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Abstract

Proactive secret sharing (PSS) schemes are designed for settings where long-term confi-
dentiality of secrets has to be guaranteed, specifically, when all participating parties may
eventually be corrupted. PSS schemes periodically refresh secrets and reset corrupted
parties to an uncorrupted state; in PSS the corruption threshold t is replaced with a
corruption rate which cannot be violated. In dynamic proactive secret sharing (DPSS)
the number of parties can vary during the course of execution. DPSS is ideal when the
set of participating parties changes over the lifetime of the secret or where removal of
parties is necessary if they become severely corrupted. This paper presents the first
DPSS schemes with optimal amortized, O(1), per-secret communication compared to
O(n4) or exp(n) in number of parties, n, required by existing schemes. We present
perfectly and statistically secure schemes with near-optimal threshold in each case. We
also describe how to construct a communication-efficient dynamic proactively-secure
multiparty computation (DPMPC) protocol which achieves the same thresholds.

Keywords: Proactive Security · Secret Sharing ·Mobile Secret Sharing · Dynamic Groups ·
Secure Multiparty Computation

1 Introduction

Secret sharing [30, 4] is a foundational primitive in cryptography, especially in secure com-
putation. A secret sharing scheme typically consists of a protocol for sharing a secret (or
multiple secrets) and a protocol for reconstructing the shared secret(s). The secret sharing
protocol distributes shares of the secret among n parties in the presence of an adversary
who may corrupt up to t parties; security of the secret sharing scheme ensures that such
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an adversary will learn no information about the secret. However, traditional secret shar-
ing may be insufficient in some real-world settings; specifically, settings that may require
a secret to be secured for a long period of time, especially with respect to the ability of
an adversary to eventually corrupt all parties. Traditional (threshold-based) secret sharing
schemes are insecure once t+1 parties have been corrupted. Of particular concern are dis-
tributed storage and computing settings in the presence of advanced persistent threats who,
given sufficient time, will successfully corrupt enough parties to break the threshold that
guarantees security. To address this issue, Ostrovsky and Yung [27] introduced the proactive
security model. In this model, the execution of the protocol(s) is divided into phases. The
adversary is allowed to corrupt and decorrupt parties at will, under the constraint that no
more than a threshold number of parties are corrupt in any given phase. This means that
every party may eventually become corrupt subject to the corruption rate constraint. Such
an adversary is called a mobile adversary. While standard proactively-secure protocols are
able to satisfy security requirements of long-term storage and computation, they lack the
ability to change the number of parties during the course of the protocol. Such a restraint
is particularly challenging in the case of long-term storage or computation, which was one
of the reasons that the proactive security model was constructed in the first place. We
refer to secret sharing schemes that are both proactively-secure and allow the set of par-
ties to dynamically change as dynamic proactive secret sharing (DPSS) schemes, and such
schemes have also been the subject of numerous papers [16, 32, 33, 29] but none of them
has satisfying (linear or constant) communication complexity. The dynamic setting allows
for the reality that some parties (deployed as physical or virtual servers) may be attacked
to the point of not being able to be reset to a pristine, uncorrupted state (e.g., they may
become physically damaged). When the set of parties can be dynamically changed, this
issue could be addressed by excluding the severely corrupted one(s) entirely (and, ideally,
include new uncorrupted ones). In addition, DPSS within large distributed systems enables
a truly “moving target defense”, where the set of participating nodes is a smaller, dynam-
ically changing subset of the whole distributed system that is therefore more difficult to
target for attack.

We argue that adopting efficient DPSS schemes in the future may help prevent large-
scale compromises of servers that store user data, often at financial institutions or large
enterprises [26, 31]. Such breaches show an increasing need for secure long-term storage
solutions. Although several other layers of security must be developed for a complete data
storage system to be secure against a mobile adversary, DPSS is an important step toward
this goal. Standard secret sharing can address this issue by distributing data to avoid sin-
gle points of compromise or failure, but given enough time, an adversary may be able to
compromise all the servers that store the data. Proactive secret sharing partially addresses
this issue by refreshing and recovering, yet still has no means of securing against a server
that becomes “permanently” compromised (e.g., by compromising its boot system and/or
firmware). Dynamic proactive secret sharing addresses this issue by allowing the set of
servers to change dynamically in response to corruptions and removing permanently com-
promised servers. Furthermore, the total number of servers may change, thereby increasing
the concrete number of servers that would have to be corrupted to exceed the threshold
corruption rate. Thus in response to an attack, the threshold may be temporarily raised to
increase security, and when the attack is resolved, the threshold may be reduced by reducing
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the number of participating servers to increase efficiency. Our goal is therefore to construct
a communication-efficient DPSS scheme, particularly one that can be used as a building
block in a system for storing large data files and where the proactive refresh and recovery of
shares becomes a performance bottleneck when the number of parties (or servers) increases.

1.1 Techniques

We first briefly outline the techniques utilized in the rest of the paper.

Batched Secret Sharing. One of the foundational techniques allowing us to achieve op-
timal amortized communication complexity is batched secret sharing. The idea, introduced
in [20], is to encode a “batch” of multiple secrets as distinct points on a single polynomial,
and then distribute shares to each party as in standard Shamir secret sharing [30]. The
number of secrets stored in the polynomial (the “batch size”) is chosen to be O(n). This
allows the parties to share O(n) secrets with O(n) communication complexity so that the
amortized complexity is O(1) per secret.

Hyper-Invertible Matrices. A hyper-invertible matrix [3] satisfies the property that
any square submatrix formed by removing rows and columns is invertible. Hyper-invertible
matrices are used in our protocol for efficient error detection. If a vector of n − 3t secret
sharings is concatenated with t random sharings and then multiplied by a n×n− 2t hyper-
invertible matrix, then each party can be given one of the sharings in the resultant vector
of n sharings without revealing any information about the n − 3t secrets. Furthermore,
if any of the original n − 2t sharings are malformed (meaning that the shares do not lie
on a polynomial of correct degree), then at least 2t + 1 of the resultant n sharings will
be malformed. This allows the parties to verify that sharings are correct while preserving
the privacy of the secrets. Since n − 3t = O(n) sharings are verified by sending n = O(n)
sharings to parties, this only requires constant amortized communication bandwidth.

Party Virtualization. Party virtualization [6] is a method for transforming a multiparty
protocol by replacing each player in the protocol with a “virtual” party. The virtual party
is a committee of parties that perform a multiparty protocol to emulate the actions of an
individual party in the original (untransformed) protocol. The advantage of this technique is
that it allows the corruption threshold to be raised from that of the untransformed protocol.
In [14], the authors demonstrate how to raise the corruption threshold to near-optimal while
only increasing the communication complexity by a constant factor, which is the approach
we take in this paper.

1.2 Contributions

In this paper we present a new communication-optimal dynamic proactive secret sharing
(DPSS) scheme. In addition to a protocol for distributing shares of a secret and a protocol
for reconstructing the secret, a DPSS scheme must also contain a protocol for refreshing
the shares and (in the case of a malicious adversary) for recovering the shares. A refresh
protocol changes the shares held by the parties such that old shares (before the refresh)
cannot be combined with new shares (after the refresh) to gain any information about the

3



secret. A recovery protocol allows decorrupted parties to recover shares that may have been
destroyed or altered by the adversary. The communication complexity of the refresh and
recovery protocols are often a bottleneck for proactive secret sharing schemes.

