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Abstrat

Consider a olletion f of polynomials fi(x), i = 1, . . . , s, with integer oe�ients

suh that polynomials fi(x) − fi(0), i = 1, . . . , s, are linearly independent. Denote

by Dm the disrepany for the set of points

(
f1(x) mod m

m , . . . ,
fs(x) mod m

pn

)
for all

x ∈ {0, 1, . . . ,m}, where m = pn, n ∈ N , and p is a prime number. We prove

that Dm → 0 as n → ∞, and Dm < c1(log logm)−c2
, where c1 and c2 are positive

onstants that depend only on the olletion of fi. As a orollary, we obtain an

analogous result for iterations of any polynomial (with integer oe�ients) whose

degree exeeds 1. Certain results on the uniform distribution were known earlier

only for some lasses of polynomials with s 6 3.

1 Introdution

The onstrution of pseudorandom generators (PRG) is one of most important ryp-

tographi problems; they have many various pratial appliations. We assume that a

PRG onsists of

• a transition funtion f de�ning the state of the PRG by the formula ui+1 = f(ui),

where ui is its state at the time moment i (therefore, the state at the time moment i is

de�ned as an i-fold iteration of the funtion f of the initial state, i.e., ui = f (i)(u0));

∗
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• an output funtion F that de�nes the output of the PRG at the time moment i as

a funtion of its urrent state, i.e., zi = F (ui);

• the initial state u0 (in what follows we assume that it is hosen randomly).

In this paper we study the ability of ertain funtions f , namely, polynomials, to

ensure the desired property of the sequene of internal states (in other words, the ability to

play the role of the funtion f). We assume that alulations are performed modulo some

numberm. For the sake of uniformity or reasoning with variousm, we onsider the number

ui/m; evidently, it belongs to the interval from 0 to 1. In order to demonstrate that

onsequent values are ¾independent¿ of previous ones, we study the set formed by points,

whose oordinates are equal to several suññessive values of ui/m in a multidimensional

unit hyperube.

With �xed m the number of points if �nite and not greater than m, beause the next

state is uniquely de�ned by the previous one. Therefore, by tending m to in�nity, one

obtains the desired assertions for this ase. Below, as a rule, m takes the form of pn with

some prime p and natural n.

It is well known that for polynomials of degree 1 the measure of the losure of the

mentioned set equals 0, and with n tending to in�nity all points belong to several hyper-

planes [2, P. 117℄ inside the unit hyperube. In [4℄ one proves that the measure of the

losure of the orresponding set equals either 0 or 1 for any ompatible funtion f , in

partiular, for polynomials of any degree (see Theorem 1).

For pratial appliations, along with the unit measure of the losure (i.e., the fat

that the s-dimensional ube is overed by the set under onsideration), it is also important

that the rate (with n tending to in�nity), at whih the ube is being overed by these

points, should be the same at all regions of the ube. More formally, we say that the

projetion of the funtion f(x) is uniformly distributed in the s-dimensional ube, if for

eah parallelepiped J inside the ube the ratio of the number of points in J to the total

number of points with n → ∞ equals the ratio of the s-dimensional volume of J to the

total volume of the ube, i.e., to one. See [1℄,[6℄ for de�nitions of the uniformity for an

arbitrary set of points.

In papers [7℄, [8℄, [9℄ one proves the uniformity of the orresponding sets for quadrati

polynomials for the number of iterations of 2 and 3. Moreover, in the mentioned papers

one obtains onditions under whih the set of pairs of onseutive outputs of a quadrati

generator almost satis�es the repeated logarithm law [3℄, namely, the prinipal term of

the asymptotis of the disrepany equals m−1/2
. In [5℄ these bounds are improved for

the ase of m = 2k and two iterations.
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In this paper we prove the uniformity for an arbitrary polynomial of degree not less

than 2 with integer oe�ients and an arbitrary number of iterations with m = pn,

where n tends to in�nity, and p is an arbitrary prime number. The proof is based on

the following evident property: a su�iently long random sequene neessarily ontains

any onrete subsequene; moreover, one an hoose the length of the sequene so large

as to make the probability of the opposite event very small. This fat is used in the

indution step. Assuming the uniformity of the olletion (x, x2, . . . , xs−1), we �x ertain

subsequenes in the number x so as to make the major digits of eah funtion of the

olletion (x, x2, . . . , xs) modulo pn easily preditable.

2 Basi notions

In this paper we apply tehniques of the p-adi analysis for �nding funtions that

an be used for onstruting PRG; see, e.g., [10℄ for the neessary de�nitions. We use

the de�nitions of the ring of integer p-adi numbers and the p-adi norm ‖ · ‖p and

onsider funtions f from Zp to Zp. Reall [4℄ that a funtion from Zp to Zp is said to

be ompatible, if ‖f(x1) − f(x2)‖p 6 ‖x1 − x2‖p for any x1, x2 ∈ Zp. In other words,

a funtion is ompatible, if for eah x1, x2 ∈ Zp, for whih the minor k digits in the p-

adi notation oinide, the minor k digits in the p-adi notation of f(x1) and f(x2) also

oinide.

For a ompatible funtion f(x) and a natural number s > 2 the set of points in the

form (
x

pn
,
f(x) mod pn

pn
,
f (2)(x) mod pn

pn
, . . . ,

f (s−1)(x) mod pn

pn

)

exists for all n ∈ N, x ∈ {0, 1, . . . , pn − 1} (hereinafter the denotation f (i)(x) means the

ith iteration of the funtion f). We all this set (note that we onsider the union for all

n) the s-dimensional projetion of the ompatible funtion f .

Consider a funtion f having a omplete yle and the orresponding sequene of

states ui = f(ui−1). The set of points in the form

(
ui mod pn

pn
,
ui+1 mod pn

pn
,
ui+2(x) mod pn

pn
, . . . ,

ui+s−1(x) mod pn

pn

)

oinides with the set desribed above, beause by the de�nition of a omplete yle ui

runs over all values of x.

In this paper, instead of iterations of one funtion f , as a rule, we onsider an arbitrary

olletion of ompatible funtions f1(x), f2(x), . . . , fs(x). Let us generalize the de�nition

of the projetion for this ase.
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Let s ompatible funtions f1(x), f2(x), . . . , fs(x) be given. We onsider the set of

points in the form

(
f1(x) mod pn

pn
,
f2(x) mod pn

pn
, . . . ,

fs(x) mod pn

pn

)

for all x ∈ {0, 1, . . . , pn−1}. For given f1, . . . , fs and �xed n we denote the multiset under

onsideration by Pf1,...,fs(n). We all the union of suh sets for all n the joint projetion

of funtions f1(x), f2(x), . . . , fs(x).

In what follows we omit subsripts indiating olletions of funtions, if they are lear

from the ontext.

In [4℄ one proves the following key theorem:

Theorem 1 (the 0-1 rule). For any ompatible funtion f the measure of the losure of

its two-dimensional projetion equals either 0 or 1.

One an easily generalize the mentioned theorem for the ase of arbitrary s and an

arbitrary olletion of ompatible funtions f1, f2, . . . , fs.

Let us now give a more formal de�nition of the projetion uniformity. Let J be some

parallelepiped in the ube [0, 1)s. Let Fn(J) denote the ratio of the number of points that

belong to Pf1,... fs(n) and lie in J to the total number of points pn. Let V (J) stand for the

s-dimensional volume of J .

De�nition 1. The joint projetion of a olletion of ompatible funtions f1, . . . , fs is

said to have a uniform distribution, if

lim
n→∞

sup
J

|V (J)− Fn(J)| → 0,

where the supremum is alulated over all possible parallelepipeds J .

In the ase, when as a olletion f1, . . . , fs one hooses the set of iterations of some

ompatible funtion f (i.e., the set x, f(x), f (2)(x), . . . , f (s−1)(x)), we say that the s-

dimensional projetion funtion f has a uniform distribution.

Evidently, the uniformity of the projetion implies that the measure of the losure

equals 1. In this paper we study the uniformity of projetions of polynomial funtions f .

Considering the supremum for onrete n, we obtain the disrepany Dpn. Instead

of estimating this value, it is more onvenient to study the lower bound for the digit

apaity, beginning with whih the bound for the uniformity of the onsidered set of points

is guaranteed. In this paper we use various de�nitions of the uniformity (measurable in

terms of various errors ε); as a result, they beome onneted with eah other and form

an upper bound for the disrepany.
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Let us give several more de�nitions and denotations whih are neessary, in partiular,

for studying the rate of onvergene to 0 in De�nition 1.

The uniformity of the projetion of a olletion of ompatible funtions means that

for any positive ε there exists Nf1,...,fs(ε) suh that for any n > Nf1,...,fs(ε) it holds

|Fn(J)− V (J)| < ε.

In what follows, when using the denotation Nf1,f2,...,fs(k, ε) = g(k, ε), we take into

aount the fat that this funtion g satis�es onditions stated in the previous de�nition,

but the minimum of the estimate is not guaranteed.

Let k be some �xed number, a1, a2, . . . , as ∈ {0, 1, . . . , pk − 1}. Denote by

Jk(a1, a2, . . . , as) the hyperube in [0, 1)s de�ned by inequalities

a1
pk

6 z1 <
a1 + 1

pk

a2
pk

6 z2 <
a2 + 1

pk

. . .
as
pk

6 zs <
as + 1

pk
,

where (z1, z2, . . . , zs) are oordinates of a point from [0, 1)s.

