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Abstract

Consider a collection f of polynomials f;(z), i =1,...,s, with integer coefficients

such that polynomials f;(x) — f;(0), i = 1,...,s, are linearly independent. Denote

by D,, the discrepancy for the set of points (W,...,%ﬂ) for all
x € {0,1,...,m}, where m = p", n € N, and p is a prime number. We prove

that D,, — 0 as n — oo, and D,, < ¢1(loglogm)~“, where ¢; and ¢y are positive
constants that depend only on the collection of f;. As a corollary, we obtain an
analogous result for iterations of any polynomial (with integer coefficients) whose
degree exceeds 1. Certain results on the uniform distribution were known earlier

only for some classes of polynomials with s < 3.

1 Introduction

The construction of pseudorandom generators (PRG) is one of most important cryp-
tographic problems; they have many various practical applications. We assume that a
PRG consists of

e a transition function f defining the state of the PRG by the formula w;.1 = f(u;),
where u; is its state at the time moment i (therefore, the state at the time moment i is

defined as an i-fold iteration of the function f of the initial state, i.e., u; = f@ (ug));
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e an output function F' that defines the output of the PRG at the time moment i as

a function of its current state, i.e., z; = F(u;);

e the initial state uo (in what follows we assume that it is chosen randomly).

In this paper we study the ability of certain functions f, namely, polynomials, to
ensure the desired property of the sequence of internal states (in other words, the ability to
play the role of the function f). We assume that calculations are performed modulo some
number m. For the sake of uniformity or reasoning with various m, we consider the number
u;/m; evidently, it belongs to the interval from 0 to 1. In order to demonstrate that
consequent values are «independent» of previous ones, we study the set formed by points,
whose coordinates are equal to several successive values of u;/m in a multidimensional
unit hypercube.

With fixed m the number of points if finite and not greater than m, because the next
state is uniquely defined by the previous one. Therefore, by tending m to infinity, one
obtains the desired assertions for this case. Below, as a rule, m takes the form of p” with
some prime p and natural n.

It is well known that for polynomials of degree 1 the measure of the closure of the
mentioned set equals 0, and with n tending to infinity all points belong to several hyper-
planes [2, P. 117] inside the unit hypercube. In [4] one proves that the measure of the
closure of the corresponding set equals either 0 or 1 for any compatible function f, in
particular, for polynomials of any degree (see Theorem 1).

For practical applications, along with the unit measure of the closure (i.e., the fact
that the s-dimensional cube is covered by the set under consideration), it is also important
that the rate (with n tending to infinity), at which the cube is being covered by these
points, should be the same at all regions of the cube. More formally, we say that the
projection of the function f(x) is uniformly distributed in the s-dimensional cube, if for
each parallelepiped J inside the cube the ratio of the number of points in J to the total
number of points with n — oo equals the ratio of the s-dimensional volume of J to the
total volume of the cube, i.e., to one. See [1],[6] for definitions of the uniformity for an
arbitrary set, of points.

In papers [7], [8], [9] one proves the uniformity of the corresponding sets for quadratic
polynomials for the number of iterations of 2 and 3. Moreover, in the mentioned papers
one obtains conditions under which the set of pairs of consecutive outputs of a quadratic
generator almost satisfies the repeated logarithm law [3], namely, the principal term of

1/2

the asymptotics of the discrepancy equals m~"2. In [5] these bounds are improved for

the case of m = 2¥ and two iterations.



In this paper we prove the uniformity for an arbitrary polynomial of degree not less
than 2 with integer coefficients and an arbitrary number of iterations with m = p~,
where n tends to infinity, and p is an arbitrary prime number. The proof is based on
the following evident property: a sufficiently long random sequence necessarily contains
any concrete subsequence; moreover, one can choose the length of the sequence so large
as to make the probability of the opposite event very small. This fact is used in the

2 ..., 2571, we fix certain

induction step. Assuming the uniformity of the collection (z, x
subsequences in the number x so as to make the major digits of each function of the

collection (z,2?, ..., x%) modulo p" easily predictable.

2 Basic notions

In this paper we apply techniques of the p-adic analysis for finding functions that
can be used for constructing PRG; see, e.g., [10] for the necessary definitions. We use
the definitions of the ring of integer p-adic numbers and the p-adic norm | - ||, and
consider functions f from Z, to Z,. Recall [4] that a function from Z, to Z, is said to
be compatible, if || f(z1) — f(z2)|l, < ||z1 — 22|, for any z1,25 € Z,. In other words,
a function is compatible, if for each x;,z, € Z,, for which the minor & digits in the p-
adic notation coincide, the minor & digits in the p-adic notation of f(z;) and f(z5) also
coincide.

For a compatible function f(x) and a natural number s > 2 the set of points in the

form

v f(z) mod p* f@(z) mod p" =Y (x) mod p»
(ﬁ’ P ’ P Y P )
exists for all n € N,o € {0,1,...,p" — 1} (hereinafter the denotation f@(x) means the
ith iteration of the function f). We call this set (note that we consider the union for all
n) the s-dimensional projection of the compatible function f.

Consider a function f having a complete cycle and the corresponding sequence of

states u; = f(u;—1). The set of points in the form

(ui mod p™ w;1; mod p" u;io(x) mod p" Uits—1(x) mod p”)
pro p" Y p"
coincides with the set described above, because by the definition of a complete cycle u;
runs over all values of x.
In this paper, instead of iterations of one function f, as a rule, we consider an arbitrary
collection of compatible functions fi(z), fa(x), ..., fs(x). Let us generalize the definition

of the projection for this case.



Let s compatible functions fi(z), fo(z),..., fs(z) be given. We consider the set of

points in the form

filz) mod p" fo(x) modp"  fy(x) mod p"
( p" ’ p" Y p" )
forall z € {0,1,...,p"—1}. For given f1,..., fs and fixed n we denote the multiset under
consideration by Py, r (n). We call the union of such sets for all n the joint projection
of functions fi(x), fo(x), ..., fs(z).
In what follows we omit subscripts indicating collections of functions, if they are clear
from the context.

In [4] one proves the following key theorem:

Theorem 1 (the 0-1 rule). For any compatible function f the measure of the closure of

its two-dimensional projection equals either 0 or 1.

One can easily generalize the mentioned theorem for the case of arbitrary s and an
arbitrary collection of compatible functions fi, fo, ..., fs.

Let us now give a more formal definition of the projection uniformity. Let J be some
parallelepiped in the cube [0,1)°. Let F,,(J) denote the ratio of the number of points that
belong to Py, . s (n) and lie in J to the total number of points p”. Let V(.J) stand for the

s-dimensional volume of J.

Definition 1. The joint projection of a collection of compatible functions fi,..., f, is
said to have a uniform distribution, if

lim sup |V (J) — F,.(J)| — 0,

n—oo g

where the supremum is calculated over all possible parallelepipeds J.

In the case, when as a collection fi,..., fs one chooses the set of iterations of some
compatible function f (i.e., the set z, f(z), f@(z),..., f6~Y(x)), we say that the s-
dimensional projection function f has a uniform distribution.

Evidently, the uniformity of the projection implies that the measure of the closure
equals 1. In this paper we study the uniformity of projections of polynomial functions f.

Considering the supremum for concrete n, we obtain the discrepancy Dp.. Instead
of estimating this value, it is more convenient to study the lower bound for the digit
capacity, beginning with which the bound for the uniformity of the considered set of points
is guaranteed. In this paper we use various definitions of the uniformity (measurable in
terms of various errors €); as a result, they become connected with each other and form

an upper bound for the discrepancy.



Let us give several more definitions and denotations which are necessary, in particular,
for studying the rate of convergence to 0 in Definition 1.

The uniformity of the projection of a collection of compatible functions means that
for any positive ¢ there exists N/-+/s(¢) such that for any n > N/t=-/s(¢) it holds
|FL () =V (J)] <e.

In what follows, when using the denotation N7v/2-Is(k ) = g(k,¢), we take into
account the fact that this function g satisfies conditions stated in the previous definition,
but the minimum of the estimate is not guaranteed.

Let k be some fixed number, ai,as,...,as € {0,1,...,p¥ — 1}. Denote by
Je(a, as, . .., as) the hypercube in [0, 1)* defined by inequalities

aq a; + 1
— <z <

Pt P*

a9 a9 + 1
— < 2y <

Pk Pk

a as + 1
p—,j <2 < Spk ,

where (21, 22, . . ., 25) are coordinates of a point from [0, 1)*.