As will be defined in Section 4.1 (Definition 4), a DPSS scheme consists of three proto-
cols: Share, Redistribute, and Open that distribute, redistribute, and reconstruct shares to
a secret, respectively. For the protocols Share and Open, we use the protocols RobustShare
and Reco (respectively) from [14].

Our main contribution is the construction of a new Redistribute protocol with the fol-
lowing properties: (1) Optimal (Constant Amortized) Communication Bandwidth: Out of
currently published protocols for DPSS, ours has the lowest amortized communication com-
plexity. We achieve O(1) per-secret amortized communication complexity (measured as the
number of field elements).1 (2) No Cryptographic Assumptions: Ours is the first DPSS
scheme that provides information-theoretic security without making any cryptographic as-
sumptions. (3) Eliminating Party Virtualization: The most efficient DPSS protocol to date
is that of [29] where “party virtualization” is utilized when the set of parties is decreased.
“Party virtualization” occurs when each real party holds internal data (i.e., shares) corre-
sponding to some virtual party. That is, there are n parties, but there are n + v virtual
parties, and while each real party gets her own private share, each real party also gets all
v shares of all the virtual parties.2 As stated in [29], this technique is “somewhat unsatis-
fying theoretically because using this method to reduce the threshold does not reduce the
asymptotic computational overhead of the protocol.” In this paper, we present a DPSS
protocol that does not use party virtualization as in [29] and thus reduces the asymptotic
computational and communication overhead of the protocol.

Finally, as an application of our DPSS scheme we briefly describe how to construct a
dynamic proactive secure multiparty computation (DPMPC) protocol.

1.3 Outline

The rest of the paper is organized as follows: In Section 2 we discuss related work. The
roadblocks facing constructing an efficient DPSS scheme are described in Section 3. We
give the necessary technical preliminaries in Section 4, and then give the details of our
DPSS scheme in Section 5 (while some of the subprotocols are deferred to Appendix A).
In Section 6 we describe how the threshold may be raised in the statistical security setting.
We show how our DPSS scheme can be applied to multiparty computation in Section 7.
Security definitions and proofs are given in Appendix B.

2 Related Work

The same work [27] introducing the proactive security model also contained the first proac-
tive secret sharing (PSS) scheme and proactively-secure multiparty computation (PMPC)
protocol. PSS was the central tool introduced in [27], and there has been significant follow

1We only claim that the amortized communication complexity is optimal. Reducing the non-amortized
complexity is a possible area for future work.

2Note that the term “party virtualization” has a different meaning in [29], which is how it is used here,
than it has in other secure computation literature such as [14].
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Paper Dynamic Network Security Threshold Communication
Complexity

[32] Yes synch. cryptographic t/n < 1/2 exp(n)
[33] Yes asynch. cryptographic t/n < 1/3 exp(n)
[7] No asynch. cryptographic t/n < 1/3 O(n4)
[29] Yes asynch. cryptographic t/n < 1/3 O(n4)
[22] No synch. cryptographic t/n < 1/2 O(n2)
[2] No synch. perfect t/n < 1/3−ϵ O(1)
[2] No synch. statistical t/n < 1/2−ϵ O(1)
This Paper Yes synch. perfect t/n < 1/3−ϵ O(1)
This Paper Yes synch. statistical t/n < 1/2−ϵ O(1)

Table 1: Comparison of Non-Dynamic Proactive Secret Sharing (PSS) and Dynamic Proac-
tive Secret Sharing (DPSS) Schemes. Threshold is for each reboot phase. Our communica-
tion complexity is amortized per bit.

up work on PSS schemes, both in the synchronous and asynchronous network models (see
Table 1 for a comparison). Currently the most efficient (non-dynamic) PSS scheme is [2],
which has an optimal, O(1), amortized communication complexity per secret share, is UC-
secure and achieves near optimal thresholds for both perfect and statistical cases. Currently,
the most efficient DPSS scheme is that of [29], which works in asynchronous networks, pro-
vides cryptographic security and achieves a corruption threshold of t/n < 1/3, but has
prohibitive communication complexity in the number of parties, namely O(n4). Compared
to [29], our DPSS protocols require only constant (amortized) communication are perfectly
(resp. statistically) secure with near-optimal corruption thresholds of t/n < 1/3− ϵ (resp.
t/n < 1/2− ϵ) and work with synchronous networks. Extending our work to asynchronous
networks and improving the threshold and communication bounds of [29] is still an open
problem.

In addition to proactive secret sharing, proactive security has played a fundamental role
in several areas, including proactively secure threshold encryption and signature schemes
[17, 18, 28, 9, 19, 5, 25, 24] (and in particular [1], which also sketches a definition of
UC security in the proactive framework), intrusion-resilient signatures [23], eavesdropping
games [21], pseudorandomness [10], and state-machine replication [11, 12].

The only two known general PMPC protocols are [27] and [2]. The former protocol is
proven secure in the stand-alone corruption model and requires at least O(Cn3) commu-
nication complexity (where C is the size of the circuit), while the latter is UC-secure and
has near-linear communication complexity of O(DC log2(C)polylog(n)+D poly(n) log2(C))
(where D is the depth of the circuit). We provide a dynamic PMPC protocol in this paper,
whereas neither of the above PMPC protocols is dynamic.

3 Roadblocks in Constructing Communication-Optimal DPSS

The most efficient DPSS scheme to date is that of [29], and the most efficient PSS scheme
to date is that of [2]. In this section, we explain why straightforward modifications of either
of these would not produce a DPSS scheme with optimal communication requirements.

In [2], the refresh is performed by having the parties generate new polynomials Q to
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mask the old polynomials H; then each party generates a share of the new polynomial by
locally computing her share of H + Q and relabeling H ← H + Q. Although this works
in the non-dynamic proactive setting, in the dynamic proactive setting this would allow t
corrupt parties in the old group and an additional t′ corrupt parties in the new group to
learn their shares on the new polynomial (where t′ is the corruption threshold in the new
group). This could be enough for the adversary to reconstruct the secret(s) rendering the
scheme insecure.

In [29], this issue is prevented by constructing the polynomial Q such that no party in
the old group knows her share of Q. More specifically, the parties in the old group construct
a polynomial Rj for each P ′

j in the new group such that Rj(βj) = 0. Then the Q and the
Rj are generated simultaneously so that each party in the old group only learns her share
of Q + Rj for each j. This technique preserves security but would not yield the optimal
communication bandwidth that we aim for. Generating one polynomial for each party in
the new group would result in a communication complexity of at least O(n2) for masking
O(n) secrets while our goal is O(1) (amortized) communication per secret.

In this paper we provide a solution that generates the polynomials Q without revealing
any share of Q to the parties in the old group, and maintains optimal communication
efficiency. This technique is one of the main contributions of the paper and is described in
detail in Section 5.2.

4 Preliminaries

In this section we provide some preliminaries required for the rest of the paper.

4.1 Definitions

We first provide definitions of secret sharing (SS), proactive secret sharing (PSS), and dy-
namic proactive secret sharing (DPSS) schemes. The definitions below are for perfectly
secure protocols; the definitions for statistically secure protocols are the same, except that
the termination, correctness, and secrecy properties are allowed to be violated with negligi-
ble probability. As our protocols are for sharings of multiple secrets, we write the protocols
for a vector of secrets over a finite field F, treating the case in which the vector is of length
one as a special case.