Let us slightly modify De�nition 1 (f. [1℄; the equivalene of de�nitions 1 and 2 is

proved in Theorem 2). Namely,

De�nition 2. The joint projetion is alled uniformly distributed, if for any number

ε > 0 and for any natural k there exists natural Nf1,...,fs
0 (k, ε) suh that for eah n >

Nf1,...,fs
0 (k, ε) and for all a1, a2, . . . , as suh that a1, a2, . . . , as ∈ {0, 1, . . . , pk − 1} it holds

∣∣∣∣
Fn(Jk(a1, a2, . . . , as))

V (Jk(a1, a2, . . . , as))
− 1

∣∣∣∣ 6 ε,

where V (Jk(a1, a2, . . . , as)) = p−sk
is the s-dimensional volume of the mentioned paral-

lelepiped.

We omit parameters in denotations Nf1,...,fs
0 (k, ε), if they are lear from the ontext.

Analogously to the ase of Nf1,...,fs(k, ε), using the denotation Nf1,...,fs
0 (k, ε) = g(k, ε),

we mean that the given funtion g satis�es onditions imposed on it in De�nition 2, but

the minimum of the estimate is not guaranteed.

3 The d-uniformity

In essene, the error mentioned in De�nition 1 is absolute for any parallelepiped,

while that in De�nition 2 is relative; it is alulated only for lattie hyperubes. Sine the
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lattie step an be hosen arbitrarily, one an approximate any parallelepiped by lattie

hyperubes; this property implies the following assertion.

Theorem 2. For a olletion of ompatible funtions f1, f2, . . . , fs De�nition 1 is equiv-

alent to De�nition 2, and N(ε) = N0(k, ε
′), where k = − logp(ε/4s), ε

′ = 1/2ε.

Proof. Let onditions of De�nition 2 be ful�lled. Let us prove that

∀ε > 0 : ∃N(ε)∀n > N, ∀J : |V (J)− Fn(J)| < ε.

Choose k = − logp(ε/4s), ε
′ = 1/2ε. Let us prove that the number N = N0(k, ε

′) is the

desired one.

Let J be some parallelepiped in [0, 1)s. We denote by J+
k the union of hyperubes in

the form Jk(a1, . . . , as) whih have at least one ommon point with J and we do by J−
k

the union of hyperubes whih entirely lie inside J .

Evidently, J+
k forms a parallelepiped and so does J−

k .

Note that 0 6 V (J+
k ) − V (J−

k ) 6 ε/2. Really, in eah of s measurements there exist

no more than two ¾layers¿ of the lattie that lie in J+
k , but do not lie in J−

k . The volume

of eah of them does not exeed 1/pk. Therefore, the total di�erene does not exeed

2s/pk = ε/2.

Let us now write the ondition of De�nition 2 in the form

V (Jk(a1, . . . , as))(1− ε′) 6 Fn(Jk(a1, . . . , as)) 6 V (Jk(a1, . . . , as))(1 + ε′)

and alulate the sum for eah of sets J+
k , J

−
k . We obtain

V (J+
k )(1− ε′) 6 Fn(J

+
k ) 6 V (J+

k )(1 + ε′)

V (J−
k )(1− ε′) 6 Fn(J

−
k ) 6 V (J−

k )(1 + ε′).

It is also evident that V (J−
k ) 6 V (J) 6 V (J+

k ). In addition, Fn(J
−
k ) 6 F (J) 6 Fn(J

+
k ),

beause these values are proportional to the number of points of the projetion that lie

inside the orresponding parallelepiped. Then we write

Fn(J)− V (J) 6 Fn(J
+
k )− V (J−

k ) 6 V (J+
k )(1 + ε′)− V (J−

k ) 6 V (J+
k )ε

′ + ε/2.

Sine J+
k lies inside the unit ube, we have V (J+

k ) 6 1, and this means that the latter

expression does not exeed ε (beause ε′ = ε/2). Analogously,

Fn(J)− V (J) > Fn(J
−
k )− V (J+

k ) > V (J−
k )(1− ε′)− V (J+

k ) > −V (J−
k )ε

′ − ε/2 > −ε.
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Therefore, we have obtained the desired inequality

|Fn(J)− V (J)| 6 ε

for an arbitrary parallelepiped J .

The proof of the onverse assertion is performed with the help of an analogous esti-

mation.

Let us strengthen De�nition 2, �xing the residue x of the division by pd for natural d.

Let d ∈ N, β ∈ {0, 1, . . . , pd − 1}. Denote by P (n, d, β), n > d the multiset of points

(
f1(x) mod pn

pn
,
f2(x) mod pn

pn
, . . . ,

fs(x) mod pn

pn

)

for all x ∈ {0, 1, . . . , pn − 1}, x mod pd = β. Let F d,β
n (J) be the ratio of the number of

points from P (n, d, β) that lie in J to the ardinal number of P (n, d, β), i.e., to pn−d
.

De�nition 3. The joint projetion of ompatible funtions f1, . . . , fs is said to be d-

uniformly distributed, if for any number ε > 0 and for any natural k, d there exists natural

N = Nf1,...,fs
d (k, ε) suh that for eah n > N , for any β ∈ {0, 1, . . . , pd − 1}, and for all

a1, a2, . . . , as ∈ {0, 1, . . . , pk − 1} it holds

∣∣∣∣
F d,β
n (Jk(a1, a2, . . . , as))

V (Jk(a1, a2, . . . , as))
− 1

∣∣∣∣ 6 ε.

In other words, the d-uniformity is the uniformity in eah p-adi ball, whose volume

equals pd.

For Nf1,...,fs
d (k, ε) we use assumptions analogous to above ones for N and N0 (see the

end part of Setion 2).

Note that the number Nd indiated in the de�nition is independent of β; it depends

only on its p-adi length, i.e., on d. This ondition does not strengthen the de�nition.

Really, sine for �xed d the number of possible values of β is �nite, one ould have hosen

Nd as the maximum of the orresponding numbers for eah β. Nevertheless, it is more

onvenient to use just this statement, i.e., the uniformity with respet to β.

Evidently, the d-uniformity implies the uniformity in the sense of De�nition 2, namely,

it su�es to put d = 0. In what follows, when speaking of the uniformity, we mean the

d-uniformity, if this leads to no ambiguity.

Let n ∈ N, n > k, x1, x2, . . . , xs ∈ {0, 1, . . . , pn − 1}. Note that the point(
x1

pn
, x2

pn
, . . . , xs

pn

)
belongs to Jk(a1, a2, . . . , as) if and only if the pre�x of the length k in

the p-adi notation of xi oinides with ai for all i, 1 6 i 6 s (here we assume that the
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p-adi notation of xi onsists of exatly n digits, while the p-adi notation of ai onsists

of exatly k digits independently of the presene of leading zeros).

One an also easily see that the ondition x mod pd = β is equivalent to the fat that

the latter d p-adi digits of x ontain the notation of β.

4 The oin toss

In this setion we prove some orollaries of the d-uniformity whih we need in the

indution step in the proof of the main theorem.

Let d, r ∈ N, d < r, β ∈ {0, 1, . . . , pd − 1}. Denote by Ω(r, d, β) the set of all x ∈
{0, 1, . . . , pr − 1} suh that x mod pd = β.

Speaking informally, the d-uniformity of the joint projetion of the olletion

f1(x), f2(x), . . . , fs(x) means that with �xed d, β and �xed su�iently large r, under the

equiprobable hoie of x from Ω(r, d, β), the probability that the point

(
f1(x) mod pr

pr
,
f2(x) mod pr

pr
, . . . ,

fs(x) mod pr

pr

)

belongs to Jk(a1, a2, . . . , as) equals approximately V (Jk(a1, a2, . . . , as)). In the following

lemma we prove that if for x we hoose a su�iently long string, then the probability that

this event takes plae with at least one r an be arbitrarily lose to 1.

More formally, let k ∈ N, a1, a2, . . . , as ∈ {0, 1, . . . , pk − 1} be given. Fix n ∈ N, n >

d, n > k. We say that x is suitable, if there exists r ∈ N, d+ k 6 r 6 n suh that

(
f1(x) mod pr

pr
,
f2(x) mod pr

pr
, . . . ,

fs(x) mod pr

pr

)
∈ Jk(a1, a2, . . . , as).

Lemma 1. Assume that the joint projetion of a olletion of funtions

f1(x), f2(x), . . . , fs(x) has a d-uniform distribution, a value ε > 0 and numbers

k, d ∈ N are given. Then there exists L = Lf1,...,fs(k, ε, d) suh that for any n > L and

any β ∈ {0, 1, . . . , pd − 1}, a1, a2, . . . , as ∈ {0, 1, . . . , pk − 1} the ratio of the number of

suitable x to |Ω(n, d, β)| is at least 1− ε.

Proof. The proof of the lemma is based on a simple idea. Let us have a biased oin suh

that the probability of the head is bounded from below by some nonzero onstant. Then

by tossing the oin su�iently many times one an make the probability of getting at

least one head arbitrarily lose to 1. One ¾oin toss¿ onsists in obtaining a new value of

n, namely, Nd(k, ε), where d is the previous value of n. The independene of oin ¾tosses¿

is guaranteed by the presene of parameters d, β, and the boundedness from below of the
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probability of the head is provided by the d-uniformity of the olletion f1, . . . , fs. Just

in this lemma and in the next one we need De�nition 3 that strengthens De�nition 2.

