
Limits on the Power of Indistinguishability Obfuscation

and Functional Encryption

Gilad Asharov∗ Gil Segev∗

Abstract

Recent breakthroughs in cryptography have positioned indistinguishability obfuscation as a
“central hub” for almost all known cryptographic tasks, and as an extremely powerful building
block for new cryptographic tasks resolving long-standing and foundational open problems.

In this paper we prove the first negative results on the power of indistinguishability obfuscation
and of the tightly related notion of functional encryption. Our results are as follows:

• There is no fully black-box construction with a polynomial security loss of a collision-
resistant function family from a general-purpose indistinguishability obfuscator.

• There is no fully black-box construction with a polynomial security loss of a key-agreement
protocol with perfect completeness from a general-purpose private-key functional encryption
scheme.

• There is no fully black-box construction with a polynomial security loss of an indistinguisha-
bility obfuscator for oracle-aided circuits from a private-key functional encryption scheme
for oracle-aided circuits.

Specifically, we prove that any such potential construction must suffer from at least a sub-
exponential security loss. Our results are obtained within a subtle framework capturing construc-
tions that may rely on a wide variety of primitives in a non-black-box manner (e.g., obfuscating
or generating a functional key for a function that uses the evaluation circuit of a puncturable
pseudorandom function), and we only assume that the underlying indistinguishability obfuscator
or functional encryption scheme themselves are used in a black-box manner.

∗School of Computer Science and Engineering, Hebrew University of Jerusalem, Jerusalem 91904, Israel. Email:
{asharov,segev}@cs.huji.ac.il. Supported by the European Union’s Seventh Framework Programme (FP7) via a
Marie Curie Career Integration Grant, by the Israel Science Foundation (Grant No. 483/13), and by the Israeli Centers
of Research Excellence (I-CORE) Program (Center No. 4/11).



Contents

1 Introduction 1
1.1 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Paper Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Preliminaries 5
2.1 Indistinguishability Obfuscation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Private-Key Functional Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Collision-Resistant Hashing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Key-Agreement Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Limits on the Power of Indistinguishability Obfuscation 7
3.1 The Class of Reductions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Proof Overview and the Oracle Γ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Breaking Any Collision-Resistant Function Family Using Γ . . . . . . . . . . . . . . 12
3.4 iO is an Indistinguishability Obfuscator Relative to Γ . . . . . . . . . . . . . . . . . 13

3.4.1 From Distinguishing to Hitting . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4.2 Avoiding Hits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4.3 From Hitting to Compressing . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.5 f is a One-Way Permutation Relative to Γ . . . . . . . . . . . . . . . . . . . . . . . . 25
3.5.1 Avoiding Hits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.5.2 From Inverting to Compressing . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.5.3 Extension to Trapdoor Permutations . . . . . . . . . . . . . . . . . . . . . . . 32

4 Limits on the Power of Private-Key Functional Encryption 33
4.1 The Class of Reductions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Proof Overview and the Oracle Ψ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3 f is a One-Way Permutation Relative to Ψ . . . . . . . . . . . . . . . . . . . . . . . 36
4.4 Π is a Functional Encryption Scheme Relative to Ψ . . . . . . . . . . . . . . . . . . . 37

4.4.1 Simulating the Decryption Oracle . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.4.2 From Distinguishing to Hitting . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.4.3 Concluding the Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.5 Breaking Any Perfectly-Complete Bit-Agreement Protocol Using Ψ . . . . . . . . . . 43
4.5.1 Warm-up: Breaking Perfectly-Complete Bit Agreement Relative to f . . . . . 43
4.5.2 Breaking Perfectly-Complete Bit Agreement Relative to Ψ . . . . . . . . . . . 44

4.6 Extending the Result to Indistinguishability Obfuscation . . . . . . . . . . . . . . . . 50

References 53



1 Introduction

The study of program obfuscation within the cryptography community was initiated by Barak,
Goldreich, Impagliazzo, Rudich, Sahai, Vadhan, and Yang [BGI+01, BGI+12] with the goal of
understanding the extent to which programs can be made “unintelligible” while preserving their
functionality. Barak et al. introduced two notions of obfuscation, virtual black-box obfuscation
and indistinguishability obfuscation, which offer two such extents: Virtual black-box obfuscation
asks that an obfuscated program reveals no more information than a black box implementing the
program, and indistinguishability obfuscation asks, somewhat more modestly, that obfuscations of
any two functionally-equivalent programs be computationally indistinguishable.

Barak et al. showed that general-purpose virtual black-box obfuscation is impossible to achieve,
and left open the problem of whether or not indistinguishability obfuscation exists1. This has rooted
the cryptography community with a somewhat pessimistic view, as it was not at all clear whether
indistinguishability obfuscation (if even exists) is nearly as useful as virtual black-box obfuscation. In
a recent breakthrough result, Garg, Gentry, Halevi, Raykova, Sahai, and Waters [GGH+13] proposed
the first candidate construction of a general-purpose indistinguishability obfuscator, and showed
how to apply indistinguishability obfuscation for constructing the first general-purpose functional-
encryption scheme.

The power of indistinguishability obfuscation. The initial breakthrough by Garg et al.
[GGH+13] has motivated Sahai and Waters [SW14] to carry out a systematic study of the applicabil-
ity of indistinguishability obfuscation. Despite the somewhat modest flavor of obfuscation that is of-
fered by indistinguishability obfuscation, Sahai and Waters presented strikingly-surprising construc-
tions, positioning indistinguishability obfuscation as a “central hub” in cryptography. Specifically,
relying on indistinguishability obfuscation Sahai and Waters resolved the long-standing founda-
tional open problem of constructing a deniable encryption scheme [CDN+97], as well as constructed
a variety of core cryptographic objects such as public-key encryption, short “hash-and-sign” signa-
tures, CCA-secure public-key encryption, non-interactive zero-knowledge proofs, injective trapdoor
functions, and oblivious transfer.

Following the work of Sahai and Waters, extensive research has been recently devoted to the
applicability of indistinguishability obfuscation, positioning it as a central hub for almost all known
cryptographic tasks, and as an extremely powerful building block for new cryptographic tasks resolv-
ing long-standing and foundational open problems. Applications of indistinguishability obfuscations
range from fundamental building blocks such as one-way functions [KMN+14] and trapdoor permu-
tations [BPW15], to more complex tasks such as full-domain hash without random oracles [HSW14],
multiparty key exchange [BZ14], efficient traitor tracing [BZ14], multi-input functional encryption
[GGG+14, AJ15], functional encryption for randomized functionalities [GJK+15], adaptively-secure
multiparty computation [GGH+14a, CGP15, DKR15, GP15], communication-efficient secure com-
putation [HW15], adaptively-secure functional encryption [Wat14], polynomially-many hardcore bits
for any one-way function [BST14], ZAPs and non-interactive witness-indistinguishable proofs [BP15],
constant-round zero-knowledge proofs [CLP14], fully-homomorphic encryption [CLT+15], and even
cryptographic hardness for the complexity class PPAD [BPR14].

Despite the extensive recent research on indistinguishability obfuscation, the following funda-
mental question has remained completely open:

Is there a natural task that cannot be solved using indistinguishability obfuscation?

1Nevertheless, there are examples of function families that can be obfuscated in a virtual black-box manner under
strong assumptions (e.g., [Can97, Wee05]).

1



The power of functional encryption. Functional encryption [SW08, BSW11] allows tremen-
dous flexibility when accessing encrypted data: it supports restricted decryption keys that allow
users to learn specific functions of the encrypted data and nothing else. The notion of functional
encryption is tightly related to that of indistinguishability obfuscation. On one hand, Garg et
al. [GGH+13] showed that indistinguishability obfuscation implies general-purpose public-key func-
tional encryption. On the other hand, Ananth and Jain [AJ15] and Bitansky and Vaikuntanathan
[BV15] showed that general-purpose public-key functional encryption with sub-exponential security
(and various additional requirements) implies general-purpose indistinguishability obfuscation.

Recent research has explored the private-key variant of functional encryption [AAB+13, ABS+14,
AJ15, BS15, BKS15, KSY15], showing that it is a very useful building block that can essentially
be used instead of indistinguishability obfuscation in various cases based on the notion of function
privacy [BS15]. Although private-key functional encryption seems significantly weaker than its
public-key variant, constructions of private-key functional encryption schemes are currently known
based only on public-key functional encryption [GGH+13, Wat14, GGH+14c]. At the same time,
however, we currently do not know how to construct any public-key primitive based on private-key
functional encryption, and this raises the following fundamental question2:

Does general-purpose private-key functional encryption imply public-key cryptography?

The challenge of dealing with non-black-box constructions. The above-stated open ques-
tions clearly call for a study of the limitations of using indistinguishability obfuscation and functional
encryption as building blocks in cryptographic constructions3. In general, one cannot argue about
limitations of cryptographic constructions without placing any restrictions (as long as we believe
that the cryptographic primitives under consideration exist – since a construction may simply ig-
nore its building blocks). In an effort to capture what is meant by a “natural” construction of
one primitive from another, Impagliazzo and Rudich [IR89] introduced the framework of black-box
constructions, which has been extensively and successfully used over the years for studying the
limitations of cryptographic constructions.4

The main challenge in the setting of indistinguishability obfuscation and functional encryption
is that constructions that are based on either one of these two primitives almost always have a
non-black-box ingredient. Specifically, such constructions may obfuscate or generate a functional
key for a function that uses the description of a cryptographic primitive (e.g., the evaluation circuit
of a puncturable pseudorandom function or of a pseudorandom generator). Thus, any study of the
limitations of indistinguishability obfuscation and functional encryption must face the challenge of
dealing with such non-black-box ingredients.

1.1 Our Contributions

In this work we prove the first limitations on the power of indistinguishability obfuscation and
functional encryption as building blocks in cryptographic constructions. Our results are obtained
within a subtle framework capturing constructions that may rely on a wide variety of primitives in a
non-black-box manner (e.g., obfuscating or generating a functional key for a function that uses the

2We note that for other forms of encryption, such as homomorphic encryption or re-randomizable encryption, it is
known that any private-key scheme implies a public-key one [Rot11, CLT+15].

3Whereas various efforts have already been devoted to studying the existence of indistinguishability obfuscation
(see, for example, [BCC+14] and the references therein), our goal is to explore the limitations of indistinguishability
obfuscation and functional encryption.

4Informally, a black-box construction is a construction that “ignores the internal structure” of its underlying
building blocks.

2



evaluation circuit of a puncturable pseudorandom function), and we only assume that the underlying
indistinguishability obfuscator or functional encryption scheme themselves are used in a black-box
manner. We begin by exploring the limitations of indistinguishability obfuscation and prove the
following theorem:

Theorem (informal) 1.1. There is no fully black-box construction with a polynomial security loss
of a collision-resistant function family from a general-purpose indistinguishability obfuscator and a
one-way permutation (and even a trapdoor permutation).

Specifically, we prove that any such potential construction must suffer from at least a sub-
exponential security loss. Such a severe security loss has indeed recently appeared in various
constructions that are based on indistinguishability obfuscation or functional encryption (e.g.,
[BPR14, AJ15, CLT+15, BPW15, BV15]).

This shows that not only there exists a cryptographic task that cannot be solved using indis-
tinguishability obfuscation using the common techniques, but in fact identifies collision-resistant
hashing (one of the most fundamental primitives) as a specific such task. In turn, this implies a
similar result for any primitive that is known to imply collision-resistant hashing in a fully black-
box manner, such as homomorphic encryption, homomorphic commitments, two-message private
information retrieval, and more (see [IKO05]).5

We then explore the limitations of private-key functional encryption and prove the following
theorem:

Theorem (informal) 1.2. There is no fully black-box construction with a polynomial security loss
of a key-agreement protocol with perfect completeness from a general-purpose private-key functional
encryption scheme and a one-way permutation.

As with Theorem 1.1, we prove that any such potential construction must suffer from at least a
sub-exponential security loss. This result positions private-key functional encryption as a private-
key primitive unless sub-exponential security is assumed or additional non-black-box techniques are
used.

Finally, we show that Theorem 1.2 can be extended for separating indistinguishability obfusca-
tion for oracle-aided circuits from private-key functional encryption for oracle-aided circuits (this
does not follow immediately from Theorem 1.2 since indistinguishability obfuscation and one-way
permutations are not known to imply key agreement in a black-box manner). We prove the following
theorem:

Theorem (informal) 1.3. There is no fully black-box construction with a polynomial security
loss of an indistinguishability obfuscator for polynomial-size oracle-aided circuits from a private-key
functional encryption scheme for polynomial-size oracle-aided circuits.

As with Theorems 1.1 and 1.2, we prove that any such potential construction must suffer from at
least a sub-exponential security loss. An impossibility result of a somewhat similar flavor was proved
by Goldwasser and Rothblum [GR14] who showed that in the programmable random-oracle model
there exists a class of oracle-aided circuits for which there is no indistinguishability obfuscator6.
Our result is obtained by considering a more structured oracle relative to which we prove that there

5A construction of a (fully-)homomorphic encryption scheme based on indistinguishability obfuscation with sub-
exponential security was recently given by Canetti et al. [CLT+15]. Their construction assumes, in addition, re-
randomizable encryption – which is currently known to exists based only on assumptions that already imply collision-
resistant hashing.

6A different impossibility result for obfuscation considered the significantly stronger notion of virtual black-box
obfuscation – see [LPS04, CTP15] who extended the work of Barak et al. [BGI+12] to the random-oracle model.

3



exists a private-key functional encryption scheme for polynomial-size oracle-aided circuits, but there
is no indistinguishability obfuscator for polynomial-size oracle-aided circuits. Our result can be
viewed as strengthening that of Goldwasser and Rothblum, both by avoiding any flavor of oracle
programmability, and by considering a seemingly stronger building block (specifically, a private-key
functional encryption scheme for oracle-aided circuits in our case vs. a random function in their
case).

Finally, we note that unlike Theorems 1.1 and 1.2 that show separation results in the standard
model, Theorem 1.3 does not necessarily imply a separation result in the standard model (we refer
the reader to [GR14] for a discussion of the possible implications of results of this flavor). Specifically,
Theorem 1.3 does not necessarily imply a separation in the standard model, since it may be that
there exists an indistinguishability obfuscator for all polynomial-size circuits, but there does not exist
such an obfuscator for polynomial-size oracle-aided circuits. Nevertheless, this provides substantial
evidence that private-key functional encryption is somewhat unlikely to imply indistinguishability
obfuscation using standard techniques.

1.2 Related Work

Our approach in this paper is inspired by a combination of various approaches and ideas that
were developed in previous work. Our framework for capturing certain non-black-box techniques
in constructions that are based on indistinguishability obfuscation and functional encryption is
inspired by the work of Brakerski, Katz, Yerukhimovich and Segev [BKS+11]. Their work addressed
the question of whether non-black-box techniques that are originated from zero-knowledge proofs
can be used for circumventing known impossibility results for black-box constructions. Although
our work shares the same theme of capturing non-black-box techniques in a black-box manner, we
capture a different class of non-black-box techniques, which raises many additional difficulties when
compared to their work.

Our impossibility result for collision-resistant hashing generalizes the approach of Haitner et al.
[HHR+15], who in turn generalized the ideas of Simon [Sim98], Gennaro et al. [GGK+05], and Wee
[Wee07]. Specifically, we rely on Simon’s collision-finding oracle, but since we also use additional
(inefficient) oracles for implementing indistinguishability obfuscation (and these oracles can interact
with Simon’s oracle), we again deal with many additional difficulties when compared to previous
work.

Our impossibility result for key-agreement protocols is inspired by ideas that were developed in
the early work of Impagliazzo and Rudich [IR89], in its improvement by Barak and Mahmoody-
Ghidary [BM09], and in the work of Brakerski, Katz, Yerukhimovich and Segev [BKS+11] who
focused on the case of perfectly-complete protocols. We refer the reader to the work of Reingold,
Trevisan and Vadhan [RTV04] and to various recent impossibility results (see, for example, [BM07,
Wee07, HHS08, BM09, DLM+11, MP12, CLM+13, DMM14, MMP14] and the references therein)
for an overview of black-box reductions and the known impossibility results.

1.3 Paper Organization

The remainder of this paper is organized as follows. In Section 2 we introduce the cryptographic
primitives under consideration in this paper. In Sections 3 and 4 we present our results on the
limitations of indistinguishability obfuscation and functional encryption, respectively. In each of
these sections, prior to providing our proof, we first define the class of constructions to which the
proof applies, and then provide an overview of both the main ideas underling the proof and of the
structure of the proof.

4



2 Preliminaries

In this section we present the notation and basic definitions that are used in this work. For a
distribution X we denote by x ← X the process of sampling a value x from the distribution X.
Similarly, for a set X we denote by x ← X the process of sampling a value x from the uniform
distribution over X . For an integer n ∈ N we denote by [n] the set {1, . . . , n}. A function negl :
N→ R+ is negligible if for every constant c > 0 there exists an integer Nc such that negl(n) < n−c

for all n > Nc. Throughout the paper, we denote by n the security parameter.

2.1 Indistinguishability Obfuscation

We consider the standard notion of indistinguishability obfuscation [BGI+01, BGI+12, GGH+13]
when naturally generalized to the setting of oracle-aided computations. We first define the notion
of functional equivalence relative to a specific function (provided as an oracle), and then we define
the notion of an indistinguishability obfuscation for a class of oracle-aided circuits. In what follows,
when considering a class C = {Cn}n∈N of oracle-aided circuits, we assume that each Cn consists of
circuits of size at most n.

Definition 2.1. Let C1 and C2 be two oracle-aided circuits, and let f be a function. We say that
C1 and C2 are functionally equivalent relative to f , denoted Cf

1 ≡ Cf
2 , if for any input x it holds that

Cf
1 (x) = Cf

2 (x).

Definition 2.2. A probabilistic polynomial-time algorithm iO is an indistinguishability obfuscator
relative to an oracle Γ for a class C = {Cn}n∈N of oracle-aided circuits if the following conditions
are satisfied:

• Functionality. For all n ∈ N and for all C ∈ Cn it holds that

Pr
[
CΓ ≡ ĈΓ : Ĉ ← iOΓ(1n, C)

]
= 1.

• Indistinguishability. For any (not necessarily uniform) probabilistic polynomial-time distin-
guisher D = (D1, D2) there exists a negligible function negl(·) such that

AdviOΓ,iO,D,C(n)
def
=

∣∣∣∣Pr [ExpiOΓ,iO,D,C(n) = 1
]
− 1

2

∣∣∣∣ ≤ negl(n)

for all sufficiently large n ∈ N, where the random variable ExpiOΓ,iO,D,C(n) is defined via the
following experiment:

1. b← {0, 1}.
2. (C0, C1, state)← DΓ

1 (1
n) where C0, C1 ∈ Cn and CΓ

0 ≡ CΓ
1 .

3. Ĉ ← iOΓ(1n, Cb).

4. b′ ← DΓ
2 (state, Ĉ).

5. If b′ = b then output 1, and otherwise output 0.

Throughout this paper we sometimes find it convenient to denote by ExpiOΓ,iO,D,C(n; b, r
∗) the

above experiment when using specific values b and r∗, where b is the bit chosen in the first step
of the experiment and r∗ is the randomness used by the algorithm iO to obfuscating the challenge
circuit in Step 3 of the experiment.

5



2.2 Private-Key Functional Encryption

A private-key functional encryption scheme over a message space M = {Mn}n∈N and a function
space C = {Cn}n∈N is a quadruple (Setup,KG,Enc,Dec) of probabilistic polynomial-time oracle-aided
algorithms. The setup algorithm Setup takes as input the unary representation 1n of the security
parameter n ∈ N and outputs a master secret key msk. The key-generation algorithm KG takes
as input a master secret key msk and a circuit C ∈ Cn, and outputs a functional key skC . The
encryption algorithm Enc takes as input a master secret key msk and a message m ∈ Mn, and
outputs a ciphertext ct. In terms of correctness we require that for all sufficiently large n ∈ N, for
every circuit C ∈ Cn and message m ∈ Mn it holds that Dec(KG(msk, C),Enc(msk,m)) = C(m)
with all but a negligible probability over the internal randomness of the algorithms Setup, KG, and
Enc. In terms of security, we rely on the standard private-key indistinguishability-based notion of
adaptive security (see, for example, [AAB+13, BS15]) when naturally generalized to the setting of
oracle-aided computations.

Definition 2.3 (Valid adversary). A probabilistic polynomial-time algorithm A is a valid adversary
relative to an oracle Ψ if for all private-key functional encryption schemes Π = (Setup,KG,Enc,
Dec), for all n ∈ N and b ∈ {0, 1}, and for all oracle-aided circuits C with which A queries the key-
generation oracle KG it holds that CΨ(m0) = CΨ(m1), where m0 and m1 are the challenge messages
produced by A.

Definition 2.4 (Adaptive security). A private-key functional encryption scheme Π = (Setup,KG,
Enc,Dec) over a message space M = {Mn}n∈N and an oracle-aided function space C = {Cn}n∈N
is adaptively secure relative to an oracle Ψ if for any probabilistic polynomial-time valid adversary
A = (A1,A2) there exists a negligible function negl(·) such that

AdvFEΨ,Π,A,C(n)
def
=

∣∣∣∣Pr [ExpFEΨ,Π,A,C(n) = 1
]
− 1

2

∣∣∣∣ ≤ negl(n)

for all sufficiently large n ∈ N, where the random variable ExpFEΨ,Π,A,C(n) is defined via the following
experiment:

1. msk← SetupΨ(1n), b← {0, 1}.
2. (m0,m1, state)← AΨ,KGΨ(msk,·),EncΨ(msk,·)

1 (1n).

3. c∗ ← EncΨ(msk,mb; r
∗), where r∗ ← {0, 1}∗.

4. b′ ← AΨ,KGΨ(msk,·),EncΨ(msk,·)
2 (state, c∗).

5. If b′ = b then output 1, and otherwise output 0.

Throughout the paper we sometimes find it convenient to denote by ExpFEΨ,Π,A,C(n;msk, b, r∗) the
above experiment when using specific values msk,b, and r∗.

2.3 Collision-Resistant Hashing

We rely on the standard notion of a collision-resistant function family when generalized to the setting
of oracle-aided computations. For our purposes in this paper it suffices to consider functions that
compress their input by a single bit.

Definition 2.5. A pair (Gen,Eval) of polynomial-time oracle-aided algorithms is a collision-resistant
function family relative to an oracle Γ if it satisfies the following properties:

6



• The index-generation algorithm Gen is a probabilistic algorithm that on input 1n and oracle
access to Γ outputs a function index σ ∈ {0, 1}m(n).

• The evaluation algorithm Eval is a deterministic algorithm that takes as input a function
index σ ∈ {0, 1}m(n) and a string x ∈ {0, 1}n, has oracle access to Γ, and outputs a string
y = EvalΓ(σ, x) ∈ {0, 1}n−1.

• For any probabilistic polynomial-time oracle-aided algorithm A there exists a negligible function
negl(·) such that

Pr

[
x ̸= x′ and

EvalΓ(σ, x) = EvalΓ(σ, x′)

∣∣∣∣ σ ← GenΓ(1n)

(x, x′)← AΓ(1n, σ)

]
≤ negl(n)

for all sufficiently large n ∈ N.

2.4 Key-Agreement Protocols

We rely on the standard notion of a key-agreement protocol when generalized to the setting of
oracle-aided computations. For our purposes in this paper it suffices to consider key-agreement
protocols in which the parties agree on a single bit, and we refer to such protocols as bit-agreement
protocols.

A bit-agreement protocol consists of a pair (A,B) of probabilistic polynomial-time oracle-aided
algorithms. We denote by (kA, kB, T ) ← ⟨AΨ(1n; rA),BΨ(1n; rB)⟩ the random process of executing
the protocol relative to an oracle Ψ, where rA and rB are the random tapes of A and B, respectively,
kA and kB are the output bits of A and B, respectively, and T is the transcript of the protocol
(i.e., the messages exchanged by the parties; this does not include the oracle queries/answers of the
parties during the execution). In this paper we consider bit-agreement protocol that are perfectly
complete (i.e., the parties always output the same bit).