Let us slightly modify Definition 1 (cf. [1]; the equivalence of definitions 1 and 2 is

proved in Theorem 2). Namely,

Definition 2. The joint projection is called uniformly distributed, if for any number
e > 0 and for any natural k there exists natural NJ*/*(k, ¢) such that for each n >
Ngl’“"fs(k,e) and for all a1, as, ..., as such that ai, as,...,a, € {0,1,...,p* — 1} it holds

F.(Jx(ay,as,...,as))
V(Jk(ay,ag, ..., as))

— 1| <,

where V(Jiy(ay,as, ..., as)) = p~** is the s-dimensional volume of the mentioned paral-

lelepiped.

We omit parameters in denotations Ngl""’fs(k;, g), if they are clear from the context.
Analogously to the case of Nftv-Fs(k,¢), using the denotation N{"*(k, &) = g(k,¢),
we mean that the given function g satisfies conditions imposed on it in Definition 2, but

the minimum of the estimate is not guaranteed.

3 The d-uniformity

In essence, the error mentioned in Definition 1 is absolute for any parallelepiped,

while that in Definition 2 is relative; it is calculated only for lattice hypercubes. Since the



lattice step can be chosen arbitrarily, one can approximate any parallelepiped by lattice

hypercubes; this property implies the following assertion.

Theorem 2. For a collection of compatible functions fi, fo, ..., fs Definition 1 is equiv-
alent to Definition 2, and N(g) = No(k,€'), where k = —log,(¢/4s),&" = 1/2e.

Proof. Let conditions of Definition 2 be fulfilled. Let us prove that
Ve >0:3dN(e)vn > N,VJ : |V(J) - F,(J)| <e.

Choose k = —log,(c/4s),e" = 1/2e. Let us prove that the number N = Ny(k,e’) is the
desired one.

Let J be some parallelepiped in [0,1)%. We denote by J;' the union of hypercubes in
the form Jy(ay,...,as) which have at least one common point with J and we do by J,
the union of hypercubes which entirely lie inside J.

Evidently, J," forms a parallelepiped and so does J, .

Note that 0 < V(J;7) — V(J,) < £/2. Really, in each of s measurements there exist
no more than two «layers» of the lattice that lie in J;', but do not lie in J; . The volume
of each of them does not exceed 1/p*. Therefore, the total difference does not exceed
2s/pt = ¢/2.

Let us now write the condition of Definition 2 in the form
V(Jelar,...,a5))(1 =€) < Fu(Jr(ay, ..., as) < V(J(ay,...,a5))(1+¢€)
and calculate the sum for each of sets J;, J, . We obtain
V(A=) < F () < V(I +£)

V()1 =) S Fu(Jy) S V() +€).

It is also evident that V(J;) < V(J) < V(J;). In addition, F,(J, ) < F(J) < F,(J;),
because these values are proportional to the number of points of the projection that lie

inside the corresponding parallelepiped. Then we write
Fou ()= V() S E,(JH = V() SVIHA+&)=V(J,) S V(J))E +¢/2.

Since J;" lies inside the unit cube, we have V(J;') < 1, and this means that the latter

expression does not exceed ¢ (because ¢/ = ¢/2). Analogously,

F,(J)=V()) =2 E(J) = V() =2V(J) 1 =&)= V()= =V(J, ) —¢/2 > —¢.



Therefore, we have obtained the desired inequality
[Fu(J) = V()| <e

for an arbitrary parallelepiped J.
The proof of the converse assertion is performed with the help of an analogous esti-

mation. ]

Let us strengthen Definition 2, fixing the residue z of the division by p? for natural d.
Let d € N,3 € {0,1,...,p? — 1}. Denote by P(n,d,3),n > d the multiset of points

(fl(x) mod p™  fo(x) mod p" fs(x) mod p”)
o , o e o

for all x € {0,1,...,p" — 1}, mod p? = B. Let F%?(J) be the ratio of the number of
points from P(n,d, 3) that lie in J to the cardinal number of P(n,d, 3), i.e., to p" <.

Definition 3. The joint projection of compatible functions fi,..., f, is said to be d-
uniformly distributed, if for any number £ > 0 and for any natural k, d there exists natural
N = N({l"“’fs(k,e) such that for each n > N, for any 8 € {0,1,...,p% — 1}, and for all
ai,as,...,a, €{0,1,...,pF — 1} it holds

Fg’ﬁ<Jk<0J1, az, . .. ,CLS)) 1
V(Jk<a,1, as, ..., CI,S))

< e

In other words, the d-uniformity is the uniformity in each p-adic ball, whose volume
equals p.

For Nécl""’fs(k, ) we use assumptions analogous to above ones for N and N, (see the
end part of Section 2).

Note that the number N, indicated in the definition is independent of (; it depends
only on its p-adic length, i.e., on d. This condition does not strengthen the definition.
Really, since for fixed d the number of possible values of /3 is finite, one could have chosen
N, as the maximum of the corresponding numbers for each 5. Nevertheless, it is more
convenient to use just this statement, i.e., the uniformity with respect to f.

Evidently, the d-uniformity implies the uniformity in the sense of Definition 2, namely,
it suffices to put d = 0. In what follows, when speaking of the uniformity, we mean the
d-uniformity, if this leads to no ambiguity.

Let n € Nyn > k,xy,29,...,20s € {0,1,...,p" — 1}. Note that the point
(;—}” By I%) belongs to Ji(ai,as,...,as) if and only if the prefix of the length k in
the p-adic notation of z; coincides with a; for all 7,1 < i < s (here we assume that the



p-adic notation of x; consists of exactly n digits, while the p-adic notation of a; consists
of exactly k digits independently of the presence of leading zeros).
One can also easily see that the condition  mod p? = 3 is equivalent to the fact that

the latter d p-adic digits of x contain the notation of S.

4 The coin toss

In this section we prove some corollaries of the d-uniformity which we need in the
induction step in the proof of the main theorem.

Let d,7 € N;d < r,8 € {0,1,...,p? — 1}. Denote by Q(r,d, 3) the set of all z €
{0,1,...,p" — 1} such that z mod p? = 3.

Speaking informally, the d-uniformity of the joint projection of the collection
fi(x), fa(z), ..., fs(r) means that with fixed d, 5 and fized sufficiently large r, under the
equiprobable choice of x from Q(r,d, ), the probability that the point

(fl(x) mod p”  fo(z) mod p” fs(x) mod p”)
o , p- e p-

belongs to Jy(aq,as, ..., as) equals approximately V(Jg(ai,as,...,as)). In the following
lemma we prove that if for x we choose a sufficiently long string, then the probability that
this event takes place with at least one r can be arbitrarily close to 1.

More formally, let k € N, a1, as,...,as € {0,1,...,pF — 1} be given. Fix n € N,n >
d,n > k. We say that z is suitable, if there exists r € N, d + k < r < n such that

(fl(ﬂf) mod p"  f5(x) mod p" fs(x) mod p"
p : p e pe

) S Jk(al,dg, c. .,CI,S).

Lemma 1. Assume that the joint projection of a collection of functions
fi(z), fa(x), ..., fs(x) has a d-uniform distribution, o value ¢ > 0 and numbers
k,d € N are given. Then there exists L = Ly, 1 (k,e,d) such that for any n > L and
any B € {0,1,...,p% — 1}, a1,a9,...,as € {0,1,...,p* — 1} the ratio of the number of
suitable x to |Qn,d, B)| is at least 1 — e.

