. (Clearly, the events represented by these elements
depend on the security parameter.) Therefore, to complete the proof, it is enough to show
that, for all X of non-negligible probability,

Pr[(A ‖ P 7→ b), X ] ≤neg Pr[(A∗ ‖ P 7→ b), X ] (5)

The rest of this section is devoted to proving (5) for a fixed event X of non-negligible
probability.

Let us observe that the event Q determines possible vectors z1, . . .zr of plaintext input
messages of senders in IL (which includes the sender under observation), that yield Q.
Note that the length of each zi is |IL| = |Q| (where |Q| is the number of elements in
the multi-set Q). We will denote the collection of these vectors by ZQ. More precisely,
ZQ contains only those vectors which have a probably bigger than 0 according to the
probability distribution µ that we consider. By abuse of notation, each z ∈ ZQ may
be interpreted as the event containing all the runs where the senders in IL chose their
plaintexts according to the vector z. Again, the event z is defined independently of
whether we consider the system A ‖ P or the system A∗ ‖ P.

The main technical result used in this proof is the following lemma (the proof of this
lemma is given in Appendix C).

Lemma 5. For each z ∈ ZQ, we have

Pr[(A ‖ P 7→ 1),X | z] =neg Pr[(A ‖ P 7→ 1),X | Q]. (6)

Because the above lemma works for any risk-avoiding adversary A, it holds, in particular,
for A∗. Therefore we obtain:

Corollary 1. For each z ∈ ZQ, we have

Pr[(A∗ ‖ P 7→ 1),X | z]≡ Pr[(A∗ ‖ P 7→ 1),X | Q].

Note that the decision of A∗, by definition, is based solely and deterministically on Q
and therefore this decision is the same for all runs in X . Let us assume that A∗ outputs 1
for all runs in X ; the proof for the case where A∗ outputs 0 is analogous. In this case, by
the definition of A∗, we know that Pr[b = 0 | Q]≤ Pr[b = 1 | Q] and hence

Pr[b = 0,Q]≤ Pr[b = 1,Q] (7)
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Note that the events (b = 0), (b = 1), and Q, used in the above probabilities, are defined
independently of whether we consider the system A ‖ P or A∗ ‖ P: besides the bit b, they
are determined solely by the random coins used by the senders in the set IL (which is a
fixed set of indices) to determine their choices (according to the probability distribution
µ or, in the case of the sender under observation, according to b).

In the following, we denote by Z0 the set of those elements z in ZQ for which
the choice of the sender under observation is p (recall that z is a vector determining the
choices of senders in IL, including the choice of the sender under observation, compatible
with Q; recall also that the choice of the sender under observation may be either p or p′

according to b). Similarly, we denote by Z1 the set of those elements z in ZQ for which
the choice of the sender under observation is p′. Note that by the definitions of Z0 and
Z1 we have that

∑
z∈Z0

Pr[z] = Pr[b = 0,Q] and ∑
z∈Z1

Pr[z] = Pr[b = 1,Q]. (8)

Note that, again, all the events used in the above probabilities are defined independently
of whether we consider the system A ‖ P or A∗ ‖ P. Now, using (7), (8), and Lemma 5,
we obtain

Pr[(A ‖ P 7→ b),X ] = ∑
z∈ZQ

Pr[z] ·Pr[(A ‖ P 7→ b),X | z]

= ∑
z∈Z0

Pr[z] ·Pr[(A ‖ P 7→ 0),X | z]

+ ∑
z∈Z1

Pr[z] ·Pr[(A ‖ P 7→ 1),X | z]

=neg ∑
z∈Z0

Pr[z] ·Pr[(A ‖ P 7→ 0),X | Q]

+ ∑
z∈Z1

Pr[z] ·Pr[(A ‖ P 7→ 1),X | Q]

=neg Pr[b = 0,Q] ·Pr[(A ‖ P 7→ 0),X | Q]

+Pr[b = 1,Q] ·Pr[(A ‖ P 7→ 1),X | Q]

≤ Pr[b = 1,Q] ·Pr[(A ‖ P 7→ 0),X | Q]

+Pr[b = 1,Q] ·Pr[(A ‖ P 7→ 1),X | Q]

≤neg Pr[b = 1,Q] ·Pr[X | Q].

Note that by the definition of ZQ, Z0, and Z1, the probability of z is bigger than 0, for all
security parameters, and therefore the conditional probabilities above are always well
defined. In a similar way, using Corollary 1 and the assumption that A∗ outputs 1 for all
runs in X (and hence in Q), we obtain:

Pr[(A∗ ‖ P 7→ b),X ] =neg Pr[b = 0,Q] ·Pr[(A∗ ‖ P 7→ 0),X | Q]

+Pr[b = 1,Q] ·Pr[(A∗ ‖ P 7→ 1),X | Q]

= Pr[b = 1,Q] ·Pr[X | Q],

Combining the above results, we obtain (5). ut
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8 Conclusion

In this paper, we carried out the first formal cryptographic analysis of re-encryption
RPC mix nets, which are one of or even the most deployed mix nets in real elections
so far. We proved that re-encryption RPC mix nets enjoy a good level of accountabil-
ity and verifiability: manipulation of just a few (honest) entries is detected with quite
high probability (1− ( 3

4 )
k for k manipulations), even if all mix servers are dishonest.

Importantly, if manipulation is detected, specific misbehaving servers can (rightly) be
blamed. Moreover, we showed that if an adversary does not follow the protocol in a
semi-honest way, then he (knows that he) will be caught with a probability of at least
1/4. This observation motivated us to consider the class of semi-honest or equivalently,
as we prove, risk-avoiding adversaries, which are not willing to take this risk of being
caught. In fact, severe penalties and the loss of reputation might be effective deterrents
in many practical situations. For risk-avoiding adversaries, we showed that re-encryption
RPC mix nets provide a good level of privacy, even if only one mix server is honest.
Altogether, our work, for the first time, precisely states the security guarantees these
prominent mix nets provide.
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13. R. Küsters. Simulation-Based Security with Inexhaustible Interactive Turing Machines. In
Proceedings of the 19th IEEE Computer Security Foundations Workshop (CSFW-19 2006),
pages 309–320. IEEE Computer Society, 2006. See http://eprint.iacr.org/2013/025/ for
a full and revised version.
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A Security Definitions for Cryptographic Primitives

A.1 Distributed Public-key Encryption

A distributed encryption scheme is a tuple (KeyShareGen,KeyCom,Enc,DecShareSDec)
where all the algorithms implicitly take the security parameter as an argument such that:
- KeyShareGen is a ppt algorithm that generates a public-private key share (ski, pki)

(where pki, besides the actual public key share, might contain additional information,
such as a proof of knowledge of ski),

- KeyCom(pk1, . . . , pkn) is a deterministic polynomial-time algorithm which returns the
public key pk obtained from the public key shares; this algorithm may fail (produce
⊥) if the public key shares are invalid,

- Enc(pk,m) is ppt algorithm that encrypts the message m under the public key pk,
- DecShare(c, pk,ski) is a deterministic polynomial-time algorithm which for a cipher-

text c, a public key pk, and a secret-key share ski returns a decryption share hi,
- SDec(c,h1, . . . ,hn) is a deterministic polynomial-time algorithms which returns a mes-

sage or ⊥, in the case that decryption fails.
We will assume that there are publicly known polynomial time algorithms to check if
(for a given security parameters) a given message is a valid plaintext, a valid ciphertext
and whether a given pair ski, pki is a valid key share pair.

For the correctness of such a scheme we require that (1) KeyCom does not fail when
given valid key shares, and (2) if pk = KeyCom(pk1, . . . , pkn) and pk 6= ⊥, then for all
plaintexts m and ciphertext c with c← Enc(pk,m) and hi = DecShare(c, pk,ski) (for
i ∈ {1, . . . ,n}) we have that SDec(c,h1, . . . ,hn) = m.

