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Abstract

Lattice based encryption schemes and linear code based encryption schemes have received extensive attention
in recent years since they have been considered as post-quantum candidate encryption schemes. Though LLL
reduction algorithm has been one of the major cryptanalysis techniques for lattice based cryptographic systems,
cryptanalysis techniques for linear code based cryptographic systems are generally scheme specific. In recent years,
several important techniques such as Sidelnikov-Shestakov attack, filtration attacks, and algebraic attacks have been
developed to crypt-analyze linear code based encryption schemes. Though most of these cryptanalysis techniques
are relatively new, they prove to be very powerful and many systems have been broken using these techniques. Thus
it is important to design linear code based cryptographic systems that are immune against these attacks. This paper
proposes linear code based encryption scheme RLCE which shares many characteristics with random linear codes.
Our analysis shows that the scheme RLCE is secure against existing attacks and we expect that the security of the
RLCE scheme is equivalent to the hardness of decoding random linear codes. Example RLCE scheme parameters
for different security levels are included in the paper also.
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I. INTRODUCTION

With rapid development for quantum computing techniques, our society is concerned with the security of current
Public Key Infrastructures (PKI) which are fundamental for Internet services. The core components for current PKI
infrastructures are based on public cryptographic techniques such as RSA and DSA. However, it has been shown
that these public key cryptographic techniques could be broken by quantum computers. Thus it is urgent to develop
public key cryptographic systems that are secure against quantum computing.

Since McEliece encryption scheme [18] was introduced more than thirty years ago, it has withstood many
attacks and still remains unbroken for general cases. It has been considered as one of the candidates for post-
quantum cryptography since it is immune to existing quantum computer algorithm attacks. The original McEliece
cryptographic system is based on binary Goppa codes. Several variants have been introduced to replace Goppa
codes in the McEliece encryption scheme. For instance, Niederreiter [20] proposed the use of generalized Reed-
Solomon codes and later, Berger and Loidreau [3] proposed the use of sub-codes of generalized Reed-Solomon
codes. Sidelnikov [23] proposed the use of Reed-Muller codes, Janwa and Moreno [11] proposed the use of algebraic
geometry codes, Baldi et al [1] proposed the use of LDPC codes, Misoczki et al [19] proposed the use of MDPC
codes, and Löndahl and Johansson [14] proposed the use of convolutional codes. Most of them have been broken
though MDPC/LDPC code based McEliece encryption scheme [1], [19] and the original binary Goppa code based
McEliece encryption scheme are still considered secure.

Goppa code based McEliece encryption scheme is hard to attack since Goppa codes share many characteristics
with random codes. Motivated by Faugere et al’s [10] algebraic attacks against quasi-cyclic and dyadic structure
based compact variants of McEliece encryption scheme, Faugere et al [9] designed an efficient algorithm to
distinguish a random code from a high rate Goppa code. Márquez-Corbella and Pellikaan [15] simplified the
distinguisher in [9] using Schur component-wise product of codes. The Schur product codes are used to define the
square of a code which can be used to distinguish a high rate Goppa code from a random code.

Sidelnikov and Shestakov [24] show that for the generalized Reed-Solomon code based McEliece encryption
scheme, one can efficiently recover the private parameters for the generalized Reed-Solomon code from the public
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key. Using component-wise product of codes and techniques from [24], Wieschebrink [29] shows that Berger and
Loidreau’s sub codes [3] of Niederreiter’s scheme could be broken efficiently also. Couvreur et al [6] proposed a
general distinguisher based filtration technique to recover keys for generalized Reed-Solomon code based McEliece
scheme and Couvreur, Márquez-Corbella, and Pellikaan [7] used filtration attacks to break Janwa and Moreno’s [11]
algebraic geometry code based McEliece encryption scheme. The filtration attack was recently used by Couvreur
et al [8] to attack Bernstein et al’s [4] wild Goppa code based McEliece scheme.

General Goppa code based McEliece schemes are still immune from these attacks. However, based on the
new development of cryptanalysis techniques against linear code based cryptographic systems in the recent years,
it is important to systematically design random linear code based cryptographic systems defeating these attacks.
Motivated by this observation, this paper presents a systematic approach of designing public key encryption schemes
using any linear codes. For example, we can even use Reed-Solomon codes to design McEliece encryption scheme
while it is insecure to use Reed-Solomon codes in the original McEliece scheme. Since our design of linear code
based encryption scheme embeds randomness in each column of the generator matrix, it is expected that, without
the corresponding private key, these codes are as hard as random linear codes for decoding.