Proof. The proof of the lemma is based on a simple idea. Let us have a biased coin such
that the probability of the head is bounded from below by some nonzero constant. Then
by tossing the coin sufficiently many times one can make the probability of getting at
least one head arbitrarily close to 1. One «coin tosss consists in obtaining a new value of
n, namely, Ny(k, ), where d is the previous value of n. The independence of coin «tosses»

is guaranteed by the presence of parameters d, 5, and the boundedness from below of the



probability of the head is provided by the d-uniformity of the collection fi,..., fs. Just
in this lemma and in the next one we need Definition 3 that strengthens Definition 2.
Put L©® = d. Construct a sequence L% i > 0, as follows: let L) be equal to
Nfl’ 1)f+k(k: 1/2). Let 7; be the ratio of the number of unsuitable x to |Q(LY, d, 3)|.
Evidently, 7o < 1. Let us estlmate v;. The definition of the uniformity and the definition
of L% imply that FL@) B(Tuar, as, ... as)) = V(Jlar,ag, ... a5))/2 = W for any
B:0< B <p "™ — 1. Denote the latter number by &’ (it corresponds to the probability
of getting the head in one toss). Therefore, for each 5 € {0,1,... ,pL(H) — 1} there exists
at least &/pX” LY ways to fill L® — LG=D major positions so as to make obtained
suitable for n = L (independently of the content of LU~Y latter positions). This means
that the ratio of the number of ways to fill these positions making = unsuitable does not
exceed 1 — ¢’. Evidently, if  is unsuitable for n = L®, then it is also unsuitable for all
lesser m, in particular, for n = L(i_l) The number of ways to fill the latter LG~ positions
making z unsuitable for n = LU~V by definition equals 7;_;. Therefore, the combined
share v; < (1 —¢’)v;—1, because in order to make = unsuitable, one has to fill the minor

Y ways; for each of them there exists no more than

LU=Y positions in any of fyi,lpL(l
(1 —&)p= =L ways to fill the major L& — LD positions. Since 7y < 1, we obtain
7 < (1 —¢')%. The latter expression is a geometric progression with the ratio 1 — ¢’ < 1,
which means that 7; < £ with ¢ > log, _ e. The corresponding number L is the desired
value of L, because, evidently, the ratio of suitable x does not decrease with the growth

of n. O

For Ly . (k,e,d) we also use conditions analogous to those described earlier for N
and Ny (see the end part of Section 1).

Note that the proof of the lemma also allows us to calculate Ly s (k,e,d). It
suffices to construct the sequence L(® = d, L®) = Nﬁ; f)fik(k’ 1/2),i > 0 and to put
L. s (kye,d) = 7,108y 1 japsky €1).

Let us generalize the latter lemma for the case of several collections a;. The previous
lemma guarantees that one can «truncate» a sufficiently long sequence x (i.e., calculate
modulo p") so as to make the major k positions of f;(x) mod p" coincide with some
arbitrary fixed collection a;. Now we are going to prove that even if we have m collections
agj) €{0,1,...,pF —1},1 <i < 5,1 < j < m, then for each collection of numbers there
exists its own r), i.e., the way to «truncate» x and f;(x) so as to make the major k
positions among rU) positions of the number f;(z) form the number a(]). In addition,
we want distinct 79) to be not too close, therefore we additionally impose the condition

r) — -1 > A with some fixed natural A.



Let k,d, A € N be given. Assume also that natural m is given, as well as m collections
()
S

1

{0,1,...,p" —1},1 < i < s, is defined. We say that = € {0,1,...,p" — 1} is concurrently

of s numbers such that for each j, where 1 < j < m, the collection of numbers a

suitable, if the following conditions are fulfilled:

e 1 issuitable for k,d, a; = agj) for each fixed j. We denote the corresponding numbers

r by ).
o r) >l 4 k4 Aforl<j<m

The parameter A has the following sense: it is necessary that neighboring segments of
positions corresponding to degrees of p, whose values vary from %) — k to ) — 1, should

not be too close; namely, we require that their difference should exceed some fixed A.

Lemma 2. Assume that the joint projection of a collection of functions
fi(z), fo(x), ..., fs(x) has a d-uniform distribution, and numbers ¢ > 0 and
k,d,A,m € N are given. Then there exists L = Efl,___,fs(k,s,d, A,m) such that
for any n > Z, any B € {0,1,...,p* — 1}, and any m collections of s numbers
az(j) € {0,1,...,p" —1},1 < i < 5,1 < j < m, the ratio of the number of x, which are

concurrently suitable for agj), to |QUn,d, B)| is at least 1 — ¢.

Proof. Put ¢” = 1 — {/T—¢. Let L = d. Construct a sequence LW, L3 .. . L®
as follows: L) equals Ly, 1 (k,¢, LU 4 A) which was obtained in accordance with
Lemma 1. Let 4 be the ratio of admissible = for n = LU) which are concurrently
suitable for m = j and for j first collections a; (i.e., for which there exist 7 @ . 70
satisfying the above correlations). Then, taking into account the definition of E(i), we
conclude that y) > ~U=U(1 — &”). Hence and from the fact that v = 1 (since for
j = 1 no conditions are imposed on z, except its belonging to (n,d, 3)) it follows that
~m) > (1 — /)™ = 1 — ¢, which means that L = L™ is the desired value. O

For Zf17-..7fs (k,e,d, A, m) we also make assumptions analogous to those described above
for N and Ny (see the end part of Section 1).

The proof of Lemma 2 also allows us to calculate Zf17,.,7fs(k, e,d, A,;m). Tt suffices to
construct the sequence L = ¢, LU = Lfl,___,fs(k;,g,z(j_l) + A) with 7 > 0 and to put
Lp. (ke d, A,m) = L0,

5 Game protocols for the uniformity

For proving the uniformity of joint projections of monomials we need to simplify and

to formalize the proof of the uniformity. Let us describe a certain game protocol. Players

10



choose in turns values of certain variables. The variables, whose values are being chosen

by us, are preceded by the existential quantifier, while those, whose values are being

chosen by our competitor, are preceded by the generality quantifier.

Let compatible functions fi(x), fa(z), ..., fs(x) be given. Consider the following game

of two players, Good and Evil. The game has the following scheme:

1.

Evil chooses numbers k,d € N and 1,9 > 0.

. Good chooses the number N = ]vgl""’fs(k,sl, g9) € N.

. Evil chooses numbers n > ]\Nf, B €{0,1,...,p?—1} and draws on a board n successive

empty cells (positions); in what follows we fill each of them with a number ranging
from 0 to p — 1. We immediately fill the latter d cells with the notation of the

number .

Good chooses an arbitrary set of empty positions and describes some set of admis-
sible ways to fill these positions. The ratio of the cardinal number of the latter
set to the total number of ways to fill the chosen positions should be not less than
1—e&1. In other words, if Good has chosen [ positions, then the number of admissible

variants should be at least (1 — &;)p'.

Evil fills positions chosen at the previous step in one of admissible ways.
Good colors an arbitrary set of empty positions. Let their number equal m.

Evil absolutely arbitrarily fills all empty uncolored positions and chooses

ai,as,...,as €{0,1,... pF—1}.

Good describes (1 — g9)p™ ** ways to fill colored positions so that for the number

x€{0,1,...,p" — 1}, whose p-adic notation is written on the board, the point

(fl(x) mod p" fo(z) mod p™ f3(x) mod p™ fs(x) mod p")
pn ) pn ) pn T pn

should belong to Ji(ai,as,...,as). If Good succeeds in doing this, it is said to be

the winner, otherwise Evil becomes the winner.

Along with the above requirements, the strategy of Good should be determinate. This

means that if there are two variants of the behavior of Evil such that the latter performs

the same actions on several first steps of the game, Good also must perform the same

actions till Evil first behaves differently.

11



Note that on Step 6 Good could have always colored all positions and then could
have described the necessary number of ways to fill them, while Good could have inde-
pendently considered all possible variants of filling positions whose coloring would not be
necessary. Nevertheless, for structuring the proof, it is convenient to «separate roles» as
was described on steps 6-7.

For ]vgl""’fs(k,sl, £9) € N we make assumptions analogous to those described earlier

for N and Ny (see the end part of Section 1).

Lemma 3. If Good always wins in the described game, then the joint projection of
fiy. o, fs has a uniform distribution, while Ny(k,e) = Ny(k,€',€'), where & = ¢/ (2p**).

Proof. Denote
EP (T, az, .., a,)) = B2 (Jy(ar, az, .. ag))p" .

Therefore, F%®(Ji(ay,as,...,a,) is the number of points from P%? that belong to
Jk(al, as, ..., as).
Let k,d,aq,as,...,as be fixed. Rewrite the condition

Fg’ﬁ(Jk<CL1, as, ... ,CLS)) 1
V(Ji(ay,as, ..., a))

<e€

as
(1 - é‘)pisk < Fr(ziﬂ(‘]k(ala A2y .- -y as)) < (1 + g)p*Sk

or, alternately,
(1 —e)p" Tk < F*(Jy(ay, as, . .., as)) < (14 ¢)p"d=sk.