Put L(0) = d. Construt a sequene L(i), i > 0, as follows: let L(i)
be equal to

Nf1,...,fs
L(i−1)+k

(k, 1/2). Let γi be the ratio of the number of unsuitable x to |Ω(L(i), d, β)|.
Evidently, γ0 6 1. Let us estimate γi. The de�nition of the uniformity and the de�nition

of L(i)
imply that FL(i−1),β

L(i) (Jk(a1, a2, . . . , as)) > V (Jk(a1, a2, . . . , as))/2 = 1
2psk

for any

β : 0 6 β 6 pL
(i−1) − 1. Denote the latter number by ε′ (it orresponds to the probability

of getting the head in one toss). Therefore, for eah β ∈ {0, 1, . . . , pL(i−1) − 1} there exists
at least ε′pL

(i)−L(i−1)
ways to �ll L(i) − L(i−1)

major positions so as to make obtained x

suitable for n = L(i)
(independently of the ontent of L(i−1)

latter positions). This means

that the ratio of the number of ways to �ll these positions making x unsuitable does not

exeed 1 − ε′. Evidently, if x is unsuitable for n = L(i)
, then it is also unsuitable for all

lesser n, in partiular, for n = L(i−1)
. The number of ways to �ll the latter L(i−1)

positions

making x unsuitable for n = L(i−1)
by de�nition equals γi−1. Therefore, the ombined

share γi 6 (1 − ε′)γi−1, beause in order to make x unsuitable, one has to �ll the minor

L(i−1)
positions in any of γi−1p

L(i−1)
ways; for eah of them there exists no more than

(1 − ε′)pL
(i)−L(i−1)

ways to �ll the major L(i) − L(i−1)
positions. Sine γ0 6 1, we obtain

γi 6 (1− ε′)i. The latter expression is a geometri progression with the ratio 1− ε′ < 1,

whih means that γi < ε with i > log1−ε′ ε. The orresponding number L
(i)

is the desired

value of L, beause, evidently, the ratio of suitable x does not derease with the growth

of n.

For Lf1,...,fs(k, ε, d) we also use onditions analogous to those desribed earlier for N

and N0 (see the end part of Setion 1).

Note that the proof of the lemma also allows us to alulate Lf1,...,fs(k, ε, d). It

su�es to onstrut the sequene L(0) = d, L(i) = Nf1,...,fs
L(i−1)+k

(k, 1/2), i > 0 and to put

Lf1,...,fs(k, ε, d) = L
(⌈log

1−1/(2psk)
ε⌉)
.

Let us generalize the latter lemma for the ase of several olletions ai. The previous

lemma guarantees that one an ¾trunate¿ a su�iently long sequene x (i.e., alulate

modulo pr) so as to make the major k positions of fi(x) mod pr oinide with some

arbitrary �xed olletion ai. Now we are going to prove that even if we have m olletions

a
(j)
i ∈ {0, 1, . . . , pk − 1}, 1 6 i 6 s, 1 6 j 6 m, then for eah olletion of numbers there

exists its own r(j), i.e., the way to ¾trunate¿ x and fi(x) so as to make the major k

positions among r(j) positions of the number fi(x) form the number a
(j)
i . In addition,

we want distint r(j) to be not too lose, therefore we additionally impose the ondition

r(j) − r(j−1) > ∆ with some �xed natural ∆.
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Let k, d,∆ ∈ N be given. Assume also that natural m is given, as well as m olletions

of s numbers suh that for eah j, where 1 6 j 6 m, the olletion of numbers a
(j)
i ∈

{0, 1, . . . , pk − 1}, 1 6 i 6 s, is de�ned. We say that x ∈ {0, 1, . . . , pn − 1} is onurrently

suitable, if the following onditions are ful�lled:

• x is suitable for k, d, ai = a
(j)
i for eah �xed j. We denote the orresponding numbers

r by r(j).

• r(j) > r(j−1) + k +∆ for 1 < j 6 m.

The parameter ∆ has the following sense: it is neessary that neighboring segments of

positions orresponding to degrees of p, whose values vary from r(j)−k to r(j)−1, should

not be too lose; namely, we require that their di�erene should exeed some �xed ∆.

Lemma 2. Assume that the joint projetion of a olletion of funtions

f1(x), f2(x), . . . , fs(x) has a d-uniform distribution, and numbers ε > 0 and

k, d,∆, m ∈ N are given. Then there exists L̃ = L̃f1,...,fs(k, ε, d,∆, m) suh that

for any n > L̃, any β ∈ {0, 1, . . . , pd − 1}, and any m olletions of s numbers

a
(j)
i ∈ {0, 1, . . . , pk − 1}, 1 6 i 6 s, 1 6 j 6 m, the ratio of the number of x, whih are

onurrently suitable for a
(j)
i , to |Ω(n, d, β)| is at least 1− ε.

Proof. Put ε′′ = 1 − m
√
1− ε. Let L̃(0) = d. Construt a sequene L̃(1), L̃(2), . . . , L̃(s)

as follows: L̃(j)
equals Lf1,...,fs(k, ε, L̃

(j−1) + ∆) whih was obtained in aordane with

Lemma 1. Let γ(j)
be the ratio of admissible x for n = L̃(j)

whih are onurrently

suitable for m = j and for j �rst olletions ai (i.e., for whih there exist r(1), r(2), . . . , r(j)

satisfying the above orrelations). Then, taking into aount the de�nition of L̃(i)
, we

onlude that γ(j) > γ(j−1)(1 − ε′′). Hene and from the fat that γ(0) = 1 (sine for

j = 1 no onditions are imposed on x, exept its belonging to Ω(n, d, β)) it follows that

γ(m) > (1− ε′)m = 1− ε, whih means that L̃ = L̃(m)
is the desired value.

For L̃f1,...,fs(k, ε, d,∆, m) we also make assumptions analogous to those desribed above

for N and N0 (see the end part of Setion 1).

The proof of Lemma 2 also allows us to alulate L̃f1,...,fs(k, ε, d,∆, m). It su�es to

onstrut the sequene L̃(0) = d, L̃(j) = Lf1,...,fs(k, ε, L̃
(j−1) + ∆) with j > 0 and to put

L̃f1,...,fs(k, ε, d,∆, m) = L̃(m)
.

5 Game protools for the uniformity

For proving the uniformity of joint projetions of monomials we need to simplify and

to formalize the proof of the uniformity. Let us desribe a ertain game protool. Players
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hoose in turns values of ertain variables. The variables, whose values are being hosen

by us, are preeded by the existential quanti�er, while those, whose values are being

hosen by our ompetitor, are preeded by the generality quanti�er.

Let ompatible funtions f1(x), f2(x), . . . , fs(x) be given. Consider the following game

of two players, Good and Evil. The game has the following sheme:

1. Evil hooses numbers k, d ∈ N and ε1, ε2 > 0.

2. Good hooses the number Ñ = Ñf1,...,fs
d (k, ε1, ε2) ∈ N.

3. Evil hooses numbers n > Ñ, β ∈ {0, 1, . . . , pd−1} and draws on a board n suessive

empty ells (positions); in what follows we �ll eah of them with a number ranging

from 0 to p − 1. We immediately �ll the latter d ells with the notation of the

number β.

4. Good hooses an arbitrary set of empty positions and desribes some set of admis-

sible ways to �ll these positions. The ratio of the ardinal number of the latter

set to the total number of ways to �ll the hosen positions should be not less than

1−ε1. In other words, if Good has hosen l positions, then the number of admissible

variants should be at least (1− ε1)p
l
.

5. Evil �lls positions hosen at the previous step in one of admissible ways.

6. Good olors an arbitrary set of empty positions. Let their number equal m.

7. Evil absolutely arbitrarily �lls all empty unolored positions and hooses

a1, a2, . . . , as ∈ {0, 1, . . . , pk − 1}.

8. Good desribes (1 − ε2)p
m−sk

ways to �ll olored positions so that for the number

x ∈ {0, 1, . . . , pn − 1}, whose p-adi notation is written on the board, the point

(
f1(x) mod pn

pn
,
f2(x) mod pn

pn
,
f3(x) mod pn

pn
, . . . ,

fs(x) mod pn

pn

)

should belong to Jk(a1, a2, . . . , as). If Good sueeds in doing this, it is said to be

the winner, otherwise Evil beomes the winner.

Along with the above requirements, the strategy of Good should be determinate. This

means that if there are two variants of the behavior of Evil suh that the latter performs

the same ations on several �rst steps of the game, Good also must perform the same

ations till Evil �rst behaves di�erently.
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Note that on Step 6 Good ould have always olored all positions and then ould

have desribed the neessary number of ways to �ll them, while Good ould have inde-

pendently onsidered all possible variants of �lling positions whose oloring would not be

neessary. Nevertheless, for struturing the proof, it is onvenient to ¾separate roles¿ as

was desribed on steps 6-7.

For Ñf1,...,fs
d (k, ε1, ε2) ∈ N we make assumptions analogous to those desribed earlier

for N and N0 (see the end part of Setion 1).

Lemma 3. If Good always wins in the desribed game, then the joint projetion of

f1, . . . , fs has a uniform distribution, while Nd(k, ε) = Ñd(k, ε
′, ε′), where ε′ = ε/(2psk).

Proof. Denote

F̃ d,β
n (Jk(a1, a2, . . . , as)) = F d,β

n (Jk(a1, a2, . . . , as))p
n−d.

Therefore, F̃ d,β
n (Jk(a1, a2, . . . , as) is the number of points from P d,β

n that belong to

Jk(a1, a2, . . . , as).

Let k, d, a1, a2, . . . , as be �xed. Rewrite the ondition

∣∣∣∣
F d,β
n (Jk(a1, a2, . . . , as))

V (Jk(a1, a2, . . . , as))
− 1

∣∣∣∣ 6 ε

as

(1− ε)p−sk
6 F d,β

n (Jk(a1, a2, . . . , as)) 6 (1 + ε)p−sk

or, alternately,

(1− ε)pn−d−sk
6 F̃ d,β

n (Jk(a1, a2, . . . , as)) 6 (1 + ε)pn−d−sk.