The most powerful attacks on McEliece cryptosystem is the information-set decoding attack which was introduced
by Prange [22]. In an information-set decoding approach, one finds a set of coordinates of a received ciphertext
which are error-free and that the restriction of the code’s generator matrix to these positions is invertible. The original
message can then be computed by multiplying the ciphertext with the inverse of the sub-matrix. Improvements of
the information-set decoding attack have been proposed by Lee-Brickell [12], Leon [13], Stern [25], May-Meurer-
Thomae [16], Becker-Joux-May-Meurer [2], and May-Ozerov [17]. Bernstein, Lange, and Peters [5] presented an
exact complexity analysis on information-set decoding attack against McEliece cryptosystem. The attacks in [2],
[5], [12], [13], [16], [17], [25] are against binary linear codes and are not applicable when the underlying field
is GF (pm) for a prime p. Peters [21] presented an exact complexity analysis on information-set decoding attack
against McEliece cryptosystem over GF (pm). These information-set decoding techniques (in particular, the exact
complexity analysis in [5], [21]) are used to select example parameters for RLCE scheme in Section V.

Unless specified otherwise, we will use q = 2m or q = pm for a prime p and our discussion are based on the
field GF (q) through out this paper. Bold face letters such as a,b, e, f ,g are used to denote row or column vectors
over GF (q). It should be clear from the context whether a specific bold face letter represents a row vector or a
column vector.

II. GOPPA CODES AND MCELIECE PUBLIC KEY ENCRYPTION SCHEME

In this section, we briefly review Goppa codes and McEliece scheme. For given parameters q, n ≤ q, and t, let g(x)
be a polynomial of degree t over GF (q). Assume that g(x) has no multiple zero roots and α0, · · · , αn−1 ∈ GF (q)
be different non root elements for g(x). The following subspace CGoppa(g) defines the code words of an [n, k, d]
binary Goppa code where d ≥ 2t+ 1. This binary Goppa code CGoppa(g) has dimension k ≥ n− tm and correct
t errors.

CGoppa(g) =

{
c ∈ {0, 1}n :

n−1∑
i=0

ci
x− αi

≡ 0 mod g(x)

}
.

Furthermore, if g(x) is irreducible, then CGoppa(g) is called an irreducible Goppa code. The parity check matrix
H for the Goppa codes looks as follows:

Vt(x,y) =


1 1 · · · 1
α1
0 α1

1 · · · α1
n−1

. . . . . .
. . . . . .

αt0 αt1 · · · αtn−1




1
g(α0)

. . .
1

g(αn−1)

 (1)

where x = [α0, . . . , αn−1] and y =
[

1
g(α0)

, . . . , 1
g(αn−1)

]
.

The McEliece scheme [18] is described as follows. For the given parameters n and t, choose a binary Goppa
code based on an irreducible polynomial g(x) of degree t. Let G be the k×n generator matrix for the Goppa code.
Select a random dense k × k nonsingular matrix S and a random n × n permutation matrix P . Then the public
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key is G′ = SGP which generates a linear code with the same rate and minimum distance as the code generated
by G. The private key is G.
Encryption. For a k-bit message block m, choose a random row vector z of length n and weight t. Compute the
cipher text x = mG′ + z
Decryption. For a received ciphertext x, first compute x′ = xP−1. Next use an error-correction algorithm to recover
m′ = mS and compute the message m as m = m′S−1.

III. RANDOM LINEAR CODE BASED SECURE ENCRYPTION SCHEME RLCE

In this section, we present the design of Random Linear Code based Encryption scheme RLCE. Let n, k, d, t > 0,
and 1 ≤ r <

√
k be given parameters such that n − k + 1 ≥ d ≥ 2t + 1. Let G = [g0, · · · ,gn−1] be a k × n

generator matrix for an [n, k, d] linear code. Assume that there is an efficient decoding algorithm to correct at least
t errors for this linear code given by G. The private and public keys are generated using the following steps.