Fix some admissible way to fill [ positions chosen on Step 4. Calculating the sum of all
possible ways to fill n — [ — d — m uncolored positions on Step 7, we obtain that the
quantity of values of z, for which the corresponding points belong to Ji(a,as, . .., as), is
no less than p"= =47 . (1 — g9)p™ % = (1 — gy)p"'=%*k. Now by summing this value
over all admissible ways to fill [ positions chosen on Step 4, we obtain that their amount
is no less than (1 — &;)p'. This means that there exist at least (1 — e;)(1 — gq)p 4=%*
values of x, each of which satisfies conditions described on Step 8. The fulfillment of these

conditions means that a point belongs to Jy(a,as, ..., as), which gives the inequality

(1 - 81)(1 - 82)pnid75k < FS’B<J]€(CI,1’ ag, .- -y as))

12



Let us now prove the upper bound. Evidently, a point cannot concurrently belong to

Ji(ai,aq, ..., a5) and to Jy(d),al, ..., a.) with (aq,as,...,as ay,a,...,a.). There-
1,y 1, Qo

» s » s

fore,

FM(J(ar, as,. .. a5)) <p" ¢ — Z EMB (T (dy, dly, ... dl)) <
(@y,-say):(af)#(as)

Put &, = g9 = min(1 — /1 — ¢,/2p**). Then we get
(1 o 81)(1 o 82)pn7dfslc > (1 o g)pnfdfsk’

and
(51 + 62)pn—d +pn—d—sk < (1 + 5)pn_d_8k_

This means that inequalities
(1 —e1)(1 —e0)p" 4k < F¥P(Ji(ay, as, . . ., as)),
which were obtained above, and
FO8(Ji(ay, ag, ... as)) < (61 4 2)p" @ + prmd=sk
lead to the desired correlations
(1 —e)p" Tk < F(Jy(ay, as, . .., as)) < (14 ¢)p"d=sk.

Note that 1 — /1 —& > ¢/2 with € > 0. Therefore, with s,k € N,p > 2 it holds
min(1 — /1 —¢,¢/(2p**)) = ¢/(2p**), which means that in accordance with the said
above, Ny(k,e) = Ny(k,e/(2p**), ¢/ (2p*)). O

Consider the following modification of the game described above:

0. Good fixes some natural constant ¢y = ¢
1. Evil fixes k,d € N and ¢; > 0.

2. Good chooses the number N = ]le """ Fo(k,ey).
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3. Evil chooses numbers n > N, B €{0,1,...,p?—1} and draws on a board n sequential
empty cells-positions, each of which in what follows will be filled with a number from

0 to p—1. The latter d cells are immediately filled with the notation of the number
B.

4. Good chooses an arbitrary set of empty positions and defines some set of admissible
ways to fill these positions. The ratio of the cardinal number of the latter set to the

total number of ways to fill the chosen positions should be at least 1 — ;.
5. Evil fills positions chosen on the previous step in one of admissible ways.

6. Good colors an arbitrary set of positions which are not filled yet. Denote their

number by m.

7. Evil absolutely arbitrarily fills all empty positions except colored ones and chooses

ai, as, ... as € {0,1,...,p% —1}.

8. Good defines p™~** ways to fill colored positions so as to satisfy the following condi-
tion. Denote by « € {0,1,...,p"—1} the number, whose p-adic notation will be writ-
ten on the board; z; = fi(z) mod p", xy = fo(z) mod p",... , x, = fu(x) mod p".
Denote by b; numbers, whose p-adic notation is the prefix of the length k of the row
consisting of n symbols of the p-adic notation of x; (i.e., b; = |x;/p"*|). Require
that b; should differ from a; no more than by ¢ (hereinafter in the condition «differ
no more than by cg» imposed on p-adic numbers of the length £, the difference is
understood as the minimum of two differences calculated modulo p*; in other words,
0 and p* — 1 are treated as different by 1). In the case, when Good can define p™~*
ways to fill the colored positions, each of which satisfies the above requirement,

Good is said to be the winner, otherwise Evil is said to win.

Let us impose one additional requirement to the techniques proposed by Good;
namely, for two distinct collections ay, as, ..., as, assuming that the rest actions of

Evil are the same, sets of techniques proposed by Good should be non-intersecting.

As above, the strategy of Good is assumed to be determinate.
For ]ch{““’fs(k, £1) we make assumptions analogous to those made above for N and Ny

(see the end part of Section 1).

Lemma 4. In the case, when Good always wins in the modified game, it can also be the

28c£1

winner in the initial game, and Nd(k,él,gg) = J/\\fd(kg, €1), where ky =k + log, =

14



Proof. Let us apply Lemma 3. Assume that there exists an oracle that implements a
winning strategy for Good in the modified game. Let us describe the strategy for a
mediator that uses this oracle, which is winning for the non-modified game.

Assume that on the first step the oracle gives a number ¢q. After obtaining k the
mediator calculates ky = k + log, 2;% Note that

(pk:g—k; _ 200)8

plkz—k)s > (1-e).
Really, for 0 < g9 < 1 we have

(1—e)/s <12,

S

therefore with ky = k — log, 522 it holds

€
2sco

F2=k _ 9c0\° 2¢o \° €2 °
(2#) :(1_ kok) :<1__2) 2 1—es.
p* pre S

Furthermore, the mediator will concurrently use (p*2=% —2¢;)* oracles which implement

the winning strategy for the modified game. On steps 1-6 he sends the data obtained from
oracles to Evil and does the data given by Evil to oracles unchanged, except the fact that
on Step 1 he sends to the oracles ks instead of k. Since the oracles are determinate,
the data produced by them coincide. Having obtained on Step 7 numbers aq, as, . .., as,
the mediator use them to form collections a;p*>=* + by, asp™ % + by, ..., asp™* + b,

for all possible combinations of b; € {co,co + 1,...,p"*7*

— ¢g — 1}. Therefore he gets
(p**=% — 2¢y)* collections of numbers, each of which belongs to {0,1,...,p* — 1}. Then
he sends these collections to the oracles as aq, as, ..., as. One can easily see that if any of
the sent numbers varies no more than by c¢g, then their first £ digits remain equal initial
ai,as,...,as. Therefore, the techniques for filling m colored positions defined by oracles
satisfy requirements imposed on Step 8 of the non-modified game. Each oracle defines
p™ 2% techniques, therefore, their total number is p™=%23(pk2=% — 2¢4)*. The additional

requirement described on Step 8 guarantees that no technique is counted twice. The

inequality
pmfkgs(pkgfk _ 200)8 pmfkgs(l _ 62)(pk27k)s B
m—ks > m—ks =1- €2
p p
completes the proof of the lemma. O

6 The uniformity of the joint projection of monomials

Let us first prove one simple assertion which will allow us to restrict the variation of

major positions under the linear combination of several numbers. Here the deviation is
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understood as the minimum of two differences modulo p¥, i.e., 0 and p* — 1 are considered
to differ by 1.

Lemma 5. Fiz a natural number m and a collection of integer numbers a;,1 < i <
m. Put co = |ai| + |ao| + ... + |awm|. Then for any natural n,k : n > k and for any
1, Toy .., Ty € {0,1,... p"—1} the number, whose p-adic notation is formed by the first
k digits in the n-digit notation of the number (a1x1 + asxs + ... + apx,y,) mod p”, differs
from the number (a1y; + asys + . .. + Yy ) mod P (here y; is the number, whose p-adic
notation is formed by the first k digits in the n-digit p-adic notation of x;) no more than

by co.

Proof. Let us first note that for any k,n, k < nand any z,y € {0,1,...,p"—1} the number
formed by the first k& digits of x +y differs from the sum modulo p* of numbers formed by
the k first digits of z,y no more than by 1. This property follows from the procedure of
addition of numbers in a column; namely, the value that is moved to the major k positions
in the summation process, does not exceed 1. An analogous correlation is valid for the
difference © — y and the difference of their £ major positions, because the borrow in the
subtraction procedure does not exceed 1. After establishing these two facts, one can easily

obtain the desired assertion by induction with respect to |ai| + |az| + ... + |am]. O

In other words, Lemma 5 asserts that if we calculate a linear combination of several
numbers and then choose the k£ major positions among n ones, we will deviate at most
by ¢ from the result obtain by performing these operations in the converse order, i.e., if
we first truncate the minor n — k positions and then calculate the linear combination.

Let us now prove the key theorem of this paper.

Theorem 3. Let s € N. The joint projection of the collection fi(z) = z, fa(x) =

22, ..., fs(x) = 2° has a d-uniform distribution, and

NG (k,e1) = k+d
Ni= (k1) = Loga.ar(2k + [log, s],21,d, [log, 5], s — 1) with s > 1

T,...,x° 2

CO - S .

Proof. Let us prove the theorem by induction. The induction base for s = 1 is evident,
P
the corresponding choice of k£ major digits of x; therefore, the desired correlation is valid
for any e > 0 (andn)d—l—k:]vd).

