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Abstract

We construct a general multiparty computation (MPC) protocol with only two rounds of
interaction in the common random string model, which is known to be optimal. In the honest-
but-curious setting we only rely on the learning with errors (LWE) assumption, and in the
fully malicious setting we additionally assume the existence of non-interactive zero knowledge
arguments (NIZKs). Previously, Asharov et al. (EUROCRYPT ’12) showed how to achieve
three rounds based on LWE and NIZKs, while Garg et al. (TCC ’14) showed how to achieve
the optimal two rounds based on indistinguishability obfuscation, but it was unknown if two
rounds were possible under standard assumptions without obfuscation.

Our approach relies on multi-key fully homomorphic encryption (MFHE), introduced by
Lopez-Alt et al. (STOC ’12), which enables homomorphic computation over data encrypted
under different keys. We present a construction of MFHE based on LWE that significantly
simplifies a recent scheme of Clear and McGoldrick (CRYPTO ’15). We then extend this
construction to allow for a one-round distributed decryption of a multi-key ciphertext. Our
entire MPC protocol consists of the following two rounds:

1. Each party individually encrypts its input under its own key and broadcasts the ciphertext.
All parties can then homomorphically compute a multi-key encryption of the output.

2. Each party broadcasts a partial decryption of the output using its secret key. The partial
decryptions can be combined to recover the output in plaintext.
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1 Introduction

Multiparty Computation. Secure multiparty computation (MPC) allows multiple parties to
evaluate an arbitrary function over their inputs privately, without revealing anything about their
inputs to each other beyond the function’s output. This problem was initially studied by Yao
[Yao82, Yao86], in the case of two honest-but-curious parties (who follow the protocol honestly
but hope to learn information from its execution) and later by Goldreich, Micali and Wigderson
[GMW87] in the case of an arbitrary number of fully malicious parties (who can deviate arbitrarily
from the specified protocol execution). By now, MPC is a fundamental part of cryptography and
a subject of intense study.

One of the main challenges is to optimize the efficiency of MPC protocols. In this work, our
main focus will be on constructing MPC protocols with the optimal round complexity. 1

Round Complexity of MPC. We refer the reader to [AJLA+12] for a comprehensive overview
of prior work on round complexity of MPC. In the honest-but-curious setting, it was known how to
achieve a constant number of rounds assuming the existence of oblivious transfer [BMR90, IK00,
Lin01, KOS03, AIK05]. However, the concrete constants were not explicitly stated and they seem
to require at least 4 rounds. These protocols can also be compiled into secure constructions in the
fully malicious setting with only a constant number of additional rounds by using coin-flipping and
concurrent zero-knowledge proofs [Lin01, KOS03, Goy11, LP11]. In the plain model and the fully
malicious setting, there is a known lower bounds of 5 rounds for two party computation2, albeit
in non-simultaneous message model where no broadcast channel is available [KO04]. A recent
work [GMPP15] shows a similar lower bound of 4 rounds assuming broadcast channel. However, in
the honest-but-curious setting or even in the fully malicious setting with a common random string
(CRS) the above lower bound does not hold and there is only a simple lower bound of 2 rounds
[HLP11]. In this work, we will assume the CRS model.

Recently, a result of Asharov et al. [AJLA+12] showed how to achieve a 3 round MPC protocol
in the CRS model, by relying on techniques from fully homomorphic encryption (FHE). Their
construction achieves semi-honest security under the learning with errors (LWE) assumption, and
fully malicious security (in the universal composability (UC) framework) by further assuming the
existence of non-interactive zero knowledge arguments (NIZKs). The construction also yields a 2
round protocol in the public-key infrastructure (PKI) model, but it was left as an open problem to
achieve 2 rounds in the CRS model.

