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Abstra
t

Consider a 
olle
tion f of polynomials fi(x), i = 1, . . . , s, with integer 
oe�
ients

su
h that polynomials fi(x) − fi(0), i = 1, . . . , s, are linearly independent. Denote

by Dm the dis
repan
y for the set of points

(
f1(x) mod m

m , . . . ,
fs(x) mod m

pn

)
for all

x ∈ {0, 1, . . . ,m}, where m = pn, n ∈ N , and p is a prime number. We prove

that Dm → 0 as n → ∞, and Dm < c1(log logm)−c2
, where c1 and c2 are positive


onstants that depend only on the 
olle
tion of fi. As a 
orollary, we obtain an

analogous result for iterations of any polynomial (with integer 
oe�
ients) whose

degree ex
eeds 1. Certain results on the uniform distribution were known earlier

only for some 
lasses of polynomials with s 6 3.

1 Introdu
tion

The 
onstru
tion of pseudorandom generators (PRG) is one of most important 
ryp-

tographi
 problems; they have many various pra
ti
al appli
ations. We assume that a

PRG 
onsists of

• a transition fun
tion f de�ning the state of the PRG by the formula ui+1 = f(ui),

where ui is its state at the time moment i (therefore, the state at the time moment i is

de�ned as an i-fold iteration of the fun
tion f of the initial state, i.e., ui = f (i)(u0));
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• an output fun
tion F that de�nes the output of the PRG at the time moment i as

a fun
tion of its 
urrent state, i.e., zi = F (ui);

• the initial state u0 (in what follows we assume that it is 
hosen randomly).

In this paper we study the ability of 
ertain fun
tions f , namely, polynomials, to

ensure the desired property of the sequen
e of internal states (in other words, the ability to

play the role of the fun
tion f). We assume that 
al
ulations are performed modulo some

numberm. For the sake of uniformity or reasoning with variousm, we 
onsider the number

ui/m; evidently, it belongs to the interval from 0 to 1. In order to demonstrate that


onsequent values are ¾independent¿ of previous ones, we study the set formed by points,

whose 
oordinates are equal to several suññessive values of ui/m in a multidimensional

unit hyper
ube.

With �xed m the number of points if �nite and not greater than m, be
ause the next

state is uniquely de�ned by the previous one. Therefore, by tending m to in�nity, one

obtains the desired assertions for this 
ase. Below, as a rule, m takes the form of pn with

some prime p and natural n.

It is well known that for polynomials of degree 1 the measure of the 
losure of the

mentioned set equals 0, and with n tending to in�nity all points belong to several hyper-

planes [2, P. 117℄ inside the unit hyper
ube. In [4℄ one proves that the measure of the


losure of the 
orresponding set equals either 0 or 1 for any 
ompatible fun
tion f , in

parti
ular, for polynomials of any degree (see Theorem 1).

For pra
ti
al appli
ations, along with the unit measure of the 
losure (i.e., the fa
t

that the s-dimensional 
ube is 
overed by the set under 
onsideration), it is also important

that the rate (with n tending to in�nity), at whi
h the 
ube is being 
overed by these

points, should be the same at all regions of the 
ube. More formally, we say that the

proje
tion of the fun
tion f(x) is uniformly distributed in the s-dimensional 
ube, if for

ea
h parallelepiped J inside the 
ube the ratio of the number of points in J to the total

number of points with n → ∞ equals the ratio of the s-dimensional volume of J to the

total volume of the 
ube, i.e., to one. See [1℄,[6℄ for de�nitions of the uniformity for an

arbitrary set of points.

In papers [7℄, [8℄, [9℄ one proves the uniformity of the 
orresponding sets for quadrati


polynomials for the number of iterations of 2 and 3. Moreover, in the mentioned papers

one obtains 
onditions under whi
h the set of pairs of 
onse
utive outputs of a quadrati


generator almost satis�es the repeated logarithm law [3℄, namely, the prin
ipal term of

the asymptoti
s of the dis
repan
y equals m−1/2
. In [5℄ these bounds are improved for

the 
ase of m = 2k and two iterations.
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In this paper we prove the uniformity for an arbitrary polynomial of degree not less

than 2 with integer 
oe�
ients and an arbitrary number of iterations with m = pn,

where n tends to in�nity, and p is an arbitrary prime number. The proof is based on

the following evident property: a su�
iently long random sequen
e ne
essarily 
ontains

any 
on
rete subsequen
e; moreover, one 
an 
hoose the length of the sequen
e so large

as to make the probability of the opposite event very small. This fa
t is used in the

indu
tion step. Assuming the uniformity of the 
olle
tion (x, x2, . . . , xs−1), we �x 
ertain

subsequen
es in the number x so as to make the major digits of ea
h fun
tion of the


olle
tion (x, x2, . . . , xs) modulo pn easily predi
table.

2 Basi
 notions

In this paper we apply te
hniques of the p-adi
 analysis for �nding fun
tions that


an be used for 
onstru
ting PRG; see, e.g., [10℄ for the ne
essary de�nitions. We use

the de�nitions of the ring of integer p-adi
 numbers and the p-adi
 norm ‖ · ‖p and


onsider fun
tions f from Zp to Zp. Re
all [4℄ that a fun
tion from Zp to Zp is said to

be 
ompatible, if ‖f(x1) − f(x2)‖p 6 ‖x1 − x2‖p for any x1, x2 ∈ Zp. In other words,

a fun
tion is 
ompatible, if for ea
h x1, x2 ∈ Zp, for whi
h the minor k digits in the p-

adi
 notation 
oin
ide, the minor k digits in the p-adi
 notation of f(x1) and f(x2) also


oin
ide.

For a 
ompatible fun
tion f(x) and a natural number s > 2 the set of points in the

form (
x

pn
,
f(x) mod pn

pn
,
f (2)(x) mod pn

pn
, . . . ,

f (s−1)(x) mod pn

pn

)

exists for all n ∈ N, x ∈ {0, 1, . . . , pn − 1} (hereinafter the denotation f (i)(x) means the

ith iteration of the fun
tion f). We 
all this set (note that we 
onsider the union for all

n) the s-dimensional proje
tion of the 
ompatible fun
tion f .

Consider a fun
tion f having a 
omplete 
y
le and the 
orresponding sequen
e of

states ui = f(ui−1). The set of points in the form

(
ui mod pn

pn
,
ui+1 mod pn

pn
,
ui+2(x) mod pn

pn
, . . . ,

ui+s−1(x) mod pn

pn

)


oin
ides with the set des
ribed above, be
ause by the de�nition of a 
omplete 
y
le ui

runs over all values of x.

In this paper, instead of iterations of one fun
tion f , as a rule, we 
onsider an arbitrary


olle
tion of 
ompatible fun
tions f1(x), f2(x), . . . , fs(x). Let us generalize the de�nition

of the proje
tion for this 
ase.
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Let s 
ompatible fun
tions f1(x), f2(x), . . . , fs(x) be given. We 
onsider the set of

points in the form

(
f1(x) mod pn

pn
,
f2(x) mod pn

pn
, . . . ,

fs(x) mod pn

pn

)

for all x ∈ {0, 1, . . . , pn−1}. For given f1, . . . , fs and �xed n we denote the multiset under


onsideration by Pf1,...,fs(n). We 
all the union of su
h sets for all n the joint proje
tion

of fun
tions f1(x), f2(x), . . . , fs(x).

In what follows we omit subs
ripts indi
ating 
olle
tions of fun
tions, if they are 
lear

from the 
ontext.

In [4℄ one proves the following key theorem:

Theorem 1 (the 0-1 rule). For any 
ompatible fun
tion f the measure of the 
losure of

its two-dimensional proje
tion equals either 0 or 1.

One 
an easily generalize the mentioned theorem for the 
ase of arbitrary s and an

arbitrary 
olle
tion of 
ompatible fun
tions f1, f2, . . . , fs.

Let us now give a more formal de�nition of the proje
tion uniformity. Let J be some

parallelepiped in the 
ube [0, 1)s. Let Fn(J) denote the ratio of the number of points that

belong to Pf1,... fs(n) and lie in J to the total number of points pn. Let V (J) stand for the

s-dimensional volume of J .

De�nition 1. The joint proje
tion of a 
olle
tion of 
ompatible fun
tions f1, . . . , fs is

said to have a uniform distribution, if

lim
n→∞

sup
J

|V (J)− Fn(J)| → 0,

where the supremum is 
al
ulated over all possible parallelepipeds J .

In the 
ase, when as a 
olle
tion f1, . . . , fs one 
hooses the set of iterations of some


ompatible fun
tion f (i.e., the set x, f(x), f (2)(x), . . . , f (s−1)(x)), we say that the s-

dimensional proje
tion fun
tion f has a uniform distribution.

Evidently, the uniformity of the proje
tion implies that the measure of the 
losure

equals 1. In this paper we study the uniformity of proje
tions of polynomial fun
tions f .

Considering the supremum for 
on
rete n, we obtain the dis
repan
y Dpn. Instead

of estimating this value, it is more 
onvenient to study the lower bound for the digit


apa
ity, beginning with whi
h the bound for the uniformity of the 
onsidered set of points

is guaranteed. In this paper we use various de�nitions of the uniformity (measurable in

terms of various errors ε); as a result, they be
ome 
onne
ted with ea
h other and form

an upper bound for the dis
repan
y.
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Let us give several more de�nitions and denotations whi
h are ne
essary, in parti
ular,

for studying the rate of 
onvergen
e to 0 in De�nition 1.

The uniformity of the proje
tion of a 
olle
tion of 
ompatible fun
tions means that

for any positive ε there exists Nf1,...,fs(ε) su
h that for any n > Nf1,...,fs(ε) it holds

|Fn(J)− V (J)| < ε.

In what follows, when using the denotation Nf1,f2,...,fs(k, ε) = g(k, ε), we take into

a

ount the fa
t that this fun
tion g satis�es 
onditions stated in the previous de�nition,

but the minimum of the estimate is not guaranteed.

Let k be some �xed number, a1, a2, . . . , as ∈ {0, 1, . . . , pk − 1}. Denote by

Jk(a1, a2, . . . , as) the hyper
ube in [0, 1)s de�ned by inequalities

a1
pk

6 z1 <
a1 + 1

pk

a2
pk

6 z2 <
a2 + 1

pk

. . .
as
pk

6 zs <
as + 1

pk
,

where (z1, z2, . . . , zs) are 
oordinates of a point from [0, 1)s.