Let Cenc be a probabilistic polynomial-time algorithm, called a challenger that takes
a bit b and a public key pk and serves the following challenge queries:

for a pair of messages (x0,x1) of the same length, return Enc(pk,xb), if pk 6=⊥,
or ⊥ otherwise.
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Now, the distributed encryption scheme is IND-CPA secure, if

Pr[SA(0) outputs 1]−Pr[SA(1) outputs 1]

is a negligible function in the security parameter `, for every polynomially bounded
adversary A = (A1,A2) where A1 and A2 share state and A2 has oracle access to Cenc, and

SA(b) = (pk1,sk1)← KeyShareGen();
(pk2, . . . , pkn)← A1(pk1);
pk← KeyCom(pk1, . . . , pkn);

b′← ACenc(b,pk)
2 ()

output b′

The distributed encryption scheme is decryption share extractable9 if the follow-
ing is true: There exists a ppt algorithm which given public key shares pk1, . . . , pkn
and corresponding private key shares sk2, . . . ,skn such that the pki,ski are valid key
share pairs and given a valid ciphertext c, any plaintext m̃, computes h̃1 such that for
hi = DecShare(c, pk,ski), for i = 2, . . . ,n, we have that SDec(c, h̃1,h2, . . . ,hn) = m̃ and,
moreover, if c is an encryption of m̃, then h̃ = DecShare(c, pk,sk1).

A common instantiation of a distribtued encryption scheme is ElGamal.

A.2 Re-encryption

A distributed encryption scheme with re-encryption is a distributed encryption scheme
with an additional ppt algorithm reencrypt that takes a public key and a ciphertext c and
returns a re-encryption of c, i.e. a ciphertext c′ such that decryption of c and c′ yield the
same plaintext; in other words, if c = Encr

pk(m), then c′ = Encr′
pk(m), i.e., c′ contains the

same plaintext but was encrypted using different random coins r′.
Let Cre be a probabilistic polynomial time algorithm (a re-encryption challenger),

that takes a bit b and a public key pk and serves the following queries:

for two vectors of ciphertexts (x0,x1), where the ciphertexts have the same
length and x1 is a permutation of x0, the challenger returns a re-encryption of xb
(i.e. a vector y of the same length such that y[i] = reencrypt(pk,xb[i]), if pk 6=⊥,
or ⊥ otherwise.

We say that a decryption scheme with re-encryption provides semantic security under
re-encryption [6], if

Pr[SA(0) outputs 1]−Pr[SA(1) outputs 1]

9 This property is an abstract formulation of a property of the ElGammal distributed encryption
scheme used in the privacy proof of the Helios voting system [2].
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is a negligible function in `, for every polynomially bounded adversary A = (A1,A2)
where A1 and A2 share state and A2 has oracle access to Cre, and

SA(b) = (pk1,sk1)← KeyShareGen();
(pk2, . . . , pkn)← A1(pk1);
pk← KeyCom(pk1, . . . , pkn);

b′← ACre(b,pk)
2 ();

output b′.

A.3 Commitments

As usual, a commitment scheme is a tuple (M,C,R,Comm), where, for each value
` of the security parameter, M`, C` and R` are sets of messages called the message
space, the commitment space, and the opening space, respectively, and Comm is a
deterministic, polynomial-time algorithm that for each `, each m∈M` and r ∈R`, outputs
c = Comm(1`,m,r) ∈C`. By Comm(1`,m) we denote the probabilistic algorithm that
chooses a random r from R` with uniform probability and returns Comm(1`,m,r).

Such a commitment scheme is perfectly hiding, if for each ` and each m,m′ ∈M`,
we have that Comm(1`,m) and Comm(1`,m′) have the same distribution.

A commitment scheme (M,C,R,Comm) is computationally binding, if for all poly-
nomially bounded adversaries A

Pr[(m,m′,r,r′)← A(1`) : r,r′ ∈ R`, m,m′ ∈M`, m 6= m′,

Comm(1`,m,r) = Comm(1`,m′,r′)]

is a negligible function in `.

A.4 Non-Interactive Zero-Knowledge Proofs

Following [8,9], we provide here a definition of non-interactive zero-knowledge proofs
in the common reference string model.

Let R be an efficiently computable binary relation. For pairs (x,w) ∈ R, we call x the
statement and w the witness. Let LR = {x : ∃w such that (x,w) ∈ R}. A non-interactive
proof system for a language LR is a tuple of probabilistic polynomial-time algorithms
(Setup,Prover,Verifier), where
– Setup (the common reference string generator) takes as input a security parameter 1`

and the statement length n and produces a common reference string σ← Setup(n),10

– Prover (the prover) takes as input the security parameter 1`, a common reference string
σ, a statement x, and a witness w and produces a proof π← Prover(σ,x,w),

– Verifier (the verifier) takes as input the security parameter 1`, a common reference
string σ, a statement x, and a proof π and outputs 1/0← Verifier(σ,x,π) depending on
whether it accepts π as a proof of x or not,

10 We omit the security parameter in the notation, also for the prover and the verifier, for simplicity
of notation.
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such that the following conditions (completeness and soundness) are satisfied.
Perfect completeness: For n = `O(1) and all adversaries A outputting (x,w) ∈ R with
|x|= n

Pr[σ← Setup(n); (x,w)←A(σ); π← Prover(σ,x,w); b← Verifier(σ,x,π) : b= 1] = 1.

This condition says that an honest prover should always be able to convince an honest
verifier of a true statement.
Computational soundness: For n = `O(1) and all non-uniform polynomial time adver-
saries A, the probability

Pr[σ← Setup(n); (x,π)← A(σ); b← Verifier(σ,x,π) : x /∈ LR and b = 1]

is a negligible function of the security parameter.
This condition captures that it should be infeasible for an adversary to come up with

a proof of a false statement that is nevertheless accepted by the verifier.

We say that a non-interactive proof system (Setup,Prover,Verifier) is zero-knowledge
(NIZKP) if the following condition is satisfied:
Computational (single-theorem) zero-knowledge: There exists a polynomial-time sim-
ulator S = (S1,S2) such that, for n = `O(1) and all stateful, interactive, non-uniform
polynomial time adversaries A = (A1,A2) outputting (x,w) ∈ R with |x|= n, we have

Pr[σ← Setup(n); (x,w)← A1(σ); π← Prover(σ,x,w); b← A2(π) : b = 1]
≈ Pr[(σ,τ)← S1(n); (x,w)← A1(σ); π← S2(σ,τ ,x); b← A2(π) : b = 1]

(where ≈ means that the difference between the two probabilities is a negligible function
in the security parameter). In the latter system, S1 outputs a simulated common reference
string and a simulation trapdoor. S2 takes the common reference string, the simulation
trapdoor, and a statement (but not the witness) as input and produces a simulated proof.

We use here the single-theorem variant of the zero-knowledge property, where the
common reference string is used to produce (and verify) only one ZK proof, as opposed
to the (general) multi-theorem variant of the zero-knowledge property, where the same
common reference string can be used to produce many proofs. This suffices for our
application, because, in the mix net protocol we consider, the number of produced ZK-
proofs is bounded and known a priori, which corresponds to the case, where A can
only submit a bounded number of queries. In such a case, the single-theorem variant of
the zero-knowledge property implies the multi-theorem variant (the length of σ can be
expanded by factor of M, where M is the bound on the number of ZK-proofs).

We say that a non-interactive proof system (Setup,Prover,Verifier) produces proofs of
knowledge, if the following condition is satisfied:
Computational knowledge extraction: There exists a knowledge extractor E = (E1,E2)
such that for n = `O(1), the following conditions hold true: (a) for all non-uniform
polynomial time adversaries A

Pr[σ← Setup(n); b← A(σ) : b = 1] ≈ Pr[(σ,τ)← E1(n); b← A(σ) : b = 1]
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and (b), for all non-uniform polynomial time adversaries A, the probability

Pr[(σ,τ)← E1(n); (x,π)← A(σ); w← E2(σ,τ ,x,π);
b← Verifier(σ,x,π) : b = 0 or (x,w) ∈ R]

is an overwhelming function of the security parameter.
Note that (computational) knowlege extraction implies the existence of a witness

and, therefore, it implies (computational) adaptive soudness.

