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Abstract. This paper studies the possibility of achieving indistinguishability-
based security in privately outsourcing linear equation systems over real num-
bers. The particular task is to solve a full-rank n× n system Ax = b. Since the
most complex part of this task is inverting A, the problem can be reduced to out-
sourcing of a square matrix inverse computation. Although outsourcing matrix
inverse is trivial for matrices over finite fields, it is not so easy for matrices over
real numbers. We study the class of affine transformations for matrices over real
numbers, find out which forms are possible at all, and state some properties that
the transformation and the initial matrices must satisfy in order to make the initial
matrices perfectly (or statistically) indistinguishable after applying the transfor-
mation. This paper provides both possibility and impossibility results.

Introduction

Secure outsourcing is a simple case of privacy-preserving two-party computation. The
first party (the client) has a task T that it wants to solve, but does not have enough com-
putational resources for that. At the same time, the second party (the server) is powerful
enough to solve it. The client may want to keep T private from the server. The parties
execute a protocol that results in the client learning the solution to T , and does not leak
any information about T to the server. Executing the protocol should be computation-
ally much easier for the client than solving T itself. Such protocols have been proposed
for various tasks such as cryptographic operations [1, 2], database operations [3], se-
quence matching [4], and some linear algebra tasks [5–7]. Often, secure outsourcing
appears as part of secure multiparty computation (SMC) protocols, in order to speed
up the solution of a particular subtask in privacy-preserving manner. In this case, the
operations of the client are executed by SMC techniques, while the server’s operations
are run in the public view.

Solving full-rank n×n linear equation systems Ax = b over R is needed in various
applications. For example, some linear programming algorithms need to solve such a
system on each iteration. In this case, a single iteration is not allowed to be too expen-
sive (or in turn iterative), and solving each single system has to be quite efficient. A
straightforward approach is to compute the solution x0 = A−1b by finding A−1 first, an
then multiplying it with b. The problem can be reduced to outsourcing square matrix
inverse computation, since the most complex part is computing A−1, and the consequent



multiplication by b can be done relatively easily even by a weak client. Hence this work
treats primarily outsourcing matrix inverses over R.

Outsourcing rank-deficient m×n linear equation systems could also be an interest-
ing task, but the transformation can be at most as secure as the transformation for full-
rank systems, since a full-rank system can be seen as an instance of a rank-deficient
system whose feasible region is just a single point. Taking into account our quite pes-
simistic results about the full-rank systems, we do not dare to hope that we can achieve
anything better for rank-deficient systems.

Outsourcing matrix inverse over a finite field F can be done as follows. Matrix mul-
tiplication is much easier than matrix inverse. Given an n× n invertible matrix A over

F, the client generates a random invertible matrix R $← Fn×n. Sampling each entry uni-
formly from F gives a uniformly distributed matrix over Fn×n which is invertible with
high probability. Since invertible n× n matrices over F form a multiplicative group
GL(n,F), the product RA is distributed uniformly in GL(n,F) for any A ∈ GL(n,F),
so RA leaks no information about A. Alternatively, a uniformly random element of
GL(n,F) can be sampled by first sampling uniformly a random lower triangular ma-
trix L and a random upper triangular matrix U (the details of sampling L and U can be
found in [8]), taking R = LU . If |F| is significantly larger than n, then only a negligible
fraction of invertible matrices cannot be decomposed to LU . Any invertible matrix can
be decomposed as LUP for lower triangular L, upper triangular U and a permutation
matrix P, but if L, U , and P are sampled from a uniform distribution, then LUP is not
distributed uniformly [8].

The client sends RA to the server. The server computes (RA)−1 = A−1R−1, sends it
back, and the client computes A−1R−1 ·R = A−1. However, the same security argument
does not pass straightforwardly for matrices over R since we cannot define a uniform
distribution on GL(n,R).

We show that, for a perfectly secure outsourcing, it is in general necessary to sample
uniformly matrices from certain subgroups of GL(n,R) or their cosets, making the sit-
uation similar to GL(n,F). However, such groups have specific structure that provides
another efficient way of inverting their elements, eliminating the need for outsourcing.
It is still possible to find transformations that provide statistical security, but doing it
straightforwardly requires the entries of matrices to grow exponentially in the security
parameter η . On the other hand, for some sets of matrices to be hidden, we manage to
give statistically secure hiding methods that may be less expensive than computing the
matrix inverse. There are also some cases that are not fully studied yet, and computa-
tional security may still be possible, although cryptographic assumptions over R have
not received much attention so far. Hence this work is not a strict impossibility result,
but rather a warning that obtaining a sufficiently hiding transformation over R is not as
easy as over F.

Notation Throughout this paper, matrices are denoted by upper case letters (A), and
vectors by lower case bold letters (b). We use calligraphic letters for sets (S ). A distri-
bution over a set S is denoted DS , and a group defined on S is denoted GS . Oper-
ations on values are routinely lifted to operate (point-wise) on probability distributions
over these values; in this case, the result is again a probability distribution.



We define statistical distance as

SD(D1,D2) = sup
X⊆R
|Pr[y ∈ X | y←D1]−Pr[y ∈ X | y←D2]| .

We write X ← DX to state that X is distributed according to DX , and X $←X to
state that X is sampled uniformly from a set X . We write D1 ≈ D2 to denote that
SD(D1,D2)< ε for a negligible ε (a function α : N→R is negligible if ∀c∃m∀η ≥m :
|α(η)| < 1/nc). If the distributions are exactly the same, we write D1 = D2. We use
multiset comprehensions {| f (X) | X ←D |} to construct new probability distributions
from the existing ones. Isomorphisms of groups and their cosets are denoted by ∼=.

1 Related Work

Hiding affine transformations have been proposed for various linear algebra tasks [9],
including solving linear equation systems. Even though the security of these transfor-
mations was proved for finite fields in [9], the follow-up papers used them freely for
the field of real numbers. The ideas of [9] have been used in practical applications such
as statistical analysis [10, 11], privacy-preserving polynomial interpolation [12], or just
constructing particular protocols for linear equation solving [13] and more general ma-
trix inverse outsourcing [14].

Affine transformation-based approach has also been used for outsourcing linear pro-
gramming tasks [15, 6, 16–18, 7, 19–22]. Since linear programming is defined over R,
there had been no good security definitions for these transformations. Some efficient
attacks based on geometrical properties of the transformed feasible region have been
found for example in [20, 23, 6]. The attacks are linear programming-specific and do
not extend to outsourcing a full-rank linear equation system. However, they show that
transformations that are secure in F are in general not so easily extensible to R.

A secure method for solving linear programming tasks based on interior point meth-
ods has been proposed in [24]. On each iteration, the algorithm uses as a black-box a
method for secure inverting a matrix over R. They suggest to use existing transformation-
based matrix inverse methods, including [10, 11]. Unfortunately, the security definition
used in these approaches are non-standard, and hence cannot be included into more
complex composition proofs. More precisely, the security definition used in the previ-
ous works (that was first used in [25]) requires that, observing the transformation output,
the adversary can reduce the set of possible inputs only to an infinite or at least compu-
tationally unfeasible set, which is not enough for example for indistinguishability-based
security. Provably secure cryptographic methods for solving linear equations systems
(based on Gaussian elimination and LU decomposition) have been proposed in [26].

In this work, we do not discuss the security of particular protocols that compute the
transformations. We are just interested in the information that the transformed quantities
may leak themselves.

2 Outsourcing by Affine Transformations

We start by defining the class of transformations for systems of linear equations that
we consider in this paper. Starting from a n× n system Ax = b, we transform it to an



m×m system By = d. Let x0 and y0 be the unique solutions to Ax = b and By = d,
respectively. The solution y0 has to be efficiently transformable back to x0.

In this paper we consider only affine transformations, for the following reasons:

– they have been the only ones considered in previous work;
– they are the most natural approach for hiding a system of linear equations;
– they are sufficiently efficient;
– in finite fields, a secure transformation is given by a highly special case of them, as

described in the introduction.