Let us slightly modify De�nition 1 (
f. [1℄; the equivalen
e of de�nitions 1 and 2 is

proved in Theorem 2). Namely,

De�nition 2. The joint proje
tion is 
alled uniformly distributed, if for any number

ε > 0 and for any natural k there exists natural Nf1,...,fs
0 (k, ε) su
h that for ea
h n >

Nf1,...,fs
0 (k, ε) and for all a1, a2, . . . , as su
h that a1, a2, . . . , as ∈ {0, 1, . . . , pk − 1} it holds

∣∣∣∣
Fn(Jk(a1, a2, . . . , as))

V (Jk(a1, a2, . . . , as))
− 1

∣∣∣∣ 6 ε,

where V (Jk(a1, a2, . . . , as)) = p−sk
is the s-dimensional volume of the mentioned paral-

lelepiped.

We omit parameters in denotations Nf1,...,fs
0 (k, ε), if they are 
lear from the 
ontext.

Analogously to the 
ase of Nf1,...,fs(k, ε), using the denotation Nf1,...,fs
0 (k, ε) = g(k, ε),

we mean that the given fun
tion g satis�es 
onditions imposed on it in De�nition 2, but

the minimum of the estimate is not guaranteed.

3 The d-uniformity

In essen
e, the error mentioned in De�nition 1 is absolute for any parallelepiped,

while that in De�nition 2 is relative; it is 
al
ulated only for latti
e hyper
ubes. Sin
e the
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latti
e step 
an be 
hosen arbitrarily, one 
an approximate any parallelepiped by latti
e

hyper
ubes; this property implies the following assertion.

Theorem 2. For a 
olle
tion of 
ompatible fun
tions f1, f2, . . . , fs De�nition 1 is equiv-

alent to De�nition 2, and N(ε) = N0(k, ε
′), where k = − logp(ε/4s), ε

′ = 1/2ε.

Proof. Let 
onditions of De�nition 2 be ful�lled. Let us prove that

∀ε > 0 : ∃N(ε)∀n > N, ∀J : |V (J)− Fn(J)| < ε.

Choose k = − logp(ε/4s), ε
′ = 1/2ε. Let us prove that the number N = N0(k, ε

′) is the

desired one.

Let J be some parallelepiped in [0, 1)s. We denote by J+
k the union of hyper
ubes in

the form Jk(a1, . . . , as) whi
h have at least one 
ommon point with J and we do by J−
k

the union of hyper
ubes whi
h entirely lie inside J .

Evidently, J+
k forms a parallelepiped and so does J−

k .

Note that 0 6 V (J+
k ) − V (J−

k ) 6 ε/2. Really, in ea
h of s measurements there exist

no more than two ¾layers¿ of the latti
e that lie in J+
k , but do not lie in J−

k . The volume

of ea
h of them does not ex
eed 1/pk. Therefore, the total di�eren
e does not ex
eed

2s/pk = ε/2.

Let us now write the 
ondition of De�nition 2 in the form

V (Jk(a1, . . . , as))(1− ε′) 6 Fn(Jk(a1, . . . , as)) 6 V (Jk(a1, . . . , as))(1 + ε′)

and 
al
ulate the sum for ea
h of sets J+
k , J

−
k . We obtain

V (J+
k )(1− ε′) 6 Fn(J

+
k ) 6 V (J+

k )(1 + ε′)

V (J−
k )(1− ε′) 6 Fn(J

−
k ) 6 V (J−

k )(1 + ε′).

It is also evident that V (J−
k ) 6 V (J) 6 V (J+

k ). In addition, Fn(J
−
k ) 6 F (J) 6 Fn(J

+
k ),

be
ause these values are proportional to the number of points of the proje
tion that lie

inside the 
orresponding parallelepiped. Then we write

Fn(J)− V (J) 6 Fn(J
+
k )− V (J−

k ) 6 V (J+
k )(1 + ε′)− V (J−

k ) 6 V (J+
k )ε

′ + ε/2.

Sin
e J+
k lies inside the unit 
ube, we have V (J+

k ) 6 1, and this means that the latter

expression does not ex
eed ε (be
ause ε′ = ε/2). Analogously,

Fn(J)− V (J) > Fn(J
−
k )− V (J+

k ) > V (J−
k )(1− ε′)− V (J+

k ) > −V (J−
k )ε

′ − ε/2 > −ε.
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Therefore, we have obtained the desired inequality

|Fn(J)− V (J)| 6 ε

for an arbitrary parallelepiped J .

The proof of the 
onverse assertion is performed with the help of an analogous esti-

mation.

Let us strengthen De�nition 2, �xing the residue x of the division by pd for natural d.

Let d ∈ N, β ∈ {0, 1, . . . , pd − 1}. Denote by P (n, d, β), n > d the multiset of points

(
f1(x) mod pn

pn
,
f2(x) mod pn

pn
, . . . ,

fs(x) mod pn

pn

)

for all x ∈ {0, 1, . . . , pn − 1}, x mod pd = β. Let F d,β
n (J) be the ratio of the number of

points from P (n, d, β) that lie in J to the 
ardinal number of P (n, d, β), i.e., to pn−d
.

De�nition 3. The joint proje
tion of 
ompatible fun
tions f1, . . . , fs is said to be d-

uniformly distributed, if for any number ε > 0 and for any natural k, d there exists natural

N = Nf1,...,fs
d (k, ε) su
h that for ea
h n > N , for any β ∈ {0, 1, . . . , pd − 1}, and for all

a1, a2, . . . , as ∈ {0, 1, . . . , pk − 1} it holds

∣∣∣∣
F d,β
n (Jk(a1, a2, . . . , as))

V (Jk(a1, a2, . . . , as))
− 1

∣∣∣∣ 6 ε.

In other words, the d-uniformity is the uniformity in ea
h p-adi
 ball, whose volume

equals pd.

For Nf1,...,fs
d (k, ε) we use assumptions analogous to above ones for N and N0 (see the

end part of Se
tion 2).

Note that the number Nd indi
ated in the de�nition is independent of β; it depends

only on its p-adi
 length, i.e., on d. This 
ondition does not strengthen the de�nition.

Really, sin
e for �xed d the number of possible values of β is �nite, one 
ould have 
hosen

Nd as the maximum of the 
orresponding numbers for ea
h β. Nevertheless, it is more


onvenient to use just this statement, i.e., the uniformity with respe
t to β.

Evidently, the d-uniformity implies the uniformity in the sense of De�nition 2, namely,

it su�
es to put d = 0. In what follows, when speaking of the uniformity, we mean the

d-uniformity, if this leads to no ambiguity.

Let n ∈ N, n > k, x1, x2, . . . , xs ∈ {0, 1, . . . , pn − 1}. Note that the point(
x1

pn
, x2

pn
, . . . , xs

pn

)
belongs to Jk(a1, a2, . . . , as) if and only if the pre�x of the length k in

the p-adi
 notation of xi 
oin
ides with ai for all i, 1 6 i 6 s (here we assume that the
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p-adi
 notation of xi 
onsists of exa
tly n digits, while the p-adi
 notation of ai 
onsists

of exa
tly k digits independently of the presen
e of leading zeros).

One 
an also easily see that the 
ondition x mod pd = β is equivalent to the fa
t that

the latter d p-adi
 digits of x 
ontain the notation of β.

4 The 
oin toss

In this se
tion we prove some 
orollaries of the d-uniformity whi
h we need in the

indu
tion step in the proof of the main theorem.

Let d, r ∈ N, d < r, β ∈ {0, 1, . . . , pd − 1}. Denote by Ω(r, d, β) the set of all x ∈
{0, 1, . . . , pr − 1} su
h that x mod pd = β.

Speaking informally, the d-uniformity of the joint proje
tion of the 
olle
tion

f1(x), f2(x), . . . , fs(x) means that with �xed d, β and �xed su�
iently large r, under the

equiprobable 
hoi
e of x from Ω(r, d, β), the probability that the point

(
f1(x) mod pr

pr
,
f2(x) mod pr

pr
, . . . ,

fs(x) mod pr

pr

)

belongs to Jk(a1, a2, . . . , as) equals approximately V (Jk(a1, a2, . . . , as)). In the following

lemma we prove that if for x we 
hoose a su�
iently long string, then the probability that

this event takes pla
e with at least one r 
an be arbitrarily 
lose to 1.

More formally, let k ∈ N, a1, a2, . . . , as ∈ {0, 1, . . . , pk − 1} be given. Fix n ∈ N, n >

d, n > k. We say that x is suitable, if there exists r ∈ N, d+ k 6 r 6 n su
h that

(
f1(x) mod pr

pr
,
f2(x) mod pr

pr
, . . . ,

fs(x) mod pr

pr

)
∈ Jk(a1, a2, . . . , as).

Lemma 1. Assume that the joint proje
tion of a 
olle
tion of fun
tions

f1(x), f2(x), . . . , fs(x) has a d-uniform distribution, a value ε > 0 and numbers

k, d ∈ N are given. Then there exists L = Lf1,...,fs(k, ε, d) su
h that for any n > L and

any β ∈ {0, 1, . . . , pd − 1}, a1, a2, . . . , as ∈ {0, 1, . . . , pk − 1} the ratio of the number of

suitable x to |Ω(n, d, β)| is at least 1− ε.

Proof. The proof of the lemma is based on a simple idea. Let us have a biased 
oin su
h

that the probability of the head is bounded from below by some nonzero 
onstant. Then

by tossing the 
oin su�
iently many times one 
an make the probability of getting at

least one head arbitrarily 
lose to 1. One ¾
oin toss¿ 
onsists in obtaining a new value of

n, namely, Nd(k, ε), where d is the previous value of n. The independen
e of 
oin ¾tosses¿

is guaranteed by the presen
e of parameters d, β, and the boundedness from below of the
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probability of the head is provided by the d-uniformity of the 
olle
tion f1, . . . , fs. Just

in this lemma and in the next one we need De�nition 3 that strengthens De�nition 2.