Fix some admissible way to �ll l positions hosen on Step 4. Calulating the sum of all

possible ways to �ll n − l − d − m unolored positions on Step 7, we obtain that the

quantity of values of x, for whih the orresponding points belong to Jk(a1, a2, . . . , as), is

no less than pn−l−d−m · (1 − ε2)p
m−sk = (1 − ε2)p

n−l−d−sk
. Now by summing this value

over all admissible ways to �ll l positions hosen on Step 4, we obtain that their amount

is no less than (1 − ε1)p
l
. This means that there exist at least (1 − ε1)(1 − ε2)p

n−d−sk

values of x, eah of whih satis�es onditions desribed on Step 8. The ful�llment of these

onditions means that a point belongs to Jk(a1, a2, . . . , as), whih gives the inequality

(1− ε1)(1− ε2)p
n−d−sk

6 F̃ d,β
n (Jk(a1, a2, . . . , as))
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Let us now prove the upper bound. Evidently, a point annot onurrently belong to

Jk(a1, a2, . . . , as) and to Jk(a
′
1, a

′
2, . . . , a

′
s) with (a1, a2, . . . , as) 6= (a′1, a

′
2, . . . , a

′
s). There-

fore,

F̃ d,β
n (Jk(a1, a2, . . . , as)) 6 pn−d −

∑

(a′1,...,a
′

s):(a
′

i)6=(ai)

F̃ d,β
n (Jk(a

′
1, a

′
2, . . . , a

′
s)) 6

6 pn−d − (psk − 1)(1− ε1)(1− ε2)p
n−d−sk =

= (1− (1− ε1)(1− ε2))p
n−d + (1− ε1)(1− ε2)p

n−d−sk
6

6 (ε1 + ε2)p
n−d + pn−d−sk

Put ε1 = ε2 = min(1−
√
1− ε, ε/2psk). Then we get

(1− ε1)(1− ε2)p
n−d−sk

> (1− ε)pn−d−sk,

and

(ε1 + ε2)p
n−d + pn−d−sk

6 (1 + ε)pn−d−sk.

This means that inequalities

(1− ε1)(1− ε2)p
n−d−sk

6 F̃ d,β
n (Jk(a1, a2, . . . , as)),

whih were obtained above, and

F̃ d,β
n (Jk(a1, a2, . . . , as)) 6 (ε1 + ε2)p

n−d + pn−d−sk

lead to the desired orrelations

(1− ε)pn−d−sk
6 F̃ d,β

n (Jk(a1, a2, . . . , as)) 6 (1 + ε)pn−d−sk.

Note that 1 −
√
1− ε > ε/2 with ε > 0. Therefore, with s, k ∈ N, p > 2 it holds

min(1 −
√
1− ε, ε/(2psk)) = ε/(2psk), whih means that in aordane with the said

above, Nd(k, ε) = Ñd(k, ε/(2p
sk), ε/(2psk)).

Consider the following modi�ation of the game desribed above:

0. Good �xes some natural onstant c0 = cf1,...,fs0 .

1. Evil �xes k, d ∈ N and ε1 > 0.

2. Good hooses the number N̂ = N̂f1,...,fs
d (k, ε1).
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3. Evil hooses numbers n > N̂, β ∈ {0, 1, . . . , pd−1} and draws on a board n sequential

empty ells-positions, eah of whih in what follows will be �lled with a number from

0 to p− 1. The latter d ells are immediately �lled with the notation of the number

β.

4. Good hooses an arbitrary set of empty positions and de�nes some set of admissible

ways to �ll these positions. The ratio of the ardinal number of the latter set to the

total number of ways to �ll the hosen positions should be at least 1− ε1.

5. Evil �lls positions hosen on the previous step in one of admissible ways.

6. Good olors an arbitrary set of positions whih are not �lled yet. Denote their

number by m.

7. Evil absolutely arbitrarily �lls all empty positions exept olored ones and hooses

a1, a2, . . . , as ∈ {0, 1, . . . , pk − 1}.

8. Good de�nes pm−sk
ways to �ll olored positions so as to satisfy the following ondi-

tion. Denote by x ∈ {0, 1, . . . , pn−1} the number, whose p-adi notation will be writ-
ten on the board; x1 = f1(x) mod pn, x2 = f2(x) mod pn, . . . , xn = fn(x) mod pn.

Denote by bi numbers, whose p-adi notation is the pre�x of the length k of the row

onsisting of n symbols of the p-adi notation of xi (i.e., bi = ⌊xi/p
n−k⌋). Require

that bi should di�er from ai no more than by c0 (hereinafter in the ondition ¾di�er

no more than by c0¿ imposed on p-adi numbers of the length k, the di�erene is

understood as the minimum of two di�erenes alulated modulo pk; in other words,

0 and pk −1 are treated as di�erent by 1). In the ase, when Good an de�ne pm−sk

ways to �ll the olored positions, eah of whih satis�es the above requirement,

Good is said to be the winner, otherwise Evil is said to win.

Let us impose one additional requirement to the tehniques proposed by Good;

namely, for two distint olletions a1, a2, . . . , as, assuming that the rest ations of

Evil are the same, sets of tehniques proposed by Good should be non-interseting.

As above, the strategy of Good is assumed to be determinate.

For N̂f1,...,fs
d (k, ε1) we make assumptions analogous to those made above for N and N0

(see the end part of Setion 1).

Lemma 4. In the ase, when Good always wins in the modi�ed game, it an also be the

winner in the initial game, and Ñd(k, ε1, ε2) = N̂d(k2, ε1), where k2 = k + logp
2sc

f1,...,fs
0

ε2
.
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Proof. Let us apply Lemma 3. Assume that there exists an orale that implements a

winning strategy for Good in the modi�ed game. Let us desribe the strategy for a

mediator that uses this orale, whih is winning for the non-modi�ed game.

Assume that on the �rst step the orale gives a number c0. After obtaining k the

mediator alulates k2 = k + logp
2sc0
ε2

. Note that

(pk2−k − 2c0)
s

p(k2−k)s
> (1− ε2).

Really, for 0 < ε2 < 1 we have

(1− ε2)
1/s

6 1− ε2
s
,

therefore with k2 = k − logp
ε2
2sc0

it holds

(
pk2−k − 2c0

pk2−k

)s

=

(
1− 2c0

pk2−k

)s

=
(
1− ε2

s

)s

> 1− ε2.

Furthermore, the mediator will onurrently use (pk2−k−2c0)
s
orales whih implement

the winning strategy for the modi�ed game. On steps 1-6 he sends the data obtained from

orales to Evil and does the data given by Evil to orales unhanged, exept the fat that

on Step 1 he sends to the orales k2 instead of k. Sine the orales are determinate,

the data produed by them oinide. Having obtained on Step 7 numbers a1, a2, . . . , as,

the mediator use them to form olletions a1p
k2−k + b1, a2p

k2−k + b2, . . . , asp
k2−k + bs

for all possible ombinations of bi ∈ {c0, c0 + 1, . . . , pk2−k − c0 − 1}. Therefore he gets

(pk2−k − 2c0)
s
olletions of numbers, eah of whih belongs to {0, 1, . . . , pk2 − 1}. Then

he sends these olletions to the orales as a1, a2, . . . , as. One an easily see that if any of

the sent numbers varies no more than by c0, then their �rst k digits remain equal initial

a1, a2, . . . , as. Therefore, the tehniques for �lling m olored positions de�ned by orales

satisfy requirements imposed on Step 8 of the non-modi�ed game. Eah orale de�nes

pm−k2s
tehniques, therefore, their total number is pm−k2s(pk2−k − 2c0)

s
. The additional

requirement desribed on Step 8 guarantees that no tehnique is ounted twie. The

inequality

pm−k2s(pk2−k − 2c0)
s

pm−ks
>

pm−k2s(1− ε2)(p
k2−k)s

pm−ks
= 1− ε2

ompletes the proof of the lemma.

6 The uniformity of the joint projetion of monomials

Let us �rst prove one simple assertion whih will allow us to restrit the variation of

major positions under the linear ombination of several numbers. Here the deviation is
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understood as the minimum of two di�erenes modulo pk, i.e., 0 and pk−1 are onsidered

to di�er by 1.

Lemma 5. Fix a natural number m and a olletion of integer numbers ai, 1 6 i 6

m. Put c0 = |a1| + |a2| + . . . + |am|. Then for any natural n, k : n > k and for any

x1, x2, . . . , xm ∈ {0, 1, . . . , pn−1} the number, whose p-adi notation is formed by the �rst

k digits in the n-digit notation of the number (a1x1 + a2x2 + . . .+ amxm) mod pn, di�ers

from the number (a1y1 + a2y2 + . . .+ amym) mod pk (here yi is the number, whose p-adi

notation is formed by the �rst k digits in the n-digit p-adi notation of xi) no more than

by c0.

Proof. Let us �rst note that for any k, n, k 6 n and any x, y ∈ {0, 1, . . . , pn−1} the number
formed by the �rst k digits of x+y di�ers from the sum modulo pk of numbers formed by

the k �rst digits of x, y no more than by 1. This property follows from the proedure of

addition of numbers in a olumn; namely, the value that is moved to the major k positions

in the summation proess, does not exeed 1. An analogous orrelation is valid for the

di�erene x − y and the di�erene of their k major positions, beause the borrow in the

subtration proedure does not exeed 1. After establishing these two fats, one an easily

obtain the desired assertion by indution with respet to |a1|+ |a2|+ . . .+ |am|.

In other words, Lemma 5 asserts that if we alulate a linear ombination of several

numbers and then hoose the k major positions among n ones, we will deviate at most

by c0 from the result obtain by performing these operations in the onverse order, i.e., if

we �rst trunate the minor n− k positions and then alulate the linear ombination.

Let us now prove the key theorem of this paper.

Theorem 3. Let s ∈ N. The joint projetion of the olletion f1(x) = x, f2(x) =

x2, . . . , fs(x) = xs
has a d-uniform distribution, and

N̂x
d (k, ε1) = k + d

N̂x,x2,...,xs

d (k, ε1) = L̂x,x2,...,xs−1(2k + ⌈logp s⌉, ε1, d, ⌈logp s⌉, s− 1) with s > 1

cx,...,x
s

0 = s2.