Definition 1: A secret sharing scheme consists of two protocols, Share and Open,
which allows a dealer to share a vector of secrets s among a group of n parties such that
the secrets remain secure against an adversary, and allows any group of n−t uncorrupted
parties to reconstruct the secrets.

Assuming that no more than t parties are corrupt throughout the execution of the
protocols, the following three properties hold:

• Termination: All honest parties will complete the execution of Share and Open.

• Correctness: Upon completing Share, there is a fixed vector v ∈ FW (where W is
the number of secrets to be shared) such that all honest parties will output v upon
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completion of Open. Furthermore, if the dealer was honest during the execution of
Share, then v = s.

• Secrecy: If the dealer is uncorrupted, then the adversary gains no information on s.

The definition of a PSS scheme is essentially the same as the definition of an SS scheme,
with the addition of Refresh and Recovery protocols for securing against a mobile adversary.
The Refresh protocol refreshes data to prevent a mobile adversary from learning secrets, and
the Recovery protocols allows de-corrupted parties to recover their secrets, preventing the
adversary from destroying data. Before defining a PSS scheme, we need to define refresh
and recovery phases.

Definition 2: A refresh phase (resp. recovery phase) is the period of time between
two consecutive executions of the Refresh (resp. Recovery) protocol. Furthermore, the
period between Share and the first Refresh (resp. Recovery) is a phase, and the period
between the last Refresh (resp. Recovery) and Open is a phase. Any Refresh (resp.
Recovery) protocol is considered to be in both adjacent phases.

Definition 3: A proactive secret sharing scheme consists of four protocols, Share,
Refresh, Recover, and Open, which allows a dealer to share a vector of secrets s among
a group of n parties such that the secrets remain secure against a mobile adversary, and
allows any group of n − t uncorrupted parties to reconstruct the secrets. The Refresh
protocol prevents the mobile adversary from discovering the secrets, and the Recover
protocol prevents the adversary from destroying the secrets.

Assuming that no more than t parties are corrupt during any recovery phase, the
following two properties hold:

• Termination: All honest parties will complete each execution of Share, Refresh, Re-
cover, and Open.

• Correctness: Same as in Definition 1.

Assuming that no more than t parties are corrupt during any refresh phase, the following
property holds:

• Secrecy: Same as in Definition 1.

For the definition of a DPSS scheme, we combine the Refresh and Recover protocols into
one protocol, Redistribute, which also allows transferring the set of secrets from one group
of parties to another and change the threshold. Similarly, we combine refresh phase and
recovery phase, and refer to it simply as a phase.

As the number of parties changes, the threshold must change as well. For any given
number of parties, n, there is a corresponding threshold, t, which will depend on the par-
ticular security and network assumptions of the scheme. Let τ(n) denote the threshold
corresponding to n, and let n(i) denote the number of parties during phase i.
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Definition 4: A dynamic proactive secret sharing scheme consists of three protocols,
Share, Redistribute, and Open, which allows a dealer to share a vector of secrets s among
a group of n(1) parties such that the secrets remain secure against a mobile adversary, and
allows any group of n(L)− t(L) uncorrupted parties to reconstruct the secrets (where L is
the last phase). The Redistribute protocol prevents the mobile adversary from discovering
or destroying the secrets, and allows the set of parties and the threshold to change.

Assuming that for each i, no more than t(i) = τ(n(i)) parties are corrupt during
phase i, the following three properties hold:

• Termination: All honest parties currently engaged in the protocol will complete each
execution of Share, Redistribute, and Open.

• Correctness: Same as in Definition 1.

• Secrecy: Same as in Definition 1.

4.2 Notation and Technical Details

We assume that there are W secrets in some finite field F stored among a party set P of
size n. The secrets are stored as follows:

We fix some generator ζ of F∗. Each batch of ℓ secrets is stored in a polynomial H of
degree d (where the value of d depends on the security model as described below). The
polynomial H is chosen such that H(ζj) is the jth secret for j ∈ [ℓ] and H(ζℓ+j) is random
for j ∈ [d − ℓ + 1]. (We use the notation [X] to denote the set {1, . . . , X}, and we let
[X] × [Y ] denote the Cartesian product of the two sets. We let [A,B] denote the set of
integers [A, . . . , B].) Each party Pi ∈ P is given H(αi) as her share of the secret. In our
scheme we use the protocol RobustShare from [14] to perform the sharing. When the secrets
are to be opened, all parties send their shares to some party, who interpolates the shares on
the polynomials to reconstruct the secrets. We use the protocol Reco from [14] to perform
secret opening.

Our new redistribution protocol given in Section 5 redistributes the secrets to a new set
of parties P ′ of size n′. The parties in P ′ are denoted by P ′

j for j ∈ [n′]. The share of a
party P ′

j ∈ P ′ is H(βj). We require that αi ̸= βj for each i, j (and that no αi or βj is equal

to ζk for any k ∈ [ℓ]). Since we use the labels t, ℓ, and d for P, we use the labels t′, ℓ′, and
d′ for P ′.

For simplicity of notation, our redistribution protocol below assumes thatW is a multiple
of 4ℓ2(n − 3t). If W is not a multiple of 4ℓ2(n − 3t), we can generate random sharings
of batches to make it so. Using RanDouSha from [14], this can be done with poly(n)
communication complexity, and since it adds only a poly(n) amount of data to W , this
does not affect the overall communication complexity of redistributing W secrets.

In this paper we provide a perfectly secure and a statistically secure version of the redis-
tribution protocol required to construct our DPSS scheme. For the perfectly (statistically)
secure protocol, the threshold can be made arbitrarily close to n/3 (n/2). We describe the
threshold, batch size, and degree of polynomials for the two versions below.
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In the perfectly secure protocol, we fix three nonzero constants η, θ, and ι that satisfy
η + θ + ι < 1/3. The batch size, ℓ, is the highest power of 2 not greater than ⌊ηn⌋;
the threshold is t = ⌊θn⌋; and the degree of the polynomials that share the secrets are
d = ℓ + t + ⌊ιn⌋ − 1. The number of parties may increase or decrease by no more than a
factor of 2 at each redistribution. Furthermore, the number of parties cannot decrease so
much that the corrupt parties in the old group can interpolate the new polynomials (i.e.,
d′−ℓ′ ≥ t); and the number of parties cannot increase so much that the uncorrupted parties
in the old group cannot interpolate the new polynomials in the presence of corrupt shares
(i.e., d′ + 2t+ 1 ≤ n).

In the statistically secure protocol, we initially pick a low threshold, and then later raise
the threshold using the party virtualization3 technique of [14]. The protocol in Section 5 is
written as a perfectly secure protocol with a lower threshold, and then this is raised using
statistically secure virtualization (see Section 6 for a discussion of this). For the initial, low
threshold, we select the batch size, ℓ, to be the highest power of 2 not greater than n/4; the
threshold is t < n/16; and the degree of the polynomials is d = ℓ+2t−1. In the statistically
secure version, we assume that t will increase or decrease by a factor of no more than 2 at
each redistribution (i.e., t/2 ≤ t′ ≤ t).

Note that while (theoretically) it may seem that there is no reason to raise n without
raising t, in a real world setting one may increase n while fixing t precisely to increase
the concrete number of additional servers that an adversary has to corrupt. To simplify
demonstration in this paper we assume that n is minimal for a given t (i.e., we assume that
n could not be decreased without decreasing t).