Put L(0) = d. Constru
t a sequen
e L(i), i > 0, as follows: let L(i)
be equal to

Nf1,...,fs
L(i−1)+k

(k, 1/2). Let γi be the ratio of the number of unsuitable x to |Ω(L(i), d, β)|.
Evidently, γ0 6 1. Let us estimate γi. The de�nition of the uniformity and the de�nition

of L(i)
imply that FL(i−1),β

L(i) (Jk(a1, a2, . . . , as)) > V (Jk(a1, a2, . . . , as))/2 = 1
2psk

for any

β : 0 6 β 6 pL
(i−1) − 1. Denote the latter number by ε′ (it 
orresponds to the probability

of getting the head in one toss). Therefore, for ea
h β ∈ {0, 1, . . . , pL(i−1) − 1} there exists
at least ε′pL

(i)−L(i−1)
ways to �ll L(i) − L(i−1)

major positions so as to make obtained x

suitable for n = L(i)
(independently of the 
ontent of L(i−1)

latter positions). This means

that the ratio of the number of ways to �ll these positions making x unsuitable does not

ex
eed 1 − ε′. Evidently, if x is unsuitable for n = L(i)
, then it is also unsuitable for all

lesser n, in parti
ular, for n = L(i−1)
. The number of ways to �ll the latter L(i−1)

positions

making x unsuitable for n = L(i−1)
by de�nition equals γi−1. Therefore, the 
ombined

share γi 6 (1 − ε′)γi−1, be
ause in order to make x unsuitable, one has to �ll the minor

L(i−1)
positions in any of γi−1p

L(i−1)
ways; for ea
h of them there exists no more than

(1 − ε′)pL
(i)−L(i−1)

ways to �ll the major L(i) − L(i−1)
positions. Sin
e γ0 6 1, we obtain

γi 6 (1− ε′)i. The latter expression is a geometri
 progression with the ratio 1− ε′ < 1,

whi
h means that γi < ε with i > log1−ε′ ε. The 
orresponding number L
(i)

is the desired

value of L, be
ause, evidently, the ratio of suitable x does not de
rease with the growth

of n.

For Lf1,...,fs(k, ε, d) we also use 
onditions analogous to those des
ribed earlier for N

and N0 (see the end part of Se
tion 1).

Note that the proof of the lemma also allows us to 
al
ulate Lf1,...,fs(k, ε, d). It

su�
es to 
onstru
t the sequen
e L(0) = d, L(i) = Nf1,...,fs
L(i−1)+k

(k, 1/2), i > 0 and to put

Lf1,...,fs(k, ε, d) = L
(⌈log

1−1/(2psk)
ε⌉)
.

Let us generalize the latter lemma for the 
ase of several 
olle
tions ai. The previous

lemma guarantees that one 
an ¾trun
ate¿ a su�
iently long sequen
e x (i.e., 
al
ulate

modulo pr) so as to make the major k positions of fi(x) mod pr 
oin
ide with some

arbitrary �xed 
olle
tion ai. Now we are going to prove that even if we have m 
olle
tions

a
(j)
i ∈ {0, 1, . . . , pk − 1}, 1 6 i 6 s, 1 6 j 6 m, then for ea
h 
olle
tion of numbers there

exists its own r(j), i.e., the way to ¾trun
ate¿ x and fi(x) so as to make the major k

positions among r(j) positions of the number fi(x) form the number a
(j)
i . In addition,

we want distin
t r(j) to be not too 
lose, therefore we additionally impose the 
ondition

r(j) − r(j−1) > ∆ with some �xed natural ∆.

9



Let k, d,∆ ∈ N be given. Assume also that natural m is given, as well as m 
olle
tions

of s numbers su
h that for ea
h j, where 1 6 j 6 m, the 
olle
tion of numbers a
(j)
i ∈

{0, 1, . . . , pk − 1}, 1 6 i 6 s, is de�ned. We say that x ∈ {0, 1, . . . , pn − 1} is 
on
urrently

suitable, if the following 
onditions are ful�lled:

• x is suitable for k, d, ai = a
(j)
i for ea
h �xed j. We denote the 
orresponding numbers

r by r(j).

• r(j) > r(j−1) + k +∆ for 1 < j 6 m.

The parameter ∆ has the following sense: it is ne
essary that neighboring segments of

positions 
orresponding to degrees of p, whose values vary from r(j)−k to r(j)−1, should

not be too 
lose; namely, we require that their di�eren
e should ex
eed some �xed ∆.

Lemma 2. Assume that the joint proje
tion of a 
olle
tion of fun
tions

f1(x), f2(x), . . . , fs(x) has a d-uniform distribution, and numbers ε > 0 and

k, d,∆, m ∈ N are given. Then there exists L̃ = L̃f1,...,fs(k, ε, d,∆, m) su
h that

for any n > L̃, any β ∈ {0, 1, . . . , pd − 1}, and any m 
olle
tions of s numbers

a
(j)
i ∈ {0, 1, . . . , pk − 1}, 1 6 i 6 s, 1 6 j 6 m, the ratio of the number of x, whi
h are


on
urrently suitable for a
(j)
i , to |Ω(n, d, β)| is at least 1− ε.

Proof. Put ε′′ = 1 − m
√
1− ε. Let L̃(0) = d. Constru
t a sequen
e L̃(1), L̃(2), . . . , L̃(s)

as follows: L̃(j)
equals Lf1,...,fs(k, ε, L̃

(j−1) + ∆) whi
h was obtained in a

ordan
e with

Lemma 1. Let γ(j)
be the ratio of admissible x for n = L̃(j)

whi
h are 
on
urrently

suitable for m = j and for j �rst 
olle
tions ai (i.e., for whi
h there exist r(1), r(2), . . . , r(j)

satisfying the above 
orrelations). Then, taking into a

ount the de�nition of L̃(i)
, we


on
lude that γ(j) > γ(j−1)(1 − ε′′). Hen
e and from the fa
t that γ(0) = 1 (sin
e for

j = 1 no 
onditions are imposed on x, ex
ept its belonging to Ω(n, d, β)) it follows that

γ(m) > (1− ε′)m = 1− ε, whi
h means that L̃ = L̃(m)
is the desired value.

For L̃f1,...,fs(k, ε, d,∆, m) we also make assumptions analogous to those des
ribed above

for N and N0 (see the end part of Se
tion 1).

The proof of Lemma 2 also allows us to 
al
ulate L̃f1,...,fs(k, ε, d,∆, m). It su�
es to


onstru
t the sequen
e L̃(0) = d, L̃(j) = Lf1,...,fs(k, ε, L̃
(j−1) + ∆) with j > 0 and to put

L̃f1,...,fs(k, ε, d,∆, m) = L̃(m)
.

5 Game proto
ols for the uniformity

For proving the uniformity of joint proje
tions of monomials we need to simplify and

to formalize the proof of the uniformity. Let us des
ribe a 
ertain game proto
ol. Players

10




hoose in turns values of 
ertain variables. The variables, whose values are being 
hosen

by us, are pre
eded by the existential quanti�er, while those, whose values are being


hosen by our 
ompetitor, are pre
eded by the generality quanti�er.

Let 
ompatible fun
tions f1(x), f2(x), . . . , fs(x) be given. Consider the following game

of two players, Good and Evil. The game has the following s
heme:

1. Evil 
hooses numbers k, d ∈ N and ε1, ε2 > 0.

2. Good 
hooses the number Ñ = Ñf1,...,fs
d (k, ε1, ε2) ∈ N.

3. Evil 
hooses numbers n > Ñ, β ∈ {0, 1, . . . , pd−1} and draws on a board n su

essive

empty 
ells (positions); in what follows we �ll ea
h of them with a number ranging

from 0 to p − 1. We immediately �ll the latter d 
ells with the notation of the

number β.

4. Good 
hooses an arbitrary set of empty positions and des
ribes some set of admis-

sible ways to �ll these positions. The ratio of the 
ardinal number of the latter

set to the total number of ways to �ll the 
hosen positions should be not less than

1−ε1. In other words, if Good has 
hosen l positions, then the number of admissible

variants should be at least (1− ε1)p
l
.

5. Evil �lls positions 
hosen at the previous step in one of admissible ways.

6. Good 
olors an arbitrary set of empty positions. Let their number equal m.

7. Evil absolutely arbitrarily �lls all empty un
olored positions and 
hooses

a1, a2, . . . , as ∈ {0, 1, . . . , pk − 1}.

8. Good des
ribes (1 − ε2)p
m−sk

ways to �ll 
olored positions so that for the number

x ∈ {0, 1, . . . , pn − 1}, whose p-adi
 notation is written on the board, the point

(
f1(x) mod pn

pn
,
f2(x) mod pn

pn
,
f3(x) mod pn

pn
, . . . ,

fs(x) mod pn

pn

)

should belong to Jk(a1, a2, . . . , as). If Good su

eeds in doing this, it is said to be

the winner, otherwise Evil be
omes the winner.

Along with the above requirements, the strategy of Good should be determinate. This

means that if there are two variants of the behavior of Evil su
h that the latter performs

the same a
tions on several �rst steps of the game, Good also must perform the same

a
tions till Evil �rst behaves di�erently.

11



Note that on Step 6 Good 
ould have always 
olored all positions and then 
ould

have des
ribed the ne
essary number of ways to �ll them, while Good 
ould have inde-

pendently 
onsidered all possible variants of �lling positions whose 
oloring would not be

ne
essary. Nevertheless, for stru
turing the proof, it is 
onvenient to ¾separate roles¿ as

was des
ribed on steps 6-7.

For Ñf1,...,fs
d (k, ε1, ε2) ∈ N we make assumptions analogous to those des
ribed earlier

for N and N0 (see the end part of Se
tion 1).

Lemma 3. If Good always wins in the des
ribed game, then the joint proje
tion of

f1, . . . , fs has a uniform distribution, while Nd(k, ε) = Ñd(k, ε
′, ε′), where ε′ = ε/(2psk).

Proof. Denote

F̃ d,β
n (Jk(a1, a2, . . . , as)) = F d,β

n (Jk(a1, a2, . . . , as))p
n−d.

Therefore, F̃ d,β
n (Jk(a1, a2, . . . , as) is the number of points from P d,β

n that belong to

Jk(a1, a2, . . . , as).

Let k, d, a1, a2, . . . , as be �xed. Rewrite the 
ondition

∣∣∣∣
F d,β
n (Jk(a1, a2, . . . , as))

V (Jk(a1, a2, . . . , as))
− 1

∣∣∣∣ 6 ε

as

(1− ε)p−sk
6 F d,β

n (Jk(a1, a2, . . . , as)) 6 (1 + ε)p−sk

or, alternately,

(1− ε)pn−d−sk
6 F̃ d,β

n (Jk(a1, a2, . . . , as)) 6 (1 + ε)pn−d−sk.