Denote by ord,i the maximal degree of p, which is a divisor of i, 6(i) = i/p°»’,

namely, the condition that % should belong to the semiinterval Jy(a;) is equivalent to
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Now let the joint projection x, z2, ..., 2°"! have a uniform distribution. Let us prove
a uniform distribution of the joint projection x, 2%, ..., 2. According to Lemma 4, to this
end it suffices to define the corresponding move of Good on each even step of the modified
game.

The proof is based on the following idea: we obtain the necessary major digits of

% changing the certain collection of positions in the major half of z

monomials z,...,x
(to this end, we color them on Step 6 of the modified game). The minor half will be
composed so as to make the dependence of the major £ positions of monomials on the
content of controllable positions easily predictable. Lemma 2 guarantees that the ratio of

such x can be arbitrarily large.
0. Put ¢ " = s2.
2. Put A = [log, s|. Let us now calculate N’ as
Lo, o1(2k+ A ey, d, A s — 1),

As ﬁg’xQ"“’zs(k, 1) we choose 2N’. Here we have used the induction hypothesis, i.e.,

s—1

the uniformity of the collection x,...,2° ", and applied Lemma 2 to it.

In what follows we understand N, as ﬁ;’ﬁ"“’ws(k, £1).

4. Good chooses the minor N’ positions (i.e., the half of positions that corresponds to
the less significant positions), except the latter d ones, which are filled already. As

admissible techniques, Good chooses ones which are concurrently suitable for the

()
; 0, i#y

=017

P, 1=

Lemma 2 guarantees that their ratio to the total number of ways to fill the minor
N'—d)

collection a

N’ positions (the number of the latter equals p is at least 1 — 4.

6. Since on Step 5 Evil has chosen one of defined techniques, there exist numbers
r() satisfying conditions of Lemma 2. We color exactly sk positions; namely, the
major k positions (they correspond to degrees of p from p"~* to p"~1), and for
each 1@ we color positions which correspond to degrees from pn—r"’+A-ords(i+1) 4

pn—r(j)—I—A—ordp(j-‘,—l)—f—k—l
Y

tions 2 in the definition of a concurrently suitable collection ) and the fact that

i.e., exactly k positions for each j from 1 to s — 1. Condi-

A > ord,(j + 1) with all j under consideration guarantee that all sets of positions

do not intersect.
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8. In order to avoid any ambiguity in understanding an’ defined on Step 4 and q;
provided by Evil on Step 7, we denote the latter by a;. On Step 6 exactly sk
positions are chosen, therefore now we have to fill them in exactly one way so as to
make the initial rows of the length %k differ from a; provided by Evil on Step 7 no
more than by ¢q. Firstly, we fill the major k£ positions of x with the value a;. Now

we denote by b; the k-digit number which occupies positions from pr—r+A—ordy (j+1)

n—r—A—ordy(j+1)+k—1 (these positions were colored on Step 6). Denote by B the

top
number, whose p-adic notation would have been written on the board, if each of b,

had equaled 0. Therefore,

s—1
r =B+ Z bjpnfr(j)JrAfordp(jJrl). (1)
j=1
Fix R 1
. 7T mod p"
b = (@41 — {p”—kJ) mod p*. (2)

In other words, let b equal the difference between a;,, and the first & digits of Bitl
calculated modulo p*. Now let b; equal b}(6(j + 1))~ mod p* (since, by definition,
0(j + 1) is not multiple of p, desired ((j + 1))~ ! exists modulo p*). Let us write
obtained b; in the corresponding positions on the board and prove that obtained x

satisfies the requirements stated in the description of Step 8 of the modified game.

Firstly, since the first & digits of = represent the notation of a; (as was fixed earlier),

the desired assertion is valid for fi(z) = x.

Let us now prove the desired assertion for f,(z) = 2,2 < ¢t < s. Consider the
expression for 2. Let us immediately remove the brackets in the above expression 1)
for x in terms of B, by, by, ..., bs_1. Since n > N, = 2N 1) < N'JA > ord, (5 + 1),
we have n — r¥) + A —ord,(j + 1) > n — N’ > n/2, which means that products
containing at least two terms with b; (for the same or distinct values of j) vanish
after the calculation of z* modulo p™. Therefore,

s—1

ft('r) mod p"* = 2t mod pr = (Bt + ZtBtflbjpnfr(j)qLAfordp(Hl)) mod p”. (3)
j=1

Consider the expression ¢B!=1h;pn—r"+A-0rd(i+1) ;od pn. Note that the multipli-
cation by pn—+A—ords(i+1) ghifts the p-adic notation of the number by n—r@ +A —
ord,(j + 1) positions to the left. Therefore, digits of ¢B*~'b; that occupy the posi-
tions which correspond to degrees of p not lesser than n—(n—rU +A—ord,(j+1)) =
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r) — A+ord,(j+1) do not affect the result, because they vanish after the calculation

modulo p™.

Let us first prove that the major digits of ' mod p™ are nearly independent of the
choice of b; with j # ¢ — 1.

Consider the expression B“lbjp"*T(j)+A*°rdP(j+1) mod p"* for j # t — 1.
Taking into account the above reasoning, we can write ((B''b;) mod
pr(j)—A—l—ordp(j-l—l))p
choice of agj ), and the choice of an admissible set for the minor N’ positions on Step 4,
the first 2k + A p-adic digits in the r@-digit notation of the number B! mod p""”’
are zeros. Since A > ord,(j + 1), this means that at least 2k + ord,(j + 1) first
digits in the (r@) — A + ord,(j 4 1))-digit notation of B! mod pr’ ~Aterde(i+1)

n—rW+A—ordy(7+1) - Tp accordance with the definition of r), the

are zeros. Taking into account the inequality b; < p®, this means that at least
k+ ord,(j + 1) major digits in the notation of (b;B*~!) mod pr=A+ordo(i+1) are ze-
ros. Hence it follows that the number of zeros in the n-digit notation of the number
(b Bt~ 1pr—r+A=ordy(i+1)) mod p™ is the same. Thus, we have proved that at least

k major digits in the notation of the latter number are zeros.

Let us now prove that the choice of b,_; guarantees the presence of almost de-
sired digits at the beginning of the notation of z* mod p™. Consider the expression
tBt*Ibjp"*T(j)+A*°rdP(j+1) mod p" for j = t — 1. Let us represent t as 0(t)p°rdrt,
Then the expression takes the form (8(¢)b,_, B tpn—""V+A—ordy(O)Fordp(t)) 1od pn =
(0(t)by_ B 1pr" "V +8Y mod p*.  Consider separately (b,_; B~ 1pm—"""+4) mod
p". Reasoning similarly to the case when j # ¢t — 1, we can write

(b B') mod pr= AN

= ((by—1B"™") mod pr(t_l)_A)p"_r(t_l)’LA.

By the definition of rU), the choice of agj), and the choice of an admissible set for
the minor N’ positions on Step 4, the first 2k + A p-adic digits in the r*~V-digit
notation of the number B'~! mod pT(H) form the notation of the number p*. This

means that the first 2k digits in the (=2 — A)-digit notation of B~! mod p™* "2
also form the notation of p*.

The latter property is equivalent to the fact that the first k& digits of the number
(bi_y B1) mod p™“ "2 form the notation of b,_y, because k zeros that follow the
unit in the 2k-digit notation of the number p* cancel the possible carry-out. There-
fore, the first k& digits in the n-digit notation of (bt_lBtflp”*”(t_l)*A) mod p™ also

form the notation of b,_;.
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Let us now consider the addends that enter in the sum for z' in formula (3).
We have s — 2 expressions in the form (B=1p;pn—r"+8)-0rds(GH)) mod pm for
j # t — 1 which enter in the sum for z' with the coefficient ¢, one expression
(B=b,_p" """ +8) mod p" which enters in it with the coefficient 6(¢), and one
expression B' which enters in this sum with the coefficient 1. Taking into account
the proved assertion, as well as the fact that 0,6(t) = b}, in view of the definition
of b}, we conclude that considering (with the same coefficients) the numbers whose
notations are formed by the k major digits in each term, we will get a; calculated

modulo p*.

It remains to prove that the influence of the minor digits is smoothed over. Consider
the linear combination with coefficients ¢; = ¢y = ... = ¢, 9 =t,cs.1 = 0(t),cs = 1.
By Lemma 5, the £ major digits of this linear combination calculated modulo p™
differ from the linear combination of numbers formed by the £ major digits of the

initial numbers calculated modulo p* at most by
d eo=t(s—2)+0(t) +1< 5%
i=1

which coincides with the constant ¢y chosen on Step 0. Therefore, obtained x satisfies
requirements of item 8 of the modified game.