Our redistribution protocol requires the use of a hyper-invertible matrix. A hyper-
invertible matrix is such that any square submatrix formed by removing rows and columns is
invertible. It is shown in [3] that one can construct a hyper-invertible matrix as follows: Pick
2a distinct field elements θ1, . . . , θa, ϕ1, . . . , ϕa ∈ F, and let M be the matrix be such that if
(y1, . . . , ya)

T = M(x1, . . . , xa)
T , then the points (θ1, y1), . . . , (θa, ya) lie on the polynomial

of degree ≤ a − 1 which evaluates to xj at ϕj for each j ∈ [a]. (In other words, M
interpolates the points with x-coordinates θ1, . . . , θa on a polynomial given the points with
x-coordinates ϕ1, . . . , ϕa on that polynomial.) Then any submatrix of M is hyper-invertible.
For our protocol, we let M be some (publicly known) hyper-invertible matrix with n rows
and n− 2t columns.

Throughout the protocol, the Berlekamp-Welch algorithm is used to interpolate polyno-
mials in the presence of corrupt shares introduced by the adversary. As was noted in [15],
if M is as above and y = Mx, then we can also use Berlekamp-Welch to “interpolate” x
from y if the adversary corrupts no more than t coordinates of y.

5 The Redistribution Protocol

In this section, we provide the details of the protocol that redistributes sharings of secrets
from one set of parties to another. The first portion of the protocol changes the threshold
of the polynomials that share the secret (if the number of servers is changing). Recall that
the batch size is the highest power of two not greater than ⌊ηn⌋ (resp. n/4) in the perfectly

3The term “party virtualization” has a different meaning in [29] than it has in [14].
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(resp. statistically) secure protocol. This means that a change in the threshold/number
of servers does not necessarily lead to a change in batch size. Thus there are four cases
to consider: (1) The threshold is decreasing, and the batch size is not changing; (2) the
threshold is decreasing, and the batch size is decreasing; (3) the threshold is increasing, and
the batch size is not changing; and (4) the threshold is increasing, and the batch size is
increasing. The second portion of the protocol refreshes the sharings and allows parties in
the new group to learn their shares.

To simplify exposition, the protocol is broken into several sub-protocols. The four
protocols Threshold Changei for i = 1, 2, 3, 4 correspond to the four cases outlined in the
previous paragraph. The protocol Refresh Recovery performs refresh and recovery.

In order to change the set of parties, the current (honest) parties must agree on which
parties to remove and which parties to add. This could be determined by the parties jointly
invoking a voting algorithm, by a trusted administrator making the decision, or by following
some pre-determined schedule. How exactly this is implemented is beyond the scope of this
paper.

We now provide an overview and the intuition behind the operation of the protocol.

5.1 Overview of Threshold Change

To simplify the illustration of the operation of the protocol we will treat Threshold Change2
as an example. In this case we are decreasing the threshold and batch size. Since we restrict
the batch size to be a power of 2, the batch size will be cut in half (that is, ℓ′ = ℓ/2). If
the parties had access to an uncorruptible trusted party, then the parties could have the
trusted party change the threshold and batch size for a polynomial H as follows:

1. Each party sends all their shares of the degree d polynomial H to the trusted party.
2. The trusted party constructs two new polynomials h1 and h2 of degree d′ such that

h1(ζ
j) = H(ζj) and h2(ζ

j) = H(ζℓ
′+j) for each j ∈ [ℓ′]. Fresh randomness is used

for to determine the points hi(ζ
j) for i = 1, 2 and j = [ℓ′ + 1, d′ + 1].

3. The trusted party sends each party their shares of h1 and h2.

In the absence of a trusted party, the parties emulate this simplified protocol using
hyper-invertible matrices. The parties will take a vector of n − 3t sharings, add to this t
extra random sharings, and then via local computations, multiply the vector by a n×n−2t
hyper-invertible matrix to get a vector of n sharings. Each party is assigned one of these n
sharings and is sent all shares of this sharing from the other parties. Then each party acts
as the trusted party in the steps above. The fact that the original vector of n− 3t sharings
was padded with an extra t sharings prevents the adversary from learning any information
on the secrets.

Once each party is done acting as the trusted party, she then sends the shares of the
results to the other parties. Each party, upon receiving the n (or fewer) shares, can apply
the Berlekamp-Welch algorithm to interpolate the vector of n shares in the presence of errors
to reconstruct the pre-image under multiplication by the hyper-invertible matrix, which is
a vector of n− 2t shares. The first n− 3t of these are taken to be the party’s shares of the
new sharings.
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In the case where the trusted party performs the operations, fresh randomness is gen-
erated by the trusted party to use in the new sharings. When the parties jointly perform
this operation without a trusted party, they instead generate random sharings R, apply
a hyper-invertible matrix to these sharings (as they did with the sharings of the actual
secrets), and use the points on the resultant sharings as randomness for the new sharing
polynomials.

5.2 Overview of Refresh and Recovery

The protocol Refresh Recovery is a modification of the protocol Block-Redistribute from [2]
that is still secure in the dynamic setting (recall that a straightforward adoption is insecure
as discussed in Section 3). The recovery is performed in essentially the same way as in [2],
with the exception that in our scheme the shares are transferred to a new group of parties
instead of back to the same group. (The scheme in [2] is for PSS, not DPSS.)

In the dynamic setting, refresh cannot be performed as in [2]. As mentioned in Section 3,
we need a way for the parties to mask the polynomials H with polynomials Q such that
no party in the old group knows a share of H +Q and no party in the new group knows a
share of the original H.4 In [2], the parties generate sharings U that share their shares, and
then each party receives a linear combination of these shares that will allow her to recover
her shares (if they were corrupted). In our protocol, the parties in the old group generate
sharings U that share their shares (just as in [2]), and they additionally generate sharings
V , some of which store random data and some of which store a batch of all zeros; then each
party in the new group receives a linear combination of the U ’s and the V ’s such that this
linear combination stores the party’s share of H+Q for some masking polynomial Q. Thus
the parties in the new group see their shares of H + Q without seeing their shares of H,
while the parties in the old group—because the V were generated randomly—do not know
any share of Q (and hence they do not know any share of H +Q).

5.3 Protocol Specification

In this section we describe the specification of our redistribution protocol. As stated in
Definition 4, a DPSS scheme consists of three protocols, Share, Redistribute (which we
describe in this section), and Open. For the protocols Share and Open, we use the protocols
RobustShare and Reco (respectively) from [14]. Our contribution is the construction of the
redistribution protocol (Figure 1).

The protocol RobustShare allows the parties to share O(n) secrets with O(n) communi-
cation complexity using batch sharing. This is done with hyper-invertible matrices to ensure
robustness. The protocol Reco opens a batch of secrets by sending each share to whichever
party is supposed to learn the secret. That party then performs error detection/correction
to interpolate the secrets in the presence of (possibly) corrupt shares. The protocol Ran-
DouSha from [14] is also used as a subprotocol in our redistribution protocol. The protocol

4However, if there is overlap between the old and new groups of servers, such that Pi = P ′
j for some

Pi ∈ P and some P ′
j ∈ P ′, and if αi = βj , then this party will know her share of both H and H + Q.

Nevertheless, this does not cause a security problem, as it does not cause the threshold to be violated; even
in this case, only t parties in the old group know shares of H, and only t′ parties in the new group know
shares of H +Q.
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RanDouSha generates random sharings of degree d and additional sharings of the same
secrets using degree 2d polynomials with constant amortized communication bandwidth.
However, for our protocols we do not use the degree 2d sharings. There are some instances
in which we require a variant of RanDouSha that generates sharings of batches of all zeros.
Modifying the protocol to do this is straightforward, as is the modification of the security
proof.