Fix some admissible way to �ll l positions 
hosen on Step 4. Cal
ulating the sum of all

possible ways to �ll n − l − d − m un
olored positions on Step 7, we obtain that the

quantity of values of x, for whi
h the 
orresponding points belong to Jk(a1, a2, . . . , as), is

no less than pn−l−d−m · (1 − ε2)p
m−sk = (1 − ε2)p

n−l−d−sk
. Now by summing this value

over all admissible ways to �ll l positions 
hosen on Step 4, we obtain that their amount

is no less than (1 − ε1)p
l
. This means that there exist at least (1 − ε1)(1 − ε2)p

n−d−sk

values of x, ea
h of whi
h satis�es 
onditions des
ribed on Step 8. The ful�llment of these


onditions means that a point belongs to Jk(a1, a2, . . . , as), whi
h gives the inequality

(1− ε1)(1− ε2)p
n−d−sk

6 F̃ d,β
n (Jk(a1, a2, . . . , as))

12



Let us now prove the upper bound. Evidently, a point 
annot 
on
urrently belong to

Jk(a1, a2, . . . , as) and to Jk(a
′
1, a

′
2, . . . , a

′
s) with (a1, a2, . . . , as) 6= (a′1, a

′
2, . . . , a

′
s). There-

fore,

F̃ d,β
n (Jk(a1, a2, . . . , as)) 6 pn−d −

∑

(a′1,...,a
′

s):(a
′

i)6=(ai)

F̃ d,β
n (Jk(a

′
1, a

′
2, . . . , a

′
s)) 6

6 pn−d − (psk − 1)(1− ε1)(1− ε2)p
n−d−sk =

= (1− (1− ε1)(1− ε2))p
n−d + (1− ε1)(1− ε2)p

n−d−sk
6

6 (ε1 + ε2)p
n−d + pn−d−sk

Put ε1 = ε2 = min(1−
√
1− ε, ε/2psk). Then we get

(1− ε1)(1− ε2)p
n−d−sk

> (1− ε)pn−d−sk,

and

(ε1 + ε2)p
n−d + pn−d−sk

6 (1 + ε)pn−d−sk.

This means that inequalities

(1− ε1)(1− ε2)p
n−d−sk

6 F̃ d,β
n (Jk(a1, a2, . . . , as)),

whi
h were obtained above, and

F̃ d,β
n (Jk(a1, a2, . . . , as)) 6 (ε1 + ε2)p

n−d + pn−d−sk

lead to the desired 
orrelations

(1− ε)pn−d−sk
6 F̃ d,β

n (Jk(a1, a2, . . . , as)) 6 (1 + ε)pn−d−sk.

Note that 1 −
√
1− ε > ε/2 with ε > 0. Therefore, with s, k ∈ N, p > 2 it holds

min(1 −
√
1− ε, ε/(2psk)) = ε/(2psk), whi
h means that in a

ordan
e with the said

above, Nd(k, ε) = Ñd(k, ε/(2p
sk), ε/(2psk)).

Consider the following modi�
ation of the game des
ribed above:

0. Good �xes some natural 
onstant c0 = cf1,...,fs0 .

1. Evil �xes k, d ∈ N and ε1 > 0.

2. Good 
hooses the number N̂ = N̂f1,...,fs
d (k, ε1).

13



3. Evil 
hooses numbers n > N̂, β ∈ {0, 1, . . . , pd−1} and draws on a board n sequential

empty 
ells-positions, ea
h of whi
h in what follows will be �lled with a number from

0 to p− 1. The latter d 
ells are immediately �lled with the notation of the number

β.

4. Good 
hooses an arbitrary set of empty positions and de�nes some set of admissible

ways to �ll these positions. The ratio of the 
ardinal number of the latter set to the

total number of ways to �ll the 
hosen positions should be at least 1− ε1.

5. Evil �lls positions 
hosen on the previous step in one of admissible ways.

6. Good 
olors an arbitrary set of positions whi
h are not �lled yet. Denote their

number by m.

7. Evil absolutely arbitrarily �lls all empty positions ex
ept 
olored ones and 
hooses

a1, a2, . . . , as ∈ {0, 1, . . . , pk − 1}.

8. Good de�nes pm−sk
ways to �ll 
olored positions so as to satisfy the following 
ondi-

tion. Denote by x ∈ {0, 1, . . . , pn−1} the number, whose p-adi
 notation will be writ-
ten on the board; x1 = f1(x) mod pn, x2 = f2(x) mod pn, . . . , xn = fn(x) mod pn.

Denote by bi numbers, whose p-adi
 notation is the pre�x of the length k of the row


onsisting of n symbols of the p-adi
 notation of xi (i.e., bi = ⌊xi/p
n−k⌋). Require

that bi should di�er from ai no more than by c0 (hereinafter in the 
ondition ¾di�er

no more than by c0¿ imposed on p-adi
 numbers of the length k, the di�eren
e is

understood as the minimum of two di�eren
es 
al
ulated modulo pk; in other words,

0 and pk −1 are treated as di�erent by 1). In the 
ase, when Good 
an de�ne pm−sk

ways to �ll the 
olored positions, ea
h of whi
h satis�es the above requirement,

Good is said to be the winner, otherwise Evil is said to win.

Let us impose one additional requirement to the te
hniques proposed by Good;

namely, for two distin
t 
olle
tions a1, a2, . . . , as, assuming that the rest a
tions of

Evil are the same, sets of te
hniques proposed by Good should be non-interse
ting.

As above, the strategy of Good is assumed to be determinate.

For N̂f1,...,fs
d (k, ε1) we make assumptions analogous to those made above for N and N0

(see the end part of Se
tion 1).

Lemma 4. In the 
ase, when Good always wins in the modi�ed game, it 
an also be the

winner in the initial game, and Ñd(k, ε1, ε2) = N̂d(k2, ε1), where k2 = k + logp
2sc

f1,...,fs
0

ε2
.
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Proof. Let us apply Lemma 3. Assume that there exists an ora
le that implements a

winning strategy for Good in the modi�ed game. Let us des
ribe the strategy for a

mediator that uses this ora
le, whi
h is winning for the non-modi�ed game.

Assume that on the �rst step the ora
le gives a number c0. After obtaining k the

mediator 
al
ulates k2 = k + logp
2sc0
ε2

. Note that

(pk2−k − 2c0)
s

p(k2−k)s
> (1− ε2).

Really, for 0 < ε2 < 1 we have

(1− ε2)
1/s

6 1− ε2
s
,

therefore with k2 = k − logp
ε2
2sc0

it holds

(
pk2−k − 2c0

pk2−k

)s

=

(
1− 2c0

pk2−k

)s

=
(
1− ε2

s

)s

> 1− ε2.

Furthermore, the mediator will 
on
urrently use (pk2−k−2c0)
s
ora
les whi
h implement

the winning strategy for the modi�ed game. On steps 1-6 he sends the data obtained from

ora
les to Evil and does the data given by Evil to ora
les un
hanged, ex
ept the fa
t that

on Step 1 he sends to the ora
les k2 instead of k. Sin
e the ora
les are determinate,

the data produ
ed by them 
oin
ide. Having obtained on Step 7 numbers a1, a2, . . . , as,

the mediator use them to form 
olle
tions a1p
k2−k + b1, a2p

k2−k + b2, . . . , asp
k2−k + bs

for all possible 
ombinations of bi ∈ {c0, c0 + 1, . . . , pk2−k − c0 − 1}. Therefore he gets

(pk2−k − 2c0)
s

olle
tions of numbers, ea
h of whi
h belongs to {0, 1, . . . , pk2 − 1}. Then

he sends these 
olle
tions to the ora
les as a1, a2, . . . , as. One 
an easily see that if any of

the sent numbers varies no more than by c0, then their �rst k digits remain equal initial

a1, a2, . . . , as. Therefore, the te
hniques for �lling m 
olored positions de�ned by ora
les

satisfy requirements imposed on Step 8 of the non-modi�ed game. Ea
h ora
le de�nes

pm−k2s
te
hniques, therefore, their total number is pm−k2s(pk2−k − 2c0)

s
. The additional

requirement des
ribed on Step 8 guarantees that no te
hnique is 
ounted twi
e. The

inequality

pm−k2s(pk2−k − 2c0)
s

pm−ks
>

pm−k2s(1− ε2)(p
k2−k)s

pm−ks
= 1− ε2


ompletes the proof of the lemma.

6 The uniformity of the joint proje
tion of monomials

Let us �rst prove one simple assertion whi
h will allow us to restri
t the variation of

major positions under the linear 
ombination of several numbers. Here the deviation is
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understood as the minimum of two di�eren
es modulo pk, i.e., 0 and pk−1 are 
onsidered

to di�er by 1.

Lemma 5. Fix a natural number m and a 
olle
tion of integer numbers ai, 1 6 i 6

m. Put c0 = |a1| + |a2| + . . . + |am|. Then for any natural n, k : n > k and for any

x1, x2, . . . , xm ∈ {0, 1, . . . , pn−1} the number, whose p-adi
 notation is formed by the �rst

k digits in the n-digit notation of the number (a1x1 + a2x2 + . . .+ amxm) mod pn, di�ers

from the number (a1y1 + a2y2 + . . .+ amym) mod pk (here yi is the number, whose p-adi


notation is formed by the �rst k digits in the n-digit p-adi
 notation of xi) no more than

by c0.

Proof. Let us �rst note that for any k, n, k 6 n and any x, y ∈ {0, 1, . . . , pn−1} the number
formed by the �rst k digits of x+y di�ers from the sum modulo pk of numbers formed by

the k �rst digits of x, y no more than by 1. This property follows from the pro
edure of

addition of numbers in a 
olumn; namely, the value that is moved to the major k positions

in the summation pro
ess, does not ex
eed 1. An analogous 
orrelation is valid for the

di�eren
e x − y and the di�eren
e of their k major positions, be
ause the borrow in the

subtra
tion pro
edure does not ex
eed 1. After establishing these two fa
ts, one 
an easily

obtain the desired assertion by indu
tion with respe
t to |a1|+ |a2|+ . . .+ |am|.

In other words, Lemma 5 asserts that if we 
al
ulate a linear 
ombination of several

numbers and then 
hoose the k major positions among n ones, we will deviate at most

by c0 from the result obtain by performing these operations in the 
onverse order, i.e., if

we �rst trun
ate the minor n− k positions and then 
al
ulate the linear 
ombination.

Let us now prove the key theorem of this paper.

Theorem 3. Let s ∈ N. The joint proje
tion of the 
olle
tion f1(x) = x, f2(x) =

x2, . . . , fs(x) = xs
has a d-uniform distribution, and

N̂x
d (k, ε1) = k + d

N̂x,x2,...,xs

d (k, ε1) = L̂x,x2,...,xs−1(2k + ⌈logp s⌉, ε1, d, ⌈logp s⌉, s− 1) with s > 1

cx,...,x
s

0 = s2.