Definition 2.6. A pair Π = (A,B) of probabilistic polynomial-time oracle-aided algorithms is a
perfectly-complete bit-agreement protocol relative to an oracle Ψ if the following two conditions hold:

• Perfect completeness. For any n ∈ N it holds that

Pr
rA,rB

[
kA = kB

∣∣(kA, kB, T )← ⟨AΨ(1n; rA),BΨ(1n; rB)⟩
]
= 1.

• Security. For any probabilistic polynomial-time oracle-aided algorithm E, there exists a neg-
ligible function negl(·) such that

AdvKAΨ,Π,E(n)
def
=

∣∣∣∣Pr [ExpKAΨ,Π,E(n) = 1
]
− 1

2

∣∣∣∣ ≤ negl(n)

for all sufficiently large n ∈ N, where the random variable ExpKAΨ,Π,E(n) is defined via the
following experiment:

1. (kA, kB, T )← ⟨AΨ(1n),BΨ(1n)⟩.
2. k′ ← EΨ(1n, T ).

3. If k′ = kA then output 1, and otherwise output 0.

3 Limits on the Power of Indistinguishability Obfuscation

In this section we present our negative result for constructing a collision-resistant function family
from a general-purpose indistinguishability obfuscator and a one-way permutation (and even an
enhanced trapdoor permutation family). First, in Section 3.1 we formally define the class of con-
structions to which our negative result applies. Then, in Section 3.2 we present the structure of our
proof, which is provided in Sections 3.3–3.5.

7



3.1 The Class of Reductions

We consider fully black-box constructions of a collision-resistant function family from a general-
purpose indistinguishability obfuscator and a one-way permutation (and even an enhanced trap-
door permutation family). we model these primitives as two independent building blocks due to the
following four reasons. First, although indistinguishability obfuscation is known to imply one-way
functions under reasonable assumptions [KMN+14], it is not known to imply one-way permutations
unless one assumes sub-exponential hardness [BPW15]. Second, this enables us to prove an un-
conditional result. Third, as we show in Section 3.5.3, our proof easily extends to the case where
the one-way permutation is replaced by an enhanced trapdoor permutations family. Finally, and
most importantly, this enables us to capture constructions that may apply the indistinguishability
obfuscator to any primitive that can be constructed in a fully black-box manner from a one-way
permutation (and, more general, from trapdoor permutations). For example, this enables us to
capture constructions that may apply the indistinguishability obfuscator to any circuit that uses a
puncturable pseudorandom function or a pseudorandom generator as a sub-routine7.

Moreover, this also enables us to capture constructions that may apply the indistinguishability
obfuscator to any primitive that can be constructed in a fully black-box manner from a one-way
permutation (or trapdoor permutations) and indistinguishability obfuscation: Whenever an “outer”
indistinguishability obfuscator is applied to a circuit that uses an “inner” indistinguishability ob-
fuscator as a sub-routine, the functionality and security of the outer obfuscator imply that the
inner obfuscator can be simply replaced by the identity function (with a suitable padding of its
output). For example, this enables us to capture constructions that may apply the indistinguisha-
bility obfuscator to the decryption circuit of a general-purpose functional encryption scheme (such
a scheme was recently constructed by Waters [Wat14], where in our setting we view his construc-
tion as relying on indistinguishability obfuscation for circuits that use one-way functions in a fully
black-box manner). We emphasize that black-box access in our setting is only required with respect
to the indistinguishability obfuscator and the one-way permutation themselves (e.g., applying an
indistinguishability obfuscator to a circuit that uses a pseudorandom generator as a sub-routine is
considered black-box access).

We now formally define the class of constructions considered in this section, tailoring our defini-
tions to the specific primitives under consideration. We consider any implementation of a one-way
permutation f and an indistinguishability obfuscator iO for the class of all polynomial-size oracle-
aided circuits Cf . Before providing the formal definition we remind the reader that two oracle-aided
circuits, C0 and C1, are functionally equivalent relative to a function f if for any input x it holds
that Cf

1 (x) = Cf
2 (x) (see Definition 2.1). The following definition is directly inspired by those of

Wee [Wee07] and Haitner et al. [HHR+15].

Definition 3.1. A fully black-box construction of a collision-resistant function family from a one-
way permutation and an indistinguishability obfuscator for the class C = {Cn}n∈N of all polynomial-
size oracle-aided circuits consists of a pair of probabilistic polynomial-time oracle-aided algorithms
(Gen,Eval), an algorithm M , and functions TM (·) and ϵM (·) such that the following two conditions
hold:

• Correctness: For any n ∈ N, for any permutation f , for any function iO such that iO(C; r)f

≡ Cf for all C ∈ C and r ∈ {0, 1}∗, and for any function index σ produced by Genf,iO(1n), it
holds that Evalf,iO(σ, ·) : {0, 1}n → {0, 1}n−1.

7We note that both puncturable pseudorandom functions and pseudorandom generators can be built from any
one-way function in a fully black-box manner [GGM86, HIL+99, KPT+13, BW13, SW14, BGI14].

8



• Black-box proof of security: For any permutation f , for any function iO such that
iO(C; r)f ≡ Cf for all C ∈ C and r ∈ {0, 1}∗, for any probabilistic oracle-aided algorithm
A that runs in time TA = TA(n), and for any function ϵA = ϵA(n), if

Pr

[
x ̸= x′ and

Evalf,iO(σ, x) = Evalf,iO(σ, x′)

∣∣∣∣∣ σ ← Genf,iO(1n)

(x, x′)← Af,iO(1n, σ)

]
≥ ϵA(n)

for infinitely many values of n, then either

Pr
x←{0,1}n

[
Mf,iO,A(f(x)) = x

]
≥ ϵM

(
TA(n) · ϵ−1A (n)

)
or ∣∣∣∣Pr [ExpiO(f,iO),iO,MA,C(n) = 1

]
− 1

2

∣∣∣∣ ≥ ϵM
(
TA(n) · ϵ−1A (n)

)
for infinitely many values of n (see Definition 2.2 for the description of the experiment
ExpiO(f,iO),iO,MA,C), where M runs in time TM (n).

At this point we would like to highlight the following aspects of the above definition:

• iO can obfuscate oracle-aided circuits Cf . As discussed above, our definition captures an
indistinguishability obfuscator iO for the class of all polynomial-size oracle-aided circuits Cf ,
and thus black-box access in our setting is only required with respect to the indistinguishability
obfuscator and the one-way permutation themselves. For example, this enables us to capture
constructions that may apply the indistinguishability obfuscator to the evaluation circuit of a
puncturable pseudorandom function, or to any circuit that uses a pseudorandom generator as
a sub-routine.
We note that our definition does not capture, for example, constructions that use non-
interactive zero-knowledge (or witness-indistinguishable) proofs for languages that are defined
relative to a one-way function. We leave it as an open problem to extend our framework to such
constructions, noting that the approach of Brakerski et al. [BKS+11] seems quite promising
in this direction.

• The role of the “security loss” functions TM(·) and ϵM(·). Black-box reductions are
typically formulated with a polynomial running time TM (·) and with a polynomial loss ϵM (·)
in the success probability. For example, an algorithm A that finds a collision with some
probability ϵA(n) is used by the reduction M (that runs in polynomial time and has oracle
access to A) to invert f with probability ϵM that is some fixed polynomial in ϵA(n) and in the
running time of of A.
In our setting, as we are interested in allowing more flexibility (thus making our results
stronger), we allow the algorithm M to run in time TM (n) and to have a success proba-
bility ϵM

(
TA(n) · ϵ−1A (n)

)
– both of which may be arbitrary functions given by the reduction

(in particular, both of which may be super-polynomial functions).

3.2 Proof Overview and the Oracle Γ

Our result is obtained by presenting an oracle Γ relative to which there exist a one-way permutation
f and an indistinguishability obfuscator iO for the class of all polynomial-size oracle-aided circuits
Cf , but any collision-resistant function family can be easily broken. We then show that the only
way of resolving this conflict (using a fully black-box reduction) is by using a reduction that suffers
from a sub-exponential security loss. We prove the following theorem:

9



Theorem 3.2. Let (Gen,Eval,M, TM , ϵM ) be a fully black-box construction of a collision-resistant
function family from a one-way permutation f and an indistinguishability obfuscator for the class
of all polynomial-size oracle-aided circuits Cf (see Definition 3.1). Then, its security loss functions

TM and ϵM must satisfy TM (n) ≥ 2ζn or ϵM (n) ≤ 2−n
ζ
for some constant ζ > 0.

In what follows we describe the oracle Γ (which is in fact a distribution over oracles), and
then explain the structure of our proof. The proof is inspired by a combination of ideas that were
developed in the work of Haitner et al. [HHR+15] (generalizing ideas of Simon [Sim98], Gennaro et
al. [GGK+05], and Wee [Wee07]) and in the work of Brakerski et al. [BKS+11], as discussed below.

The oracle Γ. The oracle Γ is a quadruple
(
f,O,Evalf,O,CollFinderf,O,Eval,R

)
that is defined as

follows:

• The function f = {fn}n∈N. For every n ∈ N the function fn is a uniformly chosen permu-
tation over {0, 1}n.
Looking ahead, we will prove that f is a one-way permutation relative to Γ (as detailed in
Section 3.5.3, our result easily extends to the case where f is replaced by a family of trapdoor
permutations).

• The functions O = {On}n∈N and Evalf,O. For every n ∈ N the function On is a uniformly
chosen permutation over {0, 1}2n. The function Evalf,O on input (y, x) ∈ {0, 1}∗ finds the
unique oracle-aided circuit C ∈ {0, 1}|y|/2 (i.e., C is encoded as a |y|/2-bit string) and the
unique string r ∈ {0, 1}|y|/2 such that O|y|/2(C, r) = y (note that the uniqueness is guaranteed

by the fact that O|y|/2 is a permutation over {0, 1}|y|). Then, it computes and outputs Cf (x).
Looking ahead, we will use O and Eval for realizing an indistinguishability obfuscator iO
relative to Γ for the class of all polynomial-size oracle-aided circuits Cf .

• The function CollFinderf,O,Eval,R. On input an encoding of an oracle-aided circuit C that
may access f , O and Eval, the function CollFinderf,O,Eval,R outputs a uniform pair (w,w′) such
that Cf,O,Eval(w) = Cf,O,Eval(w′).
Looking ahead, we will use CollFinder for finding a non-trivial collision in any circuit that
compresses its input. More specifically, CollFinder is provided with an infinite collection R of
permutations, where for every possible circuit Cf,O,Eval : {0, 1}m → {0, 1}m′ the collection R
contains two uniformly and independently sampled permutations, π1

C and π2
C , over {0, 1}

m.
Now, given a circuit Cf,O,Eval, the oracle CollFinder sets w = π1

C(0
m), and then computes

w′ = π2
C(t) for the lexicographically smallest t ∈ {0, 1}m such that C(π2

C(t)) = C(w).8

Equipped with the oracle Γ, our proof consists of the following three parts.

Part 1: Finding collisions in any compressing circuit. As in the work of Simon [Sim98],
it is straightforward to observe that there are no collision-resistant function families relative to Γ.
Specifically, for any n ∈ N, for any functions f and O as above, and for any oracle-aided circuit
C = Cf,O,Evalf,O : {0, 1}n → {0, 1}n−1, querying CollFinder with C results in a non-trivial collision
with probability at least 1/4 over the choice of the relevant permutations in R. More generally,
n independent such queries result in at least one non-trivial collision with probability at least
1− (3/4)n.9 We refer the reader to Section 3.3 for the formal proof.

Part 2: The existence of an indistinguishability obfuscator. The most challenging part in
this section is in proving that there exists a general-purpose indistinguishability obfuscator relative

8Note that w is uniformly distributed over {0, 1}m, and that w′ is uniformly distributed over {0, 1}m subject to
forming a collision with w.

9CollFinder is deterministic, and therefore n independent responses for same input circuit can be obtained, for
example, by appending to the description of the circuit a “dummy” counter (thus having n different circuits with the
same functionality).

10



to Γ. Our construction of such an obfuscator iOO is quite intuitive: For obfuscating an oracle-aided
circuit C = Cf ∈ {0, 1}n (i.e., a circuit that is encoded as an n-bit string for some n ∈ N), the
obfuscator iOO samples r ← {0, 1}n uniformly at random, computes Ĉ = On(C, r), and outputs the
circuit C ′(·) = Eval(Ĉf , ·) (i.e., the obfuscated circuit C ′ consists of a single Eval-gate with hardwired
input Ĉf ). The definition of the function Eval guarantees that iO preserves the functionality of the
obfuscated circuit C.

The vast majority of our effort is focused on showing that obfuscations of any two circuits that
are functionally equivalent relative to f are computationally indistinguishable even for algorithms
that can access the oracle Γ. Essentially, the technical challenge here is that the oracle CollFinder
may perform an exponential number of queries to the oracles O and Eval, and thus most of the
standard arguments that are typically used in black-box impossibility results are not applicable
here. By generalizing the approach of Gennaro et al. [GGK+05] and its extensions by Haitner et
al. [HHR+15] (for dealing with Simon’s oracle CollFinder) and by Brakerski et al. [BKS+11] (for
dealing with indistinguishability experiments), we prove that it is hard to distinguish between the
obfuscations of any two functionally-equivalent circuits.

We note that our approach heavily relies on the specific setting of indistinguishability obfuscation,
and it is currently not clear whether or not it can be extended to stronger notions of indistinguisha-
bility such as differing-input obfuscation [ABG+13, BCP14, GGH+14b]. The following is a simplified
variant of the theorem that we prove in Section 3.4:

Theorem 3.3 (Simplified variant). For any probabilistic oracle-aided algorithm A that runs in time
at most 2n/15, and for any permutation f , it holds that∣∣∣∣ PrO,R [

ExpiOΓ,iO,A,C(n) = 1
]
− 1

2

∣∣∣∣ ≤ 2−n/40.

Part 3: The existence of a one-way permutation. Finally, we prove that f is a one-way
permutation relative to Γ. The following is a simplified variant of the theorem that we prove in
Section 3.5, and also here our inspiration is rooted at ideas originated in [GGK+05, HHR+15,
BKS+11] that we generalize to our oracle Γ:

Theorem 3.4 (Simplified variant). For any probabilistic oracle-aided algorithm A that runs in time
at most 2n/50, and for any function O, it holds that

Pr
f,R

x←{0,1}n

[
AΓ(f(x)) = x

]
≤ 2−n/50.

Given the above discussion we are now ready to prove Theorem 3.2.

Proof of Theorem 3.2. Let (Gen,Eval,M, TM , ϵM ) be a fully black-box construction of a collision-
resistant function family from a one-way permutation f and an indistinguishability obfuscator iO
for the class C of all polynomial-size oracle-aided circuits Cf (recall Definition 3.1). Note that in
our setting, relative to the oracle Γ, this means we allow the algorithms Gen and Eval to access f ,
O and Eval (but we do not allow them to access CollFinder).

Then, as discussed above, there exists an oracle-aided algorithm A that runs in polynomial time
TA(n), such that for any f and O, it holds that

Pr
R

[
x ̸= x′ and

Evalf,O,Eval
f,O

(σ, x) = Evalf,O,Eval
f,O

(σ, x′)

∣∣∣∣∣σ ← Genf,O,Eval
f,O

(1n)

(x, x′)← AΓ(1n, σ)

]
≥ ϵA(n), (3.1)

11



where ϵA(n) = 1/4 for all values of n ∈ N (as noted above, we can in fact use ϵA(n) = 1− (3/4)n).
Definition 3.1 then states that there are two possible cases to consider: A can be used either for
breaking the indistinguishability obfuscator iO, or for inverting the one-way permutation f .

In the first case, noting that Eq. 3.1 holds for any f and O, we obtain from Definition 3.1 that
for any f it holds that ∣∣∣∣ PrO,R [

ExpiOΓ,iO,MA,C(n) = 1
]
− 1

2

∣∣∣∣ ≥ ϵM (TA(n) · 4) ,

where M runs in time TM (n). The algorithm M may invoke A on various security parameters
(i.e., in general M is not restricted to invoking A only on security parameter n), and we denote
by ℓ(n) the maximal security parameter on which M invokes A (when M itself is invoked on
security parameter n). Thus, viewing MA as a single algorithm, its running time TMA(n) satisfies
TMA(n) ≤ TM (n) · TA(ℓ(n)) (this follows since M may invoke A at most TM (n) times, and the
running time of A on each such invocation is at most TA(ℓ(n))). Theorem 3.3 then implies that
either 2n/15 ≤ TMA(n) or ϵM (TA(n) · 4) ≤ 2−n/40. In the first sub-case, noting that ℓ(n) ≤ TM (n),
we obtain that

2n/15 ≤ TMA(n) ≤ TM (n) · TA(ℓ(n)) ≤ TM (n) · TA(TM (n)).

The running time TA(n) of the adversary A is some fixed polynomial in n, and therefore TM (n) ≥ 2ζn

for some constant ζ > 0. In the second sub-case, we have that ϵM (TA(n) · 4) ≤ 2−n/40, and since

TA(n) is some fixed polynomial in n we obtain that ϵM (n) ≤ 2−n
ζ
for some constant ζ > 0.

In the second case, noting again that Eq. 3.1 holds for any f and O, we obtain from Definition
3.1 that for any O it holds that

Pr
f,R

x←{0,1}n

[(
MA

)Γ
(f(x)) = x

]
≥ ϵM (TA(n) · 4) ,

whereM runs in time TM (n). As in the first case, viewingMA as a single algorithm, its running time
TMA(n) satisfies TMA(n) ≤ TM (n) ·TA(ℓ(n)). Theorem 3.4 then implies that either 2n/50 ≤ TMA(n)
or ϵM (TA(n) · 4) ≤ 2−n/50. As in the first case, this implies that the security loss functions TM and

ϵM must satisfy TM (n) ≥ 2ζn or ϵM (n) ≤ 2−n
ζ
for some constant ζ > 0.

3.3 Breaking Any Collision-Resistant Function Family Using Γ

The following is a straightforward claim, which shows that there does not exist any collision-resistant
function family relative to Γ:

Claim 3.5. There exists a probabilistic polynomial-time algorithm A, such that for any functions
f and O, for any n ∈ N, and for any oracle-aided circuit Cf,O,Evalf,O : {0, 1}n → {0, 1}n−1, it holds
that:

Pr
R

[
w ̸= w′ and

Cf,O,Evalf,O(w) = Cf,O,Evalf,O(w′)

∣∣∣∣ (w,w′)← AΓ(1n, C)

]
≥ 1

4
.

Proof. Fix n, f , and O. On input (1n, C), the algorithm A simply sends the circuit C as a query
to the oracle CollFinder, and receives back a pair (w,w′). We claim that the probability of the event

in which Cf,O,Evalf,O(w) = Cf,O,Evalf,O(w′) and w ̸= w′ is at least 1/4 over the choice of w and w′.
Indeed, the circuit C maps n-bits strings into (n− 1)-bit strings, and therefore at least 2n−1 inputs
have some non-trivial collision. CollFinder evaluates C on some random w, and thus there exists a
non-trivial collision for w with probability at least 2n−1/2n = 1/2. In addition, CollFinder samples
a uniform w′ in C−1(C(w)), and therefore with probability at least 1/2 this value is different than
w. That is, CollFinder finds a non-trivial collision with probability of at least 1/4 over the choice of
w and w′.

12



3.4 iO is an Indistinguishability Obfuscator Relative to Γ

In this section we show that there exists a general-purpose indistinguishability obfuscator relative
to Γ. The construction is as follows:

Construction 3.6. The (randomized) algorithm iO(1n, C) is given as input an oracle-aided circuit
C (represented as n-bit string), chooses a random r ← {0, 1}n, and computes On(C, r) = Ĉ. Then,
it outputs the oracle-aided circuit C ′(·) = Eval(Ĉ, ·).

We now prove that this construction is an indistinguishability obfuscator for the class C =
{Cn}n∈N of all polynomial-size oracle-aided circuits Cf . Before proceeding to a formal statement of
the main theorem in this section, we first define the notion of a q-query algorithm:

Definition 3.7. We say that an oracle-aided algorithm A is a (qf , qO, qEval, qCollFinder)-query al-
gorithm if for every n ∈ N and for any input y ∈ {0, 1}n, an execution AΓ(1n, y) makes at
most qf (n),qO(n),qEval(n), and qCollFinder(n) queries to the oracles f ,O,Eval,and CollFinder, respec-
tively, and its oracles queries to Eval and CollFinder are with circuits of size at most qEval(n) and
qCollFinder(n), respectively. In case A is allowed to make an unbounded number of queries to some
oracle γ ∈ {f,O,Eval,CollFinder}, we write qγ =∞. We say that A is a q-query algorithm if it is a
(q, q, q, q)-query algorithm.

It is clear that Construction 3.6 preserves the functionality of the obfuscated circuits since O
is injective. Regarding indistinguishability, we show that the advantage of any adversary in the
experiment ExpiOΓ,iO,A,C(n; b, r

∗) is very small (Definition 2.2). Recall that in this experiment, the
adversary is invoked with no input, queries the oracle Γ and outputs a pair (C0, C1) of oracle-
aided circuits that are functionally equivalent relative to f . The challenger obfuscates Cb using
randomness r∗, and the adversary has to guess which one of them was obfuscated. In the remainder
of this section we prove the following theorem:

Theorem 3.8. For any q-query algorithm A with q(n) ≤ 2n/15 it holds that∣∣∣∣∣∣ Pr
Γ

(b,r∗)←{0,1}n+1

[
ExpiOΓ,iO,A,C(n; b, r

∗) = 1
]
− 1

2

∣∣∣∣∣∣ ≤ 2−n/40 .

In fact, we show that the above holds even for any fixing of the oracle oracles f = {fn}n∈N and
O−n = {Ok}k∈N,k ̸=n.

Proof overview. Consider an algorithm A participating in the experiment ExpiOΓ,iO,A,C(n; b, r
∗).

We claim that the adversary can output the correct bit b only if it obtains a specific piece of useful
information about Ĉ = iO(Cb) via one of its oracle queries. We explicitly define when A obtains
such information, and show that it happens with a very small probability.

In particular, we claim that A obtains information about Ĉ only if one of its queries “hits” the
values On(C0, r

∗) or On(C1, r
∗) during the execution. Such a hit may be a triggered by a direct

query to the oracle O, or an indirect query to O through some CollFinder query or some Eval query.
Moreover, this query may occur before the adversary receives the challenge Ĉ (i.e., in Step 2 of the
exepriment), or after it receives the challenge Ĉ (i.e., in Step 4 of the experiment). We now formally
define the event in which A obtains useful information about Ĉ. We distinguish between the case
where it makes such a query before receiving Ĉ and after receiving it.

We define the following event which indicates that A1 hits the randomness r∗, used by the
experiment to obfuscate the challenged circuit:

13



Definition 3.9. For a given n ∈ N and an adversary A = (A1,A2), we denote by InitHitA the event
in which one of the following queries are made by A1 in Step 2 of the experiment ExpiOΓ,iO,A,C(n; b, r

∗):

1. A1 queries On on some (C, r∗), with |C| = n for some C ∈ {0, 1}n.
2. A1 queries Eval on some

(
C̃, x

)
with

∣∣∣C̃∣∣∣ = 2n, for which O−1n

(
C̃
)
=

(
C, r∗

)
for some C ∈

{0, 1}n.
3. A1 queries CollFinder on some circuit D and receives back (w,w′) such that some gate in the

computation of Df,O,Evalf,O(w) or Df,O,Evalf,O(w′) is an On-gate with input (C, r∗) as above, or
an Eval gate with input (C̃, x) with |C̃| = 2n for which O−1n (C̃) = (C, r∗) for some C ∈ {0, 1}n
as above.