Proof. Let us prove the theorem by indution. The indution base for s = 1 is evident,

namely, the ondition that

x
pn

should belong to the semiinterval Jk(a1) is equivalent to

the orresponding hoie of k major digits of x; therefore, the desired orrelation is valid

for any ε > 0 (and n > d+ k = N̂d).

Denote by ordpi the maximal degree of p, whih is a divisor of i, θ(i) = i/pordpi
.
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Now let the joint projetion x, x2, . . . , xs−1
have a uniform distribution. Let us prove

a uniform distribution of the joint projetion x, x2, . . . , xs
. Aording to Lemma 4, to this

end it su�es to de�ne the orresponding move of Good on eah even step of the modi�ed

game.

The proof is based on the following idea: we obtain the neessary major digits of

monomials x, . . . , xs
, hanging the ertain olletion of positions in the major half of x

(to this end, we olor them on Step 6 of the modi�ed game). The minor half will be

omposed so as to make the dependene of the major k positions of monomials on the

ontent of ontrollable positions easily preditable. Lemma 2 guarantees that the ratio of

suh x an be arbitrarily large.

0. Put cx,...,x
s

0 = s2.

2. Put ∆ = ⌈logp s⌉. Let us now alulate N ′
as

L̂x,x2,...,xs−1(2k +∆, ε1, d,∆, s− 1).

As N̂x,x2,...,xs

d (k, ε1) we hoose 2N
′
. Here we have used the indution hypothesis, i.e.,

the uniformity of the olletion x, . . . , xs−1
, and applied Lemma 2 to it.

In what follows we understand N̂d as N̂
x,x2,...,xs

d (k, ε1).

4. Good hooses the minor N ′
positions (i.e., the half of positions that orresponds to

the less signi�ant positions), exept the latter d ones, whih are �lled already. As

admissible tehniques, Good hooses ones whih are onurrently suitable for the

olletion a
(j)
i :

a
(j)
i =

{
0, i 6= j

pk, i = j

Lemma 2 guarantees that their ratio to the total number of ways to �ll the minor

N ′
positions (the number of the latter equals pN

′−d
) is at least 1− ε1.

6. Sine on Step 5 Evil has hosen one of de�ned tehniques, there exist numbers

r(j) satisfying onditions of Lemma 2. We olor exatly sk positions; namely, the

major k positions (they orrespond to degrees of p from pn−k
to pn−1

), and for

eah r(j) we olor positions whih orrespond to degrees from pn−r(j)+∆−ordp(j+1)
to

pn−r(j)+∆−ordp(j+1)+k−1
, i.e., exatly k positions for eah j from 1 to s − 1. Condi-

tions 2 in the de�nition of a onurrently suitable olletion r(j) and the fat that

∆ > ordp(j + 1) with all j under onsideration guarantee that all sets of positions

do not interset.
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8. In order to avoid any ambiguity in understanding a
(j)
i de�ned on Step 4 and ai

provided by Evil on Step 7, we denote the latter by ãi. On Step 6 exatly sk

positions are hosen, therefore now we have to �ll them in exatly one way so as to

make the initial rows of the length k di�er from ãi provided by Evil on Step 7 no

more than by c0. Firstly, we �ll the major k positions of x with the value ã1. Now

we denote by bj the k-digit number whih oupies positions from pn−r(j)+∆−ordp(j+1)

to pn−r(j)−∆−ordp(j+1)+k−1
(these positions were olored on Step 6). Denote by B the

number, whose p-adi notation would have been written on the board, if eah of bj

had equaled 0. Therefore,

x = B +
s−1∑

j=1

bjp
n−r(j)+∆−ordp(j+1). (1)

Fix

b′j = (ãj+1 −
⌊
Bj+1 mod pn

pn−k

⌋
) mod pk. (2)

In other words, let b′j equal the di�erene between ãj+1 and the �rst k digits of Bj+1

alulated modulo pk. Now let bj equal b
′
j(θ(j + 1))−1 mod pk (sine, by de�nition,

θ(j + 1) is not multiple of p, desired (θ(j + 1))−1
exists modulo pk). Let us write

obtained bj in the orresponding positions on the board and prove that obtained x

satis�es the requirements stated in the desription of Step 8 of the modi�ed game.

Firstly, sine the �rst k digits of x represent the notation of ã1 (as was �xed earlier),

the desired assertion is valid for f1(x) = x.

Let us now prove the desired assertion for ft(x) = xt, 2 6 t 6 s. Consider the

expression for xt
. Let us immediately remove the brakets in the above expression 1)

for x in terms of B, b1, b2, . . . , bs−1. Sine n > N̂d = 2N ′, r(j) 6 N ′,∆ > ordp(j +1),

we have n − r(j) + ∆ − ordp(j + 1) > n − N ′ > n/2, whih means that produts

ontaining at least two terms with bj (for the same or distint values of j) vanish

after the alulation of xt
modulo pn. Therefore,

ft(x) mod pn = xt mod pn = (Bt +

s−1∑

j=1

tBt−1bjp
n−r(j)+∆−ordp(j+1)) mod pn. (3)

Consider the expression tBt−1bjp
n−r(j)+∆−ordp(j+1) mod pn. Note that the multipli-

ation by pn−r(j)+∆−ordp(j+1)
shifts the p-adi notation of the number by n−r(j)+∆−

ordp(j + 1) positions to the left. Therefore, digits of tBt−1bj that oupy the posi-

tions whih orrespond to degrees of p not lesser than n−(n−r(j)+∆−ordp(j+1)) =
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r(j)−∆+ordp(j+1) do not a�et the result, beause they vanish after the alulation

modulo pn.

Let us �rst prove that the major digits of xt mod pn are nearly independent of the

hoie of bj with j 6= t− 1.

Consider the expression Bt−1bjp
n−r(j)+∆−ordp(j+1) mod pn for j 6= t − 1.

Taking into aount the above reasoning, we an write ((Bt−1bj) mod

pr
(j)−∆+ordp(j+1))pn−r(j)+∆−ordp(j+1)

. In aordane with the de�nition of r(j), the

hoie of a
(j)
i , and the hoie of an admissible set for the minorN ′

positions on Step 4,

the �rst 2k+∆ p-adi digits in the r(j)-digit notation of the number Bt−1 mod pr
(j)

are zeros. Sine ∆ > ordp(j + 1), this means that at least 2k + ordp(j + 1) �rst

digits in the (r(j) − ∆ + ordp(j + 1))-digit notation of Bt−1 mod pr
(j)−∆+ordp(j+1)

are zeros. Taking into aount the inequality bj < pk, this means that at least

k+ ordp(j +1) major digits in the notation of (bjB
t−1) mod pr

(j)−∆+ordp(j+1)
are ze-

ros. Hene it follows that the number of zeros in the n-digit notation of the number

(bjB
t−1pn−r(j)+∆−ordp(j+1)) mod pn is the same. Thus, we have proved that at least

k major digits in the notation of the latter number are zeros.

Let us now prove that the hoie of bt−1 guarantees the presene of almost de-

sired digits at the beginning of the notation of xt mod pn. Consider the expression

tBt−1bjp
n−r(j)+∆−ordp(j+1) mod pn for j = t − 1. Let us represent t as θ(t)pordpt

.

Then the expression takes the form (θ(t)bt−1B
t−1pn−r(t−1)+∆−ordp(t)+ordp(t)) mod pn =

(θ(t)bt−1B
t−1pn−r(t−1)+∆) mod pn. Consider separately (bt−1B

t−1pn−r(t−1)+∆) mod

pn. Reasoning similarly to the ase when j 6= t− 1, we an write

((bt−1B
t−1) mod pn−(n−r(t−1)+∆))pn−r(t−1)+∆ =

= ((bt−1B
t−1) mod pr

(t−1)−∆)pn−r(t−1)+∆.

By the de�nition of r(j), the hoie of a
(j)
i , and the hoie of an admissible set for

the minor N ′
positions on Step 4, the �rst 2k + ∆ p-adi digits in the r(t−1)

-digit

notation of the number Bt−1 mod pr
(t−1)

form the notation of the number pk. This

means that the �rst 2k digits in the (r(t−1)−∆)-digit notation of Bt−1 mod pr
(t−1)−∆

also form the notation of pk.

The latter property is equivalent to the fat that the �rst k digits of the number

(bt−1B
t−1) mod pr

(t−1)−∆
form the notation of bt−1, beause k zeros that follow the

unit in the 2k-digit notation of the number pk anel the possible arry-out. There-

fore, the �rst k digits in the n-digit notation of (bt−1B
t−1pn−r(t−1)+∆) mod pn also

form the notation of bt−1.
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Let us now onsider the addends that enter in the sum for xt
in formula (3).

We have s − 2 expressions in the form (Bt−1bjp
n−r(j)+∆)−ordp(j+1)) mod pn for

j 6= t − 1 whih enter in the sum for xt
with the oe�ient t, one expression

(Bt−1bt−1p
n−r(t−1)+∆) mod pn whih enters in it with the oe�ient θ(t), and one

expression Bt
whih enters in this sum with the oe�ient 1. Taking into aount

the proved assertion, as well as the fat that btθ(t) = b′t, in view of the de�nition

of b′t, we onlude that onsidering (with the same oe�ients) the numbers whose

notations are formed by the k major digits in eah term, we will get ãt alulated

modulo pk.

It remains to prove that the in�uene of the minor digits is smoothed over. Consider

the linear ombination with oe�ients c1 = c2 = . . . = cs−2 = t, cs−1 = θ(t), cs = 1.

By Lemma 5, the k major digits of this linear ombination alulated modulo pn

di�er from the linear ombination of numbers formed by the k major digits of the

initial numbers alulated modulo pk at most by

s∑

i=1

cs = t(s− 2) + θ(t) + 1 6 s2,

whih oinides with the onstant c0 hosen on Step 0. Therefore, obtained x satis�es

requirements of item 8 of the modi�ed game.