1) Let C0, C1, · · · , Cn−1 ∈ GF (q)k×r be k × r matrices drawn uniformly at random and let

G1 = [g0, C0,g1, C1 · · · ,gn−1, Cn−1] (2)

be the k × n(r + 1) matrix obtained by inserting the random matrices Ci into G.
2) Let A0, · · · , An−1 ∈ GF (q)(r+1)×(r+1) be dense nonsingular (r+ 1)× (r+ 1) matrices chosen uniformly at

random and let

A =


A0

A1

. . .
An−1

 (3)

be an n(r + 1)× n(r + 1) nonsingular matrix.
3) Let S be a random dense k × k nonsingular matrix and P be an n(r + 1)× n(r + 1) permutation matrix.
4) The public key is the k × n(r + 1) matrix G′ = SG1AP and the private key is S,G1, A, P .

Encryption. For a row vector message block m ∈ GF (q)k, choose a random row vector e = [e0, . . . , e(n(r+1)−1] ∈
GF (q)n(r+1) such that the Hamming weight of e is at most t. The cipher text is x = mG′ + e.
Decryption. For a received cipher text x = [x0, . . . , xn(r+1)−1], compute

xP−1A−1 = [y0, . . . , yn(r+1)−1] = mSG1 + eP−1A−1

where

A−1 =


A−10

A−11
. . .

A−1n−1

 (4)

Let y = [y0, yr+1, · · · , y(n−1)(r+1)] be the row vector of length n selected from the length n(r + 1) row vector
xP−1A−1. Then it is straightforward to check that y = mSG + e′. For i ≤ n − 1, the element yi(r+1) of y
contains error if and only if the sub-vector [ei(r+1), . . . , ei(r+1)+r] of e is a non-zero vector. Since e contains at
most t errors, it follows that there are at most t non-zero sub-vector [ei(r+1), . . . , ei(r+1)+r]. Thus y contains at
most t errors and the Hamming weight of e′ ∈ GF (q)n is at most t. Using the efficient decoding algorithm, one
can compute m′ = mS. Finally, m is computed by m = m′S−1.

IV. ROBUSTNESS OF RLCE CODES AGAINST EXISTING ATTACKS

A. Randomness of generator matrix columns

We first use the following theorem to show that any single column of the underlying generator matrix G could
be completely randomized in a RLCE public key G′.

Theorem 4.1: Let g0 ∈ GF (q)k be a non-zero column vector of the generator matrix G. For any randomly chosen
k × (r+ 1) matrix R0 ∈ GF (q)k×(r+1), there exists a k × k nonsingular matrix S, a (r+ 1)× (r+ 1) matrix A0,
and a k × r matrix C0 ∈ GF (q)k×r such that

R0 = S[g0, C0]A0 (5)
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Proof. The theorem could be proved using the fundamental properties of matrix equivalence and the details are
omitted here. 2

Let R = [R0, . . . , Rn−1] ∈ GF (q)k×n(r+1) be a fixed random linear code generator matrix. Theorem 4.1 shows
that for any generator matrix G (e.g., a Reed-Solomon code generator matrix), we can choose matrices S and
A0 so that the first r + 1 columns of the RLCE scheme public key G′ (constructed from G) are identical to R0.
However, we cannot use Theorem 4.1 to continue the process of choosing A1, . . . , An−1 to obtain G′ = R since
S is fixed after A0 is chosen. Indeed, this observed property is essential for the security of RLCE scheme. If one
could continue the process of Theorem 4.1 and obtain matrices S,A0, A1, . . . , An−1 such that G′ = R, then the
adversary may use the same process to recover an equivalent private key. In the following, we present a general
theorem regarding this observation.

Theorem 4.2: Let R = [R0, . . . , Rn−1] ∈ GF (q)k×n(r+1) and G = [g0, . . . ,gn−1] ∈ GF (q)k×n be two fixed
linear code generator matrices. If (r+ 1)2 > k, then one can find A0, . . . , An−1 ∈ GF (q)r×r and C0, . . . , Cn−1 ∈
GF (q)k×r such that R = [g0, C0, . . . ,gn−1, Cn−1]A where A is in the format of (3).