Let us now discuss the question of why with various collections a; we obtain distinct
x. Let us have a collection a, as, . . .,as and @\, a,, ..., a,. If a; # a}, then obtained
x differ in the first & positions. In other words, let @; # a, with some i > 1. Then
corresponding b;_, are also distinct (see (2)), because in both cases B coincide being
independent of a; with j > 1. This means that b,_; are also distinct, which implies

the diversity of z.

The obtained strategy proves the theorem. O

7 Estimation of the uniformity limits

Recall that the equality sign following any of symbols N, ]\7, ]/\\7, L, L means that the
function in the right-hand side can serve as the corresponding bound n, not necessarily

the minimal one.

Theorem 4. It  holds ﬁ;’xQ"“’xs(k,e) - exp{pc(k—e2(s)logetes(s)) 4
dexp{pcsk=es(s)logetes()y - yphere ¢; are some functions that depend only on s and

p.
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Proof. Correlations established in lemmas 1,2,3,4 and Theorem 3 give the following system

of equalities:

o N¥(k,e)=k+d;

o Ndx ..... T (k?,€1,52) — ]/\\f ----- (k+logp 82, );

212k + [log, s, 1,4, [log, 5], s — 1);

......

e the following way to calculate Ly, ;: L© = d, LU = L (k,e, LU~ + A)

with j > 0 and put Lf1 (ke d, Aym) = Z(M);

.....

s(kye,d): LO = d, L0 = NI (k,1/2)

e the following way to calculate Ly, G- 1) k

-----

with ¢ > 0 and put Ly, s (k,e,d) = L0811/ psk) 1)

-----

Introduce the following denotations:
NT"(k,1/2) = A(s, k) + dB(s, k);

Ny (k, 1/ (4p**), 1/ (4p™)) = A(s, k) + dB(s, k);
N2 (k, 1/ (4p*)) = A(s, k) + dB(s, k);

Lot oo (k 1/(4p™), d) = Ap(s, k) + dBy (s, k);

Lot..or (k. 1/(4p°), d, [log, 51, 5) = Az (s, k) + dBg (s, k).
Then

Ny (kye) = Ny (k, 2/ (2p™), ¢/ (2p™)) gives
A(s, k) = A(s, k), B(s, k) = B(s, k).

N; """ ms<k’€1’€2) = ]’\73& 7777 (k "‘logp ey 1 € ) gives
A(S,k) A(S k+logp 1/(4psk)> B(S, l{}) IB(S7k+10gp 1/(2;;sk))

N; """ “(k,e1) = 2L, 2,21 (2k + [log, s],e1,d, [log, s],s — 1) gives
A(s, k) = 2A5(s — 1,k), B(s, k) = 2B;(s — 1,k).

Let some function f(d) = a+ bd be given. Then for each constant A we can construct
the following sequence of functions f;(d): fo(d) = d, fi(d) = f(fi—1(d) + A). We can rep-
resent obtained f;(d) as f;(d) = a; + db;. Denote such numbers a; and b; by A,..(a,b,i, A)
and Biec(a,b, i, A), respectively.

Let us estimate A,.. and B,.. with b > 2,a > 0:
Avee =a+bla+A+bla+A+...+(a+A+bla+A))...) < (a+ AN, B =0
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.....

with j > 0 and Lf1 _____ f(k,e,d, A, m) = L™ gives
A5 (s, k) = Avec(AL(s, k), Br(s, k), s, ﬂogp(s +1)]),
Bi(s,k) = Brec(AL(s, k), BL(s, k), 5, [log, (s +1)]).
The following way to calculate Ly,
77777 7.(kye,d) = L0811/ (2psk) £1) gives:
Ap(s, k) = Avec(A(s, k), B(s, k), [log; 1/(2psk) (1/(4 Sk))_lak)a
By(s, k) = Brec(A(s, k), B(s, k), [10g_y jper) (1/(4p°)) 1. k).
Since —log(1 — 1/(2p*%)) > 1/(2p**), we have:
)
)

Ap(s, k) < Arec(A(s, k), B(s, k), [2p** log(4p™) ], k),

Bi(s,k) < Brec(A(s, k), B(s, k), [2p** log(4p™*) ], k).
Therefore,

A(L k) = k,

B(1,k) =1,

A(s, k) = A(s, k),

B(s, k) = B(s, k),

A(s, k) = 243 (s — 1, k),

B(s,k) = 2B;(s — 1,k),

A(s, k) = A(s, [k + log, (25%4p**)]),

B(s, k) = B(s, [k + log,(25*4p™)]),

Apee(a, b, A7) < (a+ A,

Brec(a, b, A i) = b,

Az(s, k) = (AL(s, k) + [log,(s +1)])BL(s, k),

B; (s, k) = Br(s, k)*,

Apn(s, k) = (k+ A(s, k))B(s, k)22 los(4p™)1

Bu(s,k) = B(s, k)2 1ot
Taking the logarithm, we obtain
IOg A(l, ]{Z) = log k,

log B(1,k) =

log A(s, k) = log A(s, k),

log B(s, k) = log B(s, k),

log A(s, k) = log 2 + log Az (s — 1, k),
logg(s, k) =log2+ log B3 (s — 1, k),

log A(s, k) = log A(s, [k + log,(2s%4p*")]),

22
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log B(s, k) = log B(s, [k +log, (25*4p*F)]),

log Az (s, k) = log(AL(s, k) + [log,(s + 1)]) + slog BL(s, k),
log B3 (s, k) = slog By(s, k),

log Az (s, k) =log(k + A(s, k)) + [2p*F log(4p®*)] log B(s, k),
log By(s, k) = [2p** log(4p®*)] log B(s, k).

Let us obtain bounds for the repeated logarithm. To this end we will apply the
correlation written above the statement of the theorem, using the equality sign. With x >
2 and y > 2 we have xy > x+v; this allows us to approximately calculate the logarithm of
the sum as the sum of logarithms, provided that addends satisfy the mentioned conditions.

In above correlations we are interested in the upper bound for the case when s > 1. Let
us replace the initial conditions with B(1, k) = 2, A(1, k) = k+ 2. Since we have replaced
certain values with greater ones, in sums in the right-hand sides of the correlations all
addends (except log 2 or, possibly, [log,(s+ 1)]) exceed 2. In above correlations we are
interested in the upper bound for the case when s > 1. Let us replace initial conditions
with B(1,k) = 2, A(1,k) = k + 2. Note that the substituted values exceed initial ones.
By replacing the rest constants with greater values we also make the resulting bound
more rough. Now we assume that all summands exceed 2 (we replace log2 with 2, and
do [log,(s 4+ 1)]) with s +1). Now, using the inequality from the previous paragraph, we
replace the sum with the product. Then we calculate the logarithm (of the base p) and
again replace constants with upper bounds (thus, for example, log,2 < 1, and logarithms
of the rest constants are less than the latter themselves). As a result, we obtain the

following simple recurrent correlations for (overestimated) double logarithms:
log,log A(1,k) = k + 2,

log, log B(1, k)

log, log Al k) =

log, log B(1,k) =

log, log A(s, k) = logp log A(s, k),

log, log B(s, k) = log, log B( k),

log, log A(s, k) = log, log A(s k + sk + 3s + 3),

log, log B(s, k) = log, log B(s k+ sk 4+ 3s+3),

log, log A(s, k) = 1+ log, log Az (s — 1, k),

log,, log B(s, k) =1+ log, log By (s — 1, k),

log, log Az (s, k) = log, log AL (s, k) + 25 + s + log, log BL(s, k),
log, log By (s, k) = s + log, log BL(s, k),

log, log Ap(s, k) = k +log,log A(s, k) + sk + log, log B(s, k),
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log, log BL(s, k) = sk + log, log B(s, k).

But even these (amplified) double logarithms A and B, evidently, linearly depend on
k (with fixed s). This means that the linear upper bound with respect to k is also fulfilled
for non-modified double logarithms A and B.

induction step of Theorem 3, where ¢ is arbitrary.
We have

.....

.....

-----

dB(s, k)T B-1/erk) ],

With 0 < =z < 1,0 < ¢ < 1, it holds [log,_,e] > —(loge)/z + 1, therefore
[logy_1 /@ €] < —2p* loge + 1.
2(s—1)k

Let us represent 2ps~D@k+llog,s1) a5 ¢(s)p , where ¢(s) is some function of s.