Let us now disuss the question of why with various olletions ai we obtain distint

x. Let us have a olletion ã1, ã2, . . . , ãs and ã′1, ã
′
2, . . . , ã

′
s. If ã1 6= ã′1, then obtained

x di�er in the �rst k positions. In other words, let ãi 6= ã′i with some i > 1. Then

orresponding b′i−1 are also distint (see (2)), beause in both ases B oinide being

independent of ãj with j > 1. This means that bi−1 are also distint, whih implies

the diversity of x.

The obtained strategy proves the theorem.

7 Estimation of the uniformity limits

Reall that the equality sign following any of symbols N, Ñ, N̂ , L, L̃ means that the

funtion in the right-hand side an serve as the orresponding bound n, not neessarily

the minimal one.

Theorem 4. It holds N̂x,x2,...,xs

d (k, ε) = exp{pc1(s)k−c2(s) log ε+c3(s)} +

d exp{pc4(s)k−c5(s) log ε+c6(s)}, where ci are some funtions that depend only on s and

p.
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Proof. Correlations established in lemmas 1,2,3,4 and Theorem 3 give the following system

of equalities:

• Nx
d (k, ε) = k + d;

• Nx,...,xs

d (k, ε) = Ñx,...,xs

d (k, ε/(2psk), ε/(2psk));

• Ñx,...,xs

d (k, ε1, ε2) = N̂x,...,xs

d (k + logp
2s3

ε2
, ε1);

• N̂x,...,xs

d (k, ε1) = 2L̃x,x2,...,xs−1(2k + ⌈logp s⌉, ε1, d, ⌈logp s⌉, s− 1);

• the following way to alulate L̃f1,...,fs: L̃(0) = d, L̃(j) = Lf1,...,fs(k, ε, L̃
(j−1) + ∆)

with j > 0 and put L̃f1,...,fs(k, ε, d,∆, m) = L̃(m)
;

• the following way to alulate Lf1,...,fs(k, ε, d): L(0) = d, L(i) = Nf1,...,fs
L(i−1)+k

(k, 1/2)

with i > 0 and put Lf1,...,fs(k, ε, d) = L(⌈log
1−1/(2psk)

ε⌉)
.

Introdue the following denotations:

Nx,...,xs

d (k, 1/2) = A(s, k) + dB(s, k);

Ñx,...,xs

d (k, 1/(4psk), 1/(4psk)) = Ã(s, k) + dB̃(s, k);

N̂x,...,xs

d (k, 1/(4psk)) = Â(s, k) + dB̂(s, k);

Lx1,...,xs(k, 1/(4psk), d) = AL(s, k) + dBL(s, k);

L̃x1,...,xs(k, 1/(4psk), d, ⌈logp s⌉, s) = AL̃(s, k) + dBL̃(s, k).

Then

Nx,...,xs

d (k, ε) = Ñx,...,xs

d (k, ε/(2psk), ε/(2psk)) gives

A(s, k) = Ã(s, k), B(s, k) = B̃(s, k).

Ñx,...,xs

d (k, ε1, ε2) = N̂x,...,xs

d (k + logp
2s3

ε2
, ε1) gives

Ã(s, k) = Â(s, k + logp
2s3

1/(4psk)
), B̃(s, k) = B̂(s, k + logp

2s3

1/(4psk)
).

N̂x,...,xs

d (k, ε1) = 2L̃x,x2,...,xs−1(2k + ⌈logp s⌉, ε1, d, ⌈logp s⌉, s− 1) gives

Â(s, k) = 2AL̃(s− 1, k), B̂(s, k) = 2BL̃(s− 1, k).

Let some funtion f(d) = a+ bd be given. Then for eah onstant ∆ we an onstrut

the following sequene of funtions fi(d): f0(d) = d, fi(d) = f(fi−1(d) + ∆). We an rep-

resent obtained fi(d) as fi(d) = ai+dbi. Denote suh numbers ai and bi by Arec(a, b, i,∆)

and Brec(a, b, i,∆), respetively.

Let us estimate Arec and Brec with b > 2, a > 0:

Arec = a+ b(a+∆+ b(a+∆+ . . .+ (a+∆+ b(a+∆)) . . .)) 6 (a+∆)bi, Brec = bi.
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Then the following way to alulate L̃f1,...,fs: L̃
(0) = d, L̃(j) = Lf1,...,fs(k, ε, L̃

(j−1) +∆)

with j > 0 and L̃f1,...,fs(k, ε, d,∆, m) = L̃(m)
gives

AL̃(s, k) = Arec(AL(s, k), BL(s, k), s, ⌈logp(s+ 1)⌉),
BL̃(s, k) = Brec(AL(s, k), BL(s, k), s, ⌈logp(s+ 1)⌉).
The following way to alulate Lf1,...,fs(k, ε, d): L

(0) = d, L(i) = Nf1,...,fs
L(i−1)+k

(k, 1/2), i > 0

and Lf1,...,fs(k, ε, d) = L(⌈log
1−1/(2psk)

ε⌉)
gives:

AL(s, k) = Arec(A(s, k), B(s, k), ⌈log1−1/(2psk)(1/(4p
sk))⌉, k),

BL(s, k) = Brec(A(s, k), B(s, k), ⌈log1−1/(2psk)(1/(4p
sk))⌉, k).

Sine − log(1− 1/(2psk)) > 1/(2psk), we have:

AL(s, k) 6 Arec(A(s, k), B(s, k), ⌈2psk log(4psk)⌉, k),
BL(s, k) 6 Brec(A(s, k), B(s, k), ⌈2psk log(4psk)⌉, k).

Therefore,

A(1, k) = k,

B(1, k) = 1,

A(s, k) = Ã(s, k),

B(s, k) = B̃(s, k),

Â(s, k) = 2AL̃(s− 1, k),

B̂(s, k) = 2BL̃(s− 1, k),

Ã(s, k) = Â(s, ⌈k + logp(2s
34psk)⌉),

B̃(s, k) = B̂(s, ⌈k + logp(2s
34psk)⌉),

Arec(a, b,∆, i) 6 (a+∆)bi,

Brec(a, b,∆, i) = bi,

AL̃(s, k) = (AL(s, k) + ⌈logp(s + 1)⌉)BL(s, k)
s
,

BL̃(s, k) = BL(s, k)
s
,

AL(s, k) = (k + A(s, k))B(s, k)⌈2p
sk log(4psk)⌉

,

BL(s, k) = B(s, k)⌈2p
sk log(4psk)⌉

.

Taking the logarithm, we obtain

logA(1, k) = log k,

logB(1, k) = 0,

logA(s, k) = log Ã(s, k),

logB(s, k) = log B̃(s, k),

log Â(s, k) = log 2 + logAL̃(s− 1, k),

log B̂(s, k) = log 2 + logBL̃(s− 1, k),

log Ã(s, k) = log Â(s, ⌈k + logp(2s
34psk)⌉),
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log B̃(s, k) = log B̂(s, ⌈k + logp(2s
34psk)⌉),

logAL̃(s, k) = log(AL(s, k) + ⌈logp(s+ 1)⌉) + s logBL(s, k),

logBL̃(s, k) = s logBL(s, k),

logAL(s, k) = log(k + A(s, k)) + ⌈2psk log(4psk)⌉ logB(s, k),

logBL(s, k) = ⌈2psk log(4psk)⌉ logB(s, k).

Let us obtain bounds for the repeated logarithm. To this end we will apply the

orrelation written above the statement of the theorem, using the equality sign. With x >

2 and y > 2 we have xy > x+y; this allows us to approximately alulate the logarithm of

the sum as the sum of logarithms, provided that addends satisfy the mentioned onditions.

In above orrelations we are interested in the upper bound for the ase when s > 1. Let

us replae the initial onditions with B(1, k) = 2, A(1, k) = k+2. Sine we have replaed

ertain values with greater ones, in sums in the right-hand sides of the orrelations all

addends (exept log 2 or, possibly, ⌈logp(s + 1)⌉) exeed 2. In above orrelations we are

interested in the upper bound for the ase when s > 1. Let us replae initial onditions

with B(1, k) = 2, A(1, k) = k + 2. Note that the substituted values exeed initial ones.

By replaing the rest onstants with greater values we also make the resulting bound

more rough. Now we assume that all summands exeed 2 (we replae log 2 with 2, and

do ⌈logp(s+1)⌉) with s+ 1). Now, using the inequality from the previous paragraph, we

replae the sum with the produt. Then we alulate the logarithm (of the base p) and

again replae onstants with upper bounds (thus, for example, logp 2 < 1, and logarithms

of the rest onstants are less than the latter themselves). As a result, we obtain the

following simple reurrent orrelations for (overestimated) double logarithms:

logp logA(1, k) = k + 2,

logp logB(1, k) = 2,

logp log Ã(1, k) = k,

logp log B̃(1, k) = 2,

logp logA(s, k) = logp log Ã(s, k),

logp logB(s, k) = logp log B̃(s, k),

logp log Ã(s, k) = logp log Â(s, k + sk + 3s+ 3),

logp log B̃(s, k) = logp log B̂(s, k + sk + 3s+ 3),

logp log Â(s, k) = 1 + logp logAL̃(s− 1, k),

logp log B̂(s, k) = 1 + logp logBL̃(s− 1, k),

logp logAL̃(s, k) = logp logAL(s, k) + 2s+ s+ logp logBL(s, k),

logp logBL̃(s, k) = s + logp logBL(s, k),

logp logAL(s, k) = k + logp logA(s, k) + sk + logp logB(s, k),
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logp logBL(s, k) = sk + logp logB(s, k).

But even these (ampli�ed) double logarithms A and B, evidently, linearly depend on

k (with �xed s). This means that the linear upper bound with respet to k is also ful�lled

for non-modi�ed double logarithms A and B.