A.5 (ZK) Proofs used in the Protocol

The (zero-knowledge) proof used in the protocol are formally defined as follows.
– NIZKP of knowledge of the private key share. For a given pki, the statement is:
∃ski : (pki,ski) is a valid key share pair.

– NIZKP of knowledge of plaintext. For (c, pk), the statement is: ∃m,r : c = Encr
pk(m).

– Non-interactive proof of correct re-encryption. For (c,c′, pk), the statement is: ∃r :
c′ = ReEncr

pk(c).
– NIZKP of correct decryption share. For input of the form (hi,c, pk1, . . . , pkn), the

statement is:

∃ski : (pki,ski) is a valid key share pair ∧ DecShare(c, pk,ski) = hi.

where pk = KeyCom(pk1, . . . , pkn).

B Proof of Theorem 1

Proving fairness (the first condition of the definition of accountability which in this
context means that a mix server that runs the honest program is never blamed), is easy,
so the rest of this section is devoted to the proof of completeness.

As we have already explained, the strategy of the adversary that drops exactly k+1
honest entries, as described in Section 4.1, breaks the goal γk. The probability that using
this strategy the adversary successfully removes k+ 1 honest entries without this fact
being noticed is λk. Note that, using this strategy, one mix server can drop not more
than half of its input entries. Therefore, if k is big, the adversary may need to use more
than one mix server. We may simply assume that there are enough mix servers for the
adversary to carry out this strategy.

In the remainder of the proof, we show that no other strategy of the adversary is
better than the aforementioned strategy.

Let P denote the composition of the (honest) programs of those parties of the system
that are assumed to be honest. The remaining parties are subsumed by an adversary A.
Note that all mix servers are subsumed by A. Let us denote by X the event that, in the
system A ‖ P, the goal γk is not achieved and no mix server is blamed. Our goal is to
show that the probability Pr[X ] is λk-bounded, where λk = ( 3

4 )
k+1.

All the probabilities in this proof are computed, if not stated explicitly otherwise,
over the sample space Ω such that every atomic event ω ∈Ω is a composition of random
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coins used by all the protocol participants of the system under consideration, that is
the adversary and the parties in P. As usual, elements of Ω are sampled with uniform
probability.

Counting honest entries. Let Plaini denote the multiset of plaintexts obtained by de-
crypting all the elements of Ci. Note that some element of Ci may decrypt to ⊥ (i.e. do
not decrypt correctly). We now define the number of honest entries in Ci as the size of
the (multiset) intersection of the multiset Plaini and the multiset of the input plaintexts of
honest senders.

It is easy to see that the number of honest entries in C0 is l. It is also easy to see
that, if j-th mix server follows the protocol specification, then the number of honest
entries in its output (C2 j+2) is the same as the number of honest entries in its input (C2 j).
Finally, let us notice that in the optimal strategy described above, whenever a dishonest
mix server performs one manipulation, it decreases the number of honest entries by one.

Good runs. Let us consider an adversary A′ which precisely simulates A, but carries out
the following additional steps. When it produces output of a mix server M j (that is mes-
sages C2 j+1, C2 j+2, comm2 j, and comm2 j+1, where comm2 j, comm2 j+1 are supposed
to be commitments to the permutations π2 j and π2 j+1, respectively), receives an audit
challenge I j, and produces its response to this challenge (in an honest run that would be
appropriate openings to the challenged commitments along with required ZK proofs), A′

additionally simulates the responses of A to all possible alternative challenges I′j. For
this, A′ always rewinds its state to the one right before receiving a challenge. In such
a simulation, only the challenges change, otherwise all random coins remain the same.
If, during this process, A′ discovers that (for different challenges) A opens the same
commitment to two different values, it reports this conflict, by writing the commitment
and the two different openings on a distinct tape. Note that, although the number of
possible challenges may be very big, it is constant (it is not a function of the security
parameter) and, therefore, this simulation can be done in a polynomial time. Note also
that, for the same ω ∈Ω, the runs of A ‖ P and A′ ‖ P are identical, up to the additional
simulation that A′ performs and the possible reported conflicts.

In the following, we will assume that there are independent and distinct subcompo-
nents of ω ∈Ω that are used by the judge (the party who is supposed to blame dishonest
protocol participant) as the source of random coins for the verification of distinct ZK
proofs produced by the mix servers. Clearly, this assumption is safe, as it does not change
the distribution of random coins used in those verification steps.

Let us denote by G the subset of Ω such that for ω ∈ G we have:
(i) in the run of the system (A′ ‖ P) for ω, no conflict is reported,

(ii) in the run of the system (A′ ‖ P) for ω, no proof of an invalid statement is produced
that is accepted by the judge (this includes also all proofs produced in the simulation
that A′ performs and proofs of correct re-encryption and correct decryption).

We will call the runs of (A ‖ P) for ω ∈ G, good runs.
It is easy to see that the probability of G is overwhelming. Indeed, one can easily see

that the set of those ω ∈Ω for which A′ ‖ P reports a conflict is negligible, as otherwise
A′ would break the computational binding property of the used commitment scheme.
Also, the set of runs where mix nets output ZK proofs for invalid statements that are
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accepted by the judge is, by the computational soundness of the used proof system,
negligible.

By the above observation, to complete the proof, it is enough to show that Pr[X |
G]≤ ( 3

4 )
k+1.

Overall structure. Let us first notice that if a mix server produces an malformed output,
that is an output that contains some entries which are not valid ciphertexts, such a server
is blamed with probability one (and the event X does not hold). We also note that,
considering good runs, if the decryption is not done correctly, then, some mix server is
blamed as well. Therefore, given G, the goal γk is not achieved only if the number of
honest entries in C2m is smaller than l− k.

We know that the number of honest entries in C0 is equal to the number l of honest
senders. Let L be the set of vectors l = (l0, . . . , lm−1), where l j ∈ {0, . . . , l}, and lm−1 <
l− k (recall that m is the number of mix servers). For j ∈ {0, . . . ,m−1}, by l∗j we will
represent the event that the j-th mix server produces a well-formed output (denoted by
C2 j+2) containing exactly l j honest entries. By abuse of notation, let l j represent the
event that, additionally, this mix server is not blamed (the audit procedure, done before
or after the decryption step, does not discover any misbehaviour of this mix server). Now,
l = l0, . . . , lm−1 represents the event that no mix server is blamed for producing wrong
output and, for each j ∈ {0, . . . ,m−1}, the number of honest entries in C2 j+2 is l j.

As we have noted, given G, the goal γk is not achieved if and only if the number
of honest entries in C2m is smaller than l− k. It follows that, (again, given G) by the
definition of L (more precisely, by the assumption that lm−1 < l− k), the event X holds
if and only if l holds, for some l ∈ L. Therefore, we have the following, where L∗ = {l ∈
L | Pr[l | G] 6= 0}:

Pr[X | G] = ∑
l∈L∗

Pr[l | G]

= ∑
l∈L∗

Pr[l∗0 | G] ·Pr[l0 | G, l∗0 ] · Pr[l∗1 | G, l0] ·Pr[l1 | G, l0, l∗1 ] · · ·
· · ·Pr[l∗m−1 | G, l0, . . . , lm−2] ·Pr[lm−1 | G, l0, . . . , lm−2, l∗m−1]

= ∑
l∈L∗

Pr[l∗0 | G] ·Pr[l∗1 | G, l0] · · ·Pr[l∗m−1 | G, l0, . . . , lm−2]·
·Pr[l0 | G, l∗0 ] ·Pr[l1 | G, l0, l∗1 ] · · ·Pr[lm−1 | G, l0, . . . , lm−2, l∗m−1]

We will show the following fact which means that, if a dishonest mix server drops k j
honest entries, then the probability that this goes undetected is at most ( 3

4 )
k j .