Therefore,

»-1(2k + [log, s],€1,d, [log, s],5 — 1) <

2((A(s—1,2k+[log, s])+2k+[log, s]) B(s—1,2k+[log, s )7c(s)p2<5_1)k logei+1 | llog, s])x
B(S — 1, 2k —+ ﬂogp 5-| )(5_1)(—0(5)1’)2(3_1)"C logel-i-l)+
2dB(s — 1,2k + [log, s )(5—1)(_6(5)1,2(371% loge1-+1).

Consider double logarithms of the coefficient at d and the free term in last but one
expression. Taking into account the obtained above linear (with respect to k) bounds for
double logarithms of A and B, we obtain linear with respect to k and loge bounds for

these functions.
O
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8 The uniformity for linear combinations

In lemmas 6-10, as well as in theorems 5, 6, we understand the sentence «the joint
projection of the collection fi(z), fo(x),..., fs(z) has a uniform distribution» as a re-
quirement stronger than Definition 3, namely, the existence of a winning strategy for the
modified game.

We intend to prove that the uniformity of the collection (fi(z), ..., fs(z)) implies that
of the collection (gi(x),...,gs(x)), provided that the second collection is obtained from
the first one by adding to one of functions an integer linear combination of the rest ones
or by adding an integer constant, or by multiplying by such a constant. Hence and from

Theorem 3 we deduce the uniformity of the s-dimensional projection of polynomials.

Lemma 6. Assume that the joint projection of a collection of functions

fi(z), fo(x), ..., fs(x) has a uniform distribution, and u is a natural number. Then the
joint projection of the collection p*fi(x), fo(x),. .., fs(x) also has a uniform distribution,
and

R Sueesti (o ) = NIt (ks 4, )
Cgufl,fQ,---,fs _ cgl,---,fs.

Proof. Assume that there exists an oracle which implements a winning strategy for the
collection fi(z), fo(x), ..., fs(x). Let us represent the strategy for the mediator that uses
this oracle.

The mediator uses p** identical oracles. On steps 0-6 he sends unchanged data from
oracles to Evil and from Evil to oracles, except the fact that instead of k& he informs
oracles of the number k& + u. Since the oracles are determinate, the data obtained from
them coincide. The mediator transforms the collection aq,as,...,as of numbers of the
length k obtained on Step 7 into p*“ collections of numbers of the length &£ + u in the
following way: to a; he appends (in all possible ways) the major u digits, and does to
as, ..., as (in all possible ways) the minor u ones (thus, the total number of used variants
is (p°)* = p*). Then he sends to each oracle one of collections and obtains from them
psipm—ktw)s — pym=sk wavs to fill m positions which were not filled on Step 6. Evidently,
the obtained variants satisfy conditions imposed on fy(x),..., fs(x), because the first
k digits of the corresponding numbers in collections sent to the oracles coincide with
as,...,as. One can also easily see that the stated condition is also fulfilled for fi(x),
because the minor k positions among k + u ones in notations of numbers sent to the

oracles as a; coincide with a;, and the multiplication by p“ make the p-adic notation of
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a number shift by u positions to the left. This means that each of p™** ways to fill the
colored positions proposed by oracles satisfy the conditions imposed on it on Step 8 of the
game. All these variants are distinct due to the additional requirement imposed on them
on Step 8; consequently, the mediator can present them to Evil as a response implied by
Step 8 of the protocol.

For various collections aq, as, ..., as, the collections presented to the oracles are also
distinct, therefore the validity of the additional requirement for the mediator follows from

its validity for the oracles. O

Lemma 7. Assume that the joint projection of a collection of functions
fi(z), fo(x), ..., fs(x) has a uniform distribution, and w is an integer number mu-
tually prime with p. Then the joint projection of the collection ufi(z), fo(z), ..., fs(z)

also has a uniform distribution, and

N;f17f27---7fs(k’€) _ Nc{l,...,fs(k’e)

“f17f27"'7f8 J— f17~~~7f8
o = uc) :

Proof. Assume that there exist an oracle which implements a winning strategy for the
collection fi(x), fa(z), ..., fs(x). Let us describe the strategy for the mediator, who uses
this oracle.

On steps 0-6 the mediator sends unchanged data from oracles to Evil and from Evil
to oracles, except the fact that on Step 0 he multiplies ¢y (obtained from an oracle) by w.
Denote the value of ¢ initially obtained from an oracle by ¢;. Having obtained on Step 7

"'mod p* (the desired inverse

numbers ay, as, . .., as, the mediator calculates af = aju~
value exists, because u is mutually prime with p) and sends the collection a}, as, as, . . ., as
to an oracle. Let us prove that the variants of filling the colored positions proposed by
the oracle satisfy the stated conditions. This, evidently, is true for fo(z), f3(z), ..., fs(x).
It is also true that the first & digits of fi(x) differ from a} at most by ¢,. By Lemma 5
this implies that the first k& digits of fi(z)u differ from a; at most by co; therefore, the
condition stated on Step 8 is also fulfilled for f;(z).

For different collections aq, as, . . ., as, the collections sent to an oracle are also different;
therefore the fulfillment of the additional condition for an oracle implies its validity for

the mediator. O

Lemma 8. Assume that the joint projection of a collection of functions
fi(z), fo(x), ..., fs(x) has a uniform distribution, and w is an integer nonzero number.

Then the joint projection of the collection ufi(x), fo(x),..., fs(x) also has a uniform
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distribution, and

Nwvforde( &) = NIwF(k + ordyu, )
Cgf17f27---7fs _ e(u)cg;l,---,fs.

Proof. The desired assertion follows from two previous lemmas and the representation
u = O(u)p°rdrt, O

Lemma 9. Assume that the joint projection of a collection of functions
fi(x), fa(z), ..., fs(x) has a uniform distribution, and w is an integer number. Then the
joint projection of the collection fi(x)+u, fo(x), ..., fs(x) also has a uniform distribution,

and
Ng1+u7f27---7fs(k’ 6) _ ﬁ517---7fs(k’ E)
C£1+u7f27“'7f5 — Cgly-"vfs + U + 1'

Proof. Assume that there is an oracle, which implements a winning strategy for the col-
lection fi(x), fa(x), ..., fs(x). Let us describe the strategy for the mediator which uses
this oracle.

On steps 0-7 the mediator sends unchanged data from the oracles to Evil, and from
Evil to the oracles, except the fact that on Step 0 he increases ¢q (obtained from an oracle)
by u+ 1. Denote the value of ¢y initially obtained from an oracle by ¢{. Let us prove that
the variants of filling the colored positions proposed by an oracle on Step 8 satisfy the
stated conditions. Evidently, this is true for fy(x), fs(x),..., fs(z). Moreover, the first k
digits of fi(z) differ from a; at most by ¢f. Let us represent fi(z)+wuas 1- fi(z)+u- 1.
Since ng > k, the first k digits in the n-digit notation of 1 are zeros. By Lemma 5 this
means that the first & digits of fi(z) + u differ from a; at most by co; therefore, the
condition stated on Step 8 is also fulfilled for f;(z).

If collections aq,as,...,as are distinct, then so are collections given to an oracle,
therefore the validity of the additional condition for the mediator follows from its validity

for an oracle. 0J
Lemma 10. Assume that the joint projection of a collection of functions
fi(z), fo(x), ..., fs(x) has a uniform distribution, and us, us, ..., us are arbitrary integer
numbers. Then the joint projection of the collection fi(x) + iulfl(a:), fo(z), ..., fs(2)
also has a uniform distribution, and =

,\f1+§2uifi,f2,---7fs

N, (k,e) = NPk e)

fl+i uifi7f27"'7fs S
CO =2 — C(};l,...,fs + Zuz
1=2
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Proof. Assume that some oracle implements a winning strategy for the collection
fi(x), foa(x), ..., fs(x). Let us describe the strategy for the mediator which uses this
oracle.