The input to the protocol is a t,P, Corr, t′,P ′ and a collection of polynomials H
(k,m)
a

for (a, k,m) ∈ [ℓ]× [n− 3t]× [B] that store the secrets.
1. If t′ ̸= t, then one of the following steps is executed:

1.1 If t′ < t and ℓ′ = ℓ, invoke Threshold Change1.
1.2 If t′ < t and ℓ′ < ℓ, invoke Threshold Change2.
1.3 If t′ > t and ℓ′ = ℓ, invoke Threshold Change3.
1.4 If t′ > t and ℓ′ > ℓ, invoke Threshold Change4.

2. Invoke Refresh Recovery.

Figure 1: Redistribute.

As seen in Figure 1, there are four cases for threshold change. To simplify the treatment
we only focus on case 2 (which is when the threshold is decreasing and the batch size is
decreasing) here in Figure 2 and defer the other three cases to Appendix A (Figures 4, 5,
and 6).

Lowering the Threshold, Batch Size Decreases
Since we assume that the number of parties decreases by no more than a factor of

2, we know that ℓ′ = ℓ/2.

1. The parties invoke RanDouSha to generate masking polynomials H
(k,m)
a of degree

≤ d for k ∈ [n− 3t+1, n− 2t] and a ∈ [ℓ], as well as random polynomials R
(k,m)
a of

degree ≤ d for k ∈ [n− 2t] and a ∈ [2ℓ] (where m ∈ [B]).

2. Define H̃
(k,m)
a for k ∈ [n] by(

H̃(1,m)
a , . . . , H̃(n,m)

a

)T
= M

(
H(1,m)

a , . . . ,H(n−2t,m)
a

)T
,

and similarly define R̃
(k,m)
a for k ∈ [n]. Each party locally computes their shares of

these polynomials and sends his share of each H̃
(j,m)
a and R̃

(j,m)
a to party Pj .

3. Each Pi uses Berlekamp-Welch to interpolate the shares of H̃
(i,m)
a and R̃

(i,m)
a received

in the previous step.

4. Each Pi computes (shares of) the unique polynomials h̃
(i,m)
2a−1, h̃

(i,m)
2a of degree ≤ d′

for a ∈ [ℓ] and m ∈ [B] that satisfy the following:

4.1 h̃
(i,m)
2a−1(ζ

j) = H̃
(i,m)
a (ζj) for j ∈ [ℓ′].
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4.2 h̃
(i,m)
2a−1(ζ

ℓ′+j) = R̃
(i,m)
2a−1(ζ

j) for j ∈ [d′ − ℓ′ + 1].

4.3 h̃
(i,m)
2a (ζj) = H̃

(i,m)
a (ζℓ

′+j) for j ∈ [ℓ′].

4.4 h̃
(i,m)
2a (ζℓ

′+j) = R̃
(i,m)
2a (ζj) for j ∈ [d′ − ℓ′ + 1].

5. Each Pi sends each h̃
(i,m)
a (αj) to each Pj .

6. If we define h
(k,m)
a to be the unique polynomials of degree ≤ d′ satisfying

6.1 h
(k,m)
2a−1 (ζ

j) = H
(k,m)
a (ζj) for j ∈ [ℓ′],

6.2 h
(k,m)
2a−1 (ζ

ℓ′+j) = R
(k,m)
2a−1 (ζ

j) for j ∈ [d′ − ℓ′ + 1],

6.3 h
(k,m)
2a (ζj) = H

(k,m)
a (ζℓ

′+j) for j ∈ [ℓ′],

6.4 h
(k,m)
2a (ζℓ

′+j) = R
(k,m)
2a (ζj) for j ∈ [d′ − ℓ′ + 1],

then it is clear that(
h̃(1,m)
a , . . . , h̃(n,m)

a

)T
= M

(
h(1,m)
a , . . . , h(n−2t,m)

a

)T
.

So each party uses Berlekamp-Welch to interpolate their shares of the h
(k,m)
a from

the shares of the h̃
(k,m)
a received in the previous step.

7. We place a lexicographical order on the polynomials H
(k,m)
a by assigning to the

polynomial the vector (m, k, a) and using the lexicographical order on these 3-
dimensional vectors to induce an ordering on the polynomials. We similarly

place a lexicographical order on the polynomials h
(k,m)
a . To simplify notation

throughout the rest of the protocol, we now relabel
{
H

(k,m)
a

}m = 1, . . . , 4B
k = 1, . . . , n− 3t
a = 1, . . . , ℓ′

←{
h
(k,m)
a

}m = 1, . . . , B
k = 1, . . . , n− 3t
a = 1, . . . , 2ℓ

in such a way that this map preserves lexicographical or-

der. We then relabel B ← 4B.

Figure 2: Threshold Change2.

The following subprotocol (Figure 3) describes how refresh and recovery is performed.
This subprotocol will be executed at each redistribution regardless of whether the threshold
is changing.

1. Double Sharing Batched Secrets
1.1 The parties generate sharings of ℓtB random sharings by invoking RanDouSha.

We will denote these random secrets by H
(k,m)
a , where a and m range over the

same values as before, but k ∈ [n− 3t+ 1, n− 2t].

1.2 Each party batch-shares all of his shares of each H
(k,m)
a using RobustShare.

That is, Pi chooses polynomials U (i,1,m), . . . , U (i,(n−2t),m) of degree ≤ d′ such

that U (i,k,m)(ζj) = H
(k,m)
j (αi) for j ∈ [ℓ] and U (i,k,m)(ζℓ

′+j) is random for
j ∈ [d′ − ℓ′ + 1] and shares them via RobustShare.

2. Verifying Correctness
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2.1 Define H̃
(k,m)
a and Ũ

(k,m)
a for k ∈ [n] by(

H̃(1,m)
a , . . . , H̃(n,m)

a

)T
= M

(
H(1,m)

a , . . . , H(n−2t,m)
a

)T

and (
Ũ (1,m)
a , . . . , Ũ (n,m)

a

)T
= M

(
U (1,m)
a , . . . , U (n−2t,m)

a

)T
.

Each party in P locally computes their shares of these polynomials.

2.2 Each party in P sends all their shares of H̃
(k,m)
a and Ũ (i,k,m) to party Pk for

each a, i, and m.
2.3 Each Pk uses Berlekamp-Welch on the shares of each Ũ (i,k,m) to interpolate

Ũ (i,k,m)(ζj) for each j ∈ [ℓ′].

2.4 Each Pk uses Berlekamp-Welch on the shares of each H̃
(k,m)
a . to interpolate

H̃(i,k,m)(αi) for each i ∈ [n].

2.5 Each Pk checks if the shares of H̃
(k,m)
a are consistent with the interpolation

of the polynomial Ũ (i,k,m). That is, Pk checks if Ũ (i,k,m)(ζj) = H̃
(k,m)
j (αi)

for each j ∈ [ℓ′]. If some Ũ (i,k,m) does not pass this check, then Pk sends
(Pk, accuse, Pi) to each party in P ′.

2.6 Each P ′
j ∈ P ′ uses the accusations sent in the previous step to determine a

set Corr′j of parties in P that might be corrupt. More specifically, P ′
j reads

through the list of accusations, and adds parties to Corr′j according to the
following rule: If neither of the parties in the current accusation are in Corr′j ,
then add both of them to Corr′j ; otherwise, ignore the accusation.