Lemma 6. For all j ∈ {0, . . . ,m−1} and l ∈ L∗:

Pr j = Pr[l j | G, l0, . . . , l j−1, l∗j ]≤
( 3

4

)k j , (9)

where k j = max(0, l j−1− l j) and where we put l−1 = l (recall that l is the number of
honest senders and hence the number of honest entries in the input to M0).

We prove this lemma below. Now, using this lemma, we complete the proof of
Theorem 1. First, we note that (9) implies the following fact.

Pr[l0 | G, l∗0 ] · · ·Pr[lm−1 | G, l0, . . . , lm−2, l∗m−1]≤
( 3

4

)k′
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where k j = max(0, l j−1− l j) and k′ = k0 + · · ·+ km−1. Now, because lm−1 < l− k, we
have k < k′ and therefore we obtain:

Pr[X | G]≤
( 3

4

)k+1 · ∑
l∈L∗

Pr[l∗0 | G] ·Pr[l∗1 | G, l0] · · ·Pr[l∗m−1 | G, l0, . . . , lm−2]

One can easily see that the sum above is not bigger than 1, since this sum is equal to

∑
l0

Pr[l∗0 | G]∑
l1

Pr[l∗1 | G, l0] · · · ∑
lm−1

Pr[l∗m−1 | G, l0, . . . , lm−2],

where if conditionals have zero probability, we define the conditional probabilities to be
zero. Therefore, we obtain

Pr[X | G]≤
( 3

4

)k+1
,

which completes the proof.

Proof (Proof of Lemma 6). To prove (9), we need to first introduce some notation. For
ω ∈ Ω, we define the event ω j ⊆ Ω where all random coins coincide with those of ω
except possibly for the coins used by the auditors to generate the challenge for M j. So,
ω j leaves it open how M j is challenged, but otherwise the output of M j is determined
by ω j. Let Ω j be set of all ω j as above. Similarly, for ω ∈ Ω let ωA

j ⊆ Ω be the event
where the random coins used by the auditors coincide with those of ω but other random
coins are not fixed. Note that ω j ∩ωA

j fixes a unique run of the system. In what follows,
let Ω∗j = {ω j | ω j ∈ Ω j, ω j ∩G∩ l0 ∩ ·· · ∩ l j−1 ∩ l∗j 6= /0}. Now, we can represent the
probability Pr j as

Pr j = ∑
ω j∈Ω∗j

Pr[ω j] ·Pr[l j | G, l0, . . . , l j−1, l∗j ,ω j]. (10)

We will show that for each ω j ∈Ω∗j

Pr[l j | G, l0, . . . , l j−1, l∗j ,ω j]≤
( 3

4

)k j (11)

This implies that (10) is upper bounded by ( 3
4 )

k j and, hence, that (9) holds true. By this,
proving (11) completes the proof.

In order to prove (11), we first observe several useful facts. Let us notice that ω j
determines messages output by the j-th mix server before it is challenged (in all runs
in ω j these messages are the same). Now, because ω j ∈ Ω∗j , and hence, in particular
ω j ∩ l∗j 6= /0, we know that the number of honest entries in the output C2 j+2 equals l j. So
we know the following about the runs in ω j:

(F1) The number of honest entries in the output C2 j+2 is equal to l j.

Similarly, we know the following:

(F2) The number of honest entries in C2 j is equal to l j−1.
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Since ω j ∩G 6= /0, we obtain that ω j ⊆ G: By the definition of ω j and G, and the con-
struction of A′, it is easy to see that if one run in ω j satisfies the Conditions (i) and (ii) of
the definition of G, then all runs in ω j satisfy these conditions.

In particular, by Condition (i) of the definition of G, we obtain the following fact
which says that commitments are opened in an unique way:

(F3) There exists a function f such that for every run in ω j and for every commitment c
produced by some mix server in this run, if some mix server produces an opening
to c, then the opened value is f (c).

Similarly, by Condition (ii) of the definition of G, we obtain the following fact.

(F4) For every run in ω j if a ZK proof produced by some mix server is accepted by the
verifier, then the statement is actually true.

Next, in order to prove (11), we first rule out some trivial cases. The remainder of the
proof then boils down to some combinatorial arguments.
Trivial cases. In the trivial cases we consider the probability

Pr[l j | G, l0, . . . , l j−1, l∗j ,ω j] (12)

in (11).
If the output of M j does not conform to the expected format, then this mix server

is immediately blamed. In this case, the probability (12) is zero (as the event l j implies
that, in particular, M j is not blamed) and (11) trivially follows. So, in the following, we
will assume that:

(A1) The output of M j conforms to the expected format, i.e. M j outputs C2 j+1, C2 j+2,
comm2 j, and comm2 j+1, where C2 j+1 and C2 j+2 contain the same number r of
elements, and comm2 j and comm2 j+1 also contain r elements each, where the
latter are supposed to be the commitments to the permutations π2 j and π−1

2 j+1,
respectively (but M j might be cheating).

If l j−1− l j ≤ 0, then k j = 0 and (11) trivially holds. So we will assume that

(A2) l j−1− l j > 0 (and thus k j > 0), i.e. some number of honest entries is dropped by
M j.

The non-trivial case. Now, we prove (12) under the assumptions (A1) and (A2).
For simplicity of the argument, we assume that for every run in ω j if M j is challenged

to open a commitment, it will always open the commitment correctly and such that the
opened value is in the range {1, . . . ,r}. The case where M j does not do this for every run
in ω j (and hence, every challenge) is proven in a similar way. Note that if M j does not
open a commitment as required, it will be blamed by the judge. Hence, such a run does
not belong to the event l j.

Let us consider the output of M j as determined by ω j. For each i ∈ {1, . . . ,r}, we will
denote by linkL(i) the index f (c), where c = comm2 j[i] is the commitment of M j to the
i-th element of the permutation π2 j and f is given as in (F3). Note that by our assumption
linkL(i) ∈ {1, . . . ,r}. Similarly, we will denote by linkR(i) the index f (c) ∈ {1, . . . ,r},

38



a

b

b′

c

c′

C2 j C2 j+1 C2 j+2
Fig. 5. An example configuration induces by ω j. Dashed red lines
represent unsafe links, while solid black lines represent safe links.
Note that a safe (black) link indicates the correct re-encryption rela-
tion. Thus, for instance, a, b, b′, c, and c′ must be all encryptions of
the same plaintext. Assuming that all the entries in the left column
are honest, the right column might contain only two distinct honest
entries. In this case, the mix server is nevertheless not blamed if no
red link is audited and, moreover, if the two links pointing to a are
not audited at the same time.

where c = comm2 j+1[i]. Note that by (F3) the functions linkL and linkR are the same for
all runs in ω j.

Further, for each i ∈ {1, . . . ,r}, we will say that the index i is left-unsafe if C2 j+1[i]
is not a re-encryption of C2 j[i′], where i′ = linkL(i). Note that if a left-unsafe link is
audited (as requested by ωA

j ), then by (F4) the mix server is blamed. Similarly, we will
say that the index i is right-unsafe if C2 j+2[i′] is not a re-encryption of C2 j+1[i], where
i′ = linkR(i). Again, if a right-unsafe link is audited, the mix server is blamed.

With the above definition, ω j induces a configuration as the one presented in Figure 5.
To complete the proof, we need to show that, for all possible such configurations which
drop exactly k j honest entries, the probability that the mix server is not blamed is bounded
by ( 3

4 )
k j . Computing this probability is, essentially, a purely combinatorial argument, as

presented in what follows.
If two or more indices from the middle column point to the same index in the left

column, we call it a left collision group. Formally, a left collision is a maximal set of
indices L such that there exists a with linkL(i) = a for all i ∈ L. Analogously, we define
a right collision group as a maximal set of two or more indices from the middle column
pointing to the same index in the right column. As an example, the configuration in
Figure 5 contains a left collision group of size 2 (nodes labeled by b and b′ point to the
same left entry).