Proof. For each 0 ≤ i ≤ n− 1, one can construct k(r + 1) linear equations in (r + 1)2 + kr unknown variables
using the identity

RiA
−1
i = [gi, Ci].

Since (r + 1)2 > k, we have kr + (r + 1)2 > k(r + 1). This implies that there are more unknown variables than
equations. Thus the theorem is proved. 2

Theorem 4.2 shows that in the RLCE scheme, we must have (r + 1)2 ≤ k. Otherwise, for a given public
key G′ ∈ GF (q)k×n(r+1), the adversary can choose a Reed-Solomon code generator matrix G ∈ GF (q)k×n and
compute A0, . . . , An−1 ∈ GF (q)r×r and C0, . . . , Cn−1 ∈ GF (q)k×r such that G′ = [g0, C0, . . . ,gn−1, Cn−1]A. In
other words, the adversary can use the decryption algorithm corresponding to the generator matrix G to break the
RLCE scheme.

Theorem 4.2 gives an efficient algorithm for decrypting random [n, k] linear codes with sufficiently small number
t of errors. Specifically, for an [n, k] linear code with generator matrix R ∈ GF (q)k×n, if t ≤ n−k(

√
k+1)

2(
√
k+1)

, then
one can divide R into m = 2t+ k blocks R = [R0, . . . , Rm−1]. Theorem 4.2 can then be applied to construct an
equivalent [m, k] Reed-Solomon code with generator matrix G ∈k×m. Thus it is sufficient to decrypt the equivalent
Reed-Solomon code instead of the original random linear code. For McEliece based encryption scheme, Bernstein,
Lange, and Peters [5] recommend the use of 0.75 (= k/n) as the code rate. Thus Theorem 4.2 has no threat on
these schemes.

For t ≤ n−k(
√
k+1)

2(
√
k+1)

, the adversary is guaranteed to succeed in breaking the system. Since multiple errors might

be located within the same block Ri with certain probability, for a given t that is slightly larger than n−k(
√
k+1)

2(
√
k+1)

,
the adversary still has a good chance to break the system using the above approach. It is recommended that t is
significantly larger than n−k(

√
k+1)

2(
√
k+1)

. For the RLCE scheme, this means that t should be significantly smaller than
√
k. We recommend the use of r ≤ 5 in RLCE encryption scheme. Generally it is suffiicent to use r = 1.
In following sections, we list heuristic and experimental evidences that G′ shares the properties of random linear

codes. Thus the security of the RLCE scheme is believed to be equivalent to decoding a random linear code which
is NP-hard.

B. Niederreiter’s scheme and Sidelnikov-Shestakov’s attack

Sidelnikov and Shestakov’s cryptanalysis technique [24] was used to analyze Niederreiter’s scheme which is
based on generalized Reed-Solomon codes. Let α = (α0, . . . , αn−1) be n distinct elements of GF (q) and let
v = (v0, . . . , vn−1) be nonzero (not necessarily distinct) elements of GF (q). The generalized Reed-Solomon (GRS)
code of dimension k, denoted by GRSk(α, v), is defined by the following subspace.

GRSk(α, v) = {(v0f(α0), . . . , vn−1f(αn−1)) : f(x) ∈ GF (q)[x]k)}

where GF (q)[x]k is the set of polynomials in GF (q)[x] of degree less than k. Alternatively, we can interpret
GF (q)[x]k as a vector space of dimension k over GF (q). For each code word c = (v0f(α0), . . . , vn−1f(αn−1)),
f(x) = f0 + f1x+ . . .+ fk−1x

k−1 is called the associate polynomial of the code word c that encodes the message
(f0, . . . , fk−1). GRSk(α, v) is an [n, k, d] MDS code where d = n− k + 1.
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Niederreiter’s scheme [20] replaces the binary Goppa codes in McEliece scheme using GRS codes as follows.
For given security parameters n and k, one first chooses GRS code parameters α and v. Let G be the k × n
generator matrix for this GRS code. Choose a random k× k nonsingular matrix S over GF (q) and the public key
is G′ = SG and t = bn−k2 c. G

′ generates a linear code with the same rate and minimum distance as the code
generated by G. The encryption and decryption process are the same as in the original McEliece scheme.