Proof. Let us prove the theorem by indu
tion. The indu
tion base for s = 1 is evident,

namely, the 
ondition that

x
pn

should belong to the semiinterval Jk(a1) is equivalent to

the 
orresponding 
hoi
e of k major digits of x; therefore, the desired 
orrelation is valid

for any ε > 0 (and n > d+ k = N̂d).

Denote by ordpi the maximal degree of p, whi
h is a divisor of i, θ(i) = i/pordpi
.
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Now let the joint proje
tion x, x2, . . . , xs−1
have a uniform distribution. Let us prove

a uniform distribution of the joint proje
tion x, x2, . . . , xs
. A

ording to Lemma 4, to this

end it su�
es to de�ne the 
orresponding move of Good on ea
h even step of the modi�ed

game.

The proof is based on the following idea: we obtain the ne
essary major digits of

monomials x, . . . , xs
, 
hanging the 
ertain 
olle
tion of positions in the major half of x

(to this end, we 
olor them on Step 6 of the modi�ed game). The minor half will be


omposed so as to make the dependen
e of the major k positions of monomials on the


ontent of 
ontrollable positions easily predi
table. Lemma 2 guarantees that the ratio of

su
h x 
an be arbitrarily large.

0. Put cx,...,x
s

0 = s2.

2. Put ∆ = ⌈logp s⌉. Let us now 
al
ulate N ′
as

L̂x,x2,...,xs−1(2k +∆, ε1, d,∆, s− 1).

As N̂x,x2,...,xs

d (k, ε1) we 
hoose 2N
′
. Here we have used the indu
tion hypothesis, i.e.,

the uniformity of the 
olle
tion x, . . . , xs−1
, and applied Lemma 2 to it.

In what follows we understand N̂d as N̂
x,x2,...,xs

d (k, ε1).

4. Good 
hooses the minor N ′
positions (i.e., the half of positions that 
orresponds to

the less signi�
ant positions), ex
ept the latter d ones, whi
h are �lled already. As

admissible te
hniques, Good 
hooses ones whi
h are 
on
urrently suitable for the


olle
tion a
(j)
i :

a
(j)
i =

{
0, i 6= j

pk, i = j

Lemma 2 guarantees that their ratio to the total number of ways to �ll the minor

N ′
positions (the number of the latter equals pN

′−d
) is at least 1− ε1.

6. Sin
e on Step 5 Evil has 
hosen one of de�ned te
hniques, there exist numbers

r(j) satisfying 
onditions of Lemma 2. We 
olor exa
tly sk positions; namely, the

major k positions (they 
orrespond to degrees of p from pn−k
to pn−1

), and for

ea
h r(j) we 
olor positions whi
h 
orrespond to degrees from pn−r(j)+∆−ordp(j+1)
to

pn−r(j)+∆−ordp(j+1)+k−1
, i.e., exa
tly k positions for ea
h j from 1 to s − 1. Condi-

tions 2 in the de�nition of a 
on
urrently suitable 
olle
tion r(j) and the fa
t that

∆ > ordp(j + 1) with all j under 
onsideration guarantee that all sets of positions

do not interse
t.
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8. In order to avoid any ambiguity in understanding a
(j)
i de�ned on Step 4 and ai

provided by Evil on Step 7, we denote the latter by ãi. On Step 6 exa
tly sk

positions are 
hosen, therefore now we have to �ll them in exa
tly one way so as to

make the initial rows of the length k di�er from ãi provided by Evil on Step 7 no

more than by c0. Firstly, we �ll the major k positions of x with the value ã1. Now

we denote by bj the k-digit number whi
h o

upies positions from pn−r(j)+∆−ordp(j+1)

to pn−r(j)−∆−ordp(j+1)+k−1
(these positions were 
olored on Step 6). Denote by B the

number, whose p-adi
 notation would have been written on the board, if ea
h of bj

had equaled 0. Therefore,

x = B +
s−1∑

j=1

bjp
n−r(j)+∆−ordp(j+1). (1)

Fix

b′j = (ãj+1 −
⌊
Bj+1 mod pn

pn−k

⌋
) mod pk. (2)

In other words, let b′j equal the di�eren
e between ãj+1 and the �rst k digits of Bj+1


al
ulated modulo pk. Now let bj equal b
′
j(θ(j + 1))−1 mod pk (sin
e, by de�nition,

θ(j + 1) is not multiple of p, desired (θ(j + 1))−1
exists modulo pk). Let us write

obtained bj in the 
orresponding positions on the board and prove that obtained x

satis�es the requirements stated in the des
ription of Step 8 of the modi�ed game.

Firstly, sin
e the �rst k digits of x represent the notation of ã1 (as was �xed earlier),

the desired assertion is valid for f1(x) = x.

Let us now prove the desired assertion for ft(x) = xt, 2 6 t 6 s. Consider the

expression for xt
. Let us immediately remove the bra
kets in the above expression 1)

for x in terms of B, b1, b2, . . . , bs−1. Sin
e n > N̂d = 2N ′, r(j) 6 N ′,∆ > ordp(j +1),

we have n − r(j) + ∆ − ordp(j + 1) > n − N ′ > n/2, whi
h means that produ
ts


ontaining at least two terms with bj (for the same or distin
t values of j) vanish

after the 
al
ulation of xt
modulo pn. Therefore,

ft(x) mod pn = xt mod pn = (Bt +

s−1∑

j=1

tBt−1bjp
n−r(j)+∆−ordp(j+1)) mod pn. (3)

Consider the expression tBt−1bjp
n−r(j)+∆−ordp(j+1) mod pn. Note that the multipli-


ation by pn−r(j)+∆−ordp(j+1)
shifts the p-adi
 notation of the number by n−r(j)+∆−

ordp(j + 1) positions to the left. Therefore, digits of tBt−1bj that o

upy the posi-

tions whi
h 
orrespond to degrees of p not lesser than n−(n−r(j)+∆−ordp(j+1)) =

18



r(j)−∆+ordp(j+1) do not a�e
t the result, be
ause they vanish after the 
al
ulation

modulo pn.

Let us �rst prove that the major digits of xt mod pn are nearly independent of the


hoi
e of bj with j 6= t− 1.

Consider the expression Bt−1bjp
n−r(j)+∆−ordp(j+1) mod pn for j 6= t − 1.

Taking into a

ount the above reasoning, we 
an write ((Bt−1bj) mod

pr
(j)−∆+ordp(j+1))pn−r(j)+∆−ordp(j+1)

. In a

ordan
e with the de�nition of r(j), the


hoi
e of a
(j)
i , and the 
hoi
e of an admissible set for the minorN ′

positions on Step 4,

the �rst 2k+∆ p-adi
 digits in the r(j)-digit notation of the number Bt−1 mod pr
(j)

are zeros. Sin
e ∆ > ordp(j + 1), this means that at least 2k + ordp(j + 1) �rst

digits in the (r(j) − ∆ + ordp(j + 1))-digit notation of Bt−1 mod pr
(j)−∆+ordp(j+1)

are zeros. Taking into a

ount the inequality bj < pk, this means that at least

k+ ordp(j +1) major digits in the notation of (bjB
t−1) mod pr

(j)−∆+ordp(j+1)
are ze-

ros. Hen
e it follows that the number of zeros in the n-digit notation of the number

(bjB
t−1pn−r(j)+∆−ordp(j+1)) mod pn is the same. Thus, we have proved that at least

k major digits in the notation of the latter number are zeros.

Let us now prove that the 
hoi
e of bt−1 guarantees the presen
e of almost de-

sired digits at the beginning of the notation of xt mod pn. Consider the expression

tBt−1bjp
n−r(j)+∆−ordp(j+1) mod pn for j = t − 1. Let us represent t as θ(t)pordpt

.

Then the expression takes the form (θ(t)bt−1B
t−1pn−r(t−1)+∆−ordp(t)+ordp(t)) mod pn =

(θ(t)bt−1B
t−1pn−r(t−1)+∆) mod pn. Consider separately (bt−1B

t−1pn−r(t−1)+∆) mod

pn. Reasoning similarly to the 
ase when j 6= t− 1, we 
an write

((bt−1B
t−1) mod pn−(n−r(t−1)+∆))pn−r(t−1)+∆ =

= ((bt−1B
t−1) mod pr

(t−1)−∆)pn−r(t−1)+∆.

By the de�nition of r(j), the 
hoi
e of a
(j)
i , and the 
hoi
e of an admissible set for

the minor N ′
positions on Step 4, the �rst 2k + ∆ p-adi
 digits in the r(t−1)

-digit

notation of the number Bt−1 mod pr
(t−1)

form the notation of the number pk. This

means that the �rst 2k digits in the (r(t−1)−∆)-digit notation of Bt−1 mod pr
(t−1)−∆

also form the notation of pk.

The latter property is equivalent to the fa
t that the �rst k digits of the number

(bt−1B
t−1) mod pr

(t−1)−∆
form the notation of bt−1, be
ause k zeros that follow the

unit in the 2k-digit notation of the number pk 
an
el the possible 
arry-out. There-

fore, the �rst k digits in the n-digit notation of (bt−1B
t−1pn−r(t−1)+∆) mod pn also

form the notation of bt−1.
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Let us now 
onsider the addends that enter in the sum for xt
in formula (3).

We have s − 2 expressions in the form (Bt−1bjp
n−r(j)+∆)−ordp(j+1)) mod pn for

j 6= t − 1 whi
h enter in the sum for xt
with the 
oe�
ient t, one expression

(Bt−1bt−1p
n−r(t−1)+∆) mod pn whi
h enters in it with the 
oe�
ient θ(t), and one

expression Bt
whi
h enters in this sum with the 
oe�
ient 1. Taking into a

ount

the proved assertion, as well as the fa
t that btθ(t) = b′t, in view of the de�nition

of b′t, we 
on
lude that 
onsidering (with the same 
oe�
ients) the numbers whose

notations are formed by the k major digits in ea
h term, we will get ãt 
al
ulated

modulo pk.

It remains to prove that the in�uen
e of the minor digits is smoothed over. Consider

the linear 
ombination with 
oe�
ients c1 = c2 = . . . = cs−2 = t, cs−1 = θ(t), cs = 1.

By Lemma 5, the k major digits of this linear 
ombination 
al
ulated modulo pn

di�er from the linear 
ombination of numbers formed by the k major digits of the

initial numbers 
al
ulated modulo pk at most by

s∑

i=1

cs = t(s− 2) + θ(t) + 1 6 s2,

whi
h 
oin
ides with the 
onstant c0 
hosen on Step 0. Therefore, obtained x satis�es

requirements of item 8 of the modi�ed game.