On steps 0-6 the mediator sends unchanged data from the oracles to Evil and from Evil
to the oracles, except the fact that on Step 0 he increases the value of ¢y (obtained from an

oracle) by 1+ > u;. Denote the value of ¢ initially obtained from an oracle by cj. After
i=2

S

obtaining on Step 7 numbers a;, as, ..., a,, he calculates @) = a; — > u;a; mod p* and
i=2

sends the collection a}, as, as, ..., as to an oracle. Let us prove that the variants of filling

the colored positions proposed by an oracle satisfy the stated conditions. Evidently, this
is true for fo(z), f3(x), ..., fs(x). It is also true that the first & digits of fi(z) differ from

a} at most by ¢,. By Lemma 5 hence we deduce that the first & digits of fi(z)+ > w; fi(x)
=2

differ from a; at most by cg; therefore, the condition stated on Step 8 is also fulfilled for

fi(z).
If collections aq, as, ..., a, are distinct, then so are the collections sent to an oracle,
because as, ..., a, are sent unchanged, and if they coincide, then the number subtracted

from a; also equals the same value. Therefore, if the additional condition is valid for an

oracle, then it is also valid for the mediator. O

9 The uniformity for polynomials

Theorem 5. Let A be an arbitrary nondegenerate integer s X s-matriz. Assume that the
column of polynomials f1, ..., fs is given by the correlation (fyi,..., f)T = A(z,...,2%)T +
z, where z is an arbitrary constant integer s X 1-column. The joint projection of the

collection fi(x), fo(x), ..., fs(x) has a uniform distribution, and
NTveots(g) = exp{ee 2},

where c1, co are positive constants depending only on the collection of f; and independent

of €.

Proof. By Theorem 3 the joint projection of the collection z,22,...,2° has a uniform
distribution. In view of lemmas 8, 9, and 10 we can perform three operations with the

collection, namely,
e add an integer constant to any function;
e multiply any function by an integer nonzero constant;
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e add to any function an integer linear combination of the rest functions;

as above, the joint projection has a uniform distribution. To complete the proof, it remains
to show that these operations allow us to transform the collection x, 22,...,2° into that
(@), o), . fola).

Really, lemmas 6-10 change the value of k£ only in the following way: they add to &
some constant independent of k£ and . Therefore, taking into account Theorem 4, we
obtain the correlation

j\\f(.)flv---vfs(k’ er) = exp{pclk—cgloga—l—cg}’

where ¢y, ¢o, c3 are some constants depending on the collection of f; (we replace d with 0,

which makes the second term in the bound in Theorem 4 vanish). Lemmas 6-10 define

f17~~~7fs
0

some value ¢ . Sequentially applying lemmas 3 and 4, we get

— ~ QSCflv---yfs
NP, 2) = N 2, €/ 2%) = B4+ om, 7

are representable as a linear combina-

e/(2p™)).

28c£1

Note that both log,(e/(2p**) and log, 0N
tion of 1, k, log e, whose coefficients depend only on fi, ..., f; and are independent of k, .

In accordance with Theorem 2 we set £ = —log, e + log,4s and thus obtain desired
NTveots(g) = exp{cie™2}.

for some positive numbers ¢y, ¢o (their positiveness follows from the nonnegativity of N
and the fact that the bound increases as ¢ diminishes).

Let us now prove that by described operations we can get the collection (fi,..., fs).
To this end, let us begin with the collection (fi, ..., f;) and obtain that x,..., x° by the

following operations:

e add to any function an integer constant;
e divide any function by an integer nonzero constant;

e add to any function an integer linear combination of the rest functions,

and then perform the corresponding inverse operations in the converse order.

Let us obtain functions in three steps.

1. Firstly, get rid of free terms, just subtracting them. This allows us to represent
the collection fi,..., f, in the form A(x,...,2*)T with some matrix A. Below in
the proof of the theorem we identify the collection of functions fi, ..., f; with this

matrix A.

29



2. Obtain an upper-triangular matrix.
3. Sequentially, starting with the last column, reduce the matrix to the desired form.

Step 1 is evident.

Let us describe Step 2 in detail. Assume that for some number ¢, 0 < ¢t < s, for each
column 7,1 < 7 < t, all elements below the diagonal equal zero. Let us describe the way
to proceed from t = t' to t = t' + 1. At the very beginning we assume that ¢ = 0, and
with ¢ = s we obtain the desired value.

Let us sequentially apply the Euclid algorithm to elements of the column ¢'+1 for some
pairs of rows. We obtain the GCD in the column ¢'41, subtracting the corresponding rows
from each other (this is a particular case of the linear combination). Let us first calculate
the GCD for rows ¢’ + 1 and ¢’ + 2. After determining the GCD in one row (modified by
the algorithm), in column ¢’ 4+ 1 we get 0. We find the GSD for the remaining row and for
row t' 4+ 3. Proceeding this process for all j up to s we find the GSD for pairs of rows, one
of which is the only row (among rows with numbers from ¢ + 1 to j — 1) whose (¢’ 4 1)-st
element differs from zero, and the other one is the jth row. Each time after calculating
the GSD in one row modified by the algorithm, we get zero in it in the (¢’ 4+ 1)-st place.

Thus, we have proved that among rows with numbers from ¢ + 1 to s there is only
one row with a nonzero element at the (¢ 4+ 1)-st position. Now we can add it to row
t'+1 and then subtract from it the just obtained row ¢ + 1; thus we get a unique nonzero
element in row ¢’ 4+ 1, which means that in column ¢’ 4+ 1 all elements located below the
diagonal also equal zero.

Let us now describe the way in which we implement Step 3. We sequentially, for ¢
varying from s to 1, perform the following operation: first we divide row t by its only
nonzero element located on the diagonal and thus turn this element to 1. Then from
each row from 1 to t — 1 we subtract row ¢ multiplied by the ¢th element of the current
row. Thus we make the tth row the only row whose tth element differs from zero. After

performing this operation for ¢ = 1 we obtain the unit matrix. O

Lemma 11. Let the joint projection of a collection of functions fi(z), fo(x),..., fs(x)
have a uniform distribution. Then the joint projection of any subcollection

firs figy ooy fin, L <ty <ig < ... < i < 8, also has a uniform distribution.

Proof. One can easily deduce the desired assertion from the definition, summing numbers

of points in the corresponding volumes over all possible values of a;,1 < j < n,j ¢
{iv o, ., ig ) O
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Theorem 6. Let f(x) be an arbitrary polynomial with integer coefficients of a degree
greater than 1, and let s be an arbitrary natural number. Then the s-dimensional projec-

tion of the polynomial f(z) has a uniform distribution, and
NS f 70 (e) = exp{cie™?}
for some positive ¢y, co depending only on the polynomial f.

Proof. Let the degree of f~V(z) equal d. Evidently, no two polynomials in the set
z, f(z), fP(z),..., f6Y(x) have one and the same degree. Let us add to this set ar-
bitrary polynomials so as to make the resulting set contain exactly one polynomial of
degree i for each i,1 > i > d. In view of Theorem 5 (since the triangular matrix is
nondegenerate), the joint projection of this set of functions has a uniform distribution.
Since z, f(x), fP(z),..., f* VY (x) is its subset, in accordance with the previous lemma,
the joint projection of this set also has a uniform distribution, which was to be proved.

Evidently, by excluding several f; we will not increase N, therefore it holds
N“”’f""’f(s_l)(e) = exp{c1e”?}
for some positive ¢y, co depending only on the polynomial f. O

Corollary 1. Resolving the mentioned bound with respect to € and taking into account

that m = p", one can easily obtain D,, < ciloglogm™ for some positive cy, cs.

10 Conclusion

In this paper we prove that the projection of any linearly independent (after elimi-
nating free terms) collection of polynomials has a uniform distribution modulo p™ with
n — oo for any prime p. In particular, this is true for the projection of iterations of
any polynomial, whose degree exceeds 2. In the case, when such a polynomial contains a
complete cycle, the set of points, whose coordinates are s sequential terms of the recurrent
sequence generated by this polynomial, also has a uniform distribution modulo p™ with
n — oo for any prime p.

The estimate of the convergence rate obtained in this paper is much weaker than that
established for concrete classes of polynomials in [7],[8],[9]. In Definition 1 we use the
discrepancy e = sup |V(J) — F,(J)| considered in the mentioned papers. The bounds
proved in these papers allow us to obtain the main term of the asymptotics of € in the

form m¢, where ¢ = —1/2 with some logarithmic corrections concordant with the repeated
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logarithm law (note that there exist polynomials, for which this bound is violated, see [9]).
The estimate for the convergence rate established in this paper allows us only to ascertain
that the lower boundary for ¢ decreases being the double logarithm of the absolute value
raised to some negative degree, which is essentially weaker.

In the following papers we intend to generalize the obtained result for the case of
polynomials of many variables. Moreover, it seems possible to establish a criterion for
preserving the uniformity of a collection of functions for a finite automaton and, therefore,

to replace linear combinations (see Section 8) with a more general construction.
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