Thus, we have obtained a bound for Nx,...,xs

d (k, 1/2). Let us now perform the initial

indution step of Theorem 3, where ε is arbitrary.

We have

L(0) = d, L(i) = NL(i−1)+k(k, 1/2) with i > 0 and Lx,...,xs(k, ε, d) = L(⌈log
1−1/(2psk)

ε⌉)
,

whene with the help of bounds for Arec and Brec we obtain

Lx,...,xs(k, ε, d) 6 (A(s, k) + k)B(s, k)
⌈log

1−1/(2psk)
ε⌉
+ dB(s, k)

⌈log
1−1/(2psk)

ε⌉
.

Using the formula for L̃(s, k) and the same bounds for Arec and Brec, we get

L̃x,...,xs(k, ε, d,∆, s) 6 ((A(s, k) + k)B(s, k)⌈log1−1/(2psk)
ε⌉ +∆)B(s, k)s⌈log1−1/(2psk)

ε⌉+

dB(s, k)s⌈log1−1/(2psk)
ε⌉.

With 0 < x < 1, 0 < ε < 1, it holds ⌈log1−x ε⌉ > −(log ε)/x + 1, therefore

⌈log1−1/(2psk) ε⌉ < −2psk log ε+ 1.

Let us represent 2p(s−1)(2k+⌈logp s⌉)
as c(s)p2(s−1)k

, where c(s) is some funtion of s.

Therefore,

N̂x,...,xs

d (k, ε1) = 2L̃x,...,xs−1(2k + ⌈logp s⌉, ε1, d, ⌈logp s⌉, s− 1) 6

2((A(s−1, 2k+⌈logp s⌉)+2k+⌈logp s⌉)B(s−1, 2k+⌈logp s⌉)−c(s)p2(s−1)k log ε1+1+⌈logp s⌉)×

B(s− 1, 2k + ⌈logp s⌉)(s−1)(−c(s)p2(s−1)k log ε1+1)+

2dB(s− 1, 2k + ⌈logp s⌉)(s−1)(−c(s)p2(s−1)k log ε1+1).

Consider double logarithms of the oe�ient at d and the free term in last but one

expression. Taking into aount the obtained above linear (with respet to k) bounds for

double logarithms of A and B, we obtain linear with respet to k and log ε bounds for

these funtions.
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8 The uniformity for linear ombinations

In lemmas 6-10, as well as in theorems 5, 6, we understand the sentene ¾the joint

projetion of the olletion f1(x), f2(x), . . . , fs(x) has a uniform distribution¿ as a re-

quirement stronger than De�nition 3, namely, the existene of a winning strategy for the

modi�ed game.

We intend to prove that the uniformity of the olletion (f1(x), . . . , fs(x)) implies that

of the olletion (g1(x), . . . , gs(x)), provided that the seond olletion is obtained from

the �rst one by adding to one of funtions an integer linear ombination of the rest ones

or by adding an integer onstant, or by multiplying by suh a onstant. Hene and from

Theorem 3 we dedue the uniformity of the s-dimensional projetion of polynomials.

Lemma 6. Assume that the joint projetion of a olletion of funtions

f1(x), f2(x), . . . , fs(x) has a uniform distribution, and u is a natural number. Then the

joint projetion of the olletion puf1(x), f2(x), . . . , fs(x) also has a uniform distribution,

and

N̂puf1,f2,...,fs
d (k, ε) = N̂f1,...,fs

d (k + u, ε)

cp
uf1,f2,...,fs

0 = cf1,...,fs0 .

Proof. Assume that there exists an orale whih implements a winning strategy for the

olletion f1(x), f2(x), . . . , fs(x). Let us represent the strategy for the mediator that uses

this orale.

The mediator uses psu idential orales. On steps 0-6 he sends unhanged data from

orales to Evil and from Evil to orales, exept the fat that instead of k he informs

orales of the number k + u. Sine the orales are determinate, the data obtained from

them oinide. The mediator transforms the olletion a1, a2, . . . , as of numbers of the

length k obtained on Step 7 into psu olletions of numbers of the length k + u in the

following way: to a1 he appends (in all possible ways) the major u digits, and does to

a2, . . . , as (in all possible ways) the minor u ones (thus, the total number of used variants

is (ps)u = psu). Then he sends to eah orale one of olletions and obtains from them

psupm−(k+u)s = pm−sk
ways to �ll m positions whih were not �lled on Step 6. Evidently,

the obtained variants satisfy onditions imposed on f2(x), . . . , fs(x), beause the �rst

k digits of the orresponding numbers in olletions sent to the orales oinide with

a2, . . . , as. One an also easily see that the stated ondition is also ful�lled for f1(x),

beause the minor k positions among k + u ones in notations of numbers sent to the

orales as a1 oinide with a1, and the multipliation by pu make the p-adi notation of
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a number shift by u positions to the left. This means that eah of pm−sk
ways to �ll the

olored positions proposed by orales satisfy the onditions imposed on it on Step 8 of the

game. All these variants are distint due to the additional requirement imposed on them

on Step 8; onsequently, the mediator an present them to Evil as a response implied by

Step 8 of the protool.

For various olletions a1, a2, . . . , as, the olletions presented to the orales are also

distint, therefore the validity of the additional requirement for the mediator follows from

its validity for the orales.

Lemma 7. Assume that the joint projetion of a olletion of funtions

f1(x), f2(x), . . . , fs(x) has a uniform distribution, and u is an integer number mu-

tually prime with p. Then the joint projetion of the olletion uf1(x), f2(x), . . . , fs(x)

also has a uniform distribution, and

N̂uf1,f2,...,fs
d (k, ε) = N̂f1,...,fs

d (k, ε)

cuf1,f2,...,fs0 = ucf1,...,fs0 .

Proof. Assume that there exist an orale whih implements a winning strategy for the

olletion f1(x), f2(x), . . . , fs(x). Let us desribe the strategy for the mediator, who uses

this orale.

On steps 0-6 the mediator sends unhanged data from orales to Evil and from Evil

to orales, exept the fat that on Step 0 he multiplies c0 (obtained from an orale) by u.

Denote the value of c0 initially obtained from an orale by c′0. Having obtained on Step 7

numbers a1, a2, . . . , as, the mediator alulates a′1 = a1u
−1 mod pk (the desired inverse

value exists, beause u is mutually prime with p) and sends the olletion a′1, a2, a3, . . . , as

to an orale. Let us prove that the variants of �lling the olored positions proposed by

the orale satisfy the stated onditions. This, evidently, is true for f2(x), f3(x), . . . , fs(x).

It is also true that the �rst k digits of f1(x) di�er from a′1 at most by c′0. By Lemma 5

this implies that the �rst k digits of f1(x)u di�er from a1 at most by c0; therefore, the

ondition stated on Step 8 is also ful�lled for f1(x).

For di�erent olletions a1, a2, . . . , as, the olletions sent to an orale are also di�erent;

therefore the ful�llment of the additional ondition for an orale implies its validity for

the mediator.

Lemma 8. Assume that the joint projetion of a olletion of funtions

f1(x), f2(x), . . . , fs(x) has a uniform distribution, and u is an integer nonzero number.

Then the joint projetion of the olletion uf1(x), f2(x), . . . , fs(x) also has a uniform
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distribution, and

N̂uf1,f2,...,fs
d (k, ε) = N̂f1,...,fs

d (k + ordpu, ε)

cuf1,f2,...,fs0 = θ(u)cf1,...,fs0 .

Proof. The desired assertion follows from two previous lemmas and the representation

u = θ(u)pordpu.

Lemma 9. Assume that the joint projetion of a olletion of funtions

f1(x), f2(x), . . . , fs(x) has a uniform distribution, and u is an integer number. Then the

joint projetion of the olletion f1(x)+u, f2(x), . . . , fs(x) also has a uniform distribution,

and

N̂f1+u,f2,...,fs
d (k, ε) = N̂f1,...,fs

d (k, ε)

cf1+u,f2,...,fs
0 = cf1,...,fs0 + u+ 1.

Proof. Assume that there is an orale, whih implements a winning strategy for the ol-

letion f1(x), f2(x), . . . , fs(x). Let us desribe the strategy for the mediator whih uses

this orale.

On steps 0-7 the mediator sends unhanged data from the orales to Evil, and from

Evil to the orales, exept the fat that on Step 0 he inreases c0 (obtained from an orale)

by u+1. Denote the value of c0 initially obtained from an orale by c′0. Let us prove that

the variants of �lling the olored positions proposed by an orale on Step 8 satisfy the

stated onditions. Evidently, this is true for f2(x), f3(x), . . . , fs(x). Moreover, the �rst k

digits of f1(x) di�er from a1 at most by c′0. Let us represent f1(x) + u as 1 · f1(x) + u · 1.
Sine n0 > k, the �rst k digits in the n-digit notation of 1 are zeros. By Lemma 5 this

means that the �rst k digits of f1(x) + u di�er from a1 at most by c0; therefore, the

ondition stated on Step 8 is also ful�lled for f1(x).

If olletions a1, a2, . . . , as are distint, then so are olletions given to an orale,

therefore the validity of the additional ondition for the mediator follows from its validity

for an orale.

Lemma 10. Assume that the joint projetion of a olletion of funtions

f1(x), f2(x), . . . , fs(x) has a uniform distribution, and u2, u3, . . . , us are arbitrary integer

numbers. Then the joint projetion of the olletion f1(x) +
s∑

i=2

uifi(x), f2(x), . . . , fs(x)

also has a uniform distribution, and

N̂
f1+

s∑
i=2

uifi,f2,...,fs

d (k, ε) = N̂f1,...,fs
d (k, ε)

c
f1+

s∑
i=2

uifi,f2,...,fs

0 = cf1,...,fs0 +

s∑

i=2

ui.
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Proof. Assume that some orale implements a winning strategy for the olletion

f1(x), f2(x), . . . , fs(x). Let us desribe the strategy for the mediator whih uses this

orale.