2.1 Structure of Affine Transformations

Using affine transformations, the solution to the initial problem is computed from the
solution to the transformed problem as x0 = Fy0 + r0 for some F ∈ Rn×m and r0 ∈ Rn

that are generated by the client together with B and d. We may assume that F is full-
rank, otherwise there will have to be certain constant relationships between the variables
of x0, and we cannot in general make any assumptions about the solution.

The entire transformed problem is (B,d,F,r0). In our settings, we only require that
B is published, since the most complex part of solving the system of equations is find-
ing the inverse of B. Hence the affine transformation Fy0 + r0 does not have to be
hiding, and (d,F,r0,y0) may leak information about (A,b). The main questions are un-
der which conditions d, F , r0, B can be generated efficiently, and whether satisfying
these conditions allows to keep B secure enough.

We consider only affine transformations for the purpose of generating B, i.e. B =
PAQ+R, where P ∈ Rm×n, Q ∈ Rn×m, and R ∈ Rm×m are random matrices over real
numbers sampled independently from A according to some distribution. Here m ≥ n,
and P, Q are both full-rank, since otherwise y0 would not contain enough information
to reconstruct x0.

2.2 Unavoidable Restrictions on B = PAQ+R

We show that the form B = PAQ+R is not more general than apparently more restricted
methods of computing B from A, if the transformation has to work for all n×n systems
of linear equations. First we show that R cannot be full-rank if we do not make any
assumptions on x0.

Since x0 = Fy0 + r0, without loss of generality we may write y0 =

(
y1
y2

)
, and F =

(F1 | F2), where F1 is invertible. If F1 is not invertible, we may always permute the
columns by defining a new matrix F ′ := FT for a m×m permutation matrix T , and
such F1 exists since F is full-rank. Then y1 = F−1

1 (x0− r0)−F−1
1 F2y2.

We may now express the equation (PAQ+R)y0 = d through y2 only. Let B=PAQ+
R be divided into four blocks, indexed B11, B12, B21 and B22, where the left blocks
(B11 and B21) correspond to the variables y1, and the right blocks (B12 and B22) to
the variables y2. Let Bi j = (PAQ+R)i j = ((PAQ)i j +Ri j), where (PAQ)i j and Ri j are
analogous blocks. We get the following.(

B11F−1
1 F2 +B12

B21F−1
1 F2 +B22

)
y2 = d−

(
B11
B21

)
F−1

1 (x0− r0) (1)



Since the number of rows is m > m− n, the upper n rows of the matrix on left hand
side are a certain linear combination of the m− n lower rows (again, without loss of
generality we may permute the rows of B if the last m− n rows are not full-rank by
taking P′ := T P and R′ := T R for an m×m permutation matrix T ). Let this linear
combination be represented by a matrix X . Formally, X is an (n× (m−n)) matrix such
that

XB21F−1
1 F2 +XB22 = B11F−1

1 F2 +B12 . (2)

For the Equation 1 to be satisfied, the upper n entries of the right hand side must be the

same linear combination of the lower m−n entries. If we denote d =

(
d1
d2

)
, where d1

are the n upper entries of d, and d2 are the m−n lower entries, we get

Xd2−XB21F−1
1 (x0− r0) = d1−B11F−1

1 (x0− r0) . (3)

By assumption, d, r0, F do not depend on x0. Also, the value x0 is completely
independent from A alone, if b is not taken into account, since for a fixed A, for any x0
there exists b such that Ax0 = b. Hence the Equation 3 must hold for any x0, and we
may treat the entries of x0 as formal variables. We get the following polynomial vector
equality.

Xd2−d1 +(B11−XB21)F−1
1 x0− (B11−XB21)F−1

1 r0 = 0

For the left hand side to be a zero polynomial with respect to x0, the equality Xd2−
d1− (B11−XB21)F−1

1 r0 = 0 must hold (since one possible solution is x0 = 0). Also,
(B11−XB21)F−1

1 = 0 must hold (to satisfy any x0 that does not nullify it). Since F−1
1 is

invertible, this reduces to B11−XB21 = 0, or equivalently (PAQ)11−X(PAQ)21+R11−
XR21 = 0. We have got that R11 = X(PAQ)21− (PAQ)11 +XR21.

We are also interested in relations between R22 and R12. Starting from Equation 2,
we get

XB21F−1
1 F2 +XB22 = B11F−1

1 F2 +B12

(XB21−B11)F−1
1 F2 = B12−XB22

0F−1
1 F2 = B12−XB22

XB22 = B12 .

We can write this as R12 = X(PAQ)22− (PAQ)12 +XR22.
Now (R11 | R12) = X((PAQ)21 | (PAQ)22)− ((PAQ)11 | (PAQ)12)+X(R21 | R22).

For any P =

(
P1
P2

)
and Q = (Q1 | Q2), the quantity PAQ looks as follows.

(
P1
P2

)
A (Q1 | Q2) =

(
P1AQ1 P1AQ2
P2AQ1 P2AQ2

)
.

Hence we have (PAQ)i j = PiAQ j. We may always take P′ such that P′2 := P2 and
P′1 := XP2. Such a choice of P′ does not depend on A: if we have achieved hiding for
B = PAQ+R, then X is independent from A since it is computable from B1 j = XB2 j,



and so would leak information about A. We get (PAQ+R) = (P′AQ+R′) where R′ is
such that (R′11 | R′12) = X(R′21 | R′22) and hence R is of rank at most (m−n). It is actually
exactly of rank m− n, since otherwise (PAQ+R) would not be full-rank. We get that
hiding with an arbitrary R is not better than hiding with an R of rank (m−n).

If R is of rank (m−n), then it is of the form
(

SR′T SR′

R′T R′

)
, where R′ is an (m−n)×

(m−n) invertible submatrix, and S and T are arbitrary (here without loss of generality
we assume that the (m−n)× (m−n) invertible submatrix is located in the right lower
part of R, since we again may take R′ = T1RT2 for permutation matrices T1 and T2).
Now B = (PAQ+R) can be rewritten as follows.

B =

(
P1AQ1 P1AQ2
P2AQ1 P2AQ2

)
+

(
SR′T SR′

R′T R′

)
=

(
P1 S
P2 I

)
·
(

A 0
0 I

)
·
(

Q1 Q2
R′T R′

)

In order for B to be invertible, both P′ =
(

P1 S
P2 I

)
and Q′ =

(
Q1 Q2
R′T R′

)
have to be in-

vertible. Let A′ =
(

A 0
0 I

)
. The most general form of an affine transformation is thus

B = P′A′Q′, where the distributions of P′ and Q′ do not depend on A′, and A′ uniquely
defines A (for the fixed n,m). Hence hiding A′ is equivalent to hiding A (and increasing
the size of I may be used to increase the security parameter if it turns out to depend on
the size of A′). In the next sections, we study the hiding properties of B = PAQ.

3 Security Definition

Before considering how to pick the matrices P and Q, such that B contains no informa-
tion about A, let us formally define what a secure transformation is. We use the formal
definition of a transformation, side information, and the security definition proposed
in [27], which is based on the formalizations of transformations for garbled circuits
of [28]. Let T ⊆ {0,1}∗ denote the set of all possible tasks and S ⊆ {0,1}∗ the set of
all possible solutions. For T ∈ T and S ∈S let T � S denote that S is a solution for T . A
problem transformation is defined as a pair of functions F : T×{0,1}∗→ T×{0,1}∗
and G : S×{0,1}∗→S.

A correct problem transformation is a pair (F ,G ) that satisfies

∀T,r,T ′,S′,s :
(
(T ′,s) = F (T ;r) ∧ T ′ � S′

)
⇒ T � G (S′,s) ,

where r is the randomness used by the transformation. For simplicity, let F (T ) denote
a randomized function that first samples r and then runs F (T ;r). We assume that both
F and G are polynomial-time with respect to the task description size.

Some information may be intentionally leaked by the transformation, due to being
impractical to hide. This is captured by the notion of side information function Φ : T→
{0,1}∗. When transforming a task T , we do not try to hide the information in Φ(T ).
For example, if T is not transformed at all, then Φ(T ) = T . The function Φ is assumed
to be polynomial-time.