We next define the event which indicates that A2 hits On on (C0, r
∗) or (C1, r

∗), where C0 and
C1 are the pair of oracle-aided circuits outputted by A1, and r∗ is the randomness used by the
experiment to obfuscate the challenge circuit Cb:

Definition 3.10. For a given n ∈ N and an adversary A = (A1,A2), we consider the following two
events that may occur during Step 4 of the experiment ExpiOΓ,iO,A,C(n; b, r

∗), where C0 and C1 are the
two oracle-aided circuits that were outputted by A in Step 2 of the experiment:

1. We denote by O-hitA the event in which A2 makes either one of the two following direct oracle
queries to On: (C0, r

∗) or (C1, r
∗).

2. We denote by CollFinder-hitA the event in which A2 makes a CollFinder query C and CollFinder
responds with (w,w′), such that one of the computations of Cf,O,Evalf,O(w) or Cf,O,Evalf,O(w′)
has an On-gate with input (C0, r

∗) or (C1, r
∗).

The proof proceeds in three modular parts. First, we claim that if there exists an adversary A
that obtains any advantage during the experiment, then this advantage can occur only if one of the
above events holds. That is, in Section 3.4.1 we prove the following Claim:

Claim 3.11. For every n ∈ N, for every q-query algorithm A and for every ϵ > 0, if∣∣∣∣∣∣∣ Pr
On,R

(b,r∗)←{0,1}n+1

[
ExpiOΓ,iO,A,C(n; b, r

∗) = 1
]
− 1

2

∣∣∣∣∣∣∣ ≥ ϵ ,

then
Pr
On,R

(b,r∗)←{0,1}n+1

[ O-hitA ∨ CollFinder-hitA ∨ InitHitA ] ≥ ϵ .

In the second part of the proof, we show in Section 3.4.2 that the case where either O-hitA,
CollFinder-hitA or InitHitA occur can be reduced to the case where only O-hitA-occurs. That is, we
show that if there exists an adversary A for which one of the events O-hitA,CollFinder-hitA or InitHitA
occurs during an execution of the experiment ExpiOΓ,iO,A,C(n; b, r

∗), then there exists an adversary B,
that performs a comparable number of oracle queries, for which in the execution of the experiment
ExpiOΓ,iO,B,C(n; b, r

∗) only InitHitB occurs (with a polynomially-small loss). We show:

Claim 3.12. For every n ∈ N, for any q-query algorithm A = (A1,A2) with q(n) ≤ 2n/4, if:

Pr
On,R

(b,r∗)←{0,1}n+1

[ O-hitA ∨ CollFinder-hitA ∨ InitHitA ] ≥ 1

q(n)
,

14



in the experiment ExpiOΓ,iO,A,C(n; b, r
∗), then there exists a Q(n)-query algorithm B = (B1,B2) with

Q(n) = 2q(n)2 for which in the experiment ExpiOΓ,iO,B,C(n; b, r
∗)(n; b, r∗) it holds that:

Pr
On,R

(b,r∗)←{0,1}n+1

[
O-hitB ∧ CollFinder-hitB ∧ InitHitB

]
≥ 1/q(n)5 .

In the third part of the proof, in Section 3.4.3 we show that the above event can occur only with
small probability. In particular, we show that the existence of an adversary that succeeds in hitting
r∗ implies a short representation for the function On. We show that:

Claim 3.13. For any Q(n)-query algorithm B with Q(n) = 2n/7, the following holds in the experi-
ment ExpiOΓ,iO,B,C(n; b, r

∗):

Pr
On,R

(b,r∗)←{0,1}n+1

[
O-hitB ∧ CollFinder-hitB ∧ InitHitB

]
< 2−n/8 .

From Claims 3.11, 3.12 and 3.13 we conclude Theorem 3.8.

Proof of Theorem 3.8. Assume towards contradiction that there exists a q-query algorithm A
where q(n) = 2n/15, and infinitely many n’s such that:∣∣∣∣∣∣∣ Pr

On,R
(b,r)←{0,1}n+1

[
ExpiOΓ,iO,A,C(n; b, r

∗) = 1
]
− 1

2

∣∣∣∣∣∣∣ > 2−n/40 .

From Claim 3.11, this implies that

Pr
On,R

(b,r)←{0,1}n+1

[ O-hitA ∨ CollFinder-hitA ∨ InitHitA ] > 2−n/40 .

However, using Claim 3.12, this implies the existence of a Q(n)-query algorithm B with Q(n) =
2q(n)2 = 2 · 22n/15 ≤ 2n/7−1, for which in the experiment ExpiOΓ,iO,B,C(n; b, r

∗) it holds that:

Pr
On,R

(b,r)←{0,1}n+1

[
O-hitB ∧ CollFinder-hitB ∧ InitHitB

]
>

(
2−n/40

)5
= 2−n/8,

and this is in contradiction to Claim 3.13.

3.4.1 From Distinguishing to Hitting

In this section, we claim that if there exists an adversary A that obtains any advantage during the
execution of the experiment, then one of the events O-hit,CollFinder-hit or InitHit occurs. We prove:

Claim 3.14. For every n ∈ N, for every q-query algorithm A and for every ϵ > 0, if∣∣∣∣∣∣∣ Pr
On,R

(b,r∗)←{0,1}n+1

[
ExpiOΓ,iO,A,C(n; b, r

∗) = 1
]
− 1

2

∣∣∣∣∣∣∣ ≥ ϵ ,

then
Pr

On,R
(b,r∗)←{0,1}n+1

[ O-hitA ∨ CollFinder-hitA ∨ InitHitA ] ≥ ϵ .

15



Proof. Note that:

Pr
On,R

(b,r∗)←{0,1}n+1

[
ExpiOΓ,iO,A,C(n; b, r

∗) = 1
]

≤ Pr
On,R

(b,r∗)←{0,1}n+1

[
ExpiOΓ,iO,A,C(n; b, r

∗) = 1 | O-hit ∧ CollFinder-hit ∧ InitHit
]

+ Pr
On,R

(b,r∗)←{0,1}n+1

[ O-hit ∨ CollFinder-hit ∨ InitHit ]

We prove the claim by showing that the following holds:

Pr
On,R

(b,r∗)←{0,1}n+1

[
ExpiOΓ,iO,A,C(n; b, r

∗) = 1 | O-hit ∧ CollFinder-hit ∧ InitHit
]
=

1

2
.

We start by fixing the entire probability space, except for the oracleOn on all the valuesOn\On(·; r∗),
that is, we fix everything except for the answers for queries of type On(C, r

∗) for some C ∈ {0, 1}n.
We now claim that giving this fixing, and assuming that InitHit does not occur, the two circuits
C0, C1 that A1 outputs in Step 2 of ExpiOΓ,iO,A,C(n; b, r

∗) are fully-determined. In particular, we show
that all queries that A1 may produce in step 2 can be answered. Specifically:

• The oracle f is fully-determined.

• All answers to queries to O are determined except for queries On(·, r∗). However, since InitHit
does not occur, there are no queries on undetermined values.

• All answers to queries
(
C̃, x

)
to Eval where C̃ ∈ {0, 1}2m and n ̸= m are determined. Specifi-

cally, the oracle Om is fully-determined.

• All answers to queries
(
C̃, x

)
to Eval where C̃ ∈ {0, 1}2n are determined. This is because InitHit

does not occur, and therefore there are no Eval queries for value C̃, for which O−1n

(
C̃
)
= (C, r∗)

for some C. As a result, for all values C̃ that are queried it holds that O−1n

(
C̃
)
= (C, r) for

some C ∈ {0, 1}n and r′ ̸= r∗. Therefore, the answer C(x) is fully-determined.

• All answers to queries Cf,O,Eval to CollFinder are fully determined. Recall thatR is determined.
We can compute Cf,O,Eval(π1

C(0
m)) since there is no InitHit, and therefore this computation

does not involveOn(·; r∗). Moreover, we can enumerate over all s ∈ {0, 1}m in lexicographically
increasing order, and output w′ = π2

C(s) for the minimal s such that Cf,O,Eval(w′) = y and this
evaluation does not produce a r∗-hit (i.e., there is no On-gate with input (C, r∗) or Eval-gate
of some C̃ = On(C, r

∗)). If such a hit occurs, we move to the next s.

As a result, the two circuits C0, C1 that A1 outputs at Step 2 and the state state are fully-
determined. We now proceed with fixing the oracle On(·, r∗), with the exception of two values only:
On(C0, r

∗),On(C1, r
∗). Let t, t′ ∈ {0, 1}2n the only two images of On that are not fixed. We will

consider two cases: One corresponds to b = 0, where we set On(C0, r
∗) to t (and On(C1, r

∗) to t′)
and one (corresponds to b = 1) where we assign the opposite values. In both cases A2 is given the
value t. The two cases are equally likely but yield different values to b. We show that if AΓ

2 makes
no hits, then the view of A2 is independent of b and it must output the same value in the two cases.
In particular, we show that all queries that A2 may query in Step 4 of ExpiOΓ,iO,A,C(n; b, r

∗) can be
answered. Specifically:

• The oracle f is fully determined.

16



• All queries to O are determined except for (C0, r
∗) and (C1, r

∗). However, since O-hit does
not occur, there are no queries on undetermined values.

• All queries
(
C̃, x

)
to Eval where C̃ ∈ {0, 1}2m and n ̸= m are determined. Specifically, the

oracle Om is fully-determined, and one can find the pair (C, r′) where |C| = |r′| = m for which
Om(C, r′) = C̃ and reply with Cf (x). Recall that the oracle-aided circuit C does not have an
access to O.

• On a query
(
C̃, x

)
to Eval, where C̃ ∈ {0, 1}2n, we have the following two options. In case

C̃ ̸= t and C̃ ̸= t′, then the value O−1n

(
C̃
)
is determined, and so the query Eval

(
C̃, x

)
is

determined. In the second case, we have that C̃ = t or C̃ = t′, and thus the two possible
answers are Cf

0 (x) or Cf
1 (x). However, since Cf

0 ≡ Cf
1 , the two values Cf

0 (x), C
f
1 (x) are the

same, and therefore the query can be answered even though we did not fully determine On.

• On a query C to CollFinder, recall that R is determined. We can compute the value y =
Cf,O,Eval(π1

C(0
m)) since there is no CollFinder-hit, and therefore there is no need to compute

On(C
f
0 , r
∗) or On(C

f
1 , r
∗) during this evaluation. Moreover, we can enumerate over all s ∈

{0, 1}m in lexicographically increasing order, and output w′ = π2
C(s) for the minimal s such

that Cf,O,Eval(w′) = y and this evaluation does not produce a CollFinder-hit (i.e., there is no

On-gate with input (Cf
0 , r
∗) or (Cf

1 , r
∗)). If such a hit occurs, we move to the next s.

The claim follows.

3.4.2 Avoiding Hits

We move to show that the events CollFinder-hit and InitHit can be avoided with only a small loss.
Before proceeding to the main claim in this section, we first show that the event InitHit occurs with
relatively small probability. Intuitively, the view of the adversary A1, i.e., the view of A before
it outputs the pair of circuits (C0, C1), is completely independent of r∗. Since it has only limited
amount evaluations of the oracle On (even using some indirect queries through the CollFinder-oracle),
the probability to hit r∗ is relatively small. We have:

Claim 3.15. For every n ∈ N, for every q-query algorithm A = (A1,A2) in the execution of
ExpiOΓ,iO,A,C(n; b, r

∗) it holds that:

Pr
On,R

(b,r∗)←{0,1}n+1

[ InitHit ] ≤ 2q(n)2 · 2−n .

Proof. Fix the entire probability space, with the exception of r∗. We define the set FO containing
all queries to On during Step 2 of ExpiOΓ,iO,A,C(n; b, r

∗). In particular, these values include:

• Direct On-queries. FO contains any direct query (C, r) (with |(C, r)| = 2n) that was sent to
On by AΓ in Step 2 of ExpiOΓ,iO,A,C(n; b, r

∗).

• On values, as a result of Eval-queries. For any Eval-query
(
C̃, x

)
with |C̃| = 2n, we add to FO

the value O−1n

(
C̃
)
.

• Indirect On values, as a result of CollFinder queries. For a query C to CollFinder, where the
size of this circuit is bounded by q(n), let (w,w′) be the output pair of CollFinder on this query.
We follow the computation of Cf,O,Eval(w) and Cf,O,Eval(w′), and add to FO at most 2q(n)
values, which are either inputs to On gates, or Eval-queries, as above.

Note that f -gates do not add any elements to FO. Since A1 makes at most q(n)-oracle queries, the
size of FO is bounded by 2q(n)2, and therefore define at most 2q(n)2 different values of r. Since r∗

17



is chosen uniformly at random after FO is fully determined, we have that:

Pr
On,R

(b,r∗)←{0,1}n+1

[ InitHit ] ≤ Pr
r∗←{0,1}n

[ ∃C ∈ {0, 1}n, s.t. (C, r∗) ∈ FO ] ≤
∣∣FO∣∣
2n
≤ 2q(n)2 · 2−n .

We now proceed to the main claim of this section. We show that if there exists an adversary A
for which during the execution of ExpiOΓ,iO,A,C(n; b, r

∗) one of the events O-hit,CollFinder-hit or InitHit
occurs, then there exists an adversary B for which during the execution of ExpiOΓ,iO,B,C(n; b, r

∗) only
O-hit-occurs with roughly the same probability, while the other two event do not occur. Formally:

Claim 3.16. For every n ∈ N, for any q-query algorithm A = (A1,A2) where q(n) ≤ 2n/4, if:

Pr
On,R

(b,r∗)←{0,1}n+1

[ O-hitA ∨ CollFinder-hitA ∨ InitHitA ] ≥ 1

q(n)
(3.2)

in the execution of the experiment ExpiOΓ,iO,A,C(n; b, r
∗), then there exists Q(n)-query algorithm B =

(B1,B2) with Q(n) = 2q(n)2, such that in an execution of the experiment ExpiOΓ,iO,B,C(n; b, r
∗) the

following holds:

Pr
On,R

(b,r∗)←{0,1}n+1

[
O-hitB ∧ CollFinder-hitB ∧ InitHitB

]
≥ 1/q(n)5 .

Proof. Intuitively, we have already seen that InitHitA rarely occurs. We now show that if
CollFinder-hitA occurs with relatively high probability, then we can translate it into an O-hit. We
define the algorithm B as follows:

The algorithm B. We separate between the algorithm B1 and B2 (i.e., between steps 2 and 4 of
the experiment ExpiOΓ,iO,B,C(n; b, r

∗)). In particular, algorithm B1 is identical to A1 and acts exactly
the same. Formally, B1 on input 1n invokes A1 on the same input, delivers all its oracle queries to
Γ and outputs the pair of circuits (C0, C1) and the state state that A outputs.

The algorithm B2, upon receiving the challenge Ĉ, invokes A2 on (state, Ĉ) and delivers all of
A2 queries to Γ with the following exception: for each CollFinder-query C that A2 submits, B2 first
chooses a random z ∈ {0, 1}m and evaluates Cf,O,Eval(z). If some On gate during this evaluation has
output Ĉ and input (C0, r

∗) or (C1, r
∗), then B2 halts and in the former case (i.e., On(C0, r

∗) = Ĉ) it
outputs 0 whereas in the latter case it outputs 1. Otherwise, B2 submits C to CollFinder and delivers
the results (w,w′) back to A2. If B2 did not halt before the termination of A2’s computation, then
it outputs the output of A2 and halts.

Without loss of generality, we assume that the queries of A to the oracle CollFinder in Step 4 in
the experiment are distinct then those of Step 2. Otherwise, B stores the queries and responses for
CollFinder in Step 2, and in case of a repeating query, B can answer it immediately.

We remark that B makes at most the same amount of queries to CollFinder as A, and makes at
most 2q(n)2 queries to On: A may make at most q(n) direct queries to On, and each one of the q(n)
queries to CollFinder may lead to additional q(n) queries (as each circuit of size q(n) may contain
up to q(n) gates of type On). As a result, B is a Q-query algorithm, with Q(n) = 2q(n)2.

18



Note that:

Pr [ O-hitA ∨ CollFinder-hitA ∨ InitHitA ]

= Pr
[
O-hitA ∧ CollFinder-hitA ∧ InitHitA

]
+ Pr [ CollFinder-hitA ∨ InitHitA ]

= Pr
[
O-hitA ∧ CollFinder-hitA ∧ InitHitA

]
+ Pr

[
CollFinder-hitA ∧ InitHitA

]
+ Pr [ InitHitA]

where the probabilities are taken over On,R, (b, r∗) ← {0, 1}n+1, and that the same holds for B in
the experiment ExpiOΓ,iO,B,C(n; b, r

∗)(n). Recall that q(n) ≤ 2n/4, and from Claim 3.15 we have that:

Pr
On,R

(b,r∗)←{0,1}n+1

[ InitHitA ] ≤ 2q(n)2 · 2−n ≤ 2 · 2−n/2 ≤ 1

2q(n)
.

Therefore, assuming that Eq. (3.2) occurs, we have:

Pr
[
O-hitA ∧ CollFinder-hitA ∧ InitHitA

]
+ Pr

[
CollFinder-hitA ∧ InitHitA

]
≥ 1

2q(n)

where the probability is taken over On,R and (b, r∗) ← {0, 1}n+1. It is easy to see that if A wins
in ExpiOΓ,iO,A,C(n; b, r

∗) without producing any CollFinder-hit, InitHit in its queries, then so does B.
Formally, if

Pr
On,R

(b,r∗)←{0,1}n+1

[
O-hitA ∧ CollFinder-hitA ∧ InitHit

]
≥ 1

4q(n)
,

then

Pr
On,R

(b,r∗)←{0,1}n+1

[
O-hitB ∧ CollFinder-hitB ∧ InitHit

]
≥ 1

4q(n)
≥ 1

q(n)5
,

and the claim follows. We therefore focus on the case where the above does not occur, and thus, we
assume:

Pr
On,R

(b,r∗)←{0,1}n+1

[
CollFinder-hitA ∧ InitHit

]
≥ 1

4q(n)
.

We will prove the following Lemma below:

Lemma 3.17. For every choice of f,O, for every r∗ ∈ {0, 1}n and b ∈ {0, 1} if

Pr
R

[
CollFinder-hitA ∧ InitHitA

]
≥ 1

8q(n)

in the experiment ExpiOΓ,iO,A,C(n; b, r
∗), then

Pr
R

[
O-hitB ∧ CollFinder-hitB ∧ InitHit

]
≥ 1

1024q(n)3
(3.3)

in the experiment ExpiOΓ,iO,B,C(n; b, r
∗)(n; b, r).

This lemma will be proven below, and it helps us to conclude the proof via a standard averaging
argument. Let

T =

{
(On, r

∗, b) | Pr
R

[ CollFinder-hitA ] ≥ 1

8q(n)

}
.

19



Then, PrOn,(b,r∗)←{0,1}n+1 [(On, b, r
∗) ∈ T ] ≥ 1/8q(n), and Lemma 3.17 implies that for every such

(On, b, r
∗) ∈ T we have that Eq. (3.3) follows. This implies that:

Pr
On,R

(b,r∗)←{0,1}n+1

[
O-hitB ∧ CollFinder-hitB ∧ InitHitB

]
≥ Pr

On,R
(b,r∗)←{0,1}n+1

[(On, b, r
∗) ∈ T ] · 1

1024q(n)3
≥ 1

8q(n)
· 1

1024 · q(n)3
≥ 1

q(n)5
.

This completes the proof of Claim 3.16.

Proof of Lemma 3.17. Fix f,O, r∗, b. The adversary B acts exactly as A up to the Step 4 of the
experiment. Thus, it outputs the same pair of circuits (C0, C1). Moreover, recall that A does not
make a query to CollFinder in Step 4 of ExpiOΓ,iO,A,C(n; b, r

∗) that it has already made before.

• We denote by D1, . . . , Dq the random variables corresponding to A2’s CollFinder-queries in
Step 4 of ExpiOΓ,iO,A,C(n; b, r

∗). In addition, we denote by (w1, w
′
1), . . . , (wq, w

′
q) the random

variables corresponding to the answers returned by CollFinder-oracle.

• Given a circuit Di and an input w, we say that w produces an (Di, r
∗)-hit if some On-gate in

the execution of Df,O,Evalf,O
i (w) has input (Cf

0 , r
∗) or (Cf

1 , r
∗).

• For every 1 ≤ i ≤ q let αi denote the probability that wi produces a (Di, r
∗)-hit. That is:

αi
def
= PrR [wi produces a (Di, r

∗)−hit]. Note that this is the same probability as w′i produces
a (Di, r

∗) hit, since the probability is taken over R and therefore each of wi, w
′
i is uniform.

• For every 1 ≤ i ≤ q, we denote by JUMPi the event that αi > 1/(32q2) and let JUMP =
∪qi=1JUMPi.

We have that:

Pr
R

[
CollFinder-hitA ∧ InitHitA

]
≥ Pr
R

[
CollFinder-hitA ∧ InitHitA | JUMP

]
· Pr [JUMP] (3.4)

We now prove lower bounds for these two terms. We start with bounding the probability that JUMP
occurs. First, if JUMP does not occur, then we claim that the αi’s are too small in order to produce
an r∗-hit with noticeable probability. That is:

Claim 3.18. PrR
[
CollFinder-hitA ∧ InitHit | JUMP

]
≤ 1/(16q).

Proof. Assuming that JUMP does not occur, that is αi ≤ 1/(32q2) for every 1 ≤ i ≤ q. It holds
that:

Pr
R

[
CollFinder-hitA ∧ InitHit | JUMP

]
≤

q∑
i=1

Pr
R

[wi or w
′
i produces a (Di, r

∗)-hit] ≤ 2 · q · 1

32q2
=

1

16q
.

Eq. (3.3) implies that in particular:

Pr
R

[
CollFinder-hitA ∧ InitHit

]
≥ 1

8q
.

20



In addition:

Pr
R

[
CollFinder-hitA ∧ InitHit

]
≤ Pr

R
[JUMP] + Pr

R

[
CollFinder-hitA ∧ InitHit | JUMP

]
≤ Pr

R
[ JUMP ] +

1

16q

Thus,

Pr
R

[JUMP] ≥ 1

8q
− 1

16q
=

1

16q
.

Note that both JUMPi and JUMP have the exact same probability in the two experiments
ExpiOΓ,iO,A,C(n; b, r

∗) and ExpiOΓ,iO,B,C(n; b, r
∗)(n; b, r).

We now consider the experiment ExpiOΓ,iO,B,C(n; b, r
∗)(n; b, r∗). Assume that the event JUMP

occurs, and denote by i∗ the minimal 1 ≤ i ≤ q for which JUMPi occurs. When A submits the
query Di∗ , then B has probability αi∗ to retrieve r∗ without submitting the query to CollFinder.
In addition, since i∗ is the minimal 1 ≤ i ≤ q for which JUMPi occurs, then with high probability
CollFinder’s answers to D1, . . . , Di∗−1 do not produce an hit. We consider the following events:

• None of the queries D1, . . . , Di∗−1 produces an r∗-hit. Since for every such Di the event JUMPi

does not occur, then, exactly as Claim 3.18, the probability of this event is at least 1−1/(16q).

• Given Di∗ , B samples a random z which produces a (Di∗ , r
∗)-hit (that is, O-hitB occurs). Since

JUMPi∗ occurs, the probability of this event is αi∗ .