3. Share Transfer
3.1 Each P ′

j ∈ P ′ selects a set Gj of parties in P − Corrj such that |Gj | = n− 2t.
Then P ′

j sends this set to each member of Gj .

3.2 For each P ′
j ∈ P ′, let {z(j)1 , . . . , z

(j)
n−2t} denote the set of indices of parties in

Gj . Let λj,i denote the Lagrange coefficients for interpolating P ′
j ’s share of a

secret from the shares of parties in Gj (i.e. for a polynomial f of degree ≤ d′,
f(βj) = λj,1f(αz

(j)
1

) + · · ·+ λj,n−2tf(αz
(j)
n−2t

)).

3.3 The parties in P execute RanDouSha to generate degree d′ polynomials V (j,k,m)

for (j, k,m) ∈ [ℓ′+1, d′+1]×[n−3t]×[B]. The parties in P also use RanDouSha
to generate degree d′ polynomials V (j,k,m) for (j, k,m) ∈ [ℓ′]×[n−3t]×[B] that
are random subject to the constraint that V (j,k,m)(ζw) = 0 for each w ∈ [ℓ′].

3.4 Define degree d′ polynomials Q
(k,m)
a for (a, k,m) ∈ [ℓ′] × [n − 3t] × [B] by

Q
(k,m)
a (ζw) = 0 for w ∈ [ℓ′] and Q

(k,m)
a (ζw) = V (w,k,m)(ζa) for w ∈ [ℓ′+1, d′+1].

Let µj,i denote the Lagrange coefficients for interpolating P ′
j ’s share of a secret

from the points at ζi for i ∈ [d′ + 1] (i.e. for a polynomial f of degree ≤ d′,
f(βj) = µj,1f(ζ

1) + · · ·+ µj,d′+1f(ζ
d′+1).)

3.5 For each k ∈ [n− 3t], each m ∈ [B], and each j ∈ [n′], each party in Gj sends
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his share of

λj,1U
(z

(j)
1 ,k,m) + · · ·+ λj,n−2tU

(z
(j)
n−2t,k,m)

+µj,1V
(1,k,m) + · · ·+ µj,d′+1V

(d′+1,k,m)

to P ′
j .

3.6 Each P ′
j uses Berlekamp-Welch to interpolate the polynomials received in the

previous step for each k ∈ [n− 3t] and each m ∈ [B]. Since for each a ∈ [ℓ′],

λj,1U
(z

(j)
1 ,k,m)(ζa) + · · ·+ λj,n−2tU

(z
(j)
n−2t,k,m)(ζa)

+ µj,1V
(1,k,m)(ζa) + · · ·+ µj,d′+1V

(d′+1,k,m)(ζa)

= λj,1H
(k,m)
a (α

z
(j)
1

) + · · ·+ λj,n−2tH
(k,m)
a (α

z
(j)
n−2t

)

+ µj,1Q
(k,m)
a (ζ1) + · · ·+ µj,d′+1Q

(k,m)
a (ζd

′+1)

= H(k,m)
a (βj) +Q(k,m)

a (βj).

P ′
j has his share of each batch of refreshed data.

Figure 3: Refresh Recovery.

After Refresh Recovery is completed, the parties relabel the H
(k,m)
a again so that k

varies from 1 to n′− 3t′ instead of n− 3t. The relabeling is performed in such a way that it
preserves lexicographical order as described in the last steps of protocols Threshold Change2
and Threshold Change4.

6 Party Virtualization

As stated in Section 1.2, we do not require party virtualization as defined in [29]. However for
the statistical version of our protocol, we require the use of a party virtualization technique
similar to that in [13] (note that these are different techniques as noted before in Section 1.2).
The technique, initially introduced in [6], replaces an individual party with a committee of
parties that emulates the actions of an individual party. This is done such that the number
of corrupt committees is lower than the number of corrupt parties. This allows us to raise
the threshold in the statistical case from the initial threshold of t < n/16 to t < (1/2− ϵ)n
for arbitrary ϵ > 0. In [2], the authors show how to perform party virtualization such that
there is a constant number of communication rounds. We refer the reader to [13] and [2]
for details.

Changing the threshold when player virtualization is used is fairly straightforward. The
only requirement is that the threshold of the original (non-virtualized) protocol still satisfies
t < n/16 when the threshold changes. During redistribution, the parties in the new group
will be arranged into committees as in the old group, and shares will be transferred from
the virtual parties in the old group to the virtual parties in the new group as specified in [2].
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7 Dynamic Proactive Multiparty Computation

Our DPSS scheme can be used to construct a dynamic proactive secure multiparty com-
putation (DPMPC) protocol. A secure multiparty computation (MPC) protocol allows a
set of parties to compute a function of their private inputs remaining secure against an
adversary who may corrupt some of the parties. A DPMPC protocol is an MPC protocol
secure against a mobile adversary in which the set of parties performing the computation
and the corruption threshold may change during the course of the protocol.5

In [2], the authors show how to proactivize the MPC scheme of [13] by executing a
refresh and recovery protocol between each layer of circuit computation. To construct our
DPMPC scheme, we execute our Redistribute protocol between each circuit layer as in [2].
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A Threshold Changing Subprotocols

This Appendix section contains the details of the rest of the cases for Threshold Changei for
i = 1, 3, 4.

Lowering the Threshold, Batch Size Stays the Same

1. The parties invoke RanDouSha to generate masking polynomials H
(k,m)
a of degree

≤ d for k = [n−3t+1, n−2t] (where a and m range over the same values as before).

2. Define H̃
(k,m)
a for k ∈ [n] by(

H̃(1,m)
a , . . . , H̃(n,m)

a

)T
= M

(
H(1,m)

a , . . . ,H(n−2t,m)
a

)T
.

Each party locally computes their shares of these polynomials and sends his share

of each H̃
(j,m)
a to party Pj .

3. Each Pi uses Berlekamp-Welch to interpolate the shares of H̃
(i,m)
a received in the

previous step.

4. Each Pi computes (shares of) the unique polynomial h̃
(i,m)
a of degree ≤ d′ that

agrees with H̃
(i,m)
a on the evaluation points ζ1 through ζd

′+1.

5. Each Pi sends each h̃
(i,m)
a (αj) to each Pj .

6. If we define h
(k,m)
a to be the unique polynomial of degree ≤ d′ that agrees with

H
(i,m)
a on the evaluation points ζ1 through ζℓ+t′ , then it is clear that(

h̃(1,m)
a , . . . , h̃(n,m)

a

)T
= M

(
h(1,m)
a , . . . , h(n−2t,m)

a

)T
.

So each party uses Berlekamp-Welch to interpolate their shares of the h
(k,m)
a from

the shares of the h̃
(k,m)
a received in the previous step.

7. To simplify notation in the rest of the protocol, we now set H
(k,m)
a ← h

(k,m)
a for

(a, k,m) ∈ [ℓ]× [n− 3t]× [B].

Figure 4: Threshold Change1.

Raising the Threshold, Batch Size Stays the Same

1. The parties invoke RanDouSha to generate masking polynomials H
(k,m)
a of degree

≤ d for k ∈ [n−3t+1, n−2t] (where a and m range over the same values as before).

2. The parties invoke RanDouSha to generate random polynomials R
(k,m)
a of degree

≤ d′ for k ∈ [n− 2t] (where a and m range over the same values as before).