Definition 1. [27] A transformation (F ,G ) for T is (computationally) Φ-private if the
advantage of any probabilistic polynomial-time adversary B=(B1,B2) is a negligible
function of η in the following experiment ExpT,Φ

B :

(T0,T1,s)←B1(η)
if |T0| 6= η ∨|T1| 6= η ∨Φ(T0) 6= Φ(T1)

return ⊥
b $←{0,1}
(T ′,_)←F (Tb)
b′←B2(T ′,s)

return (b ?
= b′)

where the advantage of the adversary is 1/2 less the probability of the experiment re-
turning true.

In the following, we work with real numbers, hence it may be unclear what it means
for a probabilistic polynomial-time algorithm to process these numbers. Nevertheless,
we can define perfect and statistical Φ-privacy, by letting B1 and B2 be any functions
and, in case of perfect privacy, require the advantage of B to be 0. For a fixed η , we
say that the transformation provides at least σ bits of security, if the advantage of B is
at most 2−σ . This level of security is achieved iff SD(T ′0 ,T

′
1) ≤ 2−σ for all T0,T1 ∈ T

with Φ(T0) = Φ(T1) and |T0| = |T1| = η , where T ′0 and T ′1 are the first components of
F (T0) and F (T1) respectively. Typically, we want the security level to be at least ηc

for some constant c > 0.
In our case, the set of tasks T corresponds to a set A of n× n invertible matrices.

The set A depends on the application in which the matrix inversion problem appears; it
is quite likely that A is not the whole GL(n,R). It may be possible that for some appli-
cations involving the inversion of matrices, privacy-preserving outsourcing via transfor-
mation is possible, while other applications must use other means of inverting matrices.
In the rest of this paper, we describe which conditions A must satisfy for the existence
of transformations with perfect or statistical privacy. It is also possible that some appli-
cations produce matrices A, such that there is some simple transformation f , such that
f (A) ∈A and the inverse of f (A) is still sufficient for the purposes of the application.
E.g. the transformation f (A) might normalize the rows or the columns of A.

3.1 On the Entries of Hiding Matrices

Before starting to investigate the sets of matrices A , we characterize the distributions of
matrices P and Q on the basis of their entries. We consider that there must be an efficient
procedure that samples P and Q, hence the entries of P and Q cannot be too large. Also,
we show that it is definitely not sufficient to independently sample the entries from the
same distribution.

3.2 Reasonable Bounds on P and Q

There may be a distribution of matrices P and Q where the entries of P and Q are much
larger than the entries of the matrices in A , such that the multiplication B = PAQ gives



statistical security. In practice, we can do it only if the sizes of the entries of P and Q are
reasonably small. By size we mean the number of bits required to represent an entry,
which is logarithmic in the actual entry.

For a ∈ R, it is actually less clear, what its size is; and it is something that we do
not want to define in detailed manner. It is clear, however, that we do not want the
transformation mechanism to introduce too large numbers. We argue that loga is still a
reasonable measure for the “information content”, and thus the size of a. Indeed, we are
using larger entries of P and Q to statistically hide the matrices in A , and the entropy
of these entries is proportional to our definition of size.

We say that the sizes of entries P and Q are bounded, if they are polynomial in the
security parameter η . The bound may depend on the actual set of matrices A .

If the entries of a matrix are bounded, then some matrix properties that grow with
sizes of the entries, such as determinant or norms, are also bounded. This in particular
implies that the `2 operator norms of P and Q (the spectral norms) are bounded (an `2
operator norm of an n×n matrix A is defined as ||A||2 = sup{||Ax||2 | x ∈ Rn, ||x||2 = 1},
where ||x||2 =

√
x2

1 + . . .+ x2
n is vector `2-norm). This fact can be used to apply some

known theorems from group representation theory. An upper bound for `2-norm, de-
fined by the sizes of entries, is ||A||2 ≤

√
||A||1||A||∞, and the corresponding lower bound

is ||A||2≥ 1/||A−1||2≥ 1/
√
||A−1||1||A−1||∞, where ||A||1 =max1≤k≤n ∑

n
j=1 a jk and ||A||∞ =

max1≤ j≤n ∑
n
k=1 a jk [29]. If the entries of A are at most c, then a rough bound on the de-

terminant is n! · cn according to the definition of the determinant.

3.3 Sampling P and Q similarly to finite fields

For hiding some matrix A ∈ GL(n,F) for finite field F through its multiplication by a
random matrix P, it is reasonable to sample each entry of P uniformly from F. Different
entries of P are sampled independently of each other. In the following we study, what
happens if similar sampling — independently and from the same distribution — is used
to generate entries of P and Q to hide elements of A ⊂GL(n,R). We note that matrices
P and Q sampled in such manner will be invertible with high probability, hence this
approach might look reasonable.

We consider even a bit more general case. Suppose that there are any s rows indexed
c1, . . . ,cs in P such that if these rows are summed up, all the entries of the resulting vec-
tor come from the same distribution Dp (sampling the entries of these s rows indepen-
dently is one particular case). Suppose there are t analogical columns indexed d1, . . . ,dt
in Q, and the distribution of sums of their entries is Dq. If B = PAQ, then any entry of
B is bi j = ∑

n,n
k,`=1,1 pikak`q` j. Summing up the entries over s special rows and t special

columns of B gives an entry that comes from the distribution

D
∑

n,n
k,`=1,1 ak`

=
cs,dt

∑
c,d=c1,d1

n,n

∑
k,`=1,1

pckak`q`d

=
n,n

∑
k,`=1,1

cs,dt

∑
c,d=c1,d1

pckak`q`d



=
n,n

∑
k,`=1,1

[
cs

∑
c=c1

pck

dt

∑
d=d1

q`d

]
ak`

← {|
n,n

∑
k,`=1,1

pqak` | p←Dp,q←Dq|}

= {|pq
n,n

∑
k,`=1,1

ak` | p←Dp,q←Dq|}

This means that any two matrices whose sums of the corresponding ak` entries are
different are distinguishable. This problem generalizes to not just the sum, but to any
linear combination. In particular, it means that it would be a bad idea to sample the
entries of P (or Q) independently of each other, even in just a single row (for P) or
column (for Q), although it looks like the most intuitive way of sampling a random
invertible matrix. In practice, leaking sums of the entries may be especially bad in the
case of sparse matrices. We conclude that a more clever way of matrix sampling is
needed.

4 Tolerable Side Information

In this section we are looking for the side information that multiplicative hiding B =
PAQ leaks. This allows us to define a suitable side information function Φ from Sec. 3.

Determinant Determinant of square matrices is multiplicative, so we have |PAQ| =
|P| · |A| · |Q|. We show that, regardless of the distribution D(P,Q) of P and Q (from which
sampling is feasible), the absolute value of the determinant is leaked.

Claim. If there exist A1,A2 ∈A such that |A1| 6= ±|A2|, but the distributions of PA1Q
and PA2Q are the same (where (P,Q)← D(P,Q)), then the determinants of P and/or Q
are unbounded.

Proof. For a fixed A we get |PAQ| = |P| · |A| · |Q| ← |A| ·D|P|·|Q| where D|P|·|Q| =
{||P| · |Q| | (P,Q)←D(P,Q)|}. Hence if |A1| 6=±|A2|, the distributions |A1| ·D|P|·|Q| and
|A2| ·D|P|·|Q| are different: one is a scaled version of another. We can rewrite it as
|A1|
|A2|
·D|P|·|Q| = D|P|·|Q|, so D|P|·|Q| has to be a scaled version of itself. For perfect se-

curity, this is possible only if the mean and the variance of D|P|·|Q| are both ∞, which
implies unboundedness of determinants of P and Q.

A distribution can still be at least statistically indistinguishable from a scaled version
of itself, since the difference may be caused by a negligible fraction of outliers.

Claim. Let η be a security parameter. If there exist A1,A2 ∈A , |A1| 6=±|A2| such that
SD(D|PA1Q|,D|PA2Q|)< 2−η , then the sizes of entries of P and Q are of order 2η/n.