Note that these two events are independent (since the permutations in R are chosen independently).
Putting these together, we obtain:

Pr
R

[
O-hitB ∧ CollFinder-hitB ∧ InitHitB | JUMP

]
≥

(
1− 1

16q

)
· 1

32q2
≥ 1

64q2

Therefore, we get that:

Pr
R

[
O-hitB ∧ CollFinder-hitB ∧ InitHitB

]
≥ Pr

R

[
O-hitB ∧ CollFinder-hitB ∧ InitHitB | JUMP

]
· Pr [ JUMP ] ≥ 1

64q2
· 1

16q
=

1

1024q3

3.4.3 From Hitting to Compressing

Let B be a Q-query algorithm for which in the experiment ExpiOΓ,iO,B,C(n; b, r
∗) it holds that

Pr
On,R

(b,r∗)←{0,1}n+1

[
O-hitB ∧ CollFinder-hitB ∧ InitHitB

]
≥ ϵ(n) .

We now show that the probability ϵ(n) is very small. In particular, we show that if the above occurs,
then On can be compressed. Fix R and b ∈ {0, 1}, and let O−n = {Om}m∈N,m ̸=n. We show that:

Claim 3.19. For any Q-query B = (B1,B2) with Q(n) ≤ 2n/7, for any f , R and O−n, the following
holds in the experiment ExpiOΓ,iO,B,C(n; b, r

∗):

Pr
On,r∗←{0,1}n

[
O-hitB ∧ CollFinder-hitB ∧ InitHitB

]
< 2−n/8 .

21



Proof. We first prove that for any f,R,O−n and for any algorithm B that makes at most Q(n)
queries to On and at most Q(n) queries to CollFinder of circuits up to size Q(n), if

Pr
r∗←{0,1}n

[
O-hitB ∧ CollFinder-hitB ∧ InitHitB

]
≥ ϵ ,

then, given f,O−n,R and B, the function On has succinct representation.

Succinct description of On. We show that On can be described using some partial truth table
Z, a set of pre-images X and set of images Y . We start by building the set Y .

Note that since InitHit does not occur, the first step in the experiment ExpiOΓ,iO,B,C(n; b, r
∗) is

independent of r∗. We now follow the computation of B1 in the experiment ExpiOΓ,iO,B,C(n; b, r
∗) and

store in Z all the inputs-outputs pairs of On that are necessary for Step 2 of the experiment. These
values include:

• All direct On-queries.

• For any Eval-query
(
C̃, x

)
with

∣∣C̃∣∣ = 2n, we add to Z the pair
(
O−1n

(
C̃
)
, C̃

)
.

• For any CollFinder-query C of size up to Q(n), let (w,w′) be the output of CollFinder. We
follow the computations of Cf,O,Eval(w) and Cf,O,Eval(w′) and add to Z at most 2Q(n) values,
which are the input-output pair of On gates in C, or Eval-queries that involve On values.

As in Claim 3.15, the number of the values that we store in Z at this point is at most 2Q(n)2.
Note that at the end of this stage, the circuits C0, C1 and the state state that the adversary B1
outputs in Step 2 of the experiment are fully-determined, given B1, f,R,O−n and Z.

At this point, according to the experiment ExpiOΓ,iO,B,C(n; b, r
∗), the randomness r∗ is chosen, B2

is given state and t = On(Cb; r
∗), and during the execution, O-hitB occurs but without producing

CollFinder-hitB and no InitHitB. In order to clear the notation, we consider the function On,Cb
(·) def

=
On(Cb, ·). We first add to the set Z all the input/ output pairs of all functions On \ On(Cb, ·).
Moreover, we change B2 such that it outputs the randomness r∗ once it produces such a O-hitB.
Then, we have that:

Pr
r∗←{0,1}n

[
BΓ2 (state,On(Cb, r

∗)) = r∗ ∧ CollFinder-hitB ∧ InitHitB
]
> ϵ .

where state and Cb are defined as above.
Denote by I ⊆ {0, 1}2n, the set of elements t ∈ {0, 1}2n on which B2 successfully inverts On(·) (in

fact, it inverts On,Cb
(·) def

= On(Cb; ·)) with no CollFinder-hitB and no InitHitB. We first remove from I
all elements that already in Z (the necessary elements for the evaluation of (state, C0, C1)← BΓ1 (1n)),
which are at most 2Q(n)2 elements. We claim that there exists a relatively large set Y ⊆ I, such
that the value of On,Cb

on the set Y is fully determined given B, I, Z, f,O \ On,Cb
and R.

We define the set Y via the following sequential process. Initially, Y is empty, and we remove the
lexicographically smallest element t from I and insert it into Y . Then, we follow the computation
of BΓ2 (state, t) and denote by Ft = {t1, . . . , tk} the set of images of On that are necessary for this
computation. These values includes:

1. At most Q(n) values which are direct On,Cb
queries of BΓ2 .

2. No value is added due to Eval-query. We show later how we can simulate this oracle.

3. At most 2 ·Q(n) ·Q(n) outputs as a result of CollFinder-gates. In particular, let (C1, . . . , Cq)
denote the queries to CollFinder, and let (w1, w

′
1), . . . , (wq, w

′
q) denote the corresponding an-

swers. We follow the computations of both Cf,O,Eval
i (wi) and Cf,O,Eval

i (w′i). Each is a circuit of

22



size Q(n), which may contain at most Q(n) gates of type On,Cb
(note that the circuits that are

sent to Eval cannot contain O-gates, but only f -gates). We add to Ft all the inputs-outputs
of On,Cb

-gates.

From the above, we conclude that |Ft| ≤ 3Q(n)2. We now remove from I the set Ft (which not all
of them are necessarily in the set I). We continue to the next iteration, until the set I is emptied.

On the size of Y . In each iteration one element is inserted to Y , and at most 3Q(n)2 elements
are removed from I. The set I initially contains at least ϵ · 2n − 2Q(n)2 ≥ ϵ · 2n − 3Q(n)2 elements,
then when the process is terminated we have that |Y | ≥ ϵ · 2n/3Q(n)2 − 1.

Reconstruction. We now show that On is completely determined given X,Y, Z,B, f,O \O−n and
R. In fact, we show that the entire truth table of On can be reconstructed. Since Z contains all
pairs of On \ On,Cb

, it is enough to show that the truth table of On,Cb
can be reconstructed.

We start by showing that the computation of (state, C0, C1) ← BΓ1 (1n) can be simulated, and
always outputs the same pair of circuits (C0, C1) and state. We show that all the oracle queries of
B1 can be answered. Specifically:

• The simulator is able to answer all oracle queries of type f , since f is fully-determined.

• Any direct query to O−n can be answered since O−n is fully-determined. Any direct query of
B1 to On can be answered since this computation is deterministic, and all the queries to On

are stored in Z.

• Any Eval query with
(
C̃, x

)
, with |C̃| ̸= 2n can be inverted since O−n is fixed. An Eval query

with
∣∣C̃∣∣ = 2n can be inverted since the pre-image is explicitly stored in Z.

• Any CollFinder query Ci, with |Ci| ≤ Q(n) can be answered. In particular, R is fully-
determined, and therefore (w,w′) can be reconstructed. Specifically, the simulator computes
π1
Ci
(0m) and receives w. Then, it enumerates over all t ∈ {0, 1}m in lexicographically increas-

ing order, and stops with the first w′ = π2
Ci
(t) for which Cf,O,Eval

i (w′) can be computed (i.e.,

all queries to On can be answered and appear in Z) and for which Cf,O,Eval
i (w) = Cf,O,Eval

i (w′).

At this point, B1 outputs the pair of circuits (C0, C1) and state. For the rest, we focus on the
computation of B2 on the input state and some t ∈ {0, 1}2n.

For each t ∈ Y , taken in lexicographical increasing order, we reconstruct r∗ = O−1n,Cb
(t), by following

the computation of BΓ
2 (state, t) and answering all its oracle queries. Specifically, since f is given and

fixed, all oracle queries to f can be answered. Answering oracle queries to O \ On,Cb
is also trivial,

since it is given. We will show below how to answer Eval-queries, On,Cb
-queries and CollFinder-queries

Answering Eval-queries. On each Eval query (C̃, x), we proceed as follow. If C̃ = t, then
return Cb(x) and continue with the computation. Otherwise, we look for some pair (C, r′) with
m = |C| = |r′| =

∣∣C̃∣∣/2 and C ̸= Cb, for which C̃ = Om(C, r′). If such a pair (C, r′) exists, we

return Cf (x). Otherwise, if no answer was given so far, then it must hold that C̃ = On(Cb, r
′) for

some randomness r′. Although we do not explicitly know r′, we can still return Cf
b (x).

Answering On,Cb-queries. We now show how to answer a query of On,Cb
(i.e., On query

with On(Cb, ·)). On input r′, if On,Cb
(r′) is known, i.e., it was either reconstructed earlier or is in Z,

then this value is determined and we can return it. Otherwise, if the value is not known, we claim
that it must be that On,Cb

(r′) = t and the simulator can return r′ and halt. This is because the
following cases covers all possibilities:

23



1. If r′ ̸∈ X, then we have the pair (r′,On,Cb
(r′)) in Z.

2. If r′ ∈ X and On,Cb
(r′) <lex t then the simulator already reconstructed image of r′ and we

can return it.

3. If r′ ∈ X and On,Cb
(r′) >lex t then this case is impossible. We have that both t ∈ Y and

On,Cb
(r′) ∈ Y , but t was inserted to Y before On,Cb

(r′) was inserted to Y . Therefore, On,Cb
(r′)

should have been removed from I, and in particular not inserted into Y .

4. If r′ ∈ X and On,Cb
(r′) = t.

Answering CollFinder-queries. We proceed to show how queries to CollFinder can be an-
swered. On input Cf,O,Eval

i , the simulator computes wi = π1
Ci
(0m) and evaluates Cf,O,Eval

i (wi). Note
that this computation may involve some additional On,Cb

-queries, which we claim that these can be
handled and discuss it below. It may also involve some f,O \On,Cb

and Eval queries, which can be
handled as above. Then, it enumerates over all t ∈ {0, 1}m in lexicographically increasing order, and

stops with the first w′i = π2
Ci
(t) for which Cf,O,Eval

i (w′i) can be computed (i.e., it is able to answer

all On,Cb
-queries as we discuss below) and that Cf,O,Eval

i (wi) = Cf,O,Eval
i (w′i). It then answers to B2

with the pair (wi, w
′
i).

We now show that the simulator can evaluate Cf,O,Eval
i (wi) and Cf,O,Eval

i (w′i), and answers all
On,Cb

-queries. Specifically, on a query r′ for On,Cb
, the simulator proceeds as follows:

1. If r′ ̸∈ X, then the value On,Cb
(r′) is given in Z, and the simulator can return it.

2. If r′ ∈ X and On,Cb
(r′) <lex t then the simulator has already reconstructed t and returns it.

3. If r′ ∈ X and On,Cb
(r′) >lex t then this case is impossible (as above).

4. If r′ ∈ X and On,Cb
(r′) = t, then this is impossible, as we condition on the event that

CollFinder-hit does not occur.

Concluding the proof. Note that our representation of On consist of the following parts: the set
of pre-images X, set of images Y and set of pairs Z. The set of pairs Z contains the pairs of all
the collection of functions On \ On,Cb

, in addition to all pairs of On,Cb
that are necessary for the

evaluation of BΓ1 (1n), in addition to some pairs that B2 also uses.
In order to describe the collection of functions On \On,Cb

, we first require to describe the images

of these functions, and pairing all sources and images. This costs log (22n − 2n)! + log
(

22n

22n−2n
)
bits.

Note that this already represents the image of On,Cb
as well.

In order to represent On,Cb
, we store the sets X,Y (where |X| = |Y |) and the partial truth-table

Z. This requires 2 log
(
2n

|X|
)
+ log(2n − |X|)! bits. Since there are 22n! permutations over {0, 1}2n,

the fraction of functions On,Cb
for which:

Pr
r∗←{0,1}n

[
BΓ2 (state,On,Cb

(r∗)) = r∗ ∧ CollFinder-hitB ∧ InitHitB
]
≥ ϵ ,

is at most:

(22n − 2n)! ·
(

22n

22n−2n
)
·
(
2n

|X|
)2 · (2n − |X|)!

22n!
=

(
2n

|X|
)2 · (2n − |X|)!

2n!
=

(
2n

|X|
)

|X|!
.

Using the inequalities a! ≥ (a/e)a and
(
2n

a

)
≤ (2ne/a)a, we get:(

2n

|X|
)

|X|!
≤

(
2n · e
|X|

)|X|
·
(

e

|X|

)|X|
=

(
2ne2

|X|2

)|X|
24



Taking ϵ = 2−n/7, and recall that Q(n) ≤ 2n/7, we get that:

|X| ≥ ϵ · 2n

3(Q(n))2
− 1 ≥ 2n

8 · 23n/7
= 24n/7−3 ,

and thus for sufficiently large n’s the above is upper bound by:(
2ne2

|X|2

)|X|
≤

(
64 · 2n · e2

28n/7

)|X|
≤

(
64 · e2

2n/7

)|X|
≤ 2−|X| ≤ 2−2

4n/7+3 .

Therefore, we conclude that for any algorithm B that makes at most Q(n) = 2n/7 queries to On,Cb

and Q(n) queries to CollFinder, and its Q(n)-oracle queries to CollFinder are bounded to circuits of
size Q(n), it holds that:

Pr
On,r∗←{0,1}n

[
O-hitB ∧ CollFinder-hitB ∧ InitHitB

]
< 2−n/7 + 2−2

−4n/7+3 ≤ 2−n/8 .

3.5 f is a One-Way Permutation Relative to Γ

In this section we prove that the function f is one-way permutation relative to the oracle Γ. We
prove the following theorem:

Theorem 3.20. For every q-query algorithm A with q(n) = 2n/50, it holds that:

Pr
Γ,y←{0,1}n

[
AΓ(y) = f−1(y)

]
≤ 2−n/50 .

We will prove that the theorem holds even for any fixing of the oracles O = {On}n∈N and
f−n = {fm}m∈N,m̸=n. That is, we will show that for every O, f−n, and for every algorithm A as
above:

Pr
fn,R,y←{0,1}n

[
AΓ(y) = f−1n (y)

]
≤ 2−n/50 .

In the following we do not bound the number of queries the algorithms may make to the O-oracle;
recall that a (q,∞, q, q)-query algorithm is an algorithm that may make at most q queries to f,Eval
and CollFinder, but unbounded number of queries to the oracle O.

Consider an algorithm A that is given a random input y ∈ {0, 1}n and has oracle access to
Γ = (f,O,Eval,CollFinder). We distinguish between two cases: one in whichA “obtains information”
on f−1n (y) via one of its CollFinder queries, and the other in which none of A’s queries provide
“sufficient information” to obtain f−1(y). We explicitly define what events may provide information
to A in some of the CollFinder-queries. We define:

Definition 3.21. A CollFinder-query Cf,O,Eval produces a y-hit if CollFinder outputs (w,w′) such
that at least one of the following holds:

1. Some fn-gate in the computation of C(w) or C(w′) has output y.

2. Some Eval-gate in the computation of C(w) or C(w′) has input (D̂, a) for which the following
holds:

(a) Let (D, r) be the pair such that |r| = |D| = m and Om(D, r) = D̂.

(b) Some fn-gate in the computation of Df (a) has output y.

25



We denote by CollHity the event in which one of the CollFinder-queries made by A in the computation
of AΓ(y) produces a y-hit.

The proof proceeds in two modular parts. In the first part of the proof, we show that the case
CollHity occurs can be reduced to the case where the event CollHity does not occur. In particular,
we show that if A succeeds in inverting y with some probability ϵ(n), then there exists a machine
M that succeeds in inverting y almost as well as A (and with comparable number of oracle-queries),
but without producing any hits. Formally, in Section 3.5.1 we prove the following Claim:

Claim 3.22. For every q-query algorithm A, if:

Pr
fn,R,y←{0,1}n

[
AΓ(y) = f−1n (y)

]
≥ 1/q(n)

for infinitely many n’s, then there exists a (3q3,∞, q, q)-query algorithm M , for which it holds that:

Pr
fn,R,y←{0,1}n

[
MΓ(y) ∈ f−1n (y) ∧ CollHity

]
≥ 1/q(n)5

for infinitely many n’s.

In the second part of the proof, we consider the case that the event CollHity does not occur,
and prove that if A manages to invert fn on a relatively large set of images, then fn has a short
representation given A. This enable us to prove the following claim, which is proved in Section 3.5.2:

Claim 3.23. For every (Q,∞, Q,Q)-query algorithm AΓ with Q(n) ≤ 2n/9, it holds that:

Pr
fn,R,y←{0,1}n

[
AΓ(y) ∈ f−1n (y) ∧ CollHity

]
≤ 2−n/10 .

Giving these two claim, we prove Theorem 3.20.

Proof of Theorem 3.20. Assume towards contradiction that there exists a q-query algorithm A
with q(n) = 2n/50, and that:

Pr
Γ,y←{0,1}n

[
AΓ(y) = f−1n (y)

]
> 2−n/50

for infinitely many values of n. By Claim 3.22, this implies that there exists a (3q3,∞, q, q)-query
algorithm M , where 3q(n)3 = 3 · 23n/50 ≤ 2n/9, such that:

Pr
Γ,y←{0,1}n

[
MΓ(y) = f−1n (y) ∧ CollHity

]
>

(
2−n/50

)5
= 2−n/10 ,

for infinitely many n’s – which is a contradiction to Claim 3.23.

3.5.1 Avoiding Hits

We prove the following claim:

Claim 3.24. For every q-query algorithm A, if:

Pr
fn,R,y←{0,1}n

[
AΓ(y) = f−1n (y)

]
≥ 1/q(n)

for infinitely many n’s, then there exists a (3q3,∞, q, q)-query algorithm M , for which it holds that:

Pr
fn,R,y←{0,1}n

[
MΓ(y) ∈ f−1n (y) ∧ CollHity

]
≥ 1/q(n)5 .

26



Proof. We start with a description of the algorithm M . The algorithm M follows the computation
of A with the following exception: whenever A makes a CollFinder-query with some circuit Ci (which

may cause a y-hit), A first tries to make this hit by itself by evaluating Cf
i (z) for some random

z, and without submitting the query to CollFinder. Only if y-hit does not occur while evaluating
Cf
i (z), it passes the query to CollFinder. The analysis shows that if some query Ci produces a y-hit

in the execution of A with some noticeable probability, then also the evaluation of Cf
i (z) on some

random z in the execution of M , and therefore M may avoid the event CollHity.

The algorithm M . On input y ∈ {0, 1}n the algorithm MΓ invokes A on y. With each oracle
query to f,Eval or O, the algorithm M just delivers the queries to Γ and returns the responses. On
a query C of size at most q(n) to the oracle CollFinder, M proceeds as follows:

1. M first chooses a random value z ∈ {0, 1}m and locally evaluates Cf,O,Eval(z). Recall that
Cf,O,Eval may contain f ,O and Eval-gates. While evaluating an f gate, M queries its f -oracle
and learns the output of that f -gate. If this output is y, it halts and returns the input to
that gate. While evaluating an Eval-gate, on input (D̂, x) for which |D̂| = 2m, M looks for a
pair (D, r) with |D| = |r| = m and evaluates the circuit Df (x). If some fn-gate during the
computation of Df (x) contains output y, then M halts and outputs the input for that gate.

2. If M has not yet halted, then it submits C to its CollFinder-oracle and delivers the result
(w,w′) back to A.

Finally, if M did not halt before the termination of A’s computation, then it outputs A’s output
and halts.

It is easy to see that M does not make any additional CollFinder-queries other than those made
by A. Moreover, M may perform at most q(n) queries to f as a direct queries of A to f , and at most
q(n)3 queries to f as queries of A to CollFinder (specifically, each CollFinder-query may involve q(n)
gates of type Eval, where each such a gate may cause to q(n) evaluations of f) . Overall, it makes
no more than 3q(n)3 queries to fn. Since M inverts the oracle O in order to be able to evaluate the
Eval-gates by itself, it may make unbounded number of queries to O.

Note that if A inverts y without producing any CollHity in its queries, then so does M . Formally,
if

Pr
fn,R,y←{0,1}n

[
A(y) = f−1n (y) ∧ CollHity

]
≥ 1

2q(n)
,

then

Pr
fn,R,y←{0,1}n

[
M(y) ∈ f−1n (y) ∧ CollHity

]
≥ 1

2q(n)
≥ 1

q(n)5

and the claim follows. We therefore focus on the case where the above does not occur, and thus, we
assume:

Pr
fn,R,y←{0,1}n

[
A(y) = f−1n (y) ∧ CollHity

]
≥ 1

2q(n)
.

We will prove the following Lemma below:

Lemma 3.25. For every choice of f,O and for every y ∈ {0, 1}n, if

Pr
R

[
AΓ(y) = f−1n (y) ∧ CollHity

]
≥ 1

8q(n)
(3.5)

then

Pr
R

[
MΓ(y) = f−1n (y) ∧ CollHity

]
≥ 1

1024q(n)3
(3.6)

27



This Lemma will be proven below, and it helps us to conclude the proof via a standard averaging
argument. Let

T =

{
(y, f) | Pr

R

[
AΓ(y) = f−1n (y) ∧ CollHity

]
≥ 1

8q(n)

}
.

Then, Pry,fn [(y, fn) ∈ T ] ≥ 1/8q(n), and Lemma 3.25 implies that for every such (y, fn) ∈ T we
have that Eq. (3.6) follows. This implies that:

Pr
fn,R,y←{0,1}n

[
MΓ(y) = f−1n (y) ∧ CollHity

]
≥ Pr

fn,y
[(fn, y) ∈ T ] · Pr

R

[
MΓ(y) ∈ f−1n (y) ∧ CollHity

]
≥ 1

8q(n)
· 1

1024q(n)3
≥ 1

q(n)5
.

Proof of Lemma 3.25. The proof shows that if CollHity occurs, then from the fact that CollFinder,
on a query C first evaluates Cf,O,Eval(w) on some random w ∈ {0, 1}m, and that M first evaluates
Cf,O,Eval(z) for some random z ∈ {0, 1}m, then there is a good possibility that M will find y-hit as
well. Fix y, f,O.

• We denote by C1, . . . , Cq the random variables corresponding to A’s CollFinder-queries. In ad-
dition, we denote by (w1, w

′
1), . . . , (wq, w

′
q) the random variables corresponding to the answers

returned by CollFinder-oracle.

• Given a circuit Cf,O,Eval and an input w, we say that w produces a (C, x)-hit if some fn-gate
has input x. Note that such a fn-gate may be an explicit gate in C, or may be an implicit
gate in some circuit D as part of an Eval-gate.

• For every 1 ≤ i ≤ q let αi denote the probability that wi produces a (Ci, x)-hit. That is:

αi
def
= PrR [wi produces a (Ci, x)−hit]. Note that this is the same probability as w′i produces

a (Ci, x) hit, since each of wi and w′i is uniformly distributed.

• For every 1 ≤ i ≤ q, we denote by JUMPi the event that αi > 1/(32q2) and let JUMP =
∪qi=1JUMPi.

We have that:

Pr
R

[
MΓ(y) ∈ f−1n (y) ∧ CollHity

]
≥ Pr
R

[JUMP] · Pr
R

[
MΓ(y) = f−1n (y) ∧ CollHity | JUMP

]
· (3.7)

We now prove lower bounds for these two terms. We start with bounding the probability that JUMP
occurs. First, if JUMP does not occur, then we claim that the αi’s are too small in order to produce
a y-hit with noticeable probability. That is:

Claim 3.26. PrR
[
CollHity | JUMP

]
≤ 1/(16q).

Proof. Assuming that JUMP does not occur, that is αi ≤ 1/(32q2) for every 1 ≤ i ≤ q, it holds
that:

Pr
R

[
CollHity | JUMP

]
≤

q∑
i=1

Pr
R

[wi or w
′
i produce a (Ci, x)-hit] ≤ 2 · q · 1

32q2
=

1

16q
.