Let A be a subset of all runs in G∩ l0 ∩ ·· · ∩ l j−1 ∩ l∗j ∩ω j such that at most one
index of every left collision group is right-unsafe. Let Ā denote its complement. As
Ā∩G∩ l0 ∩ ·· · ∩ l j−1 ∩ l∗j ∩ω j implies that either two indices of a left collision group
are challenged to the left, or a right-unsafe link is challenged to the right, and hence, that
M j is blamed, we get that l j ∩G∩ l0∩·· ·∩ l j−1∩ l∗j ∩ω j ⊆ A since l j requires that M j is
not blamed. If Pr[A | G, l0, . . . , l j−1, l∗j ,ω j] = 0, we are done. Therefore, in the following
we assume Pr[A | G, l0, . . . , l j−1, l∗j ,ω j] 6= 0. It suffices to show that

Pr[l j | G, l0, . . . , l j−1, l∗j ,ω j,A]≤
(

3
4

)k j

.

That is, in the following we assume that at most one index of every left collision group
is right unsafe.

We say that an index in the middle column is honest if one of the following holds
true:

1. it is neither left- nor right-unsafe nor belonging to a left collision group,
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2. if it belongs to a left collision group that contains at least two indices that are not
left-unsafe, then it is the lowest index of this collision group that is neither left- nor
right-unsafe. (Note that, because of the event A, we know that one of the above
mentioned indices is not right-unsafe.)

Let h1 denote the number of indices that are not honest in the middle column.
Intuitively, the indices that are not honest in the middle column correspond to poten-

tially dropped (honest) entries of M j. (They do not have to actually drop entries because
an adversary might for instance use right-unsafe indices to undo the effect of a left-unsafe
link, which, however, would not be a good strategy of cheating.) Dishonest indices might
not be the only reason that entries are dropped. Entries might also be further dropped
due to right collision groups.

Now, the structure of the proof is roughly as follows: We show that the probably
that the adversary is not blamed due to having produced dishonest indices is bounded by( 3

4

)h1 . We then show that to every honest index i, except for some number h2 of honest
indices, we can assign a unique index k in the output of M j such that the entry pointed to
by k is a re-encryption of the entry pointed to by i. The last step of the proof is to show
that the probability of not getting blamed due to right collision groups, given that M j is

not blamed due to producing dishonest indices, is bounded by
( 3

4

)h2 . The theorem then
follows by the observation that the number of dropped entries is at most h1 +h2 (that is
the number of dishonest indices plus the number of honest indices that did not get an
assignment).

Now, given the facts and the assumptions listed above, it is easy to see that M j is
not blamed if and only if no unsafe link is challenged (otherwise, by (F4), the ZK proof
would not verify) and if at most one link from each left (or right) collision group is
challenged to the left (or the right), as otherwise it is visible that M j did not commit to a
permutation.)

Let B be a subset of all runs in A such that no left-unsafe index is challenged to the
left, no right-unsafe index is challenged to the right, and no two indices of a left collision
group are challenged to the left. In other words, in runs in B the mix server M j is not
blamed due to having produced dishonest indices. (Still, in a run in B the mix server
M j can be blamed if the configuration contains a right collision group and this group is
discovered.) We now show that

Pr[B | G∩ l0∩·· ·∩ l j−1∩ l∗j ∩ω j ∩A]≤
(

3
4

)h1

. (13)

The set of dishonest indices can be partitioned as follows: A dishonest index might i)
belong to a left collision group which contains an honest index (and hence, at least two
indices that are not left unsafe), ii) belong to a left collision group that contains exactly
one index that is not left unsafe (and hence, this left collision group does not contain an
honest index), or iii) it might not belong to any left collision group but is left- and/or
right-unsafe or it might belong to a left collision group which, however, contains only
indices that are left unsafe. We now look at these (disjoint) sets separately.

The probably that at most one index in a collision group of size k as in i) is challenged
to the left is k+1

2k (we consider k+1 cases, each occurring with probability 1
2k : one case
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if no index from the group is chosen for audit to the left, and k cases if exactly one index
is chosen). An elementary calculation shows that k+1

2k ≤
( 3

4

)k−1
.

Now, let us consider left collision groups of the form ii). The probability that no
index from such a left collision group of size k (≥ 2) that is not left unsafe is challenged
to the left is

( 1
2

)k−1 ≤
( 3

4

)k
.

The dishonest indices in the set iii) are left- and/or right unsafe. So, for each such
index, the probability that it is not challenged to its unsafe side is at most 1

2 <
3
4 .

As the indices are audited independently and the cases above do not overlap, we
immediately get (13).

In the following, we assign to all but h2 honest indices in the middle column (with h2
being defined below) a unique index in the output column. More precisely, to every
honest index i in the middle column (except for h2 honest indices), we assign a unique
(and different) index a in the output column of M j such that the entry pointed to by a
is a re-encryption of the entry pointed to by i. We call these honest indices completely
honest. So, except for h2 honest indices, all honest indices are completely honest.

Then, we have that k j ≤ h1 +h2, because for every completely honest index i, the
input entry b pointed to by i (i.e., the entry in the left column at the index linkL(i)) has
a valid re-encryption in the output column, namely at the index a assigned to i by the
provided construction. Hence, informally speaking, b makes it through M j. Moreover,
the above assignment (from the input entries to the output entries) is one-to-one, because
there is at most one honest index in a left collision group and two different completely
honest indices are not assigned the same index. Therefore, the number of dropped entries
of M j is at most as high as the number of indices that are not completely honest. And, as
the set of indices that are not completely honest is the disjoint union of the h1 indices
that are not honest in the middle column and the h2 indices that are honest in the middle
column but not completely honest, k j ≤ h1 +h2 follows.

Let C be a subset of all runs in A such that at most one index of a right collision
group in M j is challenged to the right. (Note that this is trivially true if there is no right
collision group.) In other words, in runs in C the mix server M j is not blamed due to the
cheating done by using right collision groups.

Then, C∩B is the event that M j is neither blamed for using left collision groups nor
for right collision groups nor for left-unsafe indices nor for right-unsafe indices. And,
as already mentioned, given the facts and assumptions listed before, M j is not blamed
exactly in this event, i.e. C∩B = l j ∩A.

Let {Bi : i = 1, . . . , p} denote a partition of B such that one Bi contains all runs in
B where for every index that is left or right unsafe or belongs to a left collision groups
it is fixed in the same way (in the different runs in Bi) whether this index is challenged
to the left or to the right. In other words, one Bi determines one pattern of how indices
in left collision groups and indices with left or right unsafe links are audited. (If p = 0,
then this means that B is empty. In this case, we are done. Otherwise (if p > 0), all Bi
are non-empty, by the definition of a partition.)
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In what follows, we define for every Bi an hi
2 following the above sketched intuition

such that k j ≤ h1 +hi
2. Let hmin

2 = min{h1
2, . . . ,h

p
2}. We then show that

Pr[C | Bi]≤
(

3
4

)hi
2

. (14)

This then completes the proof:

Pr[C∩B] = Pr[B] ·Pr[C | B]

= Pr[B] ·
p

∑
i=1

Pr[C∩Bi | B]

= Pr[B] ·
p

∑
i=1

Pr[C | Bi] ·Pr[Bi | B]

≤ Pr[B] ·
p

∑
i=1

(
3
4

)hi
2

·Pr[Bi | B]

≤ Pr[B] ·
(

3
4

)hmin
2

≤
(

3
4

)h1

·
(

3
4

)hmin
2

≤
(

3
4

)k j

.

So, it remains to define hi
2 and prove (14). In what follows, let B∗ = Bi. The following

assumption (P1) is, as argued below, made w.l.o.g. Also, the fact (P2) will be useful.

(P1) No right collision group contains two links that are opened to the right according
to B∗.
Otherwise, if some right collision group contains two indices of which the right
links are opened according to B∗, then the server is blamed. Hence the probability
of not getting blamed (given B∗) is 0. In particular, Pr[C | B∗] = 0, and hence, we
would be done with proving (14).