Proof. For any two distributions D and cD over R (where c ≥ 1 is a constant), if
SD(D ,cD) < ε , then ∀x ∈ R+ : |P[−∞,x)−P[−∞,cx)| < ε , and similarly ∀x ∈ R− :



|P[−∞,cx)− P[−∞,x)| < ε where P is the probability measure of D . This implies
P[x,cx) < ε for x ∈ R+ and P[cx,x) < ε for x ∈ R−. Now let us partition R into seg-
ments [ck,ck+1) and [−ck+1,−ck), k ∈ Z. We have R =

⋃
k∈Z[c

k,ck+1)∪ [−ck+1,−ck)
and since the segments are non-intersecting, P(R) = P[−∞,∞) = ∑k∈Z(P[ck,ck+1)+
P[−ck+1,−ck)). Due to the inequalities ∀x∈R+ : P[x,cx)< ε and ∀x∈R− : P[cx,x)<
ε , we have P[ck,ck+1) < ε and P[−ck+1,−ck) < ε (∀k ∈ Z). Since P[−∞,∞) = 1, we
need 1 < ∑k∈Z 2ε . Let m be the maximal number such that there exists d ∈ supp(D) s.t
|cm−1| ≤ |d|, but |cm| ≥ |d| (such an m exists since we assume that the determinants are
bounded). Then 1 < m · 2ε (since P(supp(D)) = 1). If we want this to hold for negli-
gible ε , then m becomes exponentially large, and at the same time cm−1 ∈ supp(D), so
we need to sample cm−1.

We get that if we want to achieve SD(D|PA1Q|,D|PA2Q|)< 2−η for a security param-
eter η , then the distributions of |P| and |Q| take values around (|A1|/|A2|)2η

, and hence
the sizes of entries of P and Q are logarithmic to n

√
(|A1|/|A2|)2η

= (|A1|/|A2|)2η/n,
which is of order 2η/n. In this case, increasing n by extending A with an identity I to(

A 0
0 I

)
does not help since it still does not change the determinant, and we would not

like to increase n exponentially anyway.

We conclude that that D(P,Q) ≈ k ·D(P,Q) is not acceptable for k 6=±1. We hence add
the determinant of the matrix to the side information function. Equivalently, we may
demand that A contains only matrices with the same absolute value of the determinant.

Submultiplicative norms Another way to distinguish the distributions of PA1Q and
PA2Q is computing any of their submultiplicative properties (a property p is called
submultiplicative if p(AB) ≤ p(A)p(B)). For example, any submultiplicative matrix
norm satisfies the inequality ||PAQ|| ≤ ||P||||A||||Q||. On the other hand, since P and Q
are invertible, due to the same inequality we have

||P−1||−1||A||||Q−1||−1 = ||P−1||−1||P−1PAQQ−1||||Q−1||−1 ≤ ||PAQ|| .

Hence ||PAQ|| is bounded from below by ||A|| ·m, and from above by ||A|| ·M, where
m = minP,Q (||P−1||−1||Q−1||−1) and M = maxP,Q (||P||||Q||) depend on P and Q only,
but not on A.

Clearly, if ||A1|| ·M < ||A2|| ·m, then we get the same problems as with the determi-
nant. Since a norm is non-negative, we would analogously require that the norms are
all the same. But is it reasonable to assume that all the submultiplicative norms are the
same for the entire A ? If we want A to be indistinguishable from I and A−1 (for ex-
ample, hiding a group), then the only possibility for A and A−1 to have equal operator
p-norms for any p > 1 is the case where A is a permutation matrix (the proof is straight-
forward, and we do not present it here). This would be a too strict requirement, and
hence we do not put any constraints on the norms of A (except those that are already
implied by equal absolute values of the determinants).

Hiding Identity Matrix Suppose that we have come up with a distribution D(P,Q)

that hides A . Define a new distribution D̃(P,Q) = {|(PA,Q) | (P,Q)←D(P,Q)|} for some



A∈A . Now D̃(P,Q) hides the set A−1A as well as D(P,Q) hides A . Note that I ∈ A−1A .
Hence without loss of generality we are looking for (im)possibility results for A such
that I ∈A .

Summary We have shown that the following additional assumptions on A are either
required, or do not lessen the generality:

– ∀A1,A2 ∈A : |A1|=±|A2|;
– I ∈A (and hence ∀A ∈A : |A|=±1).

5 Perfect Secrecy

In this section we look for (im)possibilities of finding a perfectly hiding transformation
for A . Since our transformation results in sampling a random element from some set,
and then applying it to A∈A , we define more precisely what it means that a distribution
(or a set) hides A perfectly.

Definition 2. A distribution DS on a set S perfectly hides A if there exists an op-
eration ⊕ : S ×A 7→ {0,1}∗ such that DS⊕Ai = DS⊕A j for all Ai,A j ∈ A , where
DS⊕A = {|S⊕A | S←DS |}.

Definition 3. A set S perfectly hides A if there exists a distribution DS on S that
perfectly hides A .

5.1 Some preliminary results from group theory

Let GL(n,R) denote the group of all invertible (n× n) matrices over R. Let O(n,R)
denote the subgroup of GL(n,R) that contains all the orthogonal matrices (U such that
UUT = I).

Theorem 1. [30, Exercise 2.15]. Any finite subgroup of GL(n,R) is conjugate to O(n,R)
(i.e for any finite subgroup G of GL(n,R) there exists C ∈GL(n,R) and a subgroup U
of O(n,R) such that G =CU C−1.

This is not the most general version of this theorem. A notion of amenability defines
the groups on which it is possible to define a probability measure that is invariant under
multiplication.

Definition 4. [31] A group G is amenable if it admits a right-invariant, finitely additive
probability measure µ:

∀R ⊆ G ,∀A ∈ G ,µ(RA) = µ(R) .

Theorem 1 can be extended to amenable groups.

Definition 5. [32] Let B(H ) denote the space of bounded linear operators on some
Hilbert space H . A representation π : G → B(H ) is called uniformly bounded if
supG∈G (||π(G)||2)< ∞.



Theorem 2. [32] Every uniformly bounded representation π : G →B(H ) of an amen-
able group G is unitarizable, i.e there exists S ∈ B(H ) such that G 7→ S◦π(G)◦S−1 is
a unitary operator.

Corollary 1. Any amenable subgroup of GL(n,R) with bounded `2 operator norm is
conjugate to O(n,R).

Proof. We can take π to be an identity mapping GL(n,R) 7→ GL(n,R), since matrices
can be treated as linear operators on vectors over R. Any subgroup G of GL(n,R) is
its own representation in GL(n,R), where bounded `2 operator norm implies that it is
uniformly bounded.

Note that the elements of a group G that is conjugate to O(n,R) are easily invertible.
Any A ∈ G is of the form C−1UC for an orthogonal matrix U . Since C is the same for
the entire group, the matrix C−1 has to be found only once for the entire group, and we
can compute A−1 =C−1(CAC−1)TC.

5.2 Security of B = PA

First of all, we discuss the transformation B = PA, where the matrix A ∈ A is only
multiplied from the left with a randomly generated matrix P, since in the case of finite
fields it is sufficient for perfect security.

Leaking eigenvectors We present a small example that shows that the transformation
B = PA puts an additional restriction on the set A . Let DP be the distribution of P.
Consider any eigenvector x of A (a vector x ∈ Rn such that Ax = λx for some λ ∈ R
which is called an eigenvalue of A). If Ax = λx, then DP ·Ax = λDP ·x, and DP · Ix =
DP · x. Hence if we include I into the set of matrices to be hidden, the distributions
DP ·Ax and DP ·x must be equal, and the only possibility is λ =±1.

Formalizing B = PA Suppose that there exists a distribution DP of P that perfectly
hides A . Let Ai ∈A . Since I ∈A , there exist Pi,Pj ∈ supp(DP) such that PiAi = PjI =
Pj, or P−1

j Pi = Ai. Let G = 〈A 〉 be the subgroup of GL(n,R) generated by A . Since
P−1

j Pi ∈ G , Pi and Pj belong to the same left coset HG of G for some H ∈ GL(n,R).
The actual value of H does not even matter, as changing H1 to H2 just multiplies DP by
the same group element H2H−1

1 from the left.
We now study the properties of G = 〈A 〉 for a set A for which there exists a

perfectly hiding distribution DP over HG . We show that there exists a distribution DG

s.t supp(DG ) = G that hides A as well.