28



Eq. (3.5) implies that in particular:

Pr
R

[CollHity] ≥
1

8q

In addition:

Pr
R

[CollHity] ≤ Pr
R

[JUMP] + Pr
R

[
CollHity | JUMP

]
≤ Pr
R

[JUMP] +
1

16q

Thus,

Pr
R

[JUMP] ≥ 1

8q
− 1

16q
=

1

16q
.

Assume now that the event JUMP occurs, and denote by i∗ the minimal 1 ≤ i ≤ q for which JUMPi

occurs. When A submits the query Ci∗ , then M has probability αi∗ to retrieve x without submitting
the query to CollFinder. In addition, since i∗ is the minimal 1 ≤ i ≤ q for which JUMPi occurs, then
with high probability CollFinder’s answers to C1, . . . , Ci∗−1 do not produce an hit. We consider the
following events:

• None of the queries C1, . . . , Ci∗−1 produces a y-hit. Since for every such Ci the event JUMPi

does not occur, then, the probability of this event is at least 1 − 1/(16q), exactly as in the
proof of Claim 3.26.

• Given Ci∗ , M samples a random z which produces a (Ci∗ , x)-hit. Since JUMPi∗ occurs, the
probability of this event is αi∗ > 1/(32q2).

Note that these two events are independent (since the permutations in R are chosen independently).
Putting these together, we obtain:

Pr
R

[
MΓ(y) = f−1n (y) ∧ CollHity | JUMP

]
≥

(
1− 1

16q

)
· 1

32q2
≥ 1

64q2

Plugging into Eq. (3.7), we get:

Pr
R

[
MΓ(y) ∈ f−1n (y) ∧ CollHity

]
≥ 1

64q2
· 1

16q
=

1

1024q3

3.5.2 From Inverting to Compressing

In this section we show that if A succeeds to invert fn with high probably (that is, it succeeds to
invert many y’s) then the function fn has a short representation given A. In general a random
permutation fn can be represented using log(2n!) bits. The proof shows a different representation
of fn which consists of three parts: some partial truth table, a set of pre-images X and a the
corresponding set of images Y . Note that we do not store what pre-image maps to what image, and
this is the core of the saving in this representation. The mapping between these two sets can be
reconstructed by following the computation of A. We show that:

Claim 3.27. For every algorithm (q,∞, q, q)-query algorithm A with q(n) = 2n/9, it holds that:

Pr
fn,R,y←{0,1}n

[
AΓ(y) ∈ f−1n (y) ∧ CollHity

]
≤ 2−n/10 .

29



Proof. Fix R and recall that we already fixed O, f−n (that is, all the oracles are fixed except for
fn). We show that for every fn and A as above, if

Pr
y←{0,1}n

[
AΓ(y) = f−1n (y) ∧ CollHity

]
≥ ϵ

then there is a succinct description of the function fn.

Succinct description of fn. We show that fn can be represented using some small partial truth
table Z, some set of pre-images X and some set of images Y . We start by building the set Y .

Denote by I ⊆ {0, 1}n the set of points y ∈ {0, 1}n for which A successfully inverts fn with no
CollFinder-hits. We claim that there exists a relatively large set Y ⊆ I, such that the value of f−1n

on the set Y is determined by A,O,R, f−n and the partial truth table Z (i.e., the value of fn on
{0, 1}n \X).

We define the set Y via the following sequential process. Initially, Y is empty and we remove the
lexicographically smallest element y from I and insert it into Y . Then, we follow the computation
of AΓ(y) and construct a set Fy = {y1, . . . , yk} of all images that are necessary for this computation
(i.e., all the outputs of all fn-gates during this computation). These values are defined as follows:

• At most q(n) outputs which are direct fn-gates in A. That is, for each direct fn-gate in A,
we add the output the gate to the set of images Fy.

• At most q(n)·q(n) outputs which are results of Eval-gates. In particular, on a query (D̂, x) with
|D̂| = 2m, the Eval-oracle looks for a pair (D, r) with |D| = |r| = m for which Om(D, r) = D̂.
Since |D| = m ≤ q(n), the circuit D contains at most q(n) gates of type fn. We follow the
computation of Df (x), and add all the outputs of these fn gates to Fy.

• At most 2 ·(q(n))3 outputs as a result of CollFinder-gates. In particular, let (C1, . . . , Cq) denote
the queries made by A to CollFinder-oracle, and let (w1, w

′
1), . . . , (wq, w

′
q) the corresponding

answers. We follow the computations of both Cf,O,Eval
i (wi) and Cf,O,Eval

i (w′i). Each one of
them is a circuit of size q(n) and may contain some direct fn gates, and at most q(n) gates of
type Eval, where each may consist of at most q(n) additional fn-gates, exactly as above. We
add all the outpost of all fn-gates that are involved in this computation to the set Fy.

From the above, |Fy| ≤ 4(q(n))3. We then remove from I the set Fy (note that these values
are not necessarily in the set I). We now continue to the next iteration, where we remove the
lexicographically smallest element y′ for the remaining elements of I, insert it into Y , follow the
computation of AΓ(y′), define Fy′ and continue in the same manner until the set I is emptied.

On the size of the set Y . In each iteration one element is inserted into Y , and at most 4(q(n))3

elements are removed from the set I. Since the set I initially contains at least ϵ · 2n elements, then
when the process terminates we have that |Y | ≥ ϵ · 2n/4(q(n))3.

Now, let X = f−1n (Y ) = {x ∈ {0, 1}n | fn(x) ∈ Y }. We now represent the function fn using the
sets X, Y , and the partial truth table of f−1n on the set Y = {0, 1}n \ Y , which we denote by Z.
This description of fn requires at most 2 log

(
2n

|Y |
)
+ log((2n − |Y |)!) bits.

Reconstruction. We now claim that fn can be completely reconstructed given X,Y, Z, A, f−n,
O and R. We present a simulator that reconstructs the entire truth table of f−1n . For each y ∈ Y ,
taken in lexicographical increasing order, the simulator reconstructs x = f−1n (y). These, together
with the partial truth table Z, determine the entire truth table of f−1n . For each y ∈ Y , in order
to reconstruct f−1n (y), the simulator follows the computation of AΓ(y), answers all the necessary
fn-gates of A and learn f−1n (y).

30



We now show how the simulator can answer all the necessary queries in the computation of
AΓ(y). Answering all queries of f−n and O is easy, since these oracles are explicitly given. We show
how it can answer all fn-queries, Eval and CollFinder-queries.

Answering fn-query. We start by showing how it can answer any direct fn query of A.
Whenever A asks for value fn(x) for some x, the simulator acts as follows: if this value is already
known (was either reconstructed earlier or is in Z), then the simulator can return it. Otherwise, if the
value is not known, we claim that it must be that fn(x) = y and in this case the simulator outputs
y and continues to the next iteration. This is because the following cases covers all possibilities:

1. If x ̸∈ X, then fn(x) is explicitly known (using Z).

2. If x ∈ X and fn(x) <lex y then the simulator has already reconstructed fn(x).

3. If x ∈ X and fn(x) >lex y then this case is impossible. We have that both y ∈ Y and
fn(x) ∈ Y , but y was inserted to Y before fn(x) was inserted to Y . Therefore, fn(x) should
have been removed from I, and in particular not inserted into Y .

4. If x ∈ X and fn(x) = y.

Answering Eval-queries. Similarly to the above, the simulator can answer any Eval query
made by A. In particular, given an input

(
D̂, x

)
, with

∣∣D̂∣∣ = 2m, the simulator looks for a pair

(D, r) for which Om(D, r) = D̂. Then, it follows the computation of Df (x), and answers each
fn-query during this computation exactly as above.

Answering CollFinder-queries. We now consider the case where A makes CollFinder-query.
On input oracle-aided circuit Ci, the simulator computes wi = πC

1 (0) and begins with evaluating

Cf,O,Eval
i (wi). Note that this computation may involve some additional fn and Eval gates, which we

claim that these can be handled and discuss it below. Then, it enumerates over all t ∈ {0, 1}m in

lexicographically increasing order, and stops with the first w′i = πC
2 (t) for which Cf,O,Eval

i (w′i) can

be computed (i.e., it is able to answer all fn-queries as discussed below) and that Cf,O,Eval
i (wi) =

Cf,O,Eval
i (w′i). It then answers to A with the pair (wi, w

′
i).

We now show that the simulator can evaluate Cf,O,Eval
i (wi), C

f,O,Eval
i (w′i) and answers the queries

to fn. Note that queries to fn may be as a direct gates in Cf,O,Eval
i or be some gates in circuits that

are evaluated as byproduct of some Eval-gate. On a query x to fn-gate, we have:

1. If x ̸∈ X, then the value fn(x) is given by Z.

2. If x ∈ X and fn(x) <lex y then the simulator already reconstructed fn(x).

3. If x ∈ X and fn(x) >lex y then this case is impossible (as above).

4. If x ∈ X and fn(x) = y, then this is impossible, as we condition on the event that CollHity
does not occur.

We remark that when the simulator evaluates Cf,O,Eval
i (wi) and Cf,O,Eval

i (w′i), all the fn-gates that
may appear in this computation are of case 1 and 2 only. In contrast, when it enumerates over all
t ∈ {0, 1}m and compute Ci(π

C
2 (t)), it may reach fn-gates for which cases 3 or 4 occur. In such a

case, whenever it is unable to reply to an fn-gate, it proceeds to the next value t.

Concluding the proof. As discussed above |Y | ≥ ϵ · 2n/4(q(n))3, and our representation of fn re-

quires 2 log
(
2n

|Y |
)
+log((2n−|Y |)!) = log

((
2n

|Y |
)2 · (2n − |Y |)!) bits. Since there are (2n)! permutations

over {0, 1}n, the fraction of permutations fn over {0, 1}n for which:

Pr
y←{0,1}n

[
AΓ(y) = f−1n (y) ∧ CollHity

]
≥ ϵ ,

31



is at most: (
2n

|Y |
)2 · (2n − |Y |)!

(2n)!
=

(
2n

|Y |
)

|Y |!
≤

(
2n · e
|Y |

)|Y |
·
(

e

|Y |

)|Y |
=

(
2ne2

|Y |2

)|Y |
.

where the inequality uses the inequalities a! ≥ (a/e)a and
(
2n

a

)
≤ (2ne/a)a. Taking ϵ = 2−n/9,

q(n) ≤ 2n/9, and recall that |Y | ≥ ϵ · 2n/4(q(n))3, we get:

|Y | ≥ ϵ · 2n

4(q(n))3
≥ 2n

4 · 24n/9
= 25n/9−2 ,

thus, for sufficiently large n’s the above is upper bound by:(
2ne2

|Y |2

)|Y |
≤

(
16 · 2n · e2

210n/9

)|Y |
≤

(
16 · e2

2n/9

)|Y |
≤ 2−|Y | ≤ 2−2

5n/9−2 .

We conclude that for any algorithm A that makes at most q(n) = 2n/9 queries to (f,O,Eval,
CollFinder), and its oracle queries to CollFinder are bounded to circuits of size q(n), it holds that:

Pr
fn,y←{0,1}n

[
AΓ(y) = f−1n (y) ∧ CollHity

]
≤ 2−n/9 + 2−2

5n/9−2 ≤ 2−n/10 .

3.5.3 Extension to Trapdoor Permutations

Our negative result on the power of indistinguishability obfuscation holds even when replacing the
permutation f with a trapdoor permutation family τ . Our proofs in Sections 3.3 and 3.4 are not
affected by this generalization10, and here we provide the main ideas for showing that τ is one way
relative to Γ. This generalization is a natural generalization to that of Haitner et al. [HHR+15].

We generalize our result by considering the oracle Γ′ =
(
τ,O,Evalτ,O,CollFinderτ,O,Eval,R

)
, where

O, Eval and CollFinder are as defined in Section 3.2, and τ = {τn}n∈N is defined as follows. For every
n ∈ N, the function family τn is a triplet (Gn, Fn, F

−1
n ), where:

• The function Gn is a uniformly chosen permutation over {0, 1}n.
• For every pk ∈ {0, 1}n, the function Fn(pk, ·) is a uniformly chosen permutation over {0, 1}n.
• For every td ∈ {0, 1}n and y ∈ {0, 1}n we define F−1n (td, y) = x for the unique x ∈ {0, 1}n that

satisfies Fn(pk, x) = y where pk = Gn(td).

By relying on our proof showing that a random permutation f is one way relative to Γ, we obtain
the following theorem:

Theorem 3.28 (Simplified variant). For any probabilistic oracle-aided algorithm A that runs in
time 2O(n) and for any function O, it holds that

Pr
τ,R

pk,x←{0,1}n

[
AΓ′(pk, F (pk, x)) = x

]
≤ 2−Ω(n).

Proof (sketch). Given A and pk we let td = G−1(pk) and denote by tdHit the event in which at
least one of the following occur:

10These proofs hold for any fixing of f , and similarly for any fixing of τ without making any non-trivial adjustments.

32



1. A queries G with td.

2. A queries Eval with some (D̂, a) for which the following hold:

(a) Let (D, r) be the pair such that |r| = |D| = m and Om(D, r) = D̂.

(b) Some G-gate in the computation of Dτ (a) has input td.

3. A queries CollFinder with a circuit C and obtains a pair (w,w′) such that at least one of the
following occur:

(a) Some G-gate in the computation of Cτ (w) or Cτ (w′) has input td.

(b) Some Eval-gate in the computation of Cτ (w) or Cτ (w′) has input (D̂, a) for which the
following holds:
i. Let (D, r) be the pair such that |r| = |D| = m and Om(D, r) = D̂.

ii. Some G-gate in the computation of Dτ (a) has input td.

We now consider two cases, depending on whether or not the event tdHit occurs. If A is successful
in outputting x and the event tdHit occurs, then we can use A to invert the uniformly sampled
trapdoor permutation Gn on pk. If A is successful in outputting x and the event tdHit does not
occur, then the function F−1(td, ·) is essentially useless for A, which is able to invert a uniformly
sampled trapdoor permutation F (pk, ·). In both cases, we can apply our result stating that a
uniformly sampled permutation is one way relative to Γ, and the theorem follows. We refer the
reader to [HHR+15] for more details.

4 Limits on the Power of Private-Key Functional Encryption

In this section we present our negative result for constructing a perfectly-complete key-agreement
protocol from a general-purpose private-key functional encryption scheme and a one-way permu-
tation. First, in Section 4.1 we formally define the class of constructions to which our negative
result applies. Then, in Section 4.2 we present the structure of our proof, which is then provided
in Sections 4.3–4.5. Finally, in Section 4.6 we show that our result can be extended for separating
indistinguishability obfuscation for oracle-aided circuits from private-key functional encryption for
oracle-aided circuits.

4.1 The Class of Reductions

We consider fully black-box constructions of a perfectly-complete bit-agreement protocol from a
general-purpose private-key functional encryption scheme and a one-way permutation. Similarly to
our approach from Section 3, we model these primitives as two independent building blocks due
to the following two reasons. First, although any private-key functional encryption scheme clearly
implies the existence of a one-way function, it is not known whether any such scheme implies the
existence of a one-way permutation. Second, this enables us to capture constructions that may use
the underlying functional encryption scheme for generating functional keys to any circuit that can
be constructed in a fully black-box manner from a one-way permutation. For example, as in Section
3, this enables us to capture constructions that may generate functional keys to any circuit that
uses a puncturable pseudorandom function or a pseudorandom generator as a sub-routine.

We now formally define the class of constructions considered in this section, tailoring our defini-
tions to the specific primitives under consideration. We consider key-agreement protocols in which
the parties agree on a single bit, and we refer to such protocols as bit-agreement protocols. We
consider any implementation of a one-way permutation f and a private-key functional encryption
scheme Π for the class of all polynomial-size oracle-aided circuits Cf . As with Definition 3.1, the
following definitions are directly inspired by those of Wee [Wee07] and Haitner et al. [HHR+15].

33



Definition 4.1. A fully black-box construction of a perfectly-correct bit-agreement protocol from a
one-way permutation and a private-key functional encryption scheme for the class C = {Cn}n∈N of
all polynomial-size oracle-aided circuits consists of a pair of probabilistic polynomial-time oracle-
aided algorithms (A,B), an algorithm M , and functions TM (·) and ϵM (·) such that the following
two conditions hold:

• Correctness: For any n ∈ N, for any permutation f and for any correct private-key functional
encryption scheme Π, it holds that

Pr
[
kA = kB

∣∣∣(kA, kB, T )← ⟨
Af,Π (1n) ,Bf,Π (1n)

⟩]
= 1,

where the probability is taken over the internal randomness of A and B.

• Black-box proof of security: For any permutation f , for any correct private-key functional
encryption scheme Π, for any probabilistic oracle-aided algorithm E that runs in time TE =
TE(n), and for any function ϵE = ϵE(n), if∣∣∣∣Pr [ExpKA(f,Π),(A,B),E(n) = 1

]
− 1

2

∣∣∣∣ ≥ ϵE(n)

for infinitely many values of n (see Definition 2.6 for the description of the experiment
ExpKA(f,Π),(A,B),E), then either

Pr
x←{0,1}n

[
Mf,Π,E(f(x)) = x

]
≥ ϵM

(
TE(n) · ϵ−1E (n)

)
or ∣∣∣∣Pr [ExpFE(f,Π),Π,ME ,C(n) = 1

]
− 1

2

∣∣∣∣ ≥ ϵM
(
TE(n) · ϵ−1E (n)

)
for infinitely many values of n (see Definition 2.4 for the description of the experiment
ExpFE(f,Π),Π,ME ,C), where M runs in time TM (n).

Similarly to the discussion in Section 3.1, we emphasize the fact that our definition captures an
underlying functional encryption scheme Π for the class of all polynomial-size oracle-aided circuits
Cf , and thus black-box access in our setting is only required with respect to the functional encryption
scheme Π and the one-way permutation f themselves. We refer the reader to Section 3.1 for a more
elaborated discussion of this issue, as well as a discussion on the roles of the “security loss” functions
TM and ϵM .

4.2 Proof Overview and the Oracle Ψ

Our result is obtained by presenting an oracle Ψ relative to which there exist a one-way permutation
f and a private-key functional encryption scheme Π for the class of all polynomial-size oracle-aided
circuits Cf , but any bit-agreement protocol with perfect completeness can be broken. We then show
that the only way of resolving this conflict (using a fully black-box reduction) is by using a reduction
that suffers from a sub-exponential security loss. We prove the following theorem:

Theorem 4.2. Let (A,B,M, TM , ϵM ) be a fully black-box construction of a perfectly-correct bit-
agreement protocol from a one-way permutation f and a private-key functional encryption scheme
Π for the class of all polynomial-size oracle-aided circuits Cf (see Definition 4.1). Then, its security

loss functions TM and ϵM must satisfy TM (n) ≥ 2ζn or ϵM (n) ≤ 2−n
ζ
for some constant ζ > 0.

34



In what follows we describe the oracle Ψ and then explain the structure of our proof.

The oracle Ψ. The oracle Ψ is a quadruple
(
f,K, E ,Df,K,E) that is defined as follows:

• The function f = {fn}n∈N. For every n ∈ N the function fn is a uniformly chosen permu-
tation over {0, 1}n. Looking ahead, we will prove that f is one way relative to Ψ.

• The functions K = {Kn}n∈N and E = {En}n∈N. For every n ∈ N the functions Kn and
En are uniformly chosen functions Kn : {0, 1}2n → {0, 1}10n and En : {0, 1}3n → {0, 1}10n.
Looking ahead, we will use K and E for implementing the (deterministic) key-generation algo-
rithm and the (randomized) encryption algorithm, respectively, of the functional encryption
scheme Π.

• The function Df,K,E = {Dfn,Kn,En
n }n∈N. For every n ∈ N the function Df,K,E

n : {0, 1}20n →
{0, 1}n parses as input as pairs (sk, c) ∈ {0, 1}10n×{0, 1}10n and is defined as follows: If there
exist msk, C,m, r ∈ {0, 1}n such that sk = Kn(msk, C) and c = En(msk,m, r) then it outputs
Cf (m) for the lexicographically-first such quadruple, and otherwise it outputs ⊥. Looking
ahead, we will use D for implementing the decryption algorithm of the functional encryption
scheme Π.

Equipped with the oracle Ψ, our proof consists of the following two parts.

Part 1: The existence of a one-way permutation and a functional encryption scheme.
We first prove that f is one way relative to Ψ, and this is rather standard at least when observing
that each query to D requires only a bounded (and not too large) number of queries to f . Then, we
show that relative to Ψ there exists a functional encryption scheme Π that is naturally defined given
the way we set up Ψ (we refer the reader to Section 4.4 for the description of Π). Proving that Π
is secure is more tricky, since each query to D may require an exponential number of queries to K
and E . The following are simplified variants of the theorems that we prove in Sections 4.3 and 4.4:

Theorem 4.3 (Simplified variant). For any oracle-aided algorithm A that makes at most 2n/4 oracle
queries, and for any functions K and E, it holds that

Pr
f

x←{0,1}n

[
AΨ(f(x)) = x

]
≤ 2−n/4.

Theorem 4.4 (Simplified variant). For any oracle-aided valid adversary A that makes at most 2n/4

oracle queries, and for any permutation f , it holds that∣∣∣∣PrK,E [ExpFEΨ,Π,A,C(n) = 1
]
− 1

2

∣∣∣∣ ≤ 2−n/4.

Part 2: Breaking any perfectly-complete bit-agreement protocol. The most challenging
part in this section is in proving that any perfectly-complete bit-agreement protocol can be broken
using a polynomial number of oracle queries. Our proof is inspired by a combination of ideas
that were developed in the early work of Impagliazzo and Rudich [IR89] and its improvement
by Barak and Mahmoody-Ghidary [BM09]. Specifically, for the case of perfectly-complete bit-
agreement protocols, our proof generalizes the approach of Brakerski, Katz, Yerukhimovich and
Segev [BKS+11] to the setting of our oracle Ψ. The following is a simplified variant of the theorem
that we prove in Section 4.5:

Theorem 4.5 (Simplified variant). For any polynomial-time oracle-aided perfectly-complete bit-
agreement protocol (A,B), there exists an oracle-aided algorithm E making a polynomial number of
oracle queries such that ∣∣∣∣PrΨ [

ExpKAΨ,(A,B),E(n) = 1
]
− 1

2

∣∣∣∣ ≥ 1/4.

35



Finally, we now show that the above two parts imply Theorem 4.2 via a proof that is essentially
identical to that of Theorem 3.2.

Proof of Theorem 4.2. Let (A,B,M, TM , ϵM ) be a fully black-box construction of a perfectly-
complete bit-agreement protocol from a one-way permutation f and a private-key functional en-
cryption scheme Π for the class C of all polynomial-size oracle-aided circuits Cf (recall Definition
4.1). Note that in our setting, relative to the oracle Ψ, this means we allow the algorithms A and
B to access f , K, E and D (i.e., to access Ψ).

Theorem 4.5 guarantees the existence of an oracle-aided algorithm E that makes a polynomial
number TE(n) of queries to the oracle Ψ, such that∣∣∣∣PrΨ [

ExpKAΨ,(A,B),E(n) = 1
]
− 1

2

∣∣∣∣ ≥ ϵE(n), (4.1)

where ϵE(n) = 1/4 for all values of n ∈ N. Definition 4.1 then states that there are two possible
cases to consider: E can be used either for breaking the functional encryption scheme Π, or for
inverting the one-way permutation f .