Let us now dis
uss the question of why with various 
olle
tions ai we obtain distin
t

x. Let us have a 
olle
tion ã1, ã2, . . . , ãs and ã′1, ã
′
2, . . . , ã

′
s. If ã1 6= ã′1, then obtained

x di�er in the �rst k positions. In other words, let ãi 6= ã′i with some i > 1. Then


orresponding b′i−1 are also distin
t (see (2)), be
ause in both 
ases B 
oin
ide being

independent of ãj with j > 1. This means that bi−1 are also distin
t, whi
h implies

the diversity of x.

The obtained strategy proves the theorem.

7 Estimation of the uniformity limits

Re
all that the equality sign following any of symbols N, Ñ, N̂ , L, L̃ means that the

fun
tion in the right-hand side 
an serve as the 
orresponding bound n, not ne
essarily

the minimal one.

Theorem 4. It holds N̂x,x2,...,xs

d (k, ε) = exp{pc1(s)k−c2(s) log ε+c3(s)} +

d exp{pc4(s)k−c5(s) log ε+c6(s)}, where ci are some fun
tions that depend only on s and

p.
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Proof. Correlations established in lemmas 1,2,3,4 and Theorem 3 give the following system

of equalities:

• Nx
d (k, ε) = k + d;

• Nx,...,xs

d (k, ε) = Ñx,...,xs

d (k, ε/(2psk), ε/(2psk));

• Ñx,...,xs

d (k, ε1, ε2) = N̂x,...,xs

d (k + logp
2s3

ε2
, ε1);

• N̂x,...,xs

d (k, ε1) = 2L̃x,x2,...,xs−1(2k + ⌈logp s⌉, ε1, d, ⌈logp s⌉, s− 1);

• the following way to 
al
ulate L̃f1,...,fs: L̃(0) = d, L̃(j) = Lf1,...,fs(k, ε, L̃
(j−1) + ∆)

with j > 0 and put L̃f1,...,fs(k, ε, d,∆, m) = L̃(m)
;

• the following way to 
al
ulate Lf1,...,fs(k, ε, d): L(0) = d, L(i) = Nf1,...,fs
L(i−1)+k

(k, 1/2)

with i > 0 and put Lf1,...,fs(k, ε, d) = L(⌈log
1−1/(2psk)

ε⌉)
.

Introdu
e the following denotations:

Nx,...,xs

d (k, 1/2) = A(s, k) + dB(s, k);

Ñx,...,xs

d (k, 1/(4psk), 1/(4psk)) = Ã(s, k) + dB̃(s, k);

N̂x,...,xs

d (k, 1/(4psk)) = Â(s, k) + dB̂(s, k);

Lx1,...,xs(k, 1/(4psk), d) = AL(s, k) + dBL(s, k);

L̃x1,...,xs(k, 1/(4psk), d, ⌈logp s⌉, s) = AL̃(s, k) + dBL̃(s, k).

Then

Nx,...,xs

d (k, ε) = Ñx,...,xs

d (k, ε/(2psk), ε/(2psk)) gives

A(s, k) = Ã(s, k), B(s, k) = B̃(s, k).

Ñx,...,xs

d (k, ε1, ε2) = N̂x,...,xs

d (k + logp
2s3

ε2
, ε1) gives

Ã(s, k) = Â(s, k + logp
2s3

1/(4psk)
), B̃(s, k) = B̂(s, k + logp

2s3

1/(4psk)
).

N̂x,...,xs

d (k, ε1) = 2L̃x,x2,...,xs−1(2k + ⌈logp s⌉, ε1, d, ⌈logp s⌉, s− 1) gives

Â(s, k) = 2AL̃(s− 1, k), B̂(s, k) = 2BL̃(s− 1, k).

Let some fun
tion f(d) = a+ bd be given. Then for ea
h 
onstant ∆ we 
an 
onstru
t

the following sequen
e of fun
tions fi(d): f0(d) = d, fi(d) = f(fi−1(d) + ∆). We 
an rep-

resent obtained fi(d) as fi(d) = ai+dbi. Denote su
h numbers ai and bi by Arec(a, b, i,∆)

and Brec(a, b, i,∆), respe
tively.

Let us estimate Arec and Brec with b > 2, a > 0:

Arec = a+ b(a+∆+ b(a+∆+ . . .+ (a+∆+ b(a+∆)) . . .)) 6 (a+∆)bi, Brec = bi.
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Then the following way to 
al
ulate L̃f1,...,fs: L̃
(0) = d, L̃(j) = Lf1,...,fs(k, ε, L̃

(j−1) +∆)

with j > 0 and L̃f1,...,fs(k, ε, d,∆, m) = L̃(m)
gives

AL̃(s, k) = Arec(AL(s, k), BL(s, k), s, ⌈logp(s+ 1)⌉),
BL̃(s, k) = Brec(AL(s, k), BL(s, k), s, ⌈logp(s+ 1)⌉).
The following way to 
al
ulate Lf1,...,fs(k, ε, d): L

(0) = d, L(i) = Nf1,...,fs
L(i−1)+k

(k, 1/2), i > 0

and Lf1,...,fs(k, ε, d) = L(⌈log
1−1/(2psk)

ε⌉)
gives:

AL(s, k) = Arec(A(s, k), B(s, k), ⌈log1−1/(2psk)(1/(4p
sk))⌉, k),

BL(s, k) = Brec(A(s, k), B(s, k), ⌈log1−1/(2psk)(1/(4p
sk))⌉, k).

Sin
e − log(1− 1/(2psk)) > 1/(2psk), we have:

AL(s, k) 6 Arec(A(s, k), B(s, k), ⌈2psk log(4psk)⌉, k),
BL(s, k) 6 Brec(A(s, k), B(s, k), ⌈2psk log(4psk)⌉, k).

Therefore,

A(1, k) = k,

B(1, k) = 1,

A(s, k) = Ã(s, k),

B(s, k) = B̃(s, k),

Â(s, k) = 2AL̃(s− 1, k),

B̂(s, k) = 2BL̃(s− 1, k),

Ã(s, k) = Â(s, ⌈k + logp(2s
34psk)⌉),

B̃(s, k) = B̂(s, ⌈k + logp(2s
34psk)⌉),

Arec(a, b,∆, i) 6 (a+∆)bi,

Brec(a, b,∆, i) = bi,

AL̃(s, k) = (AL(s, k) + ⌈logp(s + 1)⌉)BL(s, k)
s
,

BL̃(s, k) = BL(s, k)
s
,

AL(s, k) = (k + A(s, k))B(s, k)⌈2p
sk log(4psk)⌉

,

BL(s, k) = B(s, k)⌈2p
sk log(4psk)⌉

.

Taking the logarithm, we obtain

logA(1, k) = log k,

logB(1, k) = 0,

logA(s, k) = log Ã(s, k),

logB(s, k) = log B̃(s, k),

log Â(s, k) = log 2 + logAL̃(s− 1, k),

log B̂(s, k) = log 2 + logBL̃(s− 1, k),

log Ã(s, k) = log Â(s, ⌈k + logp(2s
34psk)⌉),
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log B̃(s, k) = log B̂(s, ⌈k + logp(2s
34psk)⌉),

logAL̃(s, k) = log(AL(s, k) + ⌈logp(s+ 1)⌉) + s logBL(s, k),

logBL̃(s, k) = s logBL(s, k),

logAL(s, k) = log(k + A(s, k)) + ⌈2psk log(4psk)⌉ logB(s, k),

logBL(s, k) = ⌈2psk log(4psk)⌉ logB(s, k).

Let us obtain bounds for the repeated logarithm. To this end we will apply the


orrelation written above the statement of the theorem, using the equality sign. With x >

2 and y > 2 we have xy > x+y; this allows us to approximately 
al
ulate the logarithm of

the sum as the sum of logarithms, provided that addends satisfy the mentioned 
onditions.

In above 
orrelations we are interested in the upper bound for the 
ase when s > 1. Let

us repla
e the initial 
onditions with B(1, k) = 2, A(1, k) = k+2. Sin
e we have repla
ed


ertain values with greater ones, in sums in the right-hand sides of the 
orrelations all

addends (ex
ept log 2 or, possibly, ⌈logp(s + 1)⌉) ex
eed 2. In above 
orrelations we are

interested in the upper bound for the 
ase when s > 1. Let us repla
e initial 
onditions

with B(1, k) = 2, A(1, k) = k + 2. Note that the substituted values ex
eed initial ones.

By repla
ing the rest 
onstants with greater values we also make the resulting bound

more rough. Now we assume that all summands ex
eed 2 (we repla
e log 2 with 2, and

do ⌈logp(s+1)⌉) with s+ 1). Now, using the inequality from the previous paragraph, we

repla
e the sum with the produ
t. Then we 
al
ulate the logarithm (of the base p) and

again repla
e 
onstants with upper bounds (thus, for example, logp 2 < 1, and logarithms

of the rest 
onstants are less than the latter themselves). As a result, we obtain the

following simple re
urrent 
orrelations for (overestimated) double logarithms:

logp logA(1, k) = k + 2,

logp logB(1, k) = 2,

logp log Ã(1, k) = k,

logp log B̃(1, k) = 2,

logp logA(s, k) = logp log Ã(s, k),

logp logB(s, k) = logp log B̃(s, k),

logp log Ã(s, k) = logp log Â(s, k + sk + 3s+ 3),

logp log B̃(s, k) = logp log B̂(s, k + sk + 3s+ 3),

logp log Â(s, k) = 1 + logp logAL̃(s− 1, k),

logp log B̂(s, k) = 1 + logp logBL̃(s− 1, k),

logp logAL̃(s, k) = logp logAL(s, k) + 2s+ s+ logp logBL(s, k),

logp logBL̃(s, k) = s + logp logBL(s, k),

logp logAL(s, k) = k + logp logA(s, k) + sk + logp logB(s, k),
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logp logBL(s, k) = sk + logp logB(s, k).

But even these (ampli�ed) double logarithms A and B, evidently, linearly depend on

k (with �xed s). This means that the linear upper bound with respe
t to k is also ful�lled

for non-modi�ed double logarithms A and B.

Thus, we have obtained a bound for Nx,...,xs

d (k, 1/2). Let us now perform the initial

indu
tion step of Theorem 3, where ε is arbitrary.

We have

L(0) = d, L(i) = NL(i−1)+k(k, 1/2) with i > 0 and Lx,...,xs(k, ε, d) = L(⌈log
1−1/(2psk)

ε⌉)
,

when
e with the help of bounds for Arec and Brec we obtain

Lx,...,xs(k, ε, d) 6 (A(s, k) + k)B(s, k)
⌈log

1−1/(2psk)
ε⌉
+ dB(s, k)

⌈log
1−1/(2psk)

ε⌉
.