(P2) For every left collision group that contains an honest index there is, according to
B∗, an opened index to the right which is neither left nor right unsafe.
Indeed, as every left collision group with an honest index contains at least two
indices that are not left-unsafe, given B, (at least) one of them must be open to the
right. This index, again given B, cannot be right-unsafe.

For assigning unique outputs to honest indices in the middle column, we proceed as
follows:

I) If an honest index i does not belong to a right collision group, we assign i to its
right index linkR(i).

II) Let i be an honest index that belongs to a left collision group L (so i is the honest
index in L) and to a right collision group G. Note that in B∗ it is fixed whether i is
opened to the right or to the left (since i belongs to a left collision group).
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a) If i is opened to the right according to B∗, we assign to i the index to which G
is linked to (i.e., the index linkR(i)).

b) If i is opened to the left according to B∗, by (P2), there is another index i′ in L
which is neither left nor right unsafe and that is opened to the right according to
B∗. We assign i to linkR(i′).

III) The remaining honest indices are those that do not belong to a left collision group
but to a right collision group. While, by I) and II), all honest indices considered
above have obtained an assignment, the remaining ones have not obtained an
assignment yet. For these indices the assignments (if any) are defined as follows:
So, let i be an honest index that does not belong to a left collision group but to a
right collision group. Let G denote the right collision group i belongs to. If linkR(i)
(which is the index to which all indices in G are linked to) has already been used
for an assignment (i.e., some of the honest indices in I) or II) have been assigned
to linkR(i)), then i is not assigned any index. In particular, this means that i is not
completely honest, and hence, it contributes to hi

2.
Otherwise (if linkR(i)) has not been assigned to), if i is the minimal index in the
group G which does not belong to a left collision group, then i is assigned to
linkR(i).11 If i is not minimal, it is not assigned any index, which, in particular,
means that i is not completely honest, and hence, it contributes to hi

2.

As, by (P1), in every right collision group, there is at most one index that by B∗

is opened to the right, we indeed have for every completely honest index a different
assignment. Also, by the construction it is clear that the entry corresponding to the
index, say a, to which a completely honest index i is assigned is the result of correct
re-encryption of the entry corresponding to linkL(i) (in the two mixing steps in M j).
Moreover, linkL(i) is different for different completely honest indices (because two
honest indices do not belong to the same left collision group). Hence, in this sense the
entry at linkL(i) makes it to the output of M j, namely at index a. So, indeed we have that
not more than h1 +hi

2 honest entries could have been dropped, and hence, k j ≤ h1 +hi
2,

where hi
2 is defined to be the number of honest indices which have not received an

assignment.

In what follows, let h∗2 = hi
2. It remains to show that Pr[C | B∗]≤

( 3
4

)h∗2 . To this end,
let G1, . . . ,Gz denote the right collision groups. For i = 1, . . . ,z, let ti denote the number
of honest indices in Gi that did not get an assignment, i.e., those honest indices that are
not completely honest. Then, we have that ∑

z
i=1 ti = h∗2.

Note that in B∗ the random coins of all indices that belong to a left collision group or
that have a left or right unsafe link are fixed in a specific way. For all honest indices that
are not completely honest, B∗ does not fix how they are audited because these indices do
not belong to left collision groups and neither have left nor right unsafe links. How these
indices are audited is chosen independently and uniformly at random even given B∗.

11 Minimality is not actually important. If linkR(i)) has not been assigned yet, we could take any
index in G that does not belong to a left collision group and assign it to linkR(i). However,
exactly one of these indices should be assigned to linkR(i).
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W.l.o.g., we assume that the G1, . . . ,Gz are ordered in such a way that G1, . . .Gy are
those right collision groups that contain an index opened to the right (according to B∗)
and Gy+1, . . . ,Gz are those right collision groups that do not contain such an index.

Then, Gi (for i = y+ 1, . . . ,z) contains at least ti + 1 indices for which it is not
determined by B∗ how they are challenged (and for which the challenge is chosen
independently and uniformly at random, even given B∗), as argued next: Clearly, as
already mentioned, since Gi contains ti honest but not completely honest indices, we
know that for these ti indices it is not determined by B∗ how they are audited. Moreover,
clearly none of these indices is assigned to the index q that Gi is linked to. This implies,
by (III), that q is assigned to some other honest index k. If k does not belong to a left
collision group, then it must have obtained its assignment according to (III). But then
the way k is audited is not determined by B∗ and we are done, because, in this case, we
altogether have ti +1 indices in Gi for which the way they are audited is not determined
by B∗. Now, consider the case that k belongs to a left collision group. This case is not
possible: According to (II), k can only be assigned to q if q is connected to an opened
linked. But, by assumption, Gi does not contain indices that are opened to the right.

For i = 1, . . . ,y, let Ci contain all runs in B∗ such that no index of those indices in Gi
that are not fixed by B∗ is challenged to the right. Note that Gi contains at least ti such
indices, namely, the honest but not completely honest indices in Gi. Hence, we have that
Pr[Ci | B∗]≤

( 1
2

)ti ≤
( 3

4

)ti .
For i = y+1, . . . ,z, let Ci contain all runs in B∗ such that at most one index of those

indices in Gi that are not fixed by B∗ is challenged to the right. We know by the above
that there are at least ti+1 such indices in Gi. Hence, we have that Pr[Ci | B∗]≤ ti+1+1

2ti+1 ≤( 3
4

)ti .
By definition of C and the construction of the Ci, we have that C∩B∗ =

⋂z
i=1 Ci.

Also, since different Ci talk about different sets of (independent) indices, we know that
{Ci : i = 1, . . . ,z} are independent, given B∗. Hence, we obtain the following:

Pr[C | B∗] = Pr[
z⋂

i=1

Ci | B∗] =
z

∏
i=1

Pr[Ci | B∗]≤
z

∏
i=1

(
3
4

)ti
≤
(

3
4

)h∗2
.

This proves (14), and concludes the proof. ut

Remark 1. As one can see from the proof (and as shortly remarked in Section 2.2), the
probability distribution µ does not play any role in the above result. Indeed, we could
allow the adversary to provide unencrypted input for the honest senders and the result
would still work.

C Proof of Lemma 5

We show that for all z0,z1 ∈ ZQ:

Pr[(A ‖ P 7→ 1),X | z0] =neg Pr[(A ‖ P 7→ 1),X | z1], (15)
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From this, equivalence (6) easily follows, because

Pr[(A ‖ P 7→ 1),X | Q] = ∑
z′∈ZQ

Pr[z′ | Q] ·Pr[(A ‖ P 7→ 1),X | z′]

=neg Pr[(A ‖ P 7→ 1),X | z] · ∑
z′∈ZQ

Pr[z′ | Q]

= Pr[(A ‖ P 7→ 1),X | z],

Hence, to complete the proof, we need to prove (15).
Let us first notice that zi subsumes Q. Therefore (15) is equivalent to

Pr[(A ‖ P 7→ 1), IL | z0] =neg Pr[(A ‖ P 7→ 1), IL | z1]. (16)

Let T be the simulator of A ‖P, given by Lemma 3, which extracts, with an overwhelming
probability, permutations π0, . . . ,π2m that satisfy Condition (c) of semi-honest runs.
Note that the permutations of the honest mix server do not have to be extracted by the
simulator; the simulator simply knowns them, as they are generated using the (simulation
of the) honest mix server program. For convenience, however, we will also call these
permutations extracted. By π∗ we will denote the composition π2m−1 ◦ · · · ◦π0 of all the
permutations extracted in a simulated run (where the operator ◦ denotes composition of
functions (( f ◦g)(x) = g( f (x))).

One can easily see that in the system T , with an overwhelming probability (more
precisely, for all those runs where the extraction works correctly), the i-th entry in the
decrypted output of the mix net is the same as the π∗(i)-th input entry (after the proof
check and duplicate elimination). We will use this fact later.