In the first case, we obtain from Definition 4.1 that∣∣∣∣PrΨ [
ExpFEΨ,Π,ME ,C(n) = 1

]
− 1

2

∣∣∣∣ ≥ ϵM (TE(n) · 4) ,

where M runs in time TM (n). The algorithm M may invoke E on various security parameters
(i.e., in general M is not restricted to invoking E only on security parameter n), and we denote by
ℓ(n) the maximal security parameter on which M invokes E (when M itself is invoked on security
parameter n). Thus, viewing ME as a single algorithm, its number of queries TME (n) to the oracle Ψ
satisfies TME (n) ≤ TM (n) ·TE(ℓ(n)) (this follows since M runs in time TM (n) and in each step of its
execution it may query Ψ directly at most once or invoke E at most once where each such invocation
results in at most TE(ℓ(n)) queries to Ψ). Theorem 4.4 then implies that either 2n/4 ≤ TME (n) or
ϵM (TE(n) · 4) ≤ 2−n/4. In the first sub-case, noting that ℓ(n) ≤ TM (n), we obtain that

2n/4 ≤ TME (n) ≤ TM (n) · TE(ℓ(n)) ≤ TM (n) · TE(TM (n)).

The number of queries TE(n) made by the adversary E is some fixed polynomial in n, and therefore
TM (n) ≥ 2ζn for some constant ζ > 0. In the second sub-case, we have that ϵM (TE(n) · 4) ≤ 2−n/4,

and since TE(n) is some fixed polynomial in n we obtain that ϵM (n) ≤ 2−n
ζ
for some constant ζ > 0.

In the second case, we obtain from Definition 4.1 that

Pr
Ψ

x←{0,1}n

[(
ME

)Ψ
(f(x)) = x

]
≥ ϵM (TE(n) · 4) ,

where M runs in time TM (n). As in the first case, viewing ME as a single algorithm, its number of
queries TME (n) to the oracle Ψ satisfies TME (n) ≤ TM (n) ·TE(ℓ(n)). Theorem 4.3 then implies that
either 2n/4 ≤ TME (n) or ϵM (TE(n) · 4) ≤ 2−n/4. As in the first case, this implies that the security

loss functions TM and ϵM must satisfy TM (n) ≥ 2ζn or ϵM (n) ≤ 2−n
ζ
for some constant ζ > 0.

4.3 f is a One-Way Permutation Relative to Ψ

In this section we prove that f is one way relative to the oracle Ψ. This is a rather standard proof,
relying on the fact that each query to Dn requires at most n queries to fn. We prove the following
claim:

36



Claim 4.6. For any oracle-aided algorithm A making at most q(n) oracle queries it holds that:

Pr
Ψ,x←{0,1}n

[
AΨ(fn(x)) = x

]
≤ n · q(n)

2n − q(n)

Proof. We show that the claim in fact holds for any fixing of K, E , and f−n = {fm}m∈N,m̸=n, where
the probability is taken only over the choice of fn (and over the randomness of A). An execution of a
q-query adversary A can be simulated using an adversary B that makes at most n·q(n) oracle queries
to fn, an unlimited amount of queries to f−n, K and E , and no oracle queries to D. Specifically, B
follows the computation of AΨ(fn(x)), and responds to its oracle queries as follows:

• Whenever A queries f ,K or E , the algorithm B simply forwards the query and delivers back
the result.

• Whenever A queries D with some input (skC , c) ∈ {0, 1}10s × {0, 1}10s, for some s ∈ N, the
algorithm B can enumerate over all possible msk, C,m, r ∈ {0, 1}s (by lexicographic increasing
order) and check whether skC = Ks(msk, C) and c = Es(msk,m, r). If so, it evaluates the
circuit Cf (m), which may lead to additional s queries of f , and returns the result to A.
Otherwise, it returns ⊥ to A. Note that if s ̸= n, this does not require any queries to fn. In
addition, if s = n, this requires at most n queries to fn.

Since A makes at most q(n) queries to fn and to D, then B makes at most n · q(n) queries to
fn. Since fn is a random permutation, any such B can invert fn(x) with probability at most
n · q(n)/ (2n − q(n)).

4.4 Π is a Functional Encryption Scheme Relative to Ψ

In this section we show that relative to the oracle Ψ there exists a private-key function encryption
scheme Π for the class C of all polynomial-time oracle-aided circuits Cf . We first describe the scheme
and then prove its security.

Construction 4.7 (Private-key functional encryption.). The private-key functional encryption

scheme ΠΨ =
(
Setup,KGK,EncE ,DecD

f,K,E
)
is defined as follows:

• Setup. The setup algorithm Setup on input 1n samples and outputs msk← {0, 1}n.
• key generation. The key-generation algorithm KGK on input a master secret key msk ∈
{0, 1}n and description of an oracle-aided circuit C ∈ {0, 1}n outputs skC = Kn(msk, C).

• Encryption. The encryption algorithm EncE on input a master secret key msk ∈ {0, 1}n and
a message m ∈ {0, 1}n, samples r ← {0, 1}n, and outputs c = En(msk,m, r).

• Decryption. The decryption algorithm DecD
f,K,E

on input a functional key sk and a ciphertext
c outputs Df,K,E(sk, c) ∈ {0, 1}n ∪ {⊥}.

Correctness. Assume that the functions Kn and En are injective (this occurs with all but an
exponentially-small probability), for any oracle-aided function C ∈ Cn for any message m ∈ {0, 1}n,
the definition of the oracle D guarantees that

Dec(KG(msk, C),Enc(msk,m)) = D(Kn(msk, C), En(msk,m, r)) = Cf (m) .

The probability that a pair of elements x, y ∈ {0, 1}2n is mapped to the same value Kn(x)=Kn(y)
is 2−10n, and therefore the probability that Kn is not an injective function, is bounded by:

Pr
Kn

[Kn is not injective] ≤ Pr
Kn

[ ∃x ̸= y s.t. Kn(x)=Kn(y) ] ≤
(
22n

2

)
·
(

1

210n

)
≤ 24n

210n
≤ 2−6n .

37



Similarly, the probability that En : {0, 1}3n → {0, 1}10n is not injective is bounded by 2−10n+6n =
2−4n.

Security. We prove the following Theorem:

Theorem 4.8. For any oracle-aided valid adversary A that makes at most q(n) = 2n/4 oracle
queries, and for all n ∈ N, it holds that∣∣∣∣PrΨ [

ExpFEΨ,Π,A,C(n) = 1
]
− 1

2

∣∣∣∣ ≤ 2−n/4 .

In fact, we show that the above holds for any fixing of the functions f , K−n = {Km}m∈N,m̸=n

and E−n = {Em}m∈N,m̸=n. From this point and forward we fix n ∈ N and the functions f , K−n =
{Km}m∈N,m̸=n and E−n = {Em}m∈N,m ̸=n.

The proof of Theorem 4.8 consists of two somewhat independent parts. First, in Section 4.4.1, we
show that the decryption oracle D does not provide the adversary with any significant capabilities,
and it can almost always be simulated by the adversary itself. Specifically, since the output spaces
of Kn and En are much larger than their input spaces, the adversary should not be able to find a
valid output of Kn or En without querying them beforehand. As a result, almost all queries to D on
values that were not obtained from previous queries to Kn or En can be replied to with ⊥.

Then, in Section 4.4.2, we show that the only way in which an adversary can obtain any advantage
in the experiment ExpFEΨ,Π,A,C(n;msk, b, r∗) without accessing the decryption oracle D is by “hitting”
the randomness r∗ used for generating the challenge ciphertext in one of its En or Enc(msk·)-queries.
We then show that since the adversary makes a bounded number of oracle queries, the probability
of hitting r∗ is very small.

4.4.1 Simulating the Decryption Oracle

The event spoof will help us show that the oracle D can be simulated by the adversary itself. We
formally define this event and then show that it occurs with very small probability. We have:

Definition 4.9. For any oracle-aided algorithm M , consider the following event spoofn that may
occur during an execution of MΨ(1n): The algorithm makes a query Dn(skC , c) with |skC | = |c| =
10n whose output is not ⊥, yet skC was not an output of a previous Kn-query or c was not an output
of a previous En-query.

We show:

Claim 4.10. For any oracle-aided algorithm M making at most q oracle queries, any n, for any f
and any K−n = {Km}m∈N,m̸=n, E−n = {Em}m̸=n, the probability that spoofn occurs in an execution
of MΨ(1n) is:

Pr
Kn,En

[spoofn] ≤ q · 2−6n .

Proof. Fix M , n, f , K−n and E−n. The input space of Kn is of size 22n whereas its output space
is 210n. Since Kn is chosen uniformly at random, there are at most 22n elements in the range of Kn

and these are distributed uniformly in a space of size 210n. Any query to Kn reveals one point in
the range of Kn, but gives no information about other points in the range. Similarly, any Dn query
may give information regarding one point in the range of Kn, but nothing else. Therefore, the oracle
queries do not give significant information regarding the range of K, and an adversary cannot hit
points in the range without previous queries of K. We have a similar behaviour when considering
the oracle En.

Formally, we follow the computation of MΨ(1n). During the computation, we store tables T (K)
and T (E) of oracle queries and answers for Kn and En, both tables are initialized to ∅. Then:

38



• Each f -query can be answered since f is fixed, and this does not trigger the event spoofn.

• With each Kn query (msk, C) ∈ {0, 1}n ×{0, 1}n we first check in T (K) whether (msk, C) was
queried before. If so - we answer the stored value in T (K). Otherwise, we choose a random
output skC ← {0, 1}10n, return skC and store the pair ((msk, C), skC) in T (K).

• With each En query in {0, 1}3n we act in a similar way and check whether there exists an
answer in T (E). If not, we choose a random element in {0, 1}10n, store the query/answer in
T (E) and return the answer to the adversary.

• With each Dn-query (skC , c) ∈ {0, 1}20n, we check whether there exist a pair ((msk, C), skC) ∈
T (K) and a pair ((msk,m, r), c) ∈ T (E).
1. If there does not exist a pair ((msk, C), skC) ∈ T (K), then we toss a coin α with probability

pj = (22n − j)/210n to be 1, where j is the number of times we previously tossed this
coin. If α = 1, then we choose a uniformly random (msk, C) ∈ {0, 1}n×{0, 1}n such that
(msk, C) ̸∈ T (K). Otherwise, we store (⊥, skC) ∈ T (K).

2. Similarly, if there does not exist a pair ((msk′,m, r), c) ∈ T (E), we determine whether
c has a pre-image in En, and choose a random coin β that equals one with probability
(23n − k)/210n, where k is the number of times we previously tossed this coin. In case
the coin is 1, we choose a random pre-image (msk′,m, r) ∈ {0, 1}n×{0, 1}n×{0, 1}n and
store it in T (E).

Given the pairs ((msk, C), skC) ∈ T (K) and ((msk′,m, r′), c) ∈ T (E), we immediately return ⊥
if either (msk, C) = ⊥ or (msk′,m, r′) = ⊥. Otherwise, if msk ̸= msk′, we answer the adversary
with ⊥ well. Only if msk = msk′, we evaluate Cf (m) and give the result to the adversary.

Note that spoofn occurs whenever α = 1 or β = 1. With each Dn-query, these coin may be
tossed at most once. Since there are at most q queries overall, using union bound the probability
that in one of the queries α = 1 or β = 1 is bounded by:

Pr
Kn,En

[spoofn] ≤ 2 · q

27n
=

q

26n
.

We denote by Ẽxp
FE

Ψ,Π,B,C(n;msk, b, r∗) an execution of the experiment, where the construction
Π as an oracle access to Ψ, but the adversary B has an oracle access to f,K, E ,D−n (together
with KG(msk, ·),Enc(msk, ·)) but has no access to the oracle Dn. We now show that if there ex-
ists an adversary A that its advantage in the experiment ExpFEΨ,Π,A,C(n;msk, b, r∗) is ϵ, then there
exists an adversary B that does not use the oracle Dn at all, and its advantage in the experiment

Ẽxp
FE

Ψ,Π,B,C(n;msk, b, r∗) is very close to ϵ. Since we prove that Π is secure functional-encryption for
any fixing of the function f , we let B make an unbounded amount of queries to f and analyze its
complexity with respect to the amount of oracle queries to Kn, En. Formally:

Claim 4.11. For every n ∈ N, if there exists an oracle-aided adversary A making at most q(n)-oracle
queries with q(n) ≤ 2n/2 such that∣∣∣∣∣∣∣ Pr

K,E
(msk,b,r∗)←{0,1}2n+1

[
ExpFEΨ,Π,A,C(n;msk, b, r∗) = 1

]
− 1

2

∣∣∣∣∣∣∣ > ϵ ,

then there exists an oracle-aided adversary B that makes at most q(n) queries to Kn and En, and

39



does not query Dn, such that:∣∣∣∣∣∣∣ Pr
K,E

(msk,b,r∗)←{0,1}2n+1

[
Ẽxp

FE

Ψ,Π,B,C(n;msk, b, r∗) = 1
]
− 1

2

∣∣∣∣∣∣∣ > ϵ− 2−n .

Proof. Fix n. Given the adversary A, we build an adversary B that makes no oracle queries to Dn.
As long as spoofn does not occur, all oracle queries to Dn can be answered by the previous queries
to Kn and En. We proceed with a formal description of B.

A formal description of B. On input security parameter 1n, B invokes the adversary A on the
same input, submits all its oracle queries to KG(msk, ·), Enc(msk, ·) to its own KG,Enc oracles, but
keeps a log of these oracle queries/answers. Regarding Ψ, it submit all the oracle queries of f , as
well as K, E ,D−n, to its own oracle, but keeps track of these queries/answers to Kn, En. We later
show how it answers Dn-queries. Whenever A outputs a pair of messages (m0,m1), B outputs the
same pair of messages, receives challenge c∗, passes it back to A and continues to answer its oracle
queries as before. At the end of the computation, B outputs whatever A outputs.

We now describe how B answers A queries (skC , c) for the Dn-oracle. Informally, regarding skC ,
the algorithm B has to determine whether it is a valid secret-key, and to find the pair (msk′, C)
for which skC = Kn(msk′, C). Similarly it has to determine whether c is a valid encryption, what
message m it hides and under what master secret-key msk. If the two encryptions are valid, and
agree with their master secret-key, then it evaluates Cf (m). Otherwise, it just returns ⊥. Formally,
for any query (skC , c) to Dn, where c ̸= c∗ (the challenge ciphertext), B performs as follows:

• If skC is an output of a previous query to KG(msk, ·)-oracle, then B has the pre-image Cf and
it knows that skC was encrypted using the master secret key msk chosen by the experiment.

• If skC is an output of a previous query to Kn(·), then B knows the pair (msk′, C) that was used
to obtain skC . It then queries its oracle KG(msk, ·) on C. If the result is skC , and assuming
that Kn is injective, then it knows that skC was encrypted using the master key msk chosen
by the experiment. Otherwise, it knows that skC was encrypted using msk′ (differ than msk).

• If c is an output of a previous query to Enc, then B looks for the message m, and marks that
it was encrypted master secret key msk chosen by the experiment.

• If c is an output of a previous query to En, then B knows m and the master secret-key msk′

that was used for the encryption.

If both skC , c relate to the same master secret key msk′, then B replies with Cf (m). If not, it
replies with ⊥. One additional case is the case where the query relates to the challenge ciphertext
c∗. In this case:

• For a query (skC , c
∗) where c∗ is the challenge ciphertext, B performs as follows. Giving skC ,

the adversary B obtains the underling oracle-aided circuit C as before and check whether it
was encrypted using the master-secret key msk that was chosen by the experiment. If skC
was encrypted using msk, B can evaluate Cf (m0) as an answer, where m0 is one of the pair
of messages that A output as the challenge messages. This is correct since A is valid, and for
the pair of messages m0,m1 that A outputs it holds that Cf (m0) = Cf (m1). In case skC was
encrypted using a master secret key differ than msk, B answers with ⊥.

Clearly, the algorithm B makes no oracle-queries to Dn, and is a valid adversary (assuming that
A is valid). Moreover, it makes the same amount of oracle-queries to Kn, En as A (but may query
some more f -queries).

40



Let good denote the event where spoofn does not occur (where the machine M that we consider
includes the challenger and the adversary A), and both Kn and En are injective functions. Then,
conditioned on good, an execution of B without the oracle Dn is equivalent to an execution of A
with that oracle, where both adversaries also have accesses to KG(msk, ·),Enc(msk, ·),Kn, En,D−n
and f . That is:

Pr
K,E

(msk,b,r∗)←{0,1}2n+1

[
ExpFEΨ,Π,A,C(n;msk, b, r∗) = 1 ∧ good

]
= Pr

K,E
(msk,b,r∗)←{0,1}2n+1

[
Ẽxp

FE

Ψ,Π,B,C(n;msk, b, r∗) = 1 ∧ good
]
.

Moreover, we have that:

Pr
[
ExpFEΨ,Π,A,C(n;msk, b, r∗) = 1

]
≤ Pr

[
ExpFEΨ,Π,A,C(n;msk, b, r∗) = 1 ∧ good

]
+ Pr

[
good

]
,

where the probability is taken over Kn, En, (msk, b, r∗)← {0, 1}2n+1. Finally, note that:

Pr
[
good

]
≤ Pr [ spoofn ] + Pr [ Kn is not injective] + Pr [ En is not injective]

≤ q(n) · 2−6n + 2 · 2−4n ≤ 2−n .

We conclude: ∣∣∣∣∣∣∣ Pr
Kn,En

(msk,b,r∗)←{0,1}2n+1

[
Ẽxp

FE

Ψ,Π,B,C(n;msk, b, r∗) = 1
]
− 1

2

∣∣∣∣∣∣∣ > ϵ− 2−n .

4.4.2 From Distinguishing to Hitting

In this section we show that an adversary can gain an advantage in the experiment only if it “hits”
the randomness r∗ which is used in the encryption of the challenge message. We then show that the
probability of hitting r∗ using its oracles is very small. Formally:

Definition 4.12. For a given n ∈ N, oracle-aided and valid adversary B = (B1,B2), we consider

the following event that may occur during the execution of Ẽxp
FE

Ψ,Π,B,C(n;msk, b, r∗). Let m0,m1 be
the two messages that were outputted by B1. We denote by r∗-hit the event in which B queries En
on input (msk,m0, r

∗) or (msk,m1, r
∗). This may be occur as B makes a direct query to En, or as

an indirect query to En by its Enc(msk, ·)-oracle.

Claim 4.13. For every n ∈ N, valid oracle-aided adversary B that makes at most q(n) < 2n/2

queries to Kn and En, if∣∣∣∣∣∣∣ Pr
Kn,En

(msk,b,r∗)←{0,1}2n+1

[
Ẽxp

FE

Ψ,Π,B,C(n;msk, b, r∗) = 1
]
− 1

2

∣∣∣∣∣∣∣ > ϵ ,

then
Pr
Kn,En

(msk,b,r∗)←{0,1}2n+1

[ r∗-hit ] > ϵ .

41



Proof. Fix the entire probability space except for the values En(msk,m0, r
∗) and En(msk,m1, r

∗).
Choose two random values c, c′ ∈ {0, 1}10n. We will consider two cases: One corresponds to b = 0,
where we set En(msk,m0, r

∗) to c and En(msk,m1, r
∗) to c′, and the second case (corresponding to

b = 1) in which we assign the opposite values. In both cases B is given the value c. The two cases
are equally likely but yield different values to b. We show that if B makes no r∗-hit (i.e., for both
B1 and B2), then the view of B is independent of b and it must output the same value in the two
cases, and thus:

Pr
Kn,En

(msk,b,r∗)←{0,1}2n+1

[
Ẽxp

FE

Ψ,Π,B,C(n;msk, b, r∗) = 1 | r∗-hit
]
=

1

2
.

In particular, we show that if the execution makes no hits, then we can simulate the execution
given the (partially) determined probability space defined above. In particular, we show that for all
queries that B may query can be answered. Specifically:

• All oracle queries to f can be answered, since f is fixed.

• All oracle queries to KG(msk, ·) can be answered, since the oracle K(·) is fully-determined.

• Likewise, all oracle queries K(·) can be answered since K is fully-determined.

• All oracle queries to Enc(msk, ·) can be answered. We assume that r∗-hit does not occur, thus
there is no evaluation of En on the inputs (msk,m0, r

∗) or (msk,m1, r
∗) and therefore all the

queries are fully-determined.

• Likewise, all the queries to E are fully-determined, since r∗-hit does not occur.

We therefore conclude that:

Pr
Kn,En

(msk,b,r∗)←{0,1}2n+1

[ r∗-hit ] > ϵ .

We now show that the probability that r∗-hit occurs is small. That is:

Lemma 4.14. For every valid oracle-aided adversary B, making at most q(n) queries to Kn and En
in the experiment Ẽxp

FE

Ψ,Π,B,C(n;msk, b, r∗), it holds that:

Pr
Kn,En

(msk,b,r∗)←{0,1}2n+1

[ r∗-hit ] <
q(n)

2n − q(n)
.

Proof. Fix the entire probability space except for En and r∗. The view of the algorithm B1, i.e.,
the view of B prior to the challenge phase, is completely independent of r∗. Moreover, it makes at
most q(n)-oracle queries to En (or Enc), and the responses to these queries are distributed uniformly
in {0, 1}10n. Similarly, after receiving the challenge c∗, the adversary B2 (who does not have an
oracle-access to Dn) receives with each oracle query to En (or Enc) a uniformly chosen value in
{0, 1}10n. These values do not provide any information regarding r∗, unless a direct query to r∗ is
performed. Since r∗ is distributed uniformly in {0, 1}n, the probability that the ith query hits r∗ is

1/(2n − i). Thus, the success probability of B is bounded by q(n)
2n−q(n) .

4.4.3 Concluding the Proof

We are now ready for the proof of Theorem 4.8.

42



Proof of Theorem 4.8. Assume towards a contradiction that there exists an oracle-aided adver-
sary A that makes at most q(n) < 2n/2 queries, such that∣∣∣∣∣∣∣ Pr

Kn,En
(msk,b,r∗)←{0,1}2n+1

[
ExpFEΨ,Π,A,C(n;msk, b, r∗) = 1

]
− 1

2

∣∣∣∣∣∣∣ > 2−n/4

and infinitely many n’s. By Claim 4.11, this implies the existence of a valid oracle-aided adversary
B that makes at most q(n) oracle queries to Kn and En, and does not have oracle access to Dn, for
which: ∣∣∣∣∣∣∣ Pr

Kn,En
(msk,b,r∗)←{0,1}2n+1

[
Ẽxp

FE

Ψ,Π,B,C(n;msk, b, r∗) = 1
]
− 1

2

∣∣∣∣∣∣∣ > 2−n/4 − 2−n .

By Claim 4.13, this implies that:

Pr
Kn,En

(msk,b,r∗)←{0,1}2n+1

[ r∗-hit ] > 2−n/4 − 2−n > 2−n/4+1 .

However, this is in contradiction to Lemma 4.14, which shows that this probability is bounded by:

q(n)

2n − q(n)
≤ 2n/2

2n − 2n/2
=

1

2n/2 − 1
≤ 2−n/4+1 .

4.5 Breaking Any Perfectly-Complete Bit-Agreement Protocol Using Ψ

In this section we prove the following theorem:

Theorem 4.15. For any polynomial-time perfectly-complete oracle-aided bit-agreement protocol
(A,B) there exists an oracle-aided adversary E that makes a polynomial number of oracle queries
such that ∣∣∣∣PrΨ [

ExpKAΨ,(A,B),E(n) = 1
]
− 1

2

∣∣∣∣ ≥ 1

4
.

Our proof of the above theorem is inspired by the simplified approach of Brakerski et al. [BKS+11]
for breaking perfectly-complete bit-agreement protocols. First, for illustrating the main ideas un-
derlying the proof, we present their attacker when there is only one oracle which is a random per-
mutation. Then, we show that this can be generalized (dealing with various additional difficulties)
to our oracle Ψ.

4.5.1 Warm-up: Breaking Perfectly-Complete Bit Agreement Relative to f

Let (A,B) be a black-box construction of perfectly-complete bit-agreement protocol from a random
permutation f . Let qA (resp., qB) be a polynomial upper bound on the number of queries made by
A (resp., B). Consider the following attacker E.

The attacker E.

• Input: A transcript T of an execution of ⟨Af (1n),Bf (1n)⟩.
• Oracle access: The oracle f = {fn}n∈N, where each fn is a random permutation over {0, 1}n.