The best attack on Niederreiter scheme is presented by Sidelnikov and Shestakov [24]. In Sidelnikov-Shestakov
attack, one recovers an equivalent private key (α, v) from a public key G′ for the code GRSk(α, v) as follows. For
the given public key G′, one first computes the systematic form E(G′) = [I|G′′] (also called echelon form) using
Gaussian elimination. An equation system is then constructed from E(G′) to recover a decryption key. Wieschebrink
[28] revised Niederreiter’s scheme by inserting random column vectors into random positions of G before obtaining
the public key G′. Couvreur et al [6] showed that Wieschebrink’s revised scheme is insecure under the product
code attacks.

Berger and Loidreau [3] recommend the use of sub codes of Niederreiter’s scheme to avoid Sidelnikov and
Shestakov’s attack. Specifically, in Berger and Loidreau’s scheme, one uses a random (k− l)×k matrix S′ of rank
k − l instead of the k × k matrix S to compute the public key G′ = S′G.

For smaller values of l, Wieschebrink [29] shows that a private key (α, v) for Berger and Loidreau scheme [3]
could be recovered using Sidelnikov-Shestakov algorithm. For larger values of l, Wieschebrink used product code
to recover the secret values for Berger-Loidreau scheme. Let G′ = SG be the (k − l)× n public generator matrix
for Berger-Loidreau scheme, r0, · · · , rk−l−1 be the rows of G′, and f0, · · · , fk−l−1 be the associated polynomials
to those rows. For two row vector a,b ∈ GF (q)n, the component wise product a ∗ b ∈ GF (q)n is defined as

a ∗ b = (a0b0, · · · , an−1bn−1) (6)

By the definition in (6), it is straightforward to observe that

ri ∗ rj = (v20fi(α0)fj(α0), · · · , v2n−1fi(αn−1)fj(αn−1)). (7)

For 2k − 1 ≤ n− 2, if the code generated by ri ∗ rj equals to GRS2k−1(α,v′) for v′ = (v20, · · · , v2n−1), then the
Sidelnikov-Shestakov algorithm could be used to recover the values α and v. For 2k − 1 ≤ n − 2, if the code
generated by ri∗rj does not equal to GRS2k−1(n,v′), then the attack fails. Wieschebrink shows that the probability
that the attack fails is very small. For the case of 2k − 1 > n − 2, Wieschebrink applied Sidelnikov-Shestakov
algorithm on the component wise product code of a shortened code of the original GRSk(α,v).

The crucial step in Sidelnikov and Shestakov attack is to build an equation system from the echelon form
E(G′) = [I|G′′] obtained from the public key. In the encryption scheme RLCE, each column of the public key G′

contains mixed randomness. Thus the echelon form E(G′) = [I|G′′] obtained from the public key G′ could not be
used to build any useful equation systems. In other words, it is expected that Sidelnikov and Shestakov attack does
not work against the RLCE scheme.

C. Filtration attacks

Using distinguisher techniques [9], Couvreur et al. [6] designed a filtration technique to attack GRS code based
McEliece scheme. The filtration technique was further developed by Couvreur et al [8] to attack wild Goppa code
based McEliece scheme. In the following, we briefly review the filtration attack in [8]. For two codes C1 and C2
of length n, the star product code C1 ∗ C2 is the vector space spanned by a ∗ b for all pairs (a,b) ∈ C1×C2 where
a ∗ b is defined in (6). For C1 = C2, C1 ∗ C1 is called the square code of C1. It is showed in [8] that

dim C1 × C2 ≤
{
n, dim C1 dim C2 −

(
dim(C1 ∩ C1)

2

)}
. (8)

Furthermore, the equality in (8) is attained for most randomly selected codes C1 and C2 of a given length and
dimension. Note that for C = C1 = C2 and dim C = k, the equation (8) becomes dim C∗2 ≤ min

{
n,
(
k+1
2

)}
.

Couvreur et al [8] showed that the square code of an alternant code of extension degree 2 may have an unusually
low dimension when its dimension is larger than its designed rate. Specifically, this happens for wild Goppa codes
over quadratic extensions. Using a shortening trick, Couvreur et al showed that the square of a shortened wild
Goppa code of extension degree 2 is contained in an alternant code of non trivial dimension. Based on those
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observations, Couvreur et al designed the code filtration techniques. Specifically, create a family of nested codes
defined for any a ∈ {0, · · · , n− 1} as follows.