Now, because the simulation is faithful, for p ∈ {0,1} we have

Pr[(A ‖ P 7→ 1), IL | zp] = Pr[(T 7→ 1), IL | zp] (17)

where the set of indices IL is interpreted as an event for the system T in the same way as
for the system (A ‖ P).

Let T ′p, for i ∈ {0,1}, be defined as the system T , but with the following differences.
First, T ′p uses zp as the (unencrypted) input of the senders in IL. Second, it outputs 1 if
(A ‖ P) outputs 1 and the event IL is true in the run (which can be easily checked by T ′p).
It is easy to see that

Pr[(T 7→ 1), IL | zp] = Pr[T ′p 7→ 1]. (18)

Simulating NIZKPs and Extracting Let Qp, for p ∈ {0,1}, be the program works
exactly like T ′, which includes simulation of the system A ‖ P, and diverges from the
faithful simulation (as done in T ′) only in the following points. Note that we must
simulate A in a black-box manner, while the honest component (P) is known and does
not need to be simulated as a black-box.
Q1. Instead of using the (honest) setup algorithm to generate common reference strings

σk for NIZKPs of knowledge of the secret key shares corresponding to the published
public key shares of the dishonest mix servers, Qp uses (the first component of) an
extractor algorithm (that exists by the computational knowledge extraction property)
to generate σk (which is given to the adversary) along with a trapdoor τk.
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Q2. Instead of using the (honest) setup algorithm to generate common reference strings
σe for NIZKPs of knowledge of the plaintexts to be used by the dishonest senders
(subsumed by the adversary), Qp uses (the first component of) an extractor algorithm
(that exists by the computational knowledge extraction property) to generate σe
(which is given to the adversary) along with a trapdoor τe.

Q3. Instead of using the (honest) setup algorithm to generate common reference strings
σIL for NIZKPs of knowledge of the plaintexts to be used by the honest senders in
IL, Qp uses a simulator algorithm (that exists by the computational zero-knowledge
property) to generate these CRSs σIL along with a trapdoor τIL .
These CRSs and the trapdoors are then used to generate (simulated) NIZKP of
knowledge of the plaintexts by the honest senders in IL.

Q4. Instead of using the (honest) setup algorithm to generate common reference strings
σd for NIZKPs of correct decryption share of the honest mix server M j, Qp uses a
simulator algorithm (that exists by the computational zero-knowledge property) to
generate σd along with the trapdoor τd .
These CRSs and the trapdoors are then used by Qp to generate (simulated) proofs
of correct decryption of the honest mix server (so that the private key is not used in
this step).

By the construction of Qp and by the properties of the interactive zero-knowledge
proofs used in the system (computational zero-knowledge and computational knowledge
extraction) we obtain:

Pr[T ′p 7→ 1] =neg Pr[Qp 7→ 1], (19)

Note that, as is necessary for use of the zero knowledge property, the system Qp only
produces simulated proofs for true statements (honest sender produce ciphertexts of
plaintexts they know and the honest mix server M j produces a valid decryption share).

Moreover, the permutation π∗ computed by Qp is still “correct” in that, with an
overwhelming probability, the i-th entry in the decrypted output is the same as the π∗(i)-
th input entry (after the proof check and duplicate elimination), as otherwise, because
this is true for T and T ′, and can be easily tested by the simulator, one could easily
construct a distinguisher breaking zero-knowledge or extraction properties.
CPA Game Simulator. Given z0, z1 as above, let Sp, for p ∈ {0,1}, be the system that
uses a CPA challenger Cenc as an oracle, defined as follows:
S1. Sp generates all the common reference strings to be used in the system in the same

way as this is done in the system Qp (hence, some of the these CRSs are generated
by simulators / extractors).

S2. Sp first calls the encryption oracle Cenc (|z0| = |z1| times) to obtain the encrypted
input yIL of senders in IL, that is encrypted zb, where b is the secret bit used by
the oracle (the CPA challenger). Then, as it was done in Q3, Sp uses the simulator
algorithm and the trapdoor τIL to produce (simulated) NIZKP of knowledge of the
plaintexts for the obtained vector yIL (without knowing which plaintexts have been
encrypted and without knowing the used randomness).

S3. It then simulates honest senders not in IL to generate their unencrypted input xh and
then their encrypted input yh along with the required ZK proofs (note that “real”
zero knowledge proofs are produced here, using honestly generated CRSs).
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S4. Sp gives the encrypted entries produced so far to the adversary A and simulates A
up to the point where it produces its (dishonest) input yd .

S5. With the ciphertexts yIL , yh, and yd , Sp now first performs the input validation phase
of the mix net. As a result, some entries of the proofs provided by the adversary might
be dropped, because the adversary might have provided invalid proofs. (Honest
senders provide valid proofs only.) So, we will have a subset of entries from yd . We
denote the new set of entries of the adversary by y′d . Also, some ciphertexts provided
by the adversary might coincide with those provided by the honest senders, i.e., with
those in yIL , yh. (Since the encryption scheme used is IND-CPA secure, the probably
that their are duplicate ciphertexts among those provided by the honest senders is
negligible.) So, some more of the ciphertexts in y′d might be dropped.12

Hence, the ciphertexts in yIL and yh will all make it to the actual mixing phase. Only
some of the entries in yd might be dropped, and hence, only a subset y′′d may actually
make it to the mixing phase. For simplicity of notation, we will, instead of referring
to these ciphertexts by y′′d , still refer to them by yd .

After having simulated the input validation phase, Sp uses the knowledge extractor
from Q2 with the trapdoor τe to extract the vector of plaintexts xd from yd . (Note
that by now all the entries have valid NIZKPs of knowledge of plaintexts.)

At this point the simulator Sp has—up the to choices of the senders in IL—complete
knowledge of the input of each of the senders (honest and dishonest), except for the
exact order of plaintexts for the honest senders in IL. The simulator knows that it is
zo or z1. Let xp denote the vector of plaintexts consisting of the vectors zp, xh and
xd . Hence, x0 and x1 differ only at positions corresponding to the honest senders in
IL. The simulator also knows the corresponding ciphertexts, which we denote by the
vector y, consisting of the elements of yIL , yh and yd .

S6. Sp then simulates the mixing phase on the input y. Doing this, Sp extracts the
permutations used by the mix nets in the same way, as this is done in T and in Qp.
As previously, we will denote by π∗ the composition of these permutations.

S7. Finally, Sp simulates the decryption process in such a way that it outputs π∗{xp}, by
which we denote the vector v such that v[i] = xp[π

∗(i)]. This is the output vector one
would obtain by shuffling xp according to the extracted permutations used by the
mix servers. (Note, however, that this is not necessarily the “correct” output vector,
as the bit b used by the CPA challenger Cenc might not coincide with p.)
To this end, the simulator, using the trapdoor and the (second component of the)
extractor algorithm from Q1, extracts the private keys of the dishonest mix servers.
Then the simulator manipulates the decryption share of the honest mix server in
the following way. Using the private keys of all the dishonest mix server and the
property of decryption share extractability, the simulator, for each output target entry
m̃ it wants to output, produces the appropriate h̃ j that together with the decryption
shares of the remaining mix servers yields m̃ (more precisely, it yields m̃ with
overwhelming probability, that is for those runs where the adversary is semi-honest

12 Since in the rest of the mix net the NIZKPs in the entries are no longer used (only the actual
ciphertexts are used), it does not matter whether a ciphertext in y′d or its duplicate in yIL or yh
(if any) is dropped. In any case, one ciphertext of each set of duplicates will “survive”.
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and produces correct decryption shares). The simulator also outputs simulated ZK
proofs of correctness of h̃ j, using the trapdoor from Q4.

S8. Finally, after the output is produced, Sp computes its decision as T ′ does.