Claim. There exists a distribution DG on G such that DG A = DG for any A ∈A .

Proof. Let DF = {|P−1
j Pi | Pi←DP,Pj←DP|}, and F = supp(DF ). DF is an exam-

ple of a distribution over F that is hiding if DP is hiding, since further multiplication
by an independently sampled P−1

j cannot harm the hiding achieved by the multiplica-
tion with Pi ← DP. Multiplying DF by any distribution over G from the left gives a



perfectly hiding distribution DG , for the same reason that this multiplication does not
make hiding worse. The definition of perfect hiding and I ∈A give DG A = DG I = DG

for any A ∈A .

The claim proves the existence of some hiding DG such that supp(DG ) = G . How-
ever, choosing such DG for hiding is sufficient, but not necessary (we may actually
sample from an arbitrary coset of G that is not a group). We now state a necessary
condition for supp(DP).

Claim. If supp(DP) contains any element of a coset HG of G , then it contains that
coset entirely.

Proof. We prove the claim by induction on the length of the generating sequence of an
element of G .

– Base: We have shown that all Pi ∈ supp(DP) belongs to the same coset HG . Taking
H ′ := Pi for any Pi ∈ supp(DP), we get HG = H ′G , so for the base we may take
any Pi ∈ supp(DP).

– Step: Let G ∈ G , then G = A1 · · ·An for A1, . . . ,An ∈ A . Then PiA1 . . .An−1An =
PiA1 · · ·An. By induction hypothesis, PiA1 · · ·An−1 ∈ supp(DP). Since DP is per-
fectly hiding, there exists a matrix from supp(DP) that makes I indistinguishable
from An, and it is uniquely defined due to invertibility. At the same time, PiA1 · · ·An
is such a matrix. Hence PiA1 · · ·An = PiA1 · · ·AnI ∈ supp(DP).

Since DG is perfectly hiding, and I ∈A , we have DG Ai = DG for all Ai ∈A . This
can be extended to any A ∈ G .

Claim. DG A = DG for all A ∈ G .

Proof. For all A ∈ G , we have A = A1, . . . ,Ak, where Ai ∈ A are generators of G .
Applying DG Ai = DG k times, we get DG A = DG A1 . . .Ak = DG A2 . . .Ak = . . .= DG .

We are interested in the distribution DG A = DG for A ∈ G . If G is a finite group,
then DG must be a uniform distribution on G , since in a group each product is a distinct
element. By Theorem 1, a finite group is conjugate to O(n,R). We are more interested
in the cases where G is infinite.

Claim. Let DG A = DG for all A ∈ G . Then G is amenable.

Proof. We take the probability measure µDG
of DG . Take any R ⊆ G . Then ∀A ∈

G : µDG
(R) = µDG A(R) = µDG

(RA−1), which is equivalent to ∀A ∈ G : µDG
(R) =

µDG
(RA). The measure µDG

is suitable for the amenability definition.

The definition of amenability is not too interesting on its own, but it tells something
more due to the `2-norm boundedness requirement.

Claim. The elements of A are conjugate to O(n,R).



Proof. By Claim 5.2, we need to sample from a distribution DP such that supp(DP) =
HG . We have agreed in Sec. 3.2 that we deal with P with bounded `2-norms, so the `2
norms of HG should be bounded. Hence the norms of G are also bounded: ∀G ∈ G :
||G||2 = ||H−1HG||2 ≤ ||H−1||2||HG||2.

By Claim 5.2, G is amenable. By Corollary 1, the elements of G are conjugate to
O(n,R). We have A ⊆ G .

We conclude that it is indeed possible to find a perfect hiding of the form B = PA for
certain sets A for which the group 〈A 〉 is amenable, but knowing that A ∈ A would
already give enough information about the inverse of A−1 so that it could be computed
easily without the transformation.

5.3 Security of B = PAQ

From Claim 5.2, we conclude that the transformation B = PA is not powerful enough
for perfect secrecy. We proceed with B = PAQ.

Positive Examples First, we give small examples that demonstrates additional hiding
that the transformation B = PAQ can give compared to just B = PA. Consider 2× 2
matrices. We show perfectly hiding examples for both B = PA and B = PAQ.

Example 1. Let A1 =

(
λ 0
0 1/λ

)
for some λ ∈ R and A2 =

(
0 1
1 0

)
. Let DP be the

distribution that uniformly chooses between P1 =

(
1/λ 0

0 1

)
and P2 =

(
0 1

1/λ 0

)
. In this

case, the distributions DPA1 and DPA2 are equal. However, if we took A2 = I instead,
perfect hiding would be possible only if λ =±1, due to the λDPx =DPx requirement
for an eigenvector x of A.

Example 2. Let A1 =

(
λ 0
0 1/λ

)
and A2 = I. Let (P1,Q1) =

((
1/λ 0

0 1

)
,

(
0 1
1 0

))
and

(P2,Q2) =

((
0 1

1/λ 0

)
,

(
1 0
0 1

))
. Let D(P,Q) be a distribution over pairs of matrices that

uniformly chooses between (P1,Q1) and (P2,Q2). Then D(P,Q) perfectly hides {A1,A2}.
This would be impossible to achieve with the B = PA transformation.

Example 3. Let GP = B−1U B and GQ =C−1V C for some subgroups U ,V of O(n,R),
and B,C ∈ GL(n,R). These groups are amenable, and we can sample from them uni-

formly (for example, taking U = O(n,R), first sample uniformly U $← O(n,R) [33],

and then multiply it by B−1 and B). Take D(P,Q) = {|(P,Q) | P $← GP,Q
$← GQ|}. Such

a distribution hides perfectly the set A = {|PQ | P $← GP,Q
$← GQ|}. Note that the ele-

ments of A are no longer easily invertible in the same way as matrices in an amenable
group (unless B =C). Hence such a construction could be useful theoretically, although
the question is how exactly A ∈A could be generated in practice (if the client already
knows (P,Q) such that A = PQ, then he already knows the inverse). We also cannot
claim that there exists no other efficient algorithm of inverting matrices of this form.



Formalizing B = PAQ Suppose that there exists a perfectly hiding distribution D(P,Q)

of P and Q for A . Similarly to the B = PA case, we may rewrite PiAkQi = PjA`Q j

as P−1
j PiAkQiQ−1

j = A`. If multiplying by (Pi,Qi) once provides sufficient hiding, then
multiplying the result again with an independently sampled (P−1

j ,Q−1
j ) is hiding as

well. Let DF = {|(P−1
j Pi,QiQ−1

j ) | (Pi,Qi),(Pj,Q j)←D(P,Q)|} and F = supp(DF ).
Define a group G := 〈F 〉, where the inverse is defined as (P,Q)−1 = (P−1,Q−1), and
the multiplication as (P1,Q1)∗ (P2,Q2) = (P1P2,Q2Q1). We may now consider the hid-
ing process as an action of the group G onto the set A , defined as (P,Q).A = PAQ for
A ∈A , (P,Q) ∈ G . Define the following sets:

– X0 := A ,
– Xi := G .Xi−1 ,
– X :=

⋃
∞
i=0 Xi .

By construction, A ⊆X .

(Im)possibility results for B = PAQ In all the claims proven it this section, we assume
that there exists a distribution D(P,Q) that hides A perfectly. We study the action of G
on X and find some its interesting properties.

Claim. Let G and X be defined as in Sec. 5.3. The set X is isomorphic (as an action
of the group G ) to the set of cosets of HX0 := {G|G ∈ G ,G.X0 = X0} (for any X0 ∈X ).
The isomorphism is GHX0 ↔ G.X0.