Using the formula for L̃(s, k) and the same bounds for Arec and Brec, we get

L̃x,...,xs(k, ε, d,∆, s) 6 ((A(s, k) + k)B(s, k)⌈log1−1/(2psk)
ε⌉ +∆)B(s, k)s⌈log1−1/(2psk)

ε⌉+

dB(s, k)s⌈log1−1/(2psk)
ε⌉.

With 0 < x < 1, 0 < ε < 1, it holds ⌈log1−x ε⌉ > −(log ε)/x + 1, therefore

⌈log1−1/(2psk) ε⌉ < −2psk log ε+ 1.

Let us represent 2p(s−1)(2k+⌈logp s⌉)
as c(s)p2(s−1)k

, where c(s) is some fun
tion of s.

Therefore,

N̂x,...,xs

d (k, ε1) = 2L̃x,...,xs−1(2k + ⌈logp s⌉, ε1, d, ⌈logp s⌉, s− 1) 6

2((A(s−1, 2k+⌈logp s⌉)+2k+⌈logp s⌉)B(s−1, 2k+⌈logp s⌉)−c(s)p2(s−1)k log ε1+1+⌈logp s⌉)×

B(s− 1, 2k + ⌈logp s⌉)(s−1)(−c(s)p2(s−1)k log ε1+1)+

2dB(s− 1, 2k + ⌈logp s⌉)(s−1)(−c(s)p2(s−1)k log ε1+1).

Consider double logarithms of the 
oe�
ient at d and the free term in last but one

expression. Taking into a

ount the obtained above linear (with respe
t to k) bounds for

double logarithms of A and B, we obtain linear with respe
t to k and log ε bounds for

these fun
tions.
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8 The uniformity for linear 
ombinations

In lemmas 6-10, as well as in theorems 5, 6, we understand the senten
e ¾the joint

proje
tion of the 
olle
tion f1(x), f2(x), . . . , fs(x) has a uniform distribution¿ as a re-

quirement stronger than De�nition 3, namely, the existen
e of a winning strategy for the

modi�ed game.

We intend to prove that the uniformity of the 
olle
tion (f1(x), . . . , fs(x)) implies that

of the 
olle
tion (g1(x), . . . , gs(x)), provided that the se
ond 
olle
tion is obtained from

the �rst one by adding to one of fun
tions an integer linear 
ombination of the rest ones

or by adding an integer 
onstant, or by multiplying by su
h a 
onstant. Hen
e and from

Theorem 3 we dedu
e the uniformity of the s-dimensional proje
tion of polynomials.

Lemma 6. Assume that the joint proje
tion of a 
olle
tion of fun
tions

f1(x), f2(x), . . . , fs(x) has a uniform distribution, and u is a natural number. Then the

joint proje
tion of the 
olle
tion puf1(x), f2(x), . . . , fs(x) also has a uniform distribution,

and

N̂puf1,f2,...,fs
d (k, ε) = N̂f1,...,fs

d (k + u, ε)

cp
uf1,f2,...,fs

0 = cf1,...,fs0 .

Proof. Assume that there exists an ora
le whi
h implements a winning strategy for the


olle
tion f1(x), f2(x), . . . , fs(x). Let us represent the strategy for the mediator that uses

this ora
le.

The mediator uses psu identi
al ora
les. On steps 0-6 he sends un
hanged data from

ora
les to Evil and from Evil to ora
les, ex
ept the fa
t that instead of k he informs

ora
les of the number k + u. Sin
e the ora
les are determinate, the data obtained from

them 
oin
ide. The mediator transforms the 
olle
tion a1, a2, . . . , as of numbers of the

length k obtained on Step 7 into psu 
olle
tions of numbers of the length k + u in the

following way: to a1 he appends (in all possible ways) the major u digits, and does to

a2, . . . , as (in all possible ways) the minor u ones (thus, the total number of used variants

is (ps)u = psu). Then he sends to ea
h ora
le one of 
olle
tions and obtains from them

psupm−(k+u)s = pm−sk
ways to �ll m positions whi
h were not �lled on Step 6. Evidently,

the obtained variants satisfy 
onditions imposed on f2(x), . . . , fs(x), be
ause the �rst

k digits of the 
orresponding numbers in 
olle
tions sent to the ora
les 
oin
ide with

a2, . . . , as. One 
an also easily see that the stated 
ondition is also ful�lled for f1(x),

be
ause the minor k positions among k + u ones in notations of numbers sent to the

ora
les as a1 
oin
ide with a1, and the multipli
ation by pu make the p-adi
 notation of
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a number shift by u positions to the left. This means that ea
h of pm−sk
ways to �ll the


olored positions proposed by ora
les satisfy the 
onditions imposed on it on Step 8 of the

game. All these variants are distin
t due to the additional requirement imposed on them

on Step 8; 
onsequently, the mediator 
an present them to Evil as a response implied by

Step 8 of the proto
ol.

For various 
olle
tions a1, a2, . . . , as, the 
olle
tions presented to the ora
les are also

distin
t, therefore the validity of the additional requirement for the mediator follows from

its validity for the ora
les.

Lemma 7. Assume that the joint proje
tion of a 
olle
tion of fun
tions

f1(x), f2(x), . . . , fs(x) has a uniform distribution, and u is an integer number mu-

tually prime with p. Then the joint proje
tion of the 
olle
tion uf1(x), f2(x), . . . , fs(x)

also has a uniform distribution, and

N̂uf1,f2,...,fs
d (k, ε) = N̂f1,...,fs

d (k, ε)

cuf1,f2,...,fs0 = ucf1,...,fs0 .

Proof. Assume that there exist an ora
le whi
h implements a winning strategy for the


olle
tion f1(x), f2(x), . . . , fs(x). Let us des
ribe the strategy for the mediator, who uses

this ora
le.

On steps 0-6 the mediator sends un
hanged data from ora
les to Evil and from Evil

to ora
les, ex
ept the fa
t that on Step 0 he multiplies c0 (obtained from an ora
le) by u.

Denote the value of c0 initially obtained from an ora
le by c′0. Having obtained on Step 7

numbers a1, a2, . . . , as, the mediator 
al
ulates a′1 = a1u
−1 mod pk (the desired inverse

value exists, be
ause u is mutually prime with p) and sends the 
olle
tion a′1, a2, a3, . . . , as

to an ora
le. Let us prove that the variants of �lling the 
olored positions proposed by

the ora
le satisfy the stated 
onditions. This, evidently, is true for f2(x), f3(x), . . . , fs(x).

It is also true that the �rst k digits of f1(x) di�er from a′1 at most by c′0. By Lemma 5

this implies that the �rst k digits of f1(x)u di�er from a1 at most by c0; therefore, the


ondition stated on Step 8 is also ful�lled for f1(x).

For di�erent 
olle
tions a1, a2, . . . , as, the 
olle
tions sent to an ora
le are also di�erent;

therefore the ful�llment of the additional 
ondition for an ora
le implies its validity for

the mediator.

Lemma 8. Assume that the joint proje
tion of a 
olle
tion of fun
tions

f1(x), f2(x), . . . , fs(x) has a uniform distribution, and u is an integer nonzero number.

Then the joint proje
tion of the 
olle
tion uf1(x), f2(x), . . . , fs(x) also has a uniform
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distribution, and

N̂uf1,f2,...,fs
d (k, ε) = N̂f1,...,fs

d (k + ordpu, ε)

cuf1,f2,...,fs0 = θ(u)cf1,...,fs0 .

Proof. The desired assertion follows from two previous lemmas and the representation

u = θ(u)pordpu.

Lemma 9. Assume that the joint proje
tion of a 
olle
tion of fun
tions

f1(x), f2(x), . . . , fs(x) has a uniform distribution, and u is an integer number. Then the

joint proje
tion of the 
olle
tion f1(x)+u, f2(x), . . . , fs(x) also has a uniform distribution,

and

N̂f1+u,f2,...,fs
d (k, ε) = N̂f1,...,fs

d (k, ε)

cf1+u,f2,...,fs
0 = cf1,...,fs0 + u+ 1.

Proof. Assume that there is an ora
le, whi
h implements a winning strategy for the 
ol-

le
tion f1(x), f2(x), . . . , fs(x). Let us des
ribe the strategy for the mediator whi
h uses

this ora
le.

On steps 0-7 the mediator sends un
hanged data from the ora
les to Evil, and from

Evil to the ora
les, ex
ept the fa
t that on Step 0 he in
reases c0 (obtained from an ora
le)

by u+1. Denote the value of c0 initially obtained from an ora
le by c′0. Let us prove that

the variants of �lling the 
olored positions proposed by an ora
le on Step 8 satisfy the

stated 
onditions. Evidently, this is true for f2(x), f3(x), . . . , fs(x). Moreover, the �rst k

digits of f1(x) di�er from a1 at most by c′0. Let us represent f1(x) + u as 1 · f1(x) + u · 1.
Sin
e n0 > k, the �rst k digits in the n-digit notation of 1 are zeros. By Lemma 5 this

means that the �rst k digits of f1(x) + u di�er from a1 at most by c0; therefore, the


ondition stated on Step 8 is also ful�lled for f1(x).

If 
olle
tions a1, a2, . . . , as are distin
t, then so are 
olle
tions given to an ora
le,

therefore the validity of the additional 
ondition for the mediator follows from its validity

for an ora
le.

Lemma 10. Assume that the joint proje
tion of a 
olle
tion of fun
tions

f1(x), f2(x), . . . , fs(x) has a uniform distribution, and u2, u3, . . . , us are arbitrary integer

numbers. Then the joint proje
tion of the 
olle
tion f1(x) +
s∑

i=2

uifi(x), f2(x), . . . , fs(x)

also has a uniform distribution, and

N̂
f1+

s∑
i=2

uifi,f2,...,fs

d (k, ε) = N̂f1,...,fs
d (k, ε)

c
f1+

s∑
i=2

uifi,f2,...,fs

0 = cf1,...,fs0 +

s∑

i=2

ui.
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Proof. Assume that some ora
le implements a winning strategy for the 
olle
tion

f1(x), f2(x), . . . , fs(x). Let us des
ribe the strategy for the mediator whi
h uses this

ora
le.