One can see that, by construction, the systems Qp and SCenc(p)
P , where Cenc(p) is

the encryption oracle (the CPA challenger for the used encryption scheme) with the
challenge bit fixed to p, coincide, except for the decryption step. Because this step does
does not affect the computation of π∗, we know that the permutation π∗ as computed by
SCenc(p)

p is the same as π∗ computed by Qp.
By the above, with overwhelming probability (for all those runs where π∗ is correct,

as defined for the system Qp), the i-th entry output by Qp (obtained by decrypting the i-th
encrypted output) is the same as the π∗(i)-th input entry xp[π

∗(i)] which, by construction,
is the i-th entry output by SCenc(p)

p . Hence, the decrypted output of SCenc(p)
p and Qp is the

same. Therefore, the output of the decryption in SCenc(p)
p is correct.

Now, because we consider risk-avoiding adversaries, that is adversaries that behave
semi-honestly with overwhelming probability (Lemma 2), we know that, again with
overwhelming probability, the decryption shares produced by the dishonest mix servers
are correct. Furthermore, because in this case h̃ j yields, along with the remaining decryp-
tion shares, the correct plaintext, by decryption share extractability, the faked decryption
share h̃ j produced in SCenc(p)

p is the same as the honest decryption share h j produced in
Qp. Altogether, we can conclude that these two systems coincide also in the decryption
step and, therefore, coincide completely. Hence we have

Pr[Qp 7→ 1] = Pr[SCenc(p)
p 7→ 1], (20)

By the IND-CPA property of the used encryption scheme, we immediately obtain

Pr[SCenc(0)
1 7→ 1] =neg Pr[SCenc(1)

1 7→ 1]. (21)

Therefore, to complete the proof, it suffices to show that

Pr[SCenc(0)
0 7→ 1] =neg Pr[SCenc(0)

1 7→ 1]. (22)

Re-encryption Game Simulator. To prove (22), we will use the semantic security
of the used encryption scheme under re-encryption. Let R be the system that uses a
re-encryption oracle Cre and works as follows
R1. R generates all the common reference strings to be used in the system, as it is done

in Q (and hence in Sp).
R2. R takes z0 as the plaintext input of senders in IL, encrypts these plaintext to obtain

encrypted input yIL and produces a simulated NIZKP of knowledge of plaintexts for
these ciphertexts (as Sp does in S2).

R3. It simulates the honest senders not in IL as Sp does in S3.
R4. It produces the input of the adversary as Sp does in S4.
R5. R simulates the input validation steps as Sp does in Step S5. R also extracts the

plaintexts from the ciphertexts provided by the adversary as Sp does in S5.
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Note that the unencrypted input, after validation, produced by R is the same as the
unencrypted input x0 produced by SCenc(0)

0 and SCenc(0)
1 .

R6. R simulates the mixing phase (including permutation extraction) in the same way
as Sp in Step S6, with the exception of the second mixing step of the honest mix
server M j which is simulated in the following way:

Let y′ be the input to the second mixing step of M j. By this point, R has extracted
some permutations π0, . . . ,π2 j−1 (from dishonest mix server before M j). Also, R
has chosen a permutation π2 j for the first mixing step of M j itself. Let π∗1 be the
composition of these permutations.

Let ρ be the permutation (on the set of input indices) that maps x1 into x0, that is
x1[i] = x0[ρ(i)]. Such a permutation exists, because of the way x0 and x1 are con-
structed (they are the same as multisets). Moreover, this permutation only permutes
indices corresponding to the senders in IL (where the elements of z0 are located)
and keeps intact the remaining indices, that is, for i 6∈ IL we have ρ(i) = ρ−1(i) = i.

To simulate the second mixing step of the honest mix server, R picks a random
permutation π2 j+1 (as M j would do). Additionally, R computes the permutation
ρ̃ = π∗1 ◦ ρ−1 ◦ (π∗1)−1, and π̃2 j+1 = π2 j+1 ◦ ρ̃. The simulator R then uses the re-
encryption oracle to obtain y′′ =Cre(π2 j+1{y′}, π̃2 j+1{y′}).

Notice that, for all indices i such that π∗1(i) /∈ IL, these two permutations work in
exactly the same way, that is π−1

2 j+1(i) = π̃−1
2 j+1(i). Let us denote the set of such

indices i by I′L (this set, intuitively, contains indices at the point of the input to the
second mixing step of M j that do not map (via π∗1) to indices in IL).

Now, R computes a vector y′′′ from y′′ by substituting every element of y′′ that does
not map to IL (that is, every element at position k such that π̃2 j+1[k] = π2 j+1[k]∈ I′L)
by a (freshly obtained) re-encryption of y′[π2 j+1(k)].
This vector y′′′ is output as the resulting ciphertexts of the second mixing step of
M j. In addition, R commits to π2 j+1 (note that this commitment may be wrong if
the used permutation was π̃2 j+1).

We can now see that, if the event IL holds true, which implies that no index required
in the audit phase for M j to be opened to the right is mapped via π∗1 to IL, then
R can easily output the required proofs of correct re-encryption, as it was R who
generated the re-encryptions. Otherwise, R does not output the required ZK proofs
(this is, however, not important for the property we prove).

Let us observe that, altogether, R, for the second mixing step of M j, outputs a
re-encryption of π2 j+1{y′} if the challenge bit of the re-encryption oracle is 0, or a
re-encryption of π̃2 j+1{y′} if this bit is 1. Jumping ahead, the whole system, again
depending on the bit b, uses the permutation π∗ = π∗2 ◦ π2 j+1 ◦ π∗1 or π̃∗ = π∗2 ◦
π̃2 j+1 ◦π∗1 , with π∗2 being the composition of all the permutations applied after the
second mixing step of M j. Let us also observe that ρ̃ is constructed in such a way that
π̃∗(i) = ρ−1(π∗(i)) and therefore π∗{x0}= π̃∗{x1} (that is x0[π

∗(i)] = x1[π̃
∗(i)]).

R7. R simulates the decryption step, similarly to S7, to produce π∗{x0}.
R8. R ouputs the decision of T ′.
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Note that in the system T the extraction of permutations succeeds (that is produces some
permutation) with an overwhelming probability. This property carries over through all
the systems, to the system R, as it is easily checkable by each simulator. Therefore all
the operations in the above definition are well defined with overwhelming probability.

One can see that, by construction of R and S,

Pr[SCenc(0)
0 7→ 1] = Pr[RCre(0) 7→ 1]. (23)

(It is in fact easy to construct a bijection between the runs in the two events, and hence,
the probabilities are equal.)

Let S̃1 be the system that works as S1, but when it simulates the second mixing step
of the honest mix server M j, it uses the permutation π̃2 j+1, as defined in Step R6 and it
also commits to this permutation. Because π̃2 j+1 has the same distribution as a random
permutation, we immediately have that

Pr[SCenc(0)
1 7→ 1] = Pr[S̃Cenc(0)

1 7→ 1]. (24)

Let R̃ be the system that works as R but instead of committing to the permutation π2 j+1,
it commits to π̃2 j+1. Using our assumption that the commitment scheme is perfectly
hiding (recall that, for runs in IL, R/R̃ is not required to open commitments which are
wrong), it easily follows that

Pr[R̃Cenc(1) 7→ 1] = Pr[RCre(1) 7→ 1]. (25)

Now, using the observation we have already made, namely that π̃∗{x1} (the output of the
system S̃Cenc(0)

1 ) is the same as π∗{x0} (the output of RCre(1), and hence, R̃Cre(1)), we have

Pr[S̃Cenc(0)
1 7→ 1] = Pr[R̃Cre(1) 7→ 1]. (26)

Therefore, we obtain

Pr[SCenc(0)
1 7→ 1] = Pr[(RCre(1) 7→ 1]. (27)

Finally, by the hiding property of re-encryption, we have

Pr[RCre(0) 7→ 1] =neg Pr[RCre(1) 7→ 1], (28)

which, together with the above, proves (22) and concludes the proof of Lemma 5.

50


	Security Analysis of Re-Encryption RPC Mix Nets