On steps 0-6 the mediator sends unhanged data from the orales to Evil and from Evil

to the orales, exept the fat that on Step 0 he inreases the value of c0 (obtained from an

orale) by 1 +
s∑

i=2

ui. Denote the value of c0 initially obtained from an orale by c′0. After

obtaining on Step 7 numbers a1, a2, . . . , as, he alulates a′1 = a1 −
s∑

i=2

uiai mod pk and

sends the olletion a′1, a2, a3, . . . , as to an orale. Let us prove that the variants of �lling

the olored positions proposed by an orale satisfy the stated onditions. Evidently, this

is true for f2(x), f3(x), . . . , fs(x). It is also true that the �rst k digits of f1(x) di�er from

a′1 at most by c′0. By Lemma 5 hene we dedue that the �rst k digits of f1(x)+
s∑

i=2

uifi(x)

di�er from a1 at most by c0; therefore, the ondition stated on Step 8 is also ful�lled for

f1(x).

If olletions a1, a2, . . . , as are distint, then so are the olletions sent to an orale,

beause a2, . . . , as are sent unhanged, and if they oinide, then the number subtrated

from a1 also equals the same value. Therefore, if the additional ondition is valid for an

orale, then it is also valid for the mediator.

9 The uniformity for polynomials

Theorem 5. Let A be an arbitrary nondegenerate integer s× s-matrix. Assume that the

olumn of polynomials f1, . . . , fs is given by the orrelation (f1, . . . , fs)
T = A(x, . . . , xs)T+

z, where z is an arbitrary onstant integer s × 1-olumn. The joint projetion of the

olletion f1(x), f2(x), . . . , fs(x) has a uniform distribution, and

Nf1,...,fs(ε) = exp{c1ε−c2},

where c1, c2 are positive onstants depending only on the olletion of fi and independent

of ε.

Proof. By Theorem 3 the joint projetion of the olletion x, x2, . . . , xs
has a uniform

distribution. In view of lemmas 8, 9, and 10 we an perform three operations with the

olletion, namely,

• add an integer onstant to any funtion;

• multiply any funtion by an integer nonzero onstant;
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• add to any funtion an integer linear ombination of the rest funtions;

as above, the joint projetion has a uniform distribution. To omplete the proof, it remains

to show that these operations allow us to transform the olletion x, x2, . . . , xs
into that

f1(x), f2(x), . . . , fs(x).

Really, lemmas 6-10 hange the value of k only in the following way: they add to k

some onstant independent of k and ε. Therefore, taking into aount Theorem 4, we

obtain the orrelation

N̂f1,...,fs
0 (k, ε1) = exp{pc1k−c2 log ε+c3},

where c1, c2, c3 are some onstants depending on the olletion of fi (we replae d with 0,

whih makes the seond term in the bound in Theorem 4 vanish). Lemmas 6-10 de�ne

some value cf1,...,fs0 . Sequentially applying lemmas 3 and 4, we get

Nf1,...,fs
0 (k, ε) = Ñf1,...,fs

0 (k, ε/(2psk), ε/(2psk)) = N̂f1,...,fs
0 (k + logp

2scf1,...,fs0

ε/(2psk)
, ε/(2psk)).

Note that both logp(ε/(2p
sk) and logp

2sc
f1,...,fs
0

ε/(2psk)
are representable as a linear ombina-

tion of 1, k, log ε, whose oe�ients depend only on f1, . . . , fs and are independent of k, ε.

In aordane with Theorem 2 we set k = − logp ε+ logp 4s and thus obtain desired

Nf1,...,fs(ε) = exp{c1ε−c2}.

for some positive numbers c1, c2 (their positiveness follows from the nonnegativity of N

and the fat that the bound inreases as ε diminishes).

Let us now prove that by desribed operations we an get the olletion (f1, . . . , fs).

To this end, let us begin with the olletion (f1, . . . , fs) and obtain that x, . . . , xs
by the

following operations:

• add to any funtion an integer onstant;

• divide any funtion by an integer nonzero onstant;

• add to any funtion an integer linear ombination of the rest funtions,

and then perform the orresponding inverse operations in the onverse order.

Let us obtain funtions in three steps.

1. Firstly, get rid of free terms, just subtrating them. This allows us to represent

the olletion f1, . . . , fs in the form A(x, . . . , xs)T with some matrix A. Below in

the proof of the theorem we identify the olletion of funtions f1, . . . , fs with this

matrix A.
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2. Obtain an upper-triangular matrix.

3. Sequentially, starting with the last olumn, redue the matrix to the desired form.

Step 1 is evident.

Let us desribe Step 2 in detail. Assume that for some number t, 0 6 t 6 s, for eah

olumn i, 1 6 i 6 t, all elements below the diagonal equal zero. Let us desribe the way

to proeed from t = t′ to t = t′ + 1. At the very beginning we assume that t = 0, and

with t = s we obtain the desired value.

Let us sequentially apply the Eulid algorithm to elements of the olumn t′+1 for some

pairs of rows. We obtain the GCD in the olumn t′+1, subtrating the orresponding rows

from eah other (this is a partiular ase of the linear ombination). Let us �rst alulate

the GCD for rows t′ + 1 and t′ + 2. After determining the GCD in one row (modi�ed by

the algorithm), in olumn t′+1 we get 0. We �nd the GSD for the remaining row and for

row t′+3. Proeeding this proess for all j up to s we �nd the GSD for pairs of rows, one

of whih is the only row (among rows with numbers from t′ +1 to j− 1) whose (t′ +1)-st

element di�ers from zero, and the other one is the jth row. Eah time after alulating

the GSD in one row modi�ed by the algorithm, we get zero in it in the (t′ + 1)-st plae.

Thus, we have proved that among rows with numbers from t′ + 1 to s there is only

one row with a nonzero element at the (t′ + 1)-st position. Now we an add it to row

t′+1 and then subtrat from it the just obtained row t′+1; thus we get a unique nonzero

element in row t′ + 1, whih means that in olumn t′ + 1 all elements loated below the

diagonal also equal zero.

Let us now desribe the way in whih we implement Step 3. We sequentially, for t

varying from s to 1, perform the following operation: �rst we divide row t by its only

nonzero element loated on the diagonal and thus turn this element to 1. Then from

eah row from 1 to t − 1 we subtrat row t multiplied by the tth element of the urrent

row. Thus we make the tth row the only row whose tth element di�ers from zero. After

performing this operation for t = 1 we obtain the unit matrix.

Lemma 11. Let the joint projetion of a olletion of funtions f1(x), f2(x), . . . , fs(x)

have a uniform distribution. Then the joint projetion of any subolletion

fi1 , fi2 , . . . , fik , 1 6 i1 < i2 < . . . < ik 6 s, also has a uniform distribution.

Proof. One an easily dedue the desired assertion from the de�nition, summing numbers

of points in the orresponding volumes over all possible values of aj , 1 6 j 6 n, j /∈
{i1, i2, . . . , ik}.
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Theorem 6. Let f(x) be an arbitrary polynomial with integer oe�ients of a degree

greater than 1, and let s be an arbitrary natural number. Then the s-dimensional proje-

tion of the polynomial f(x) has a uniform distribution, and

Nx,f,...,f(s−1)

(ε) = exp{c1ε−c2}

for some positive c1, c2 depending only on the polynomial f .

Proof. Let the degree of f (s−1)(x) equal d. Evidently, no two polynomials in the set

x, f(x), f (2)(x), . . . , f (s−1)(x) have one and the same degree. Let us add to this set ar-

bitrary polynomials so as to make the resulting set ontain exatly one polynomial of

degree i for eah i, 1 > i > d. In view of Theorem 5 (sine the triangular matrix is

nondegenerate), the joint projetion of this set of funtions has a uniform distribution.

Sine x, f(x), f (2)(x), . . . , f (s−1)(x) is its subset, in aordane with the previous lemma,

the joint projetion of this set also has a uniform distribution, whih was to be proved.

Evidently, by exluding several fi we will not inrease N , therefore it holds

Nx,f,...,f(s−1)

(ε) = exp{c1ε−c2}

for some positive c1, c2 depending only on the polynomial f .

Corollary 1. Resolving the mentioned bound with respet to ε and taking into aount

that m = pn, one an easily obtain Dm 6 c1 log logm
−c2

for some positive c1, c2.

10 Conlusion

In this paper we prove that the projetion of any linearly independent (after elimi-

nating free terms) olletion of polynomials has a uniform distribution modulo pn with

n → ∞ for any prime p. In partiular, this is true for the projetion of iterations of

any polynomial, whose degree exeeds 2. In the ase, when suh a polynomial ontains a

omplete yle, the set of points, whose oordinates are s sequential terms of the reurrent

sequene generated by this polynomial, also has a uniform distribution modulo pn with

n → ∞ for any prime p.

The estimate of the onvergene rate obtained in this paper is muh weaker than that

established for onrete lasses of polynomials in [7℄,[8℄,[9℄. In De�nition 1 we use the

disrepany ε = sup |V (J) − Fn(J)| onsidered in the mentioned papers. The bounds

proved in these papers allow us to obtain the main term of the asymptotis of ε in the

formmc
, where c = −1/2 with some logarithmi orretions onordant with the repeated
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logarithm law (note that there exist polynomials, for whih this bound is violated, see [9℄).

The estimate for the onvergene rate established in this paper allows us only to asertain

that the lower boundary for ε dereases being the double logarithm of the absolute value

raised to some negative degree, whih is essentially weaker.

In the following papers we intend to generalize the obtained result for the ase of

polynomials of many variables. Moreover, it seems possible to establish a riterion for

preserving the uniformity of a olletion of funtions for a �nite automaton and, therefore,

to replae linear ombinations (see Setion 8) with a more general onstrution.
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