On steps 0-6 the mediator sends un
hanged data from the ora
les to Evil and from Evil

to the ora
les, ex
ept the fa
t that on Step 0 he in
reases the value of c0 (obtained from an

ora
le) by 1 +
s∑

i=2

ui. Denote the value of c0 initially obtained from an ora
le by c′0. After

obtaining on Step 7 numbers a1, a2, . . . , as, he 
al
ulates a′1 = a1 −
s∑

i=2

uiai mod pk and

sends the 
olle
tion a′1, a2, a3, . . . , as to an ora
le. Let us prove that the variants of �lling

the 
olored positions proposed by an ora
le satisfy the stated 
onditions. Evidently, this

is true for f2(x), f3(x), . . . , fs(x). It is also true that the �rst k digits of f1(x) di�er from

a′1 at most by c′0. By Lemma 5 hen
e we dedu
e that the �rst k digits of f1(x)+
s∑

i=2

uifi(x)

di�er from a1 at most by c0; therefore, the 
ondition stated on Step 8 is also ful�lled for

f1(x).

If 
olle
tions a1, a2, . . . , as are distin
t, then so are the 
olle
tions sent to an ora
le,

be
ause a2, . . . , as are sent un
hanged, and if they 
oin
ide, then the number subtra
ted

from a1 also equals the same value. Therefore, if the additional 
ondition is valid for an

ora
le, then it is also valid for the mediator.

9 The uniformity for polynomials

Theorem 5. Let A be an arbitrary nondegenerate integer s× s-matrix. Assume that the


olumn of polynomials f1, . . . , fs is given by the 
orrelation (f1, . . . , fs)
T = A(x, . . . , xs)T+

z, where z is an arbitrary 
onstant integer s × 1-
olumn. The joint proje
tion of the


olle
tion f1(x), f2(x), . . . , fs(x) has a uniform distribution, and

Nf1,...,fs(ε) = exp{c1ε−c2},

where c1, c2 are positive 
onstants depending only on the 
olle
tion of fi and independent

of ε.

Proof. By Theorem 3 the joint proje
tion of the 
olle
tion x, x2, . . . , xs
has a uniform

distribution. In view of lemmas 8, 9, and 10 we 
an perform three operations with the


olle
tion, namely,

• add an integer 
onstant to any fun
tion;

• multiply any fun
tion by an integer nonzero 
onstant;
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• add to any fun
tion an integer linear 
ombination of the rest fun
tions;

as above, the joint proje
tion has a uniform distribution. To 
omplete the proof, it remains

to show that these operations allow us to transform the 
olle
tion x, x2, . . . , xs
into that

f1(x), f2(x), . . . , fs(x).

Really, lemmas 6-10 
hange the value of k only in the following way: they add to k

some 
onstant independent of k and ε. Therefore, taking into a

ount Theorem 4, we

obtain the 
orrelation

N̂f1,...,fs
0 (k, ε1) = exp{pc1k−c2 log ε+c3},

where c1, c2, c3 are some 
onstants depending on the 
olle
tion of fi (we repla
e d with 0,

whi
h makes the se
ond term in the bound in Theorem 4 vanish). Lemmas 6-10 de�ne

some value cf1,...,fs0 . Sequentially applying lemmas 3 and 4, we get

Nf1,...,fs
0 (k, ε) = Ñf1,...,fs

0 (k, ε/(2psk), ε/(2psk)) = N̂f1,...,fs
0 (k + logp

2scf1,...,fs0

ε/(2psk)
, ε/(2psk)).

Note that both logp(ε/(2p
sk) and logp

2sc
f1,...,fs
0

ε/(2psk)
are representable as a linear 
ombina-

tion of 1, k, log ε, whose 
oe�
ients depend only on f1, . . . , fs and are independent of k, ε.

In a

ordan
e with Theorem 2 we set k = − logp ε+ logp 4s and thus obtain desired

Nf1,...,fs(ε) = exp{c1ε−c2}.

for some positive numbers c1, c2 (their positiveness follows from the nonnegativity of N

and the fa
t that the bound in
reases as ε diminishes).

Let us now prove that by des
ribed operations we 
an get the 
olle
tion (f1, . . . , fs).

To this end, let us begin with the 
olle
tion (f1, . . . , fs) and obtain that x, . . . , xs
by the

following operations:

• add to any fun
tion an integer 
onstant;

• divide any fun
tion by an integer nonzero 
onstant;

• add to any fun
tion an integer linear 
ombination of the rest fun
tions,

and then perform the 
orresponding inverse operations in the 
onverse order.

Let us obtain fun
tions in three steps.

1. Firstly, get rid of free terms, just subtra
ting them. This allows us to represent

the 
olle
tion f1, . . . , fs in the form A(x, . . . , xs)T with some matrix A. Below in

the proof of the theorem we identify the 
olle
tion of fun
tions f1, . . . , fs with this

matrix A.
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2. Obtain an upper-triangular matrix.

3. Sequentially, starting with the last 
olumn, redu
e the matrix to the desired form.

Step 1 is evident.

Let us des
ribe Step 2 in detail. Assume that for some number t, 0 6 t 6 s, for ea
h


olumn i, 1 6 i 6 t, all elements below the diagonal equal zero. Let us des
ribe the way

to pro
eed from t = t′ to t = t′ + 1. At the very beginning we assume that t = 0, and

with t = s we obtain the desired value.

Let us sequentially apply the Eu
lid algorithm to elements of the 
olumn t′+1 for some

pairs of rows. We obtain the GCD in the 
olumn t′+1, subtra
ting the 
orresponding rows

from ea
h other (this is a parti
ular 
ase of the linear 
ombination). Let us �rst 
al
ulate

the GCD for rows t′ + 1 and t′ + 2. After determining the GCD in one row (modi�ed by

the algorithm), in 
olumn t′+1 we get 0. We �nd the GSD for the remaining row and for

row t′+3. Pro
eeding this pro
ess for all j up to s we �nd the GSD for pairs of rows, one

of whi
h is the only row (among rows with numbers from t′ +1 to j− 1) whose (t′ +1)-st

element di�ers from zero, and the other one is the jth row. Ea
h time after 
al
ulating

the GSD in one row modi�ed by the algorithm, we get zero in it in the (t′ + 1)-st pla
e.

Thus, we have proved that among rows with numbers from t′ + 1 to s there is only

one row with a nonzero element at the (t′ + 1)-st position. Now we 
an add it to row

t′+1 and then subtra
t from it the just obtained row t′+1; thus we get a unique nonzero

element in row t′ + 1, whi
h means that in 
olumn t′ + 1 all elements lo
ated below the

diagonal also equal zero.

Let us now des
ribe the way in whi
h we implement Step 3. We sequentially, for t

varying from s to 1, perform the following operation: �rst we divide row t by its only

nonzero element lo
ated on the diagonal and thus turn this element to 1. Then from

ea
h row from 1 to t − 1 we subtra
t row t multiplied by the tth element of the 
urrent

row. Thus we make the tth row the only row whose tth element di�ers from zero. After

performing this operation for t = 1 we obtain the unit matrix.

Lemma 11. Let the joint proje
tion of a 
olle
tion of fun
tions f1(x), f2(x), . . . , fs(x)

have a uniform distribution. Then the joint proje
tion of any sub
olle
tion

fi1 , fi2 , . . . , fik , 1 6 i1 < i2 < . . . < ik 6 s, also has a uniform distribution.

Proof. One 
an easily dedu
e the desired assertion from the de�nition, summing numbers

of points in the 
orresponding volumes over all possible values of aj , 1 6 j 6 n, j /∈
{i1, i2, . . . , ik}.
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Theorem 6. Let f(x) be an arbitrary polynomial with integer 
oe�
ients of a degree

greater than 1, and let s be an arbitrary natural number. Then the s-dimensional proje
-

tion of the polynomial f(x) has a uniform distribution, and

Nx,f,...,f(s−1)

(ε) = exp{c1ε−c2}

for some positive c1, c2 depending only on the polynomial f .

Proof. Let the degree of f (s−1)(x) equal d. Evidently, no two polynomials in the set

x, f(x), f (2)(x), . . . , f (s−1)(x) have one and the same degree. Let us add to this set ar-

bitrary polynomials so as to make the resulting set 
ontain exa
tly one polynomial of

degree i for ea
h i, 1 > i > d. In view of Theorem 5 (sin
e the triangular matrix is

nondegenerate), the joint proje
tion of this set of fun
tions has a uniform distribution.

Sin
e x, f(x), f (2)(x), . . . , f (s−1)(x) is its subset, in a

ordan
e with the previous lemma,

the joint proje
tion of this set also has a uniform distribution, whi
h was to be proved.

Evidently, by ex
luding several fi we will not in
rease N , therefore it holds

Nx,f,...,f(s−1)

(ε) = exp{c1ε−c2}

for some positive c1, c2 depending only on the polynomial f .

Corollary 1. Resolving the mentioned bound with respe
t to ε and taking into a

ount

that m = pn, one 
an easily obtain Dm 6 c1 log logm
−c2

for some positive c1, c2.

10 Con
lusion

In this paper we prove that the proje
tion of any linearly independent (after elimi-

nating free terms) 
olle
tion of polynomials has a uniform distribution modulo pn with

n → ∞ for any prime p. In parti
ular, this is true for the proje
tion of iterations of

any polynomial, whose degree ex
eeds 2. In the 
ase, when su
h a polynomial 
ontains a


omplete 
y
le, the set of points, whose 
oordinates are s sequential terms of the re
urrent

sequen
e generated by this polynomial, also has a uniform distribution modulo pn with

n → ∞ for any prime p.

The estimate of the 
onvergen
e rate obtained in this paper is mu
h weaker than that

established for 
on
rete 
lasses of polynomials in [7℄,[8℄,[9℄. In De�nition 1 we use the

dis
repan
y ε = sup |V (J) − Fn(J)| 
onsidered in the mentioned papers. The bounds

proved in these papers allow us to obtain the main term of the asymptoti
s of ε in the

formmc
, where c = −1/2 with some logarithmi
 
orre
tions 
on
ordant with the repeated
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logarithm law (note that there exist polynomials, for whi
h this bound is violated, see [9℄).

The estimate for the 
onvergen
e rate established in this paper allows us only to as
ertain

that the lower boundary for ε de
reases being the double logarithm of the absolute value

raised to some negative degree, whi
h is essentially weaker.

In the following papers we intend to generalize the obtained result for the 
ase of

polynomials of many variables. Moreover, it seems possible to establish a 
riterion for

preserving the uniformity of a 
olle
tion of fun
tions for a �nite automaton and, therefore,

to repla
e linear 
ombinations (see Se
tion 8) with a more general 
onstru
tion.
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