3. Define H̃
(k,m)
a for k ∈ [n] by(

H̃(1,m)
a , . . . , H̃(n,m)

a

)T
= M

(
H(1,m)

a , . . . ,H(n−2t,m)
a

)T
,
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and similarly define R̃
(k,m)
a for k ∈ [n]. Each party locally computes their shares of

these polynomials and sends his share of each H̃
(j,m)
a and R̃

(j,m)
a to party Pj .

4. Each Pi uses Berlekamp-Welch to interpolate the shares of H̃
(i,m)
a and R̃

(i,m)
a received

in the previous step.

5. Each Pi computes (shares of) the unique polynomials h̃
(i,m)
a of degree ≤ d′ that

agrees with H̃
(i,m)
a on the points ζ1 through ζℓ and agrees with R̃

(i,m)
a on the points

ζℓ+1 through ζd
′+1.

6. Each Pi sends each h̃
(i,m)
a (αj) to each Pj .

7. If we define h
(i,m)
a to be the unique polynomials of degree ≤ d′ that agrees with

H
(i,m)
a on the points ζ1 through ζℓ and agrees with R

(i,m)
a on the points ζℓ+1 through

ζd
′+1, then it is clear that(

h̃(1,m)
a , . . . , h̃(n,m)

a

)T
= M

(
h(1,m)
a , . . . , h(n−2t,m)

a

)T
.

So each party uses Berlekamp-Welch to interpolate their shares of the h
(k,m)
a from

the shares of the h̃
(k,m)
a received in the previous step.

8. To simplify notation in the rest of the protocol, we now set H
(k,m)
a ← h

(k,m)
a for

a ∈ [ℓ], k ∈ [n− 3t], and m ∈ [B].

Figure 5: Threshold Change3.

Raising the Threshold, Batch Size Increases
Since we assume that the number of parties increases by no more than a factor of

2, we know that ℓ′ = 2ℓ.

1. The parties invoke RanDouSha to generate masking polynomials H
(k,m)
a of degree

≤ d for k ∈ [n−3t+1, n−2t] (where a and m range over the same values as before).

2. The parties invoke RanDouSha to generate random polynomials R
(k,m)
a of degree

≤ d′ for k ∈ [n− 2t], a ∈ [ℓ/2], and m ∈ [B].

3. Define H̃
(k,m)
a for k ∈ [n] by(

H̃(1,m)
a , . . . , H̃(n,m)

a

)T
= M

(
H(1,m)

a , . . . ,H(n−2t,m)
a

)T
,

and similarly define R̃
(k,m)
a for k ∈ [n]. Each party locally computes their shares of

these polynomials and sends his share of each H̃
(j,m)
a and R̃

(j,m)
a to party Pj .

4. Each Pi uses Berlekamp-Welch to interpolate the shares of H̃
(i,m)
a and R̃

(i,m)
a received

in the previous step.

5. Each Pi computes (shares of) the unique polynomials h̃
(i,m)
a of degree ≤ d′ for

a ∈ [ℓ/2] and m ∈ [B] that satisfy the following:
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5.1 h̃
(i,m)
a (ζj) = H̃

(i,m)
2a−1(ζ

j) for j ∈ [ℓ].

5.2 h̃
(i,m)
a (ζℓ+j) = H̃

(i,m)
2a (ζj) for j ∈ [ℓ].

5.3 h̃
(i,m)
a (ζℓ

′+j) = R̃
(i,m)
a (ζℓ

′+j) for j ∈ [d′ − ℓ′ + 1].

6. Each Pi sends each h̃
(i,m)
a (αj) to each Pj .

7. If we define h
(k,m)
a to be the unique polynomials of degree ≤ d′ satisfying

7.1 h
(k,m)
a (ζj) = H

(k,m)
2a−1 (ζ

j) for j ∈ [ℓ],

7.2 h
(k,m)
a (ζℓ+j) = H

(k,m)
2a (ζj) for j ∈ [ℓ],

7.3 h
(k,m)
a (ζℓ

′+j) = R
(k,m)
a (ζℓ

′+j) for j ∈ [d′ − ℓ′ + 1],
then it is clear that(

h̃(1,m)
a , . . . , h̃(n,m)

a

)T
= M

(
h(1,m)
a , . . . , h(n−2t,m)

a

)T
.

So each party uses Berlekamp-Welch to interpolate their shares of the h
(k,m)
a from

the shares of the h̃
(k,m)
a received in the previous step.

8. We place a lexicographical order on the polynomials H
(k,m)
a by assigning to the

polynomial the vector (m, k, a) and using the lexicographical order on these 3-
dimensional vectors to induce an ordering on the polynomials. We similarly

place a lexicographical order on the polynomials h
(k,m)
a . To simplify notation

throughout the rest of the protocol, we now relabel
{
H

(k,m)
a

}
m = 1, . . . , B/4
k = 1, . . . , n− 3t
a = 1, . . . , ℓ′

←{
h
(k,m)
a

}m = 1, . . . , B
k = 1, . . . , n− 3t
a = 1, . . . , ℓ/2

in such a way that this map preserves lexicographical or-

der. We then relabel B ← B/4.

Figure 6: Threshold Change4.

B Security Definition and Proof

We do not provide an ideal functionality for each of the sub-protocols that comprise our
redistribution protocol. We note that the functionality for Refresh Recovery is similar to the
functionality for Block-Redistribute from [2]. The functionality for each of the threshold-
changing subprotocols is similar. We provide the functionality (Figure 7) and simulator
(Figure 8) for Threshold Change2 below and provide its security proof. Security is proved
in the universally composable framework [8].

1. Input Phase
1.1 Z provides each Pi ∈ P and each P ′

j ∈ P ′ with input t, P, Corr, t′, P ′, ℓ, and

B. Each Pi additionally receives its share of each H
(k,m)
a .
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1.2 If the inputs forwarded by the (dummy) parties to F2 are inconsistent, then
F2 outputs (abort) and aborts.

1.3 Z initializes the adversary A with auxiliary input z.
2. Corruption Phase
A may request to corrupt parties in P or P ′ by sending messages (corrupt, Pi) or
(corrupt, P ′

i ) to F2. For each party in P that the adversary corrupts, F2 sends

that party’s share of each H
(k,m)
a to A, and A may provide new input shares for that

party to F2. After each corruption, F2 sends (corrupt) to the corrupted (dummy)
party, which then forwards this message to Z.

3. Output Phase

3.1 F2 interpolates H
(k,m)
a (ζj) for (a, j, k,m) ∈ [ℓ] × [ℓ] × [n − 3t] × [B] from the

shares provided by the honest parties.
3.2 F2 sends (Shares?, ℓ′, B) to A.
3.3 A sends shares h

(k,m)
a (βj) to F2 for each (a, k,m) ∈ [2ℓ] × [n − 3t] × [B] for

each corrupt P ′
j ∈ P ′.

3.4 F2 constructs degree d
′ polynomials h

(k,m)
a for (a, k,m) ∈ [2ℓ]×[n−3t]×[B] that

are random subject to the constraint that they agree with the shares provided

by A and that h
(k,m)
2a−1 (ζ

j) = H
(k,m)
a (ζj) and h

(k,m)
2a (ζj) = H

(k,m)
a (ζℓ

′+j) for
j ∈ [ℓ′].

3.5 F2 relabels {H(k,m)
a } ← {h(k,m)

a } as specified in the last step of Thresh-
old Change2 and relables B ← 4B.