Proof. Since any Ai must be indistinguishable from any A j, G is able to map any Ai ∈A
to any A j ∈A . Thus, for all X ∈X , there exists G ∈ G such that G.Ai = X , and hence
for all Xi,X j ∈X there exists G∈G such that G.Xi =X j. That is, the given group action
has only one orbit that contains the entire X . Such group actions are called transitive.
By the orbit-stabilizer theorem, for any subgroup HX0 := {G|G ∈ G ,G.X0 = X0} (X0 ∈
X ), G acts on X similarly as it would act on the set of its left cosets G /HX0 by
multiplication from the left, and the isomorphism between X and G /HX0 is GHX0 ↔
G.X0 for G ∈ G . These group-theoretical results can be found for example in [34].

The next claim is similar to Claim 5.2 which states that G itself perfectly hides A .

Claim. Let G be defined as in Sec. 5.3. There exists a distribution DG on G , such that
DG .Ai = DG .A j for all Ai,A j ∈A , whereDG .A := {|G.A | G←DG |}.

Proof. For any Ai,A j ∈A , the distributions DF .Ai = {|F.Ai | F ←DF |} and DF .A j =
{|F.A j | F ←DF |} are indistinguishable. Since G = 〈F 〉, similarly to the proof of
Claim 5.2 this implies that there exists a distribution DG on G , such that DG .I = DG .Ai .

In the case of B = PA, we observed properties of the group 〈A 〉. It would be inter-
esting to find something similar in B = PAQ. For each Ai ∈ A there exists (Pi,Qi) ∈
supp(D(P,Q)) such that Ai = PiIQi.

Claim. It is possible to sample uniformly from A .



Proof. Let G be defined as in Sec. 5.3. According to Claim 5.3, there exists a perfectly
hiding distribution DG on G . In terms of cosets, according to Claim 5.3 we have a
mapping G ×G /HX0 7→ G /HX0 , and for Gi,G j ∈ G such that Ai = Gi.X0 and A j =
G j.X0, the distributions over cosets DG GiHX0

= {|GGiHX0 | G←DG |} and DG G jHX0
=

{|GG jHX0 | G←DG |} are the same.
Let Gi = (I, I). Take any Gk ∈ G . We have Pr[GkHX0 ∈ DG HX0

] = Pr[GkHX0 ∈
DG G jHX0

]. Let Gk = (I, I). The elements of G that map HX0 to HX0 are exactly those

from HX0 . The elements of G that map G jHX0 to HX0 are exactly those from HX0G−1
j .

More formally, for all G j ∈ G s.t A j = G j.X0 we have Pr[G ∈HX0 | G← DG ] =

Pr[G ∈ HX0G−1
j | G← DG ]. Since there is an isomorphism GHX0 ↔ HX0G−1 be-

tween the left and the right cosets, define a distribution D̃G = {|G−1 | G←DG |}, get-
ting Pr[G ∈HX0 | G← D̃G ] = Pr[G ∈ G jHX0 | G← D̃G ]. Hence there exists a distri-
bution of G where the elements are distributed uniformly among the left cosets that are
isomorphic to A .

Similarly to the B = PA case, being able to sample uniformly from G would be
sufficient for hiding. Due to the isomorphism with cosets of some HA0 , each A ∈ A
can be written out as A = Gi.A0. Given a uniform distribution DG on G , we have
DG (Gi.A0) = (DG Gi).A0 = DG .A0. This hides the entire X . However, it may hap-
pen that hiding the entire X is a too strong requirement. If we could sample uniformly
from G , then we could also sample from X , as group elements are distributed uni-
formly among its cosets. The question is whether we can always sample uniformly
from X .

Claim. Let G and X be defined as in Sec. 5.3. Being able to sample uniformly from
A does not imply sampling uniformly from X .

Proof. A simple counterexample is the construction of Example 2. It is easy to sample
uniformly from A which is a finite set. We have A1 = P−1

2 P1A1Q1Q2. Defining the

group G = 〈(P−1
2 P1,Q1Q−1

2 )〉 as before, we get G =

〈((
0 λ

1/λ 0

)
,

(
0 1
1 0

))〉
, where

the first component gets infinite powers of λ in G , and multiplying it by the second

component, which is either I or
(

0 1
1 0

)
, does not help to decrease these powers.

A more interesting question is if there exists some G ′ such that X ′ is uniformly dis-
tributed. At least for n = 1, the only A s.t |A| = 1 is A = (1). We take P = (1) and
Q = (1). However, for n = 2, this is already not possible in general.

Claim. Being able to sample uniformly from A does not imply existence of D(P,Q)

such that X (as constructed in Sec. 5.3) admits a uniform distribution.

Proof. Take the same Example 2. In the previous choice, the entries of 〈Q〉 are bounded
by 1 (as Q2 = I), but the entries of 〈P〉 are unbounded. Let us now take the decompo-
sition of A1 where the sizes of entries of P and Q are as close as possible, which is the
square root of A1. A 2×2 matrix with two distinct nonzero eigenvalues has exactly four



square roots, which are of the form
(
±
√

λ 0
0 ±1/

√
λ

)
. In all these cases, we get that

some elements of X are of the form (P,Q)k.I =
(
±
√

λ 0
0 ±1/

√
λ

)2k

=

(
λ k 0
0 1/λ k

)
,

which still have infinitely growing entries. We conclude that the construction of Exam-
ple 3 is not the most general possible, as Example 2 is not its instance. We have shown
that Claim 5.2 of Sec. 5.2 does not extend to the B = PAQ case.

Due to Claim 5.3, we cannot conclude that G is necessarily amenable in general, as
it was in the case of B = PA.

5.4 Conclusion for Perfect Hiding

Secure transformation of the form B = PA, that works in finite fields, implies being able
to sample uniformly from the group 〈A 〉. If the `2-norms of P and Q are bounded,
then the `2-norms of 〈A 〉 are also bounded. According to known facts about groups,
this group is conjugate to O(n,R), and hence there is an easier way of inverting its
elements.

If the transformation B = PAQ achieves perfect hiding, then we must be able to
sample uniformly from A . Since the elements of A come from real tasks, we may
assume that their `2-norms are bounded. If 〈A 〉= A , then A is conjugate to O(n,R),
and hence there is an easier way of inverting its elements.

6 Statistical hiding

The previous results are partially extensible to statistical hiding. Instead of taking per-
fectly hiding D , we might take just some part of it, leaving behind a certain quantity that
comes with negligible probability. However, if we had negligible statistical distance in-
stead of equality of distributions in Claim 5.2, then the statistical distance between DG

and DG A might grow with k, and hence this argument does not pass straightforwardly
for statistical security. Claim 5.2 also does not pass: it no longer makes sense to require
that the `2-norms of matrices of D are bounded, since we do not sample all its elements
anyway. In this section, we present some possibility results for statistical hiding.

6.1 Hiding two arbitrary matrices by B = PA

We start from the simplest case. It is easy to achieve statistical security for a set A
consisting of just two matrices A1 and A2, without even requiring that the absolute
values of their determinants must be the same. Starting from P = (A1A−1

2 ), sequentially
generate Pi+1 such that PiA1 = Pi+1A2, getting Pk = (A1A−1

2 )k. Let DG uniformly pick
from P1, . . . ,Pl for some limit l. Even if there is no t such that Pt = P, the statistical
difference will be at most 2

|supp(DG )| , where DG is uniform distribution on the finite
number of matrices that we take into the support.

An analogical construction for k matrices would produce statistical difference ≈
1− 1

k−1 , so it cannot be generalized straightforwardly to k matrices without setting any



constraints on A . Additionally, if the absolute values of determinants of A1 and A2 are
different (let |A1A−1

2 |= d for |d|> 1), then |Pi|= di and the sizes of entries of Pl are of
the order 2η/n for η bits of security, as shown in Sec. 4.

6.2 Hiding triangular matrices by B = PA

In Sec. 5.2 we have shown that we cannot perfectly hide matrices with eigenvalues
λ 6=±1. We can show that it extends to statistical hiding. Let DP be the distribution of
the matrices P.

Claim. Let η be a security parameter. If there exists A ∈A with an eigenvalue λ 6=±1
such that SD(DPA,DP)< 2−η , then the sizes of entries of P are of order 2η−1.