Ca(0) ⊇ Ca(1) ⊇ · · · ⊇ Ca(q + 1) (9)

This family of nested codes is called a filtration. Roughly speaking, Ca(j) consists in the codewords of C which
correspond to polynomials which have a zero of order j at position a. It is shown that the first two elements of this
filtration are just punctured and shortened versions of C and the rest of them can be computed from C by computing
star products and solving linear systems. Furthermore, the support values α0, · · · , αn−1 for the Goppa code could
be recovered by this nested family of codes efficiently. Thus the private keys for wild Goppa code based McEliece
scheme could be recovered from the public keys.

The crucial part of the filtration techniques is the efficient algorithm to compute the nested family of codes in (9).
For our RLCE scheme, the public generator matrix G′ contains random columns. Thus linear equations constructed
in Couvreur et al [8] could not be solved and the nested family (9) could not be computed correctly. Furthermore,
the important characteristics for a code C to be vulnerable is that one can find a related code C1 of dimension k

such that the dimension of the square code of C1 has dimension significantly less than min
{
n,
(
k+1
2

)}
.

To get experimental evidence that RLCE codes share similarity with random linear codes with respect to the
above mentioned filtration attacks, we carried out several experiments. In particular, we used Reed-Solomon codes
over GF (257) as the underlying code and we used the value r = 1. That is, we inserted one random column after
each generator matrix column. For each given 10 × 30 generator matrix G of Reed-Solomon code, we selected
another random 10 × 30 matrix C ∈ GF (257)10×30 and selected 2 × 2 matrices A0, . . . , A29. Each column ci in
C is inserted in G after the column gi. The extended generator matrix is multiplied by A = diag[A0, . . . , A29]
from the right hand side to obtain the public key matrix G′ ∈ GF (257)10×60. Then we delete columns 0, . . . , 59
from G′ one at a time. The resulting matrix is used to compute the product code. For 1000 experiments that we
have done, the resulting product codes have dimension from 54 to 55. Since min{60,

(
11
2

)
} = 55, the experimental

results meet our expectation that RLCE behaves like a random linear code. We did the same experiments for the
dual code of the above code. That is, for a 20× 30 generator matrix G of the dual code, the same procedure has
been taken. In this time, after deleting one column from the resulting public key matrix, the product code always
has dimension from 58 to 60 which meets our expectation also. The experiments have been carried out using Maple
2015 with its built in Mersenne Twister pseudorandom generator. We are aware of the fact that the parameters used
in the experiments are significantly smaller than the recommended parameters for RLCE scheme in Section V. The
goal of the experiments is to get some heuristic (experimental) evidence that RLCE scheme behaves like a random
linear code and the experiments did confirm our expectation.

D. Algebraic attacks

Faugere, Otmani, Perret, and Tillich [10] developed an algebraic attack against quasi-cyclic and dyadic structure
based compact variants of McEliece encryption scheme. In a high level, the algebraic attack from [10] tries to find
x∗,y∗ ∈ GF (q)n such that Vt(x∗,y∗) is the parity check matrix for the underlying alternant codes of the compact
variants of McEliece encryption scheme. Vt(x∗,y∗) can then be used to break the McEliece scheme. Note that this
Vt(x

∗,y∗) is generally different from the original parity check matrix Vt(x,y) in (1).
The parity check matrix Vt(x∗,y∗) could be found by solving an equation system constructed from

Vt(x
∗,y∗)G′

T
= 0. (10)

where G′ is the public key. The authors of [10] employed the special properties of quasi-cyclic and dyadic structures
(which provide additional linear equations) to rewrite the equation system obtained from (10) and then calculate
Vt(x

∗,y∗) efficiently.
Faugere, Gauthier-Umana, Otmani, Perret, and Tillich [9] used the algebraic attack in [10] to design an efficient

Goppa code distinguisher to distinguish a random matrix from the matrix of a Goppa code whose rate is close to 1.
For instance, [9] showed that the binary Goppa code obtained with m = 13 and r = 19 corresponding to a 90-bit
security key is distinguishable.
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It is challenging to mount the above mentioned algebraic attacks on our RLCE encryption scheme even if the
underlying code is a Reed-Solomon code. The parity check matrix for a Reed-Solomon code is in the format of

Vt(α) =


1 α α2 · · · αn−1

1 α2 α4 · · · α2(n−1)

...
...