43



• The adversary: E initializes a set Q(E) of query/answer pairs of f , a multi-set of candidate
keys K, and runs 2qB + 1 iterations of the following two steps:

1. Simulation phase: E finds a view of A consistent with the given transcript T and with the
queries Q(E) that E made so far to f . The view consists of randomness rA for A and of
a set of oracle queries/answers Q̂(A). The set Q̂(A) is consistent with the set of oracle
queries Q(E) that E made so far to the true oracle f , but queries in Q̂(A) \ Q(E) may
be inconsistent with the true oracle f . Let k denote the key computed by A according to
the sampled view, then E adds k to K.

2. Update phase: E makes all queries in Q̂(A) \ Q(E) to the true oracle f , and adds the
resulting query/answer pairs to Q(E).

• Output: After 2qB+1 iterations as above, E outputs the majority value in K (either 0 or 1).

Note that E makes in each iteration at most qA queries to f . Thus, it makes O(qA · qB) queries
overall. We claim that E outputs the key computed by A and B with probability 1 based on the
prefect completeness of the protocol. In particular, we show the following:

Claim 4.16. Let k denote the actual key computed by A and B in an execution of the protocol,
producing a transcript T . Then, in each iteration of the attack of Ef (T ), at least one of the following
two events occur:

1. E queries f with one of the queries made by B in the real execution.

2. E adds k to K.

Proof. Let Q(B) denote the queries made by B in the real execution of the protocol. In a given
iteration, there are two possibilities:

1. If Q̂(A) ∩ Q(B) ̸⊆ Q(E), that is, in the sampled view Q̂(A) in the current iteration there is
a query that B makes in the real execution which was not made by E to the true oracle f .
Thus, in the update phase of this iteration, B will make all the queries Q̂(A) \Q(E), and will
make this query to the true oracle f , and Case 1 in the claim is satisfied.

2. If Q̂(A)∩Q(B) ⊆ Q(E), that is, all the shared queries in the sampled view of A in the current
iteration and in the queries of B in the real execution, were already queried by E, and are
therefore consistent with f . Thus, there is an execution of the protocol with some oracle f̂
that yields the observed transcript T , a view for B identical to the view of the real B, and a
view for A identical to the view generated by E in the current iteration. Perfect completeness
implies that the key k computed by A in this case must match the (actual) key computed by
B, and thus E adds the correct key k to K.

Since B makes at most qB queries, it follows that there are at most qB iterations in which E adds
an incorrect key to K, and so at least qB +1 iterations in which E adds the correct key to K. Since
E outputs the key that occurs most often, E always outputs the correct key.

4.5.2 Breaking Perfectly-Complete Bit Agreement Relative to Ψ

Unfortunately, the proof provided above does not naturally extend relative to the oracle Ψ. Intu-
itively, the proof of the previous section can be interpreted as follows: The hope that two parties
would have achieve a key agreement relative to f in the presence of an eavesdropping adversary, is
essentially by making the same query to the oracle f . When we consider the oracle Ψ instead of just
the oracle f , the oracles K,E and D introduce additional dependencies between the parties. These

44



dependencies can help the parties reach an agreement even if they do not perform the same queries
to Ψ.

Consider for example, the following somewhat naive (and completely insecure) protocol:

• A samples msk ← {0, 1}n and k ← {0, 1}, and computes skC = K(msk, C) where C is the
identity circuit, and c = E(msk, k, r) for some r ∈ {0, 1}n. Then A sends skC and c to B, and
outputs the key k.

• B receives skC and c from A, and outputs the key k = D(skC , c).

In this protocol the parties always agree on a uniformly-chosen bit k, but they make completely
different oracle queries: A queries only K and E , while B queries only D (and they do not even
query f). Given that the parties never make the same query to Ψ, a natural generalization of the
adversary E presented in the previous section fails to recover the key k. The fact that Ψ introduces
additional dependencies requires a more subtle proof, and therefore we need to revise the attack and
its analysis.

Proof of Theorem 4.15. Before we define the adversary E and analyze its success probability, we
start with some preliminaries and necessary definitions.

Preliminaries. We let Q(A), Q(B) and Q(E) denote the set of oracle queries made by A,B and
E, respectively. We write, e.g., [Kn(msk, C) = skC ] ∈ Q(A) to denote that A made the query
Kn(msk, C) and received back skC . Likewise, [En(msk,m, r) = c] ∈ Q(A) denotes that A made the
query En(msk,m, r) and received back c. We also use the symbol ⋆ to indicate an arbitrary value,
for instance, [En(msk,m, r) = ⋆] ∈ Q(B) denotes that B queried En on (msk,m, r) (but we are not
interested in the value that was returned by the oracle).

The extended view of A. Since the oracles (f,K, E ,D) have some dependencies (i.e., the answers
for some queries depend on the answers on some queries in other oracles), we want that these
dependencies will appear explicitly in the set of queries/answers that the adversary samples and
will not be “hidden”. In our attack, E will repeatedly sample an extended view of A and not just
the view of A. We denote an extended view by (rA,Partial(Ψ

′)), where rA are random coins for
A, and Partial(Ψ′) = (f ′,K′, E ′,D′) is a set of query/answer pairs that include all those made by A
together with additional queries that will make it “consistent” as defined below (note that this set
Partial(Ψ′) is not necessarily consistent with the true oracle Ψ).

Specifically, when sampling the oracle queries/answers Partial(Ψ′) = (f ′,K′, E ′,D′) we will make
sure that K′,E ′ and D′ are consistent between themselves, and that f ′ contains “sufficient informa-
tion” about f . That is, for instance, querying D′ with (skC , c) such that [Kn(msk, C) = skC ] ∈ K′n
and [En(msk,m, r) = c] ∈ E ′n should be answered with Cf ′(m), where f ′ should contains all the
necessary information for computing Cf ′(m). Formally:

Definition 4.17 (consistent oracle queries/answers). Let Partial(Ψ′) = (f ′,K′, E ′,D′) be a set of
queries/answers. We say it is consistent if:

1. For every pair of queries [Ks(msk, C) = skC ] ∈ K′ and [Es(msk,m, r) = c] ∈ E ′ with |msk| =
|C| = |m| = |r| = s for any s ∈ N:
(a) The oracle f ′ contains queries/answers sufficient to evaluate Cf ′(m).

(b) The oracle D′ contains the query [Ds(skC , c) = Cf ′(m)].

2. For every [Ds(skC , c) = β] ∈ D′ with β ̸= ⊥ and |skC | = |c| = 10s, there exist msk, C,m, r ∈
{0, 1}s for which there exist queries [Ks(msk, C) = skC ] ∈ K′ and [Es(msk,m, r) = c] ∈ E ′.
Moreover, β = Cf ′(m).

45



Given that the sampled set Partial(Ψ′) = (f ′,K′, E ′,D′) is consistent, we now define a consistent
extended view:

Definition 4.18 (consistent extended view). Let T be a transcript of an execution between A(1n)
and B(1n), and let Q(E) be a set of queries/answers made by E so far to the real oracle Ψ =
(f,K, E ,D). We say that the extended view (rA,Partial(Ψ

′)) is consistent with T and Q(E) if
Partial(Ψ′) = (f ′,K′, E ′,D′) is consistent, and:

1. Every query in Q(E) is in Partial(Ψ′) = (f ′,K′, E ′,D′) and is answered the same way.

2. Af ′,K′,E ′,D′(1n; rA) when fed with incoming messages as in T , would generate outgoing messages
consistent with T .

Cross-augmented oracle-queries. For the analysis, to the set of real queries Q(AB) = Q(A) ∪
Q(B), we add some additional queries to the real oracle Ψ, similarly to what we did with the extended
view above. We stress that these oracle queries are not necessarily performed by either one of A or
B in the actual protocol, and these additional queries are needed only for the analysis. Formally,
for a set of oracle queries Q(AB), we define the set of cross-augmented oracle queries AugQ(AB),
initialized with all queries/answers in Q(AB), and in addition:

1. For every pair of queries [Ks(msk, C) = skC ] ∈ Q(AB) and [Es(msk,m, r) = c] ∈ Q(AB) with
|msk| = |C| = |m| = |r| = s:

(a) The set AugQ(AB) contains also all queries/answers to the true oracle f that are needed
in order to evaluate Cf (m).

(b) The set AugQ(AB) contains the query [Ds(skC , c)] (which by definition its answer is
Cf (m)).

Note that these additional queries corresponds to the consistent oracle queries/answers and ex-
tended view that the adversary E samples in the attack, as in Definition 4.17. Since the analysis
assumes that spoof does no occur, the second requirement of consistent oracle queries/answers from
Definition 4.17 always holds.

We denote by q be an upper bound on the size of the set |AugQ(AB)|, and note that q is
polynomial in |Q(AB)|.

Consistency between the real and sampled views. We want that the intersection of the
set of oracle queries Partial(Ψ′) = (f ′,K′, E ′,D′) that E maintains during the execution, and the
set of queries AugQ(AB) will not contradict. That is, for any oracle query that appears in both
Partial(Ψ′) and AugQ(AB), will have the same answer in both sets. We therefore define the predicate
consistency(Partial(Ψ′),AugQ(AB)) that receives two sets of queries/answers and equals 0 if at least
one of the following occurs:

1. There exists some query in Partial(Ψ′)∩AugQ(AB) that has different answers, one in Partial(Ψ′)
and the other in AugQ(AB).

2. There exists some [f(x1) = y] ∈ Partial(Ψ′) and [f(x2) = y] ∈ AugQ(AB) such that x1 ̸= x2.

3. There exists some D′-query in Partial(Ψ′) that is inconsistent with K, E-queries in AugQ(AB),
or vice-versa (i.e., there exist some D-query in AugQ(AB) that is inconsistent with K′, E ′-
queries in Partial(Ψ′)). In particular:

(a) There exists some [D(skC , c) = ⊥] ∈ Partial(Ψ′), but there exist msk, C,m, r such that
[K(msk, C) = skC ] ∈ AugQ(AB) and [E(msk,m, r) = c] ∈ AugQ(AB).

(b) There exist some [K(msk, C) = skC ] ∈ Partial(Ψ′) and [E(msk,m, r) = c] ∈ Partial(Ψ′),
but [D(skC , c) = ⊥] ∈ AugQ(AB).

46



The events where D-query in AugQ(AB) which is inconsistent with some K′, E ′-queries in
Partial(Ψ′) are defined analogously.

We now ready for a formal description of the attack.

The adversary E.

• Input: A transcript T of an execution of ⟨A(1n),B(1n)⟩.
• Oracle access: The real oracle Ψ = (f,K, E ,D).
• The adversary:

1. Avoiding spoofs for small s. Let t = 8 log q. The adversary E queries the oracle f
on all inputs x with |x| ≤ t; Queries Ks(msk, C) for all |msk| = |C| = s ≤ t; Queries
Es(msk,m, r) for all |msk| = |m| = |r| = s ≤ t; and queries Ds(skC , c) on all |skC | = |c| =
s/10 ≤ t. Denote these queries/answers by Q∗(E).

2. The adversary E initializes Q(E) = Q∗(E) and K = ∅, and then runs 2q + 1 iterations
of the following two steps:
(a) Simulation phase: E finds an extended view (rA,Partial(Ψ

′)) consistent with T
and Q(E) with Partial(Ψ′) = (f ′,K′, E ′,D′) of size at most |Q(E)| + q. If no such
extended view exists then E aborts. Otherwise, let k′ be the key computed by A with
this extended view, then E adds k′ to K.

(b) Update phase: E makes all queries in Partial(Ψ′) \ Q(E) to the true oracle Ψ =
(f,K, E ,D) and updates Q(E).

• Output: E has a multiset K of 2q + 1 possible keys. E outputs the majority value in K.

Analysis. It is clear that E makes polynomially many queries to Ψ. For any s, define spoofs to be
the event that there is a query [D(skC , c) ̸= ⊥] ∈ Q(A) ∪Q(B), yet there is no query

[Ks(⋆, C) = skC ] ∈ Q(A) ∪Q(B) ∪Q∗(E) or

[Es(⋆,m, ⋆) = c] ∈ Q(A) ∪Q(B) ∪Q∗(E) .

Let spoof =
∨

s spoofs. We claim that spoof occurs with probability at most 1/16. This is because,
by construction, spoofs cannot occur for all s ≤ t, and by Claim 4.10 and using union bound,
Pr [

∨
s spoofs] ≤ 1/16.

Similarly, let spoofE be the event that, at some point during the attack, E queries [Ds(skC , c) ̸=
⊥] to the real oracle, but there was no previous query [Ks(⋆) = skC ] or [Es(⋆) = c] made by A, B
or E. By construction, this can only be possible if s > 8 log q, since E makes at most polynomially
many queries after the pre-processing phase. Moreover, spoofE occurs with probability at most
1/16, and note that spoofE relates to a query of E, whereas spoof relates to queries of A and B.

Let ¬injective denote the event when either Ks or Es is not injective for some s. The probability
of this event is upper bounded by 1/8. In the rest of the analysis, we show that as long as the event
spoof, spoofE or ¬injective do not occur, then the adversary E outputs the key computed by A and
B. As a result, the advantage of E in the experiment ExpKAΨ,(A,B),E(n) is at least 1/4. We have:

Claim 4.19. Let k denote the actual key computed by A and B in an execution of the protocol, and
assume neither spoof, spoofE nor ¬injective occur. Then, E does not abort, and in each iteration
of the attack either E adds k to K, or E adds to Q(E) one of the queries in AugQ(AB).

Proof. We first show that E never aborts; recall that E aborts whenever it cannot sample a
consistent view at some iteration. Assume that Q(E) is consistent at the beginning of some iteration;

47



this is true by construction in the initial phase. Since spoof does not occur, a consistent, extended
view is given by letting Partial(Ψ′) = Q(E) ∪ AugQ(AB), which is of size at most |Q(E)|+ q; Note
that all the queries in this extended view are with respect to the true oracle Ψ. Moreover, any
extended view that is actually sampled by E is consistent, unless spoofE occurs.

Let (rA,Partial(Ψ
′)) be the consistent extended view chosen by E in some iteration. One of the

following occurs in each iteration of E:

1. If consistency(Partial(Ψ′),AugQ(AB)) = 0, i.e., there is some contradiction between Partial(Ψ′)
and AugQ(AB). Then, during the update phase, E corrects some query in Partial(Ψ′) =
(f ′,K′, E ′,D′) according to true oracle Ψ. This contradicting query must be a new query (i.e.,
a query that does not exist in Q(E) at the beginning of the iteration), since Partial(Ψ′) is
always consistent with the set Q(E). As a result, during the update phase of this iteration, E
adds some new query of AugQ(AB) to Q(E).

2. Otherwise (i.e., consistency(Partial(Ψ′),AugQ(AB)) = 1):

(a) If Partial(Ψ′) ∩ AugQ(AB) ̸⊆ Q(E) then E adds some query/answer from AugQ(AB) to
Q(E) in the update phase of the current iteration.

(b) If Partial(Ψ′) ∩ AugQ(AB) ⊆ Q(E) then we claim that E adds the correct key k to K at
the end of that iteration. We show this below.

We then claim that since |AugQ(AB)| ≤ q, after 2q + 1 iterations the correct key k is inserted to K
at least q + 1 times, and therefore the output of E is correct. It is easy to see that Cases 1 and 2a
hold. We now show that at the end of Case 2b the correct key is inserted to K.

Case 2b: Partial(Ψ′) and AugQ(AB) agree, Partial(Ψ′)∩AugQ(AB) ⊆ Q(E). That is, all the
shared queries in the sampled extended view of A in the current iteration and in the cross-augmented
queries of A and B in the real execution, were already queried by E and are thus consistent with
the real oracle Ψ. We now show that this implies the existence of some oracle Ψ̂ that yields the
observed transcript T , a view for B identical to the view of the real B, and a view for A identical
to the view of A in the extended view sampled by E in the current iteration. Perfect completeness
implies that the key k computed by A in this case must match the (actual) key computed by B in
the actual execution, and therefore E adds the correct key to K.

We now show that there exists an oracle Ψ̂ = (f̂ , K̂, Ê , D̂) as above. Note that this oracle should
agree (i.e., have the same answers) with all the queries in Partial(Ψ′) = (f ′,K′, E ′,D′) and with all
the real queries AugQ(AB). We construct the oracle Ψ̂ as follows:

The oracle f̂ . Note that for every s ≤ t, the set of queries Q∗(E) contains all the functions
{fs}s≤t and thus agrees completely with Ψ (i.e., also with AugQ(AB)). We therefore set f̂s = fs.

For every s > t, we define the function f̂s as follows. For every x such that [fs(x) = y′] ∈
Partial(Ψ′), we set f̂(x) = y′. For every [fs(x) = y] ∈ AugQ(AB), we set f̂(x) = y. Since Partial(Ψ′)∩
AugQ(AB) ⊆ Q(E), we have that there is no contradiction, i.e, there are no input x and outputs y ̸=y′

such that [fs(x) = y′] ∈ f ′ and [fs(x) = y] ∈ AugQ(AB). Moreover, since Partial(Ψ′) and AugQ(AB)
agree, there is no image with contradicting pre-images. For any other value x ̸∈ f ′ ∪AugQ(AB), we
set f̂(x) = y for some arbitrarily y under the condition that f̂ is a permutation.

Before proceeding to the definitions of K̂,Ê and D̂, we first define sets avoid-K and avoid-E , which
(intuitively) consist of values that appear at some point in the execution of either the real or the
sampled view of the adversary, and we want to avoid them whenever we define arbitrarily values for

48



K̂ and Ê . These sets are defined as follows:

avoid-Ks =
{

skC ∈ {0, 1}10s
∣∣∣∃ [Ds(skC , ⋆) = ⋆] ∈ AugQ(AB) ∪ D′s

}
,

avoid-Es =
{

c ∈ {0, 1}10s
∣∣∣ ∃ [Ds(⋆, c) = ⋆] ∈ AugQ(AB) ∪ D′s

}
.

Note that the sizes of the sets avoid-Ks and avoid-Es are at most q.

The oracle K̂. The oracles {K̂s}s≤t are set using Q∗(E) which contains all functions {Ks}s≤t
and therefore agrees with AugQ(AB). Then, for every s > t, we let K̂s agree with AugQ(AB)
and K′ (this is possible since K′ ∩ AugQ(AB) ⊆ Q(E) – as was the case with f̂). Then, for
any other value x for which K̂s(x) is still undetermined, we let the output be some arbitrarily

skC ∈ {0, 1}|10x| ̸∈ avoid-Ks and that overall the resulting K̂s function is injective.

The oracle Ê. We define the oracle similarly to the above, such that it agrees with AugQ(AB),
E ′ and arbitrarily for all other values, such that it avoids avoid-E , and that the resulting function Ê
is injective.

The oracle D̂. We define the oracle D̂ using the oracles f̂ ,K̂ and Ê exactly as the true oracle
D is defined using the true oracles f ,K and E . We now show that D̂ is consistent with AugQ(AB)
and Partial(Ψ′). That is, that every query [D(skC , c)] ∈ AugQ(AB) ∪ D′ has the same answer with
D̂. In particular:

1. Assume that there exists [D(skC , c) = β] ∈ D′ for some skC , c and β ̸= ⊥. Since the oracles
(f ′,K′, E ′,D′) are consistent (recall Definition 4.17), then there exist queries [K(msk, C) =
skC ] ∈ K′ and [E(msk,m, r) = c] ∈ E ′ for some msk,C,m and r. Moreover, from Defini-
tion 4.17, the existence of these two queries implies that f ′ contains all the necessary oracle
queries/answers for the evaluation of Cf ′(m), and it also holds that Cf ′(m) = β. How-
ever, since any query in (f ′,K′, E ′) has the exact same answer with (f̂ , K̂, Ê), it holds that

C f̂ (m) = β, K̂(msk, C) = skC , Ê(msk,m, r) = c and so D̂(skC , c) = β as well.

2. Assume that there exists [D(skC , c) = β] ∈ AugQ(AB) for some skC , c and β ̸= ⊥. Since spoof
does not occur, there exist queries [K(msk, C) = skC ], [E(msk,m, r) = c] ∈ AugQ(AB) for some
msk,C,m and r, and therefore AugQ(AB) contains also all the necessary f -values in order to
evaluate Cf (m). Since the oracles K and E are injective, from the definition of Ψ it holds that
β = Cf (m).
However, since any (f,K, E)-query in AugQ(AB) has the exact same answer in (f̂ , K̂, Ê), it
holds that C f̂ (m) = β, K̂(msk, C) = skC , Ê(msk,m, r) = c and so D̂(skC , c) = β as well.

3. For every query [D(skC , c) = ⊥] ∈ D′ ∪ AugQ(AB) we show that D̂(skC , c) = ⊥ as well.
Specifically, it suffices to show that there do not exist msk,C,m and r for which K̂(msk, C) =
skC and Ê(msk,m, r) = c. Assume towards a contradiction that there exist such msk,C,m and
r, then there is inconsistency only if K̂(msk, C) = skC and Ê(msk,m, r) = c but [D(skC , c) =
⊥] ∈ D′ ∪ AugQ(AB). However, this cannot occur since Partial(Ψ′) and AugQ(AB) do not
contradict, and the oracles K̂ and Ê avoid the sets avoid-K and avoid-E , respectively.

This concludes the proof of Theorem 4.15.

49



4.6 Extending the Result to Indistinguishability Obfuscation

In this section we show that Theorem 4.2 can be extended for separating indistinguishability ob-
fuscation for oracle-aided circuits from private-key functional encryption for oracle-aided circuits.
As discussed in Section 1, this does not necessarily imply a separation in the standard model, since
it may be that there exists an indistinguishability obfuscator for all polynomial-size circuits, but
there does not exist such an obfuscator for polynomial-size oracle-aided circuits. Nevertheless, this
provides substantial evidence that private-key functional encryption is somewhat unlikely to imply
indistinguishability obfuscation using standard techniques.

We now formally define the class of constructions considered in this section, tailoring our defini-
tions to the specific primitives under consideration, and then formally state our result. We consider
any implementation of a one-way permutation f and a private-key functional encryption scheme
Π for the class of all polynomial-size oracle-aided circuits Cf . As in Section 3, we model these
primitives as two independent building blocks.

Definition 4.20. A fully black-box construction of an indistinguishability obfuscator for the class
C = {Cn}n∈N of all polynomial-size oracle-aided circuits from a one-way permutation and a private-
key functional encryption scheme for the class C consists of a probabilistic polynomial-time oracle-
aided algorithm iO, an algorithm M , and functions TM (·) and ϵM (·) such that the following two
conditions hold:

• Correctness: For any n ∈ N, for any permutation f , for any correct private-key functional
encryption scheme Π, and for any oracle-aided circuit C ∈ Cn it holds that

Pr
[
Cf ≡ Ĉf : Ĉ ← iOf,Π(1n, C)

]
= 1.

• Black-box proof of security: For any permutation f , for any correct private-key functional
encryption scheme Π, for any (not necessarily uniform) probabilistic oracle-aided algorithm D
that runs in time TD = TD(n), and for any function ϵD = ϵD(n), if∣∣∣∣Pr [ExpiO(f,Π),iO,D,C(n) = 1

]
− 1

2

∣∣∣∣ ≥ ϵD(n)

for infinitely many values of n (see Definition 2.2 for the description of the experiment
ExpiO(f,Π),iO,D,C), then either

Pr
x←{0,1}n

[
Mf,Π,D(f(x)) = x

]
≥ ϵM

(
TD(n) · ϵ−1D (n)

)
or ∣∣∣∣Pr [ExpFE(f,Π),Π,MD,C(n) = 1

]
− 1

2

∣∣∣∣ ≥ ϵM
(
TD(n) · ϵ−1D (n)

)
for infinitely many values of n (see Definition 2.4 for the description of the experiment
ExpFE(f,Π),Π,ME ,C), where M runs in time TM (n).