Proof. In the proof of Claim 4, we have proven a more general result: if SD(D ,cD)<
2−η for some c > 1 such that D is a bounded distribution over R, we have that the sizes
of the values in the support of D should be of order 2η . Now consider the distributions
DPAx= λ ·DPx and DPx for any eigenvector x of A. Let D ′ be the distribution of a fixed
entry of DPx. In order to get statistical hiding, we must achieve SD(D ′,λD ′) < 2−η .
Similarly to the proof of Claim 4, since the sizes of entries of DP (and hence also DPx
for a fixed x, and D ′), are bounded, we get that the sizes of values from support of D ′

must be of the order 2η . Each value of D ′ is an entry of DPx.
The scaling of an eigenvector results in an eigenvector. Hence, without lessening

the generality, we may assume ||x||2 = 1. For all P ∈ supp(DP), we have ||Px||2 ≤ ||P||2.
All the entries of Px are of order 2η , and so also ||Px||2 is of order 2η , and ||P||2 ≤√
||P||1||P||∞ =

√
∑i j p2

i j, where pi j are entries of P. This means that the sizes of entries
of DP should be of order 2η/2, which is not acceptable.

Let A be a lower triangular matrix with aii = ±1 (this is exactly the case when we
have λ =±1 for each eigenvalue λ of A). Let P = (p1| . . . |pn). Due to triangularity of
A, We can write PA = (a11p1 + · · ·+ an1pn| . . . |an−1,n−1pn−1 + an,n−1pn,annpn). Since
ann = 1, the last vector of PA does not depend on A.

We see that, starting from an arbitrary pn, we can generate pi in such a way that it
hides pi+1. Namely, if the entries of pn are bounded by 1 (which is the least possible
bound), let the entries of pn−1 be uniformly distributed between 0 and c ·2η , where c≥
|an,n−1|. In this way, an−1,n−1pn−1+an,n−1pn statistically hides pn with at least η bits of
security. On the next step, to hide the (n−2)-th column with at least η bits of security,
we have to sample the entries of pn−2 uniformly from between 0 and c(2η +22η), where
c is an upper bound for both |an,n−2| and |an−1,n−2|. Proceeding to p1, we get that its
entries should be sampled uniformly from between 0 and c(2η + 22η + · · ·+ 2(n−1)η),
where c is an upper bound for the absolute values of all entries in the first column of A.

The preceding discussion shows that in order to statistically hide matrices from a
set A satisfying the following:

– a matrix A ∈ A is lower triangular with the main diagonal containing only the
values ±1;

– the absolute values of the entries of the matrices in A are bounded by c;



it is sufficient to sample the matrix P according to a distribution described in the previ-
ous paragraph. The sizes of the entries of P are bounded by (logc)nη . These entries, al-
though not small, are still of the acceptable size according to our discussion in Sec. 3.2.
On the other hand, lower triangular matrices can be inverted much more easily than
general matrices, and it does not make any practical sense to outsource it like that.

6.3 Hiding arbitrary matrices by B = PAQ

Hiding based on QR-decomposition Let A be an arbitrary set of n×n matrices with
bounded entries, and determinant ±1. Any matrix can be represented as A = QARA,
where QA ∈ O(n,R) and RA is an upper triangular matrix with positive entries on the
diagonal (such a decomposition is unique). Note that |QA| = 1 in any case. We put the
following further restrictions on A :

– there exists c ∈R that upper bounds the absolute values of the entries of RA for any
A ∈A ;

– the entries on the main diagonal of RA are ±1.

Taking DP from Sec. 6.2, we may now take D(P,Q)= {|(U,PT ) |U $← O(n,R),P←DP|}.
The distribution D(P,Q) statistically hides A , because for any A∈A , the matrix UQA is
a uniformly distributed orthogonal matrix, and the product RAPT statistically hides RA.

There exist algorithms that allow to sample uniformly from O(n,R). The question
is whether we can sample efficiently uniformly from O(n,R) in practice. Some algo-
rithms can be found in [33], where the best complexity of generating pseudorandom
orthogonal matrices is O(n2 logn). Some of the more straightforward methods involve
the generation of a random matrix (with certain distributions for its entries) and finding
its QR-decomposition. This is not easier than inverting the matrix A.

If our setting is secure multiparty computation (SMC), then the proposed hiding
method can be useful. Indeed, in this setting, a random orthogonal matrix can be gen-
erated simply by each computing party locally generating a random orthogonal matrix,
entering it into the computation, and multiplying these matrices using SMC protocols.

Hiding based on LU-decomposition Again, let A be a set of n× n matrices with
bounded entries, and determinant ±1. Almost any matrix A can be decomposed as A =
LAUA, where LA is lower and RA upper diagonal [35, Chapter 3]. If the set A satisfies
the condition that there exists c ∈ R, such that each A ∈ A has a LU decomposition,
where

– the absolute values of the entries in LA and UA are upper-bounded by c,
– the entries on the main diagonal of LA and UA are ±1,

then the following distribution D(P,Q) provides statistical hiding for A . Let DP be de-
fined as in Sec. 6.2. Let D(P,Q) = {|(P1,PT

2 ) | P1,P2←DP|}. Indeed, P1LA statistically
hides LA and UAPT

2 statistically hides UA for any A ∈A .



Hiding based on SVD-decomposition Let now A be a set of matrices such that
∀A ∈A : σ = 1, where σ is a singular value of A (an eigenvalue of the matrix AT A).
Any invertible matrix can be decomposed as A =UASVA, where UA,VA ∈ O(n,R), and
S is a diagonal matrix of singular values that are the same for all A. The distribution

D(P,Q) = {|(P,Q) | P $← O(n,R),Q $← O(n,R)|} provides perfect hiding for A : PUA
perfectly hides UA, VAQ perfectly hides VA, and S is the same for all A ∈ A up to
permutation which is taken into account by both P and Q. This hiding is somewhat sim-
ilar to the more general hiding of Example 3 of Sec. 5.3, which can be applied assuming
that the singular values of A are the same.

More generally, this hiding method is applicable for any set of matrices A , where
all elements of A have the same singular values. In effect, this amounts to adding the
singular values of the matrix to the output of the side information function Φ .

Hiding based on eigendecomposition Let A be a set of symmetric matrices such
that ∀A ∈ A : λ = ±1, where λ is an eigenvalue of A. Then each A ∈ A can be
decomposed as UADUT

A where UA ∈O(n,R), and D is a diagonal matrix of eigenvalues.

The distribution D(P,Q) = {|(P,PT ) | P $← O(n,R)|} provides perfect hiding for A : PUA

perfectly hides UA, UT
A PT perfectly hides UT

A , and D is the same for all A ∈A .

6.4 Conclusion for Statistical Hiding

As a conclusion, we can say that it is indeed possible to achieve statistical multiplicative
hiding for an arbitrary set A . In practice, such solutions would be not too efficient in
general, and the matrix entries should be extremely large if we want to hide matrices
with different determinant absolute values. Still, for some interesting classes of low-
dimensional matrices, statistical hiding is possible with an effort that may be smaller
than directly inverting the matrix.

7 Conclusion

We have studied the methods for outsourcing the inversion of a non-singular matrix over
real numbers, based on affine transformations. We have shown that most general type

of affine transformation is of the form A 7→ P
(

A 0
0 I

)
Q. Only matrices with the same

determinant absolute values can be perfectly indistinguishable. If we want to achieve
statistical indistinguishability for arbitrary A1 and A2, the entries of P and Q grow in
Ω(||A1|/|A2||2

η

) for a security parameter η .
We have found that over reals, it is much more difficult to hide matrices by mul-

tiplying them with random matrices. If we try to limit hiding to just multiplication by
P with bounded operator `2 norms, which works well in matrices over finite fields, be-
ing able to achieve perfect secrecy implies that we should be able to sample uniformly
from a certain group G that depends on the set of matrices A that we want to hide. Ac-
cording to known facts about the properties of groups, if we can sample from a group
uniformly, this group is conjugate to an orthogonal group, and hence there is an easier



way of inverting its elements. The set of matrices A is related to G in such a way that
inverting the elements of G make it easy to invert the elements of A .