3.6 F2 outputs to each honest party her share of each H
(k,m)
a . F2 provides outputs

for the dishonest parties as specified by A.

Figure 7: Description of F2.

Note that security here is proved by comparing the ideal execution of Threshold Change2
with the execution in the hybrid model that uses the ideal functionality for RanDouSha. The
ideal functionality for RanDouSha is given in [13].

1. S, emulating the functionality for RanDouSha, sends (Shares?) to A.
2. A sends S shares for corrupt parties of H

(k,m)
a for (a, k,m) ∈ [ℓ]× [n− 3t+ 1, n−

2t]× [B] and R
(k,m)
a for (a, k,m) ∈ [2ℓ]× [n− 2t]× [B].

3. S sends messages to A emulating the honest parties from P in step 2 of Thresh-

old Change2. More specifically, S selects polynomials H̃
(k,m)
a and R̃

(k,m)
a for each

corrupt Pk ∈ P that are random subject to the constraint that H̃
(k,m)
a (αb) equals

the kth coordinate of M(H
(1,m)
a (αb), . . . , H

(n−2t,m)
a (αb)) for each corrupt Pb (and

similarly for R̃
(k,m)
a (αb)). Then A iteratively requests S to send messages for one

honest party at a time to all the dishonest parties. At each request, S sends the
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shares H̃
(k,m)
a (αi) and R̃

(k,m)
a (αi) to A on behalf an honest Pi. After each honest

party sends its messages, A may decide to iteratively corrupt honest parties. If A
wants to corrupt a party from P ′, then A simply sends (Corrupt, P ′

j) to S. For
each corruption of a party in P, the following steps are executed:
3.1 A sends (Corrupt, Pi) to S.
3.2 S sends (Corrupt, Pi) to F2.

3.3 F2 sends shares H
(k,m)
a (αi) and R

(k,m)
a (αi) for (a, k,m) ∈ [ℓ] × [n − 3t] × [B]

to S.
3.4 S chooses sharesH

(k,m)
a (αi) for (a, k,m) ∈ [ℓ]×[n−3t+1, n−2t]×[B] uniformly

at random subject to the constraint that for each (a,m), the wth coordinate

of M(H
(1,m)
a (αi), . . . , H

(n−2t,m)
a (αi))

T equals the value of H̃
(w,m)
a (αi) already

sent to the adversary for each corrupt Pw ∈ P. (This can be done because the

adversary has seen H̃
(w,m)
a (αi) for no more than t different values of w, and

becauseM is a hyper-invertible matrix.) S similarly chooses shares R
(k,m)
a (αi).

These shares are then sent to A.
4. A sends messages to S emulating the corrupt parties from P in step 2 of Thresh-

old Change2.

5. S chooses shares h
(i,m)
2a−1(αj) and h

(i,m)
2a (αj) for each corrupt Pj ∈ P randomly subject

to the constraint that they agree with the shares of h̃
(i,m)
2a−1 and h̃

(i,m)
2a already known

to A. S internally computes h̃
(i,m)
2a−1(αj) and h̃

(i,m)
2a (αj) for each corrupt Pj ∈ P and

each uncorrupted Pi ∈ P for (a,m) ∈ [ℓ] × [B] such that the shares are consistent

with the chosen shares of h
(i,m)
2a−1 and h

(i,m)
2a .

6. S sends messages to A emulating the honest parties from P in step 5 of Thresh-
old Change2. This is done as in step 3 above, with the adversary adaptively corrupt-
ing parties. In addition to what is done in step 3, for each newly corrupted party S
chooses polynomials H̃

(k,m)
a and R̃

(k,m)
a that are random subject to the constraint

that they are consistent with the shares of h̃
(i,m)
2a−1 and h̃

(i,m)
2a already known to A

and sends these shares to A.
7. S relabels {H(k,m)

a } ← {h(k,m)
a } as specified in the last step of Threshold Change2

and relabels B ← 4B.
8. When S receives (Shares?, ℓ′, B) from F2, S sends shares H

(k,m)
a (αj) for each cor-

rupt Pj ∈ P to F2.
9. A sends an output for the environment to S, and S forwards this to Z.

Figure 8: Description of Simulator for F2.

Proof: In both the ideal and the hybrid execution, A’s view of the polynomials H̃
(k,m)
a

are random given the adversary’s view of the shares of H
(k,m)
a . In the ideal execution, this is

because S chose them randomly (subject to the constraint given in step 3 of the simulator).
To see why this holds in the hybrid execution, let T denote some set of t players that
contains the corrupt players, and let k1 < · · · < kt denote the indices of players in T . Let
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MC denote the t× n− 2t matrix obtained from selecting the rows of M that correspond to
the players in T . Let ML

C denote the t× t matrix obtained from selecting the last t columns
of MC , and let MF

C denote the t × n − 3t matrix obtained from selecting the first n − 3t
columns of MC (so that MC is the concatenation of MF

C and ML
C ). Then

(H̃(k1,m)
a , . . . , H̃(kt,m)

a )T

= MF
C (H(1,m)

a , . . . ,H(n−3t,m)
a )T +ML

C (H
(n−3t+1,m)
a , . . . , H(n−2t,m)

a )T .

Since M is hyper-invertible, ML
C is invertible, so the above equation implies

(H(n−3t+1,m)
a , . . . , H(n−2t,m)

a )T

= (ML
C )

−1
[
MF

C (H(1,m)
a , . . . ,H(n−3t,m)

a )T − (H̃(k1,m)
a , . . . , H̃(kt,m)

a )T
]
.

Thus for each possible set of polynomials H
(1,m)
a , . . . , H

(n−3t,m)
a and H̃

(k1,m)
a , . . . , H̃

(kt,m)
a ,

there is exactly one choice of polynomials H
(n−3t+1,m)
a , . . . , H

(n−2t,m)
a that satisfies the equa-

tion. Since the ideal functionality for RanDouSha chooses the polynomials H
(n−3t+1,m)
a , . . . ,

H
(n−2t,m)
a randomly in the hybrid execution, A’s view of the H̃

(k,m)
a is random given A’s

shares of the H
(k,m)
a .

Since the polynomials h̃
(i,m)
a can be determined from the polynomials h

(i,m)
a (and vice

versa), it suffices to show that A’s view of h
(i,m)
a is random in both the ideal and hybrid

execution. In the ideal execution, this holds because the h
(i,m)
a were chosen randomly given

the shares of h̃
(i,m)
a already known to the adversary, and those shares were uniformly random

(because the R̃
(i,m)
a used to generate the randomness for the h̃

(i,m)
a were chosen randomly).

In the hybrid execution, this is because the R
(i,m)
a were chosen randomly, and the secrets

in the R
(i,m)
a are used to determine the randomness in the h

(i,m)
a .

In both the ideal and the hybrid execution, A’s view of the polynomials R̃
(k,m)
a are ran-

dom given the adversary’s view of the shares of and R
(k,m)
a and the chosen shares of h

(k,m)
a .

This follows from the same matrix argument applied to the H
(k,m)
a and by construction of

the h
(k,m)
a .

In the ideal execution, F2 chooses the honest parties’ output shares to be random (given
the shares of the corrupt parties provided by the adversary and the secrets being stored). In
the hybrid execution, the output shares of the honest parties are determined by the secrets
and by the shares they received from the invocation of the functionality for RanDouSha, so
again, they are random (given the shares of the corrupt parties provided by the adversary
and the secrets being stored). Thus Z will be unable to distinguish between the ideal and
hybrid executions. �
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