Theorem 4.21. Let (iO,M, TM , ϵM ) be a fully black-box construction of an indistinguishability
obfuscator for the class C of all polynomial-size oracle-aided circuits Cf from a one-way permutation
f and a private-key functional encryption scheme Π for the class C (see Definition 4.20). Then, its

security loss functions TM and ϵM must satisfy TM (n) ≥ 2ζn or ϵM (n) ≤ 2−n
ζ
for some constant

ζ > 0.

50



Theorem 4.21 follows from Theorem 4.2 and from the construction of a (perfectly-correct) public-
key encryption scheme from a one-way function and a general-purpose indistinguishability obfuscator
by Sahai and Waters [SW14]. Their construction, however, relies on the underlying one-way function
in a non-black-box manner, and therefore Theorem 4.21 does not immediately follow from Theorem
4.2. However, although their construction relies the underlying one-way function in a non-black-
box manner, relative to the oracle Ψ it is in fact a fully black-box construction (with a polynomial
security loss). Specifically, Sahai and Waters use the underlying indistinguishability obfuscator
for obfuscating a circuit that invokes a puncturable pseudorandom function and a pseudorandom
generator as sub-routines. Given that puncturable pseudorandom functions and pseudorandom
generators can be based on any one-way function in a fully black-box manner, in our setting such
a circuit is a polynomial-size oracle-aided circuit Cf (and we note that black-box proofs of security
with a polynomial security loss clearly compose nicely). Equipped with this view we now prove
Theorem 4.21.

Proof of Theorem 4.21. Let (iO,M, TM , ϵM ) be a fully black-box construction of a general pur-
pose indistinguishability obfuscator for the class C of all polynomial-size oracle-aided circuits Cf

from a one-way permutation f and a private-key functional encryption scheme Π for the class C
(recall Definition 4.20). Note that in our setting, relative to the oracle Ψ, this means we allow the
algorithm iO to access f , K, E and D (i.e., to access Ψ). We now construct a perfectly-complete
bit-agreement protocol by relying on the following two building blocks:

• A length-doubling pseudorandom generator that is constructed from the permutation f in a
fully black-box manner [HIL+99] with a polynomial security loss (it in fact suffices for f to
be a one-way function). This means that: (1) the pseudorandom generator is of the form Gf

where G ∈ C is a polynomial-size oracle-aided circuit, and (2) any oracle-aided distinguisher
that runs in time T = T (n) and has an advantage ϵ = ϵ(n) in breaking the pseudorandom
generator, can be used in a black-box manner for inverting f in time that is polynomially
related to T and with probability that is polynomially related to ϵ.

• A puncturable pseudorandom function that is constructed from the permutation f in a fully
black-box manner [KPT+13, BW13, SW14, BGI14] with a polynomial security loss (it again
suffices for f to be a one-way function). This means that: (1) the evaluation and puncturing
algorithms of the family are of the form PRF.Evalf and PRF.Puncf where PRF.Eval,PRF.Punc ∈
C are polynomial-size oracle-aided circuits11, and (2) any oracle-aided distinguisher that runs
in time T = T (n) and has an advantage ϵ = ϵ(n) in breaking the puncturable pseudorandom
function, can be used in a black-box manner for inverting f in time that is polynomially related
to T and with probability that is polynomially related to ϵ.

Consider now the following perfectly-complete bit-agreement protocol (A,B) relative to the
oracle Ψ:

• The algorithm A, on input 1n, samples k ← {0, 1}n, computes Ĉk ← iOΨ(Ck) and sends Ĉk
to B, where Ck ∈ C is a polynomial-size oracle-aided circuit that is defined as follows: On

input a value r ∈ {0, 1}n and oracle access to f , it outputs (Gf (r),PRF.Evalf (k, Gf (r))).

• The algorithm B, on input 1n and Ĉk, first samples b ← {0, 1} and r ← {0, 1}n. Then, it

sends to A the value (c1, c2 ⊕ b) where (c1, c2) = Ĉk
f
(r), and outputs kB = b.

• The algorithm A, on input (c1, c
′
2), outputs kA = c′2 ⊕ PRF.Evalf (k, c1).

11For simplicity we assume that the key-generation algorithm of the pseudorandom family on input 1n outputs a
uniform n-bit key k.

51



The protocol is directly based on the public-key encryption scheme of Sahai and Waters [SW14] by
having A send B a public key, and then B samples a uniform bit b (which will serve as their output)
and replies with its encryption. The protocol is clearly perfectly complete (based on the fact that
iOΨ preserves functionality) and results is a uniformly-distributed key.

Theorem 4.5 guarantees the existence of an oracle-aided algorithm E that makes a polynomial
number TE(n) of queries to the oracle Ψ, such that∣∣∣∣PrΨ [

ExpKAΨ,(A,B),E(n) = 1
]
− 1

2

∣∣∣∣ ≥ ϵE(n), (4.2)

where ϵE(n) = 1/4 for all values of n ∈ N. Given that the protocol (A,B) directly corresponds to
the public-key encryption scheme of Sahai and Waters, their proof of security states that there are
two possible cases to consider:

Case 1. E can be used in a black-box manner by an oracle-aided algorithm E′ for inverting
the one-way permutation f . Since their construction guarantees a polynomial security loss, the
algorithm E′ makes TE′(n) = poly(TE(n)) = poly(n) oracle queries and succeeds with probability
ϵE′(n) = 1/poly(TE(n) · 4) = 1/poly(n). This range of parameters for TE′(n) and ϵE′(n) contradicts
Theorem 4.3, stating that any algorithm that makes at most 2n/4 queries to Ψ inverts f with
probability at most 2−n/4, and therefore this case is not possible.

Case 2. E can be used in a black-box manner by an oracle-aided algorithm E′ for breaking the
indistinguishability obfuscator iO. As in the previous case, since their construction guarantees a
polynomial security loss, the algorithm E′ makes TE′(n) = poly(TE(n)) = poly(n) oracle queries and
succeeds with probability ϵE′(n) = 1/poly(TE(n) · 4) = 1/poly(n). That is, in this case we have an
oracle-aided algorithm E′ making TE′(n) = poly(n) oracle queries such that∣∣∣∣PrΨ [

ExpiOΨ,iO,E′,C(n) = 1
]
− 1

2

∣∣∣∣ ≥ ϵE′(n)

for infinitely many values of n, where ϵE′(n) = 1/poly(n).
The analysis of this case proceeds as in the proof of Theorem 4.2. Specifically, Definition 4.20

states that there are two possible sub-cases to consider: E′ can be used in a black-box manner by
M either for breaking the functional encryption scheme Π, or for inverting the one-way permutation
f . In the first sub-case, we obtain from Definition 4.20 that∣∣∣∣PrΨ [

ExpFE
Ψ,Π,ME′ ,C(n) = 1

]
− 1

2

∣∣∣∣ ≥ ϵM
(
TE′(n) · ϵ−1E′ (n)

)
,

where M runs in time TM (n). The algorithm M may invoke E′ on various security parameters
(i.e., in general M is not restricted to invoking E′ only on security parameter n), and we denote by
ℓ(n) the maximal security parameter on which M invokes E′ (when M itself is invoked on security
parameter n). Thus, viewing ME′ as a single algorithm, its number of queries TME′ (n) to the
oracle Ψ satisfies TME′ (n) ≤ TM (n) · TE′(ℓ(n)) (this follows since M runs in time TM (n) and in
each step of its execution it may query Ψ directly at most once or invoke E′ at most once where
each such invocation results in at most TE′(ℓ(n)) queries to Ψ). Theorem 4.4 then implies that
either 2n/4 ≤ TME′ (n) or ϵM

(
TE′(n) · ϵ−1E′

)
≤ 2−n/4. Now, since TE′(n) and ϵ−1E′ (n) are some fixed

polynomials in n, and since ℓ(n) ≤ TM (n), as in the proof of Theorem 4.2 we obtain that the security

loss functions TM and ϵM must satisfy TM (n) ≥ 2ζn or ϵM (n) ≤ 2−n
ζ
for some constant ζ > 0.

In the second sub-case, we obtain from Definition 4.20 that

Pr
Ψ

x←{0,1}n

[(
ME′

)Ψ
(f(x)) = x

]
≥ ϵM

(
TE′(n) · ϵ−1E′ (n)

)
,

52



where M runs in time TM (n). As in the first sub-case, viewing ME′ as a single algorithm, its number
of queries TME′ to the oracle Ψ satisfies TME′ (n) ≤ TM (n) · TE′(ℓ(n)). Theorem 4.3 then implies
that either 2n/4 ≤ TME′ (n) or ϵM

(
TE′(n) · ϵ−1E′ (n)

)
≤ 2−n/4. Now, since TE′(n) and ϵ−1E′ (n) are some

fixed polynomials in n, and since ℓ(n) ≤ TM (n), then again as in the proof of Theorem 4.2 we obtain

that the security loss functions TM and ϵM must satisfy TM (n) ≥ 2ζn or ϵM (n) ≤ 2−n
ζ
for some

constant ζ > 0.

References

[AAB+13] S. Agrawal, S. Agrawal, S. Badrinarayanan, A. Kumarasubramanian, M. Prabhakaran,
and A. Sahai. Function private functional encryption and property preserving encryp-
tion: New definitions and positive results. Cryptology ePrint Archive, Report 2013/744,
2013.

[ABG+13] P. Ananth, D. Boneh, S. Garg, A. Sahai, and M. Zhandry. Differing-inputs obfuscation
and applications. Cryptology ePrint Archive, Report 2013/689, 2013.

[ABS+14] P. Ananth, Z. Brakerski, G. Segev, and V. Vaikuntanathan. From selective to adaptive
security in functional encryption. Cryptology ePrint Archive, Report 2014/917, 2014.

[AJ15] P. Ananth and A. Jain. Indistinguishability obfuscation from compact functional en-
cryption. Cryptology ePrint Archive, Report 2015/173, 2015.

[BCC+14] N. Bitansky, R. Canetti, H. Cohn, S. Goldwasser, Y. Tauman Kalai, O. Paneth, and
A. Rosen. The impossibility of obfuscation with auxiliary input or a universal simulator.
In Advances in Cryptology – CRYPTO ’14, pages 71–89, 2014.

[BCP14] E. Boyle, K. Chung, and R. Pass. On extractability obfuscation. In Proceedings of the
11th Theory of Cryptography Conference, pages 52–73, 2014.

[BGI+01] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. P. Vadhan, and
K. Yang. On the (im)possibility of obfuscating programs. In Advances in Cryptol-
ogy – CRYPTO ’01, pages 1–18, 2001.

[BGI+12] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. P. Vadhan, and
K. Yang. On the (im)possibility of obfuscating programs. Journal of the ACM, 59(2):6,
2012.

[BGI14] E. Boyle, S. Goldwasser, and I. Ivan. Functional signatures and pseudorandom func-
tions. In Proceedings of the 17th International Conference on Practice and Theory in
Public-Key Cryptography, pages 501–519, 2014.

[BKS+11] Z. Brakerski, J. Katz, G. Segev, and A. Yerukhimovich. Limits on the power of zero-
knowledge proofs in cryptographic constructions. In Proceedings of the 8th Theory of
Cryptography Conference, pages 559–578, 2011.

[BKS15] Z. Brakerski, I. Komargodski, and G. Segev. From single-input to multi-input functional
encryption in the private-key setting. Cryptology ePrint Archive, Report 2015/158,
2015.

53



[BM07] B. Barak and M. Mahmoody-Ghidary. Lower bounds on signatures from symmetric
primitives. In Proceedings of the 48th Annual IEEE Symposium on Foundations of
Computer Science, pages 680–688, 2007.

[BM09] B. Barak and M. Mahmoody-Ghidary. Merkle puzzles are optimal - An O(n2)-query at-
tack on any key exchange from a random oracle. In Advances in Cryptology – CRYPTO
’09, pages 374–390, 2009.

[BP15] N. Bitansky and O. Paneth. ZAPs and non-interactive witness indistinguishability from
indistinguishability obfuscation. In Proceedings of the 12th Theory of Cryptography
Conference, pages 401–427, 2015.

[BPR14] N. Bitansky, O. Paneth, and A. Rosen. On the cryptographic hardness of finding a
nash equilibrium. Cryptology ePrint Archive, Report 2014/1029, 2014.

[BPW15] N. Bitansky, O. Paneth, and D. Wichs. Perfect structure on the edge of chaos. Cryp-
tology ePrint Archive, Report 2015/126, 2015.

[BS15] Z. Brakerski and G. Segev. Function-private functional encryption in the private-key
setting. In Proceedings of the 12th Theory of Cryptography Conference, pages 306–324,
2015.

[BST14] M. Bellare, I. Stepanovs, and S. Tessaro. Poly-many hardcore bits for any one-way
function and a framework for differing-inputs obfuscation. In Advances in Cryptology
– ASIACRYPT ’14, pages 102–121, 2014.

[BSW11] D. Boneh, A. Sahai, and B. Waters. Functional encryption: Definitions and challenges.
In Proceedings of the 8th Theory of Cryptography Conference, pages 253–273, 2011.

[BV15] N. Bitansky and V. Vaikuntanathan. Indistinguishability obfuscation from functional
encryption. Cryptology ePrint Archive, Report 2015/163, 2015.

[BW13] D. Boneh and B. Waters. Constrained pseudorandom functions and their applications.
In Advances in Cryptology - ASIACRYPT ’13, pages 280–300, 2013.

[BZ14] D. Boneh and M. Zhandry. Multiparty key exchange, efficient traitor tracing, and more
from indistinguishability obfuscation. In Advances in Cryptology – CRYPTO ’14, pages
480–499, 2014.

[Can97] R. Canetti. Towards realizing random oracles: Hash functions that hide all partial
information. In Advances in Cryptology – CRYPTO ’97, pages 455–469, 1997.

[CDN+97] R. Canetti, C. Dwork, M. Naor, and R. Ostrovsky. Deniable encryption. In Advances
in Cryptology – CRYPTO ’97, pages 90–104, 1997.

[CGP15] R. Canetti, S. Goldwasser, and O. Poburinnaya. Adaptively secure two-party com-
putation from indistinguishability obfuscation. In Proceedings of the 12th Theory of
Cryptography Conference, pages 557–585, 2015.

[CLM+13] K. Chung, H. Lin, M. Mahmoody, and R. Pass. On the power of nonuniformity in proofs
of security. In Proceedings of the 4th Innovations in Theoretical Computer Science
Conference, pages 389–400, 2013.

54



[CLP14] K. Chung, H. Lin, and R. Pass. Constant-round concurrent zero-knowledge from indis-
tinguishability obfuscation. Cryptology ePrint Archive, Report 2014/991, 2014.

[CLT+15] R. Canetti, H. Lin, S. Tessaro, and V. Vaikuntanathan. Obfuscation of probabilistic
circuits and applications. In Proceedings of the 12th Theory of Cryptography Conference,
pages 468–497, 2015.

[CTP15] R. Canetti, Y. Tauman Kalai, and O. Paneth. On obfuscation with random oracles. In
Proceedings of the 12th Theory of Cryptography Conference, pages 456–467, 2015.

[DKR15] D. Dachman-Soled, J. Katz, and V. Rao. Adaptively secure, universally composable,
multiparty computation in constant rounds. In Proceedings of the 12th Theory of Cryp-
tography Conference, pages 586–613, 2015.

[DLM+11] D. Dachman-Soled, Y. Lindell, M. Mahmoody, and T. Malkin. On the black-box com-
plexity of optimally-fair coin tossing. In Proceedings of the 8th Theory of Cryptography
Conference, pages 450–467, 2011.

[DMM14] D. Dachman-Soled, M. Mahmoody, and T. Malkin. Can optimally-fair coin tossing
be based on one-way functions? In Proceedings of the 11th Theory of Cryptography
Conference, pages 217–239, 2014.

[GGG+14] S. Goldwasser, S. D. Gordon, V. Goyal, A. Jain, J. Katz, F.-H. Liu, A. Sahai, E. Shi,
and H.-S. Zhou. Multi-input functional encryption. In Advances in Cryptology – EU-
ROCRYPT ’14, pages 578–602, 2014.

[GGH+13] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters. Candidate
indistinguishability obfuscation and functional encryption for all circuits. In Proceedings
of the 54th Annual IEEE Symposium on Foundations of Computer Science, pages 40–
49, 2013.

[GGH+14a] S. Garg, C. Gentry, S. Halevi, and M. Raykova. Two-round secure MPC from indistin-
guishability obfuscation. In Proceedings of the 11th Theory of Cryptography Conference,
pages 74–94, 2014.

[GGH+14b] S. Garg, C. Gentry, S. Halevi, and D. Wichs. On the implausibility of differing-inputs
obfuscation and extractable witness encryption with auxiliary input. In Advances in
Cryptology – CRYPTO ’14, pages 518–535, 2014.

[GGH+14c] S. Garg, C. Gentry, S. Halevi, and M. Zhandry. Fully secure functional encryption
without obfuscation. Cryptology ePrint Archive, Report 2014/666, 2014.

[GGK+05] R. Gennaro, Y. Gertner, J. Katz, and L. Trevisan. Bounds on the efficiency of generic
cryptographic constructions. SIAM Journal on Computing, 35(1):217–246, 2005.

[GGM86] O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions. Journal
of the ACM, 33(4):792–807, 1986.

[GJK+15] V. Goyal, A. Jain, V. Koppula, and A. Sahai. Functional encryption for randomized
functionalities. In Proceedings of the 12th Theory of Cryptography Conference, pages
325–351, 2015.

55



[GP15] S. Garg and A. Polychroniadou. Two-round adaptively secure MPC from indistin-
guishability obfuscation. In Proceedings of the 12th Theory of Cryptography Conference,
pages 614–637, 2015.

[GR14] S. Goldwasser and G. N. Rothblum. On best-possible obfuscation. Journal of Cryptol-
ogy, 27(3):480–505, 2014.

[HHR+15] I. Haitner, J. J. Hoch, O. Reingold, and G. Segev. Finding collisions in interactive
protocols – Tight lower bounds on the round and communication complexities of sta-
tistically hiding commitments. SIAM Journal on Computing, 44(1):193–242, 2015.

[HHS08] I. Haitner, J. J. Hoch, and G. Segev. A linear lower bound on the communication
complexity of single-server private information retrieval. In Proceedings of the 5th
Theory of Cryptography Conference, pages 445–464, 2008.

[HIL+99] J. H̊astad, R. Impagliazzo, L. A. Levin, and M. Luby. A pseudorandom generator from
any one-way function. SIAM Journal on Computing, 28(4):1364–1396, 1999.

[HSW14] S. Hohenberger, A. Sahai, and B. Waters. Replacing a random oracle: Full domain
hash from indistinguishability obfuscation. In Advances in Cryptology – EUROCRYPT
’14, pages 201–220, 2014.

[HW15] P. Hubacek and D. Wichs. On the communication complexity of secure function eval-
uation with long output. In Proceedings of the 6th Conference on Innovations in The-
oretical Computer Science, pages 163–172, 2015.

[IKO05] Y. Ishai, E. Kushilevitz, and R. Ostrovsky. Sufficient conditions for collision-resistant
hashing. In Proceedings of the 2nd Theory of Cryptography Conference, pages 445–456,
2005.

[IR89] R. Impagliazzo and S. Rudich. Limits on the provable consequences of one-way permu-
tations. In Proceedings of the 21st Annual ACM Symposium on Theory of Computing,
pages 44–61, 1989.

[KMN+14] I. Komargodski, T. Moran, M. Naor, R. Pass, A. Rosen, and E. Yogev. One-way func-
tions and (im)perfect obfuscation. In Proceedings of the 55th Annual IEEE Symposium
on Foundations of Computer Science, pages 374–383, 2014.

[KPT+13] A. Kiayias, S. Papadopoulos, N. Triandopoulos, and T. Zacharias. Delegatable pseudo-
random functions and applications. In Proceedings of the 20th Annual ACM Conference
on Computer and Communications Security, pages 669–684, 2013.

[KSY15] I. Komargodski, G. Segev, and E. Yogev. Functional encryption for randomized func-
tionalities in the private-key setting from minimal assumptions. In Proceedings of the
12th Theory of Cryptography Conference, pages 352–377, 2015.

[LPS04] B. Lynn, M. Prabhakaran, and A. Sahai. Positive results and techniques for obfuscation.
In Advances in Cryptology – EUROCRYPT ’04, pages 20–39, 2004.

[MMP14] M. Mahmoody, H. K. Maji, and M. Prabhakaran. On the power of public-key encryption
in secure computation. In Proceedings of the 11th Theory of Cryptography Conference,
pages 240–264, 2014.

56



[MP12] M. Mahmoody and R. Pass. The curious case of non-interactive commitments – On
the power of black-box vs. non-black-box use of primitives. In Advances in Cryptology
– CRYPTO ’12, pages 701–718, 2012.

[Rot11] R. Rothblum. Homomorphic encryption: From private-key to public-key. In Proceedings
of the 8th Theory of Cryptography Conference, pages 219–234, 2011.

[RTV04] O. Reingold, L. Trevisan, and S. P. Vadhan. Notions of reducibility between crypto-
graphic primitives. In Proceedings of the 1st Theory of Cryptography Conference, pages
1–20, 2004.

[Sim98] D. R. Simon. Finding collisions on a one-way street: Can secure hash functions be
based on general assumptions? In Advances in Cryptology – EUROCRYPT ’98, pages
334–345, 1998.

[SW08] A. Sahai and B. Waters. Slides on functional encryption. Available at http://www.

cs.utexas.edu/~bwaters/presentations/files/functional.ppt, 2008.

[SW14] A. Sahai and B. Waters. How to use indistinguishability obfuscation: Deniable en-
cryption, and more. In Proceedings of the 46th Annual ACM Symposium on Theory of
Computing, pages 475–484, 2014.

[Wat14] B. Waters. A punctured programming approach to adaptively secure functional en-
cryption. Cryptology ePrint Archive, Report 2014/588, 2014.

[Wee05] H. Wee. On obfuscating point functions. In Proceedings of the 37th Annual ACM
Symposium on Theory of Computing, pages 523–532, 2005.

[Wee07] H. Wee. One-way permutations, interactive hashing and statistically hiding commit-
ments. In Proceedings of the 4th Theory of Cryptography Conference, pages 419–433,
2007.

57

http://www.cs.utexas.edu/~bwaters/presentations/files/functional.ppt
http://www.cs.utexas.edu/~bwaters/presentations/files/functional.ppt

	Introduction
	Our Contributions
	Related Work
	Paper Organization

	Preliminaries
	Indistinguishability Obfuscation
	Private-Key Functional Encryption
	Collision-Resistant Hashing
	Key-Agreement Protocols

	Limits on the Power of Indistinguishability Obfuscation
	The Class of Reductions
	Proof Overview and the Oracle Gamma
	Breaking Any Collision-Resistant Function Family Using Gamma
	iO is an Indistinguishability Obfuscator Relative to Gamma
	From Distinguishing to Hitting
	Avoiding Hits
	From Hitting to Compressing

	f is a One-Way Permutation Relative to Gamma
	Avoiding Hits
	From Inverting to Compressing
	Extension to Trapdoor Permutations


	Limits on the Power of Private-Key Functional Encryption
	The Class of Reductions
	Proof Overview and the Oracle Psi
	f is a One-Way Permutation Relative to Psi
	Pi is a Functional Encryption Scheme Relative to Psi
	Simulating the Decryption Oracle
	From Distinguishing to Hitting
	Concluding the Proof

	Breaking Any Perfectly-Complete Bit-Agreement Protocol Using Psi
	Warm-up: Breaking Perfectly-Complete Bit Agreement Relative to f
	Breaking Perfectly-Complete Bit Agreement Relative to Psi

	Extending the Result to Indistinguishability Obfuscation

	References