If we use the A 7→ PAQ transformation with bounded `2 operator norms for hiding,
then we should be able to sample uniformly from A . If we are using matrices P and
Q with unbounded `2 operator norms, then we can still achieve statistical security. We
have given some possibility results that nevertheless leak the determinant, unless the
entries grow in Ω(c2η

) where c is the maximal ratio of different determinants.
A summary of our findings is depicted in Fig. 1.

References

1. Susan Hohenberger and Anna Lysyanskaya. How to securely outsource cryptographic com-
putations. In Joe Kilian, editor, TCC, volume 3378 of Lecture Notes in Computer Science,
pages 264–282. Springer, 2005.

2. Xiaofeng Chen, Jin Li, Jianfeng Ma, Qiang Tang, and Wenjing Lou. New algorithms for
secure outsourcing of modular exponentiations. In Sara Foresti, Moti Yung, and Fabio Mar-
tinelli, editors, ESORICS, volume 7459 of Lecture Notes in Computer Science, pages 541–
556. Springer, 2012.

3. Sergei Evdokimov and Oliver Günther. Encryption techniques for secure database outsourc-
ing. In Joachim Biskup and Javier Lopez, editors, ESORICS, volume 4734 of Lecture Notes
in Computer Science, pages 327–342. Springer, 2007.

4. Mikhail J. Atallah and Jiangtao Li. Secure outsourcing of sequence comparisons. Int. J. Inf.
Sec., 4(4):277–287, 2005.

5. Mikhail J. Atallah and Keith B. Frikken. Securely outsourcing linear algebra computations.
In Dengguo Feng, David A. Basin, and Peng Liu, editors, ASIACCS, pages 48–59. ACM,
2010.

6. Jannik Dreier and Florian Kerschbaum. Practical privacy-preserving multiparty linear pro-
gramming based on problem transformation. In SocialCom/PASSAT, pages 916–924. IEEE,
2011.

7. Cong Wang, Kui Ren, and Jia Wang. Secure and practical outsourcing of linear programming
in cloud computing. In INFOCOM, 2011 Proceedings IEEE, pages 820–828, 2011.

8. Ronald Cramer and Ivan Damgård. Secure distributed linear algebra in a constant number of
rounds. In Proceedings of the 21st Annual International Cryptology Conference on Advances
in Cryptology, CRYPTO ’01, pages 119–136, London, UK, UK, 2001. Springer-Verlag.

9. Wenliang Du and Mikhail J. Atallah. Privacy-preserving cooperative scientific computations.
In Proceedings of the 14th IEEE Workshop on Computer Security Foundations, CSFW ’01,
pages 273–, Washington, DC, USA, 2001. IEEE Computer Society.

10. Wenliang Du, Shigang Chen, and Yunghsiang S. Han. Privacy-preserving multivariate sta-
tistical analysis: Linear regression and classification. In In Proceedings of the 4th SIAM
International Conference on Data Mining, pages 222–233, 2004.

11. Shuguo Han and Wee Keong Ng. Privacy-preserving linear fisher discriminant analysis. In
Proceedings of the 12th Pacific-Asia conference on Advances in knowledge discovery and
data mining, PAKDD’08, pages 136–147, Berlin, Heidelberg, 2008. Springer-Verlag.

12. Xuan Yang, Zhaoping Yu, and Bin Kang. Privacy-preserving cooperative linear system of
equations protocol and its application. In Wireless Communications, Networking and Mobile
Computing, 2008. WiCOM ’08. 4th International Conference on, pages 1–4, Oct 2008.

13. Ju sung Kang and Dowon Hong. A practical privacy-preserving cooperative computation
protocol without oblivious transfer for linear systems of equations.



The most general affine transformation

Possibility results

(QR, LU, SVD,

eigendecomposition)

based on matrix decomposition

Perfect Security Statistical Security

A – the set of n×n matrices over R to hide

Affine transformation B = PAQ+R

P ∈ Rm×n Q ∈ Rn×m R ∈ Rm×m

Sampling from P and Q must be efficient

∀Ai,A j ∈A : |Ai|=±|A j|

Without loss of generality, I ∈A

m≥ n
Transformation B = f (A)
B ∈ Rm×n

choose a particular class
of affine transformations

The entries of P and Q cannot be iid

=⇒ determinants are bounded
The entries of P and Q are bounded

=⇒ norms are bounded

B−1 should be helpful in computing A−1

B = P
(

A 0
0 I

)
Q

P ∈ GL(m,R) Q ∈ GL(m,R)

B = PAQ

B = PA

(P,Q)

- A is conjugate to O(n,R)
- no outsourcing is needed

for certain classes of A

* 〈A 〉 admits uniform distribution

* P belongs to a coset of 〈A 〉

* 〈A 〉 is conjugate to O(n,R)

* A admits uniform distribution

* if A is a group then

A

Fig. 1: Possibility and impossibility results for outsourcing the inversion of real matri-
ces in a set A with help of affine transformations



14. Xinyu Lei, Xiaofeng Liao, Tingwen Huang, Huaqing Li, and Chunqiang Hu. Outsourcing
large matrix inversion computation to a public cloud. Cloud Computing, IEEE Transactions
on, 1(1):1–1, Jan 2013.

15. Wenliang Du. A Study Of Several Specific Secure Two-Party Computation Problems. PhD
thesis, Purdue University, 2001.

16. Jaideep Vaidya. Privacy-preserving linear programming. In Sung Y. Shin and Sascha Os-
sowski, editors, SAC, pages 2002–2007. ACM, 2009.

17. Olvi L. Mangasarian. Privacy-preserving linear programming. Optimization Letters,
5(1):165–172, 2011.

18. Olvi L. Mangasarian. Privacy-preserving horizontally partitioned linear programs. Opti-
mization Letters, 6(3):431–436, 2012.

19. Yuan Hong, Jaideep Vaidya, and Haibing Lu. Secure and efficient distributed linear pro-
gramming. Journal of Computer Security, 20(5):583–634, 2012.

20. Alice Bednarz, Nigel Bean, and Matthew Roughan. Hiccups on the road to privacy-
preserving linear programming. In Proceedings of the 8th ACM workshop on Privacy in
the electronic society, WPES ’09, pages 117–120, New York, NY, USA, 2009. ACM.

21. Wei Li, Haohao Li, and Chongyang Deng. Privacy-preserving horizontally partitioned linear
programs with inequality constraints. Optimization Letters, 7(1):137–144, 2013.

22. Yuan Hong and Jaideep Vaidya. An inference-proof approach to privacy-preserving horizon-
tally partitioned linear programs. Optimization Letters, 2013. To appear. Published online
05 October 2012.

23. Peeter Laud and Alisa Pankova. New Attacks against Transformation-Based Privacy-
Preserving Linear Programming. In Rafael Accorsi and Silvio Ranise, editors, Security and
Trust Management (STM) 2013, 9th International Workshop, volume 8203 of Lecture Notes
in Computer Science, pages 17–32. Springer, 2013.

24. Alice Bednarz. Methods for two-party privacy-preserving linear programming. PhD thesis,
University of Adelaide, 2012.

25. Wenliang Du and Zhijun Zhan. A practical approach to solve secure multi-party computation
problems. In New Security Paradigms Workshop, pages 127–135. ACM Press, 2002.

26. Dan Bogdanov, Liina Kamm, Sven Laur, and Ville Sokk. Rmind: a tool for cryptographically
secure statistical analysis. IACR Cryptology ePrint Archive, 2014:512, 2014.

27. Peeter Laud and Alisa Pankova. On the (Im)possibility of Privately Outsourcing Linear Pro-
gramming. In Ari Juels and Bryan Parno, editors, Proceedings of the 2013 ACM Workshop
on Cloud computing security, CCSW 2013, pages 55–64. ACM, 2013.

28. Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled circuits. In
Ting Yu, George Danezis, and Virgil D. Gligor, editors, ACM Conference on Computer and
Communications Security, pages 784–796. ACM, 2012.

29. W. Hundsdorfer and J.G. Verwer. Numerical Solution of Time-Dependent Advection-
Diffusion-Reaction Equations. Springer Series in Computational Mathematics. Springer,
2003.
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