...
. . .

...
1 αt+1 α2(t+1) · · · α(t+1)(n−1)

 (11)

In order to mount the algebraic attacks in [10], [9], one first constructs an equation system using the identity

Vt(α)(G
′P−1A−1)T = Vt(α)[g0, C0, · · · ,gn−1, Cn−1]TST = [0, C0,0, · · · ,0, Cn−1]TST (12)

with an unknown α and an unknown n(r+1)×n(r+1) nonsingular matrix A which consists of n dense nonsingular
(r + 1) × (r + 1) matrices A0, · · · , An−1 ∈ GF (q)(r+1)×(r+1) as defined in (3). In the above discussion, we do
not use equations corresponding to the matrices C0, · · · , Cn−1. Since A contains 4(r + 1)2 unknown variables, an
equation system constructed from the identity (12) does not have enough equations to enable the attacks developed
in [9], [10]. In other words, it is expected that the algebraic attack does not work against our encryption scheme
RLCE.

V. PRACTICAL CONSIDERATIONS

Following discussions in Section IV-A, it is preferred to use smaller r for the RLCE encryption scheme. We
recommend the use of r ≤ 5. Furthermore, we assume that Reed-Solomon code over GF (q) with q = pm ≤ 212

or q = 2m ≤ 212 is used as the underlying linear code. As we have mentioned in the introduction section, the
most powerful attack on McEliece encryption schemes is the information-set decoding attack. For RLCE encryption
scheme, the information-set decoding attack is based on the number of columns in the public key G′ instead of the
number of columns in the private key G. For the same error weight t, the probability to find error-free coordinates
in (r+1)n coordinates are higher than the probability to find error-free coordinates in n coordinates. Thus for the
same security level, larger error weight t is needed. Generally, this is not an issue since any efficient MDS error
correction code such as Reed-Solomon code could be used to construct the RLCE scheme.

The recommended parameters for RLCE in Table I are generated using the PARI/GP script isdfq.gp1 that is
based on the exact information-set decoding complexity analysis by Peters [21]. For the purpose of comparison,
we also list the recommended parameters from [5] for binary Goppa code based McEliece encryption scheme. The
authors in [5], [21] proposed the use of semantic secure message coding approach so that one can store the public
key as a systematic generator matrix. For binary Goppa code based McEliece encryption scheme, the systematic
generator matrix public key is k(n− k) bits. For RLCE encryption scheme over GF (q), the systematic generator
matrix public key is k(n(r + 1) − k) log q bits. It is observed that RLCE scheme generally has large public key
size. When the original binary Goppa code based McEliece scheme is used to construct the RLCE scheme, one
needs to double or triple the degree t in the parameter under the “binary Goppa code [5]” column in Table I. The
RLCE public key size is generally the triple of the corresponding McEliece scheme public key size. For example,
for the security level 60, binary Goppa code based RLCE scheme has a public key of 3× 19.8 = 59.4KB.

TABLE I
PARAMETERS FOR RLCE: n, k, t, q, KEY SIZE (q = 2 FOR BINARY GOPPA CODE OMITTED)

Security RLCE-MDS code binary Goppa code [5]
60 360,240, 60, 29, 126KB 1024, 524, 50, 19.8KB
80 560, 380, 90, 210, 343KB 1632, 1269, 34, 56.2KB
128 1020, 680, 170, 210, 1.1MB 2960, 2288, 57, 187.7KB
191 1560, 1000, 280, 211, 2.8MB 4624, 3468, 97, 489.4KB
256 2184, 1400, 392, 212, 5.9MB 6624, 5129, 117, 0.9MB

1available from https://christianepeters.wordpress.com/publications/tools/.
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VI. CONCLUSIONS

In this paper, we presented techniques for designing general random linear code based public encryption schemes
using any linear codes. Heuristics and experiments are used to show that the proposed schemes are immune against
existing attacks on linear code based encryption schemes such as Sidelnikov-Shestakov attack, filtration attacks,
and algebraic attacks.
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