Even more recently, the results of Garg et al. [GGHR14, GP15] achieve a 2 round MPC protocol
in the CRS model by relying on indistinguishability obfuscation (iO) and statistically sound NIZKs.
On a high level, the main idea of that work is to have each party obfuscates its “next-message”
function, after an initial round where the parties commit to their input. Making this work under the
iO assumption is non-trivial and requires much care. However, this approach appears to crucially
rely on obfuscation and does not easily lend itself to instantiations under simpler assumptions.

1We assume a broadcast communication channel and in each round of a protocol all parties broadcast a message
to all other parties. Each honest party must broadcast their round i message right away prior to receiving the round
i messages of other parties. On the other hand, we assume a “rushing” adversary that can wait to collect the round
i messages of all honest parties prior to selecting the round i messages of the corrupted parties.

2They consider a model where broadcast channel is not present, in that only one party sends a message to another
and in a round parties are not allowed to send messages simultaneously.
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The main open question left by these works is whether 2 round MPC is achievable under more
“standard” cryptographic assumptions, without relying on obfuscation.

Our Result. In this work, we construct a 2 round MPC protocol in the CRS model. We achieve
honest-but-curious security under only the LWE assumption, and fully malicious security (in the
UC framework) by additionally assuming the existence of NIZKs. As our main technical result,
which may be of independent interest, we show how to construct a multi-key fully homomorphic
encryption scheme with a one-round threshold decryption protocol.

2 Overview of Our Techniques

We now give an overview of our techniques by first describing how to construct MPC from multi-key
FHE with threshold decryption, and then how to construct the latter from LWE.

2.1 MPC via Threshold (Multi-Key) FHE

MPC via Threshold FHE. We begin with the approach of Asharov et al. [AJLA+12] (variants
of which were used in many preceding works [FH96, JJ00, CDN01, DN03, BD10, BDOZ11, MSS11])
for constructing MPC based on fully homomorphic encryption (FHE). At a high level, this approach
is based on the following simple template:

1. The parties first run a secure distributed protocol for the “threshold key-generation” of an
FHE scheme to agree on a common public key pk and a secret sharing of the corresponding
secret key sk so that each party holds one share, and all shares are needed to recover sk.

2. Each party i then broadcasts an encryption of its input xi under the common public key
pk. Note that no individual party or incomplete set of parties can decrypt this ciphertext
and so the privacy of the input is maintained. At the end of this round, each party can
homomorphically compute the desired function f on the received ciphertexts and derive a
common output ciphertext which encrypts y = f(x1, . . . , xN ).

3. The parties run a secure distributed protocol for “threshold decryption” using their shares of
the secret key sk to decrypt the output ciphertext and recover the output y in plaintext.3

Secure protocols for threshold key-generation and decryption can be implemented generically
for any FHE scheme by using general MPC techniques, but this would require many rounds.
Instead [AJLA+12] show that specific FHE schemes by Brakerski, Gentry and Vaikuntanathan
[BV11, BGV12] based on the LWE assumption have a “key homomorphic” property which can be
leveraged to get distributed key-generation and decryption protocols consisting of one round each.
Therefore, when instantiated with these schemes, the above template results in a 3 round MPC
protocol.4

3Throughout this work, we use the term “threshold” to denote distributed schemes where all parties are needed
to perform an operation and security is maintained from any incomplete subset of parties.

4We note that one the main challenges in the work of [AJLA+12] is to implement the threshold generation of the
FHE “evaluation key” which has a complex structure in the FHE schemes of [BV11, BGV12]. This could be vastly
simplified using a more recent FHE scheme of Gentry-Sahai-Waters [GSW13] which does not require an evaluation
key. However, this would still not improve the final round complexity of the MPC construction below 3 rounds.
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MPC via Threshold Multi-Key FHE. One could hope to shave off an additional round from
the above template by using multi-key fully homomorphic encryption (MFHE), recently introduced
by Lopez-Alt, Tromer and Vaikuntanathan [LTV12]. An MFHE schemes allows parties to indepen-
dently encrypt their data under different individually chosen keys, while still allowing homomorphic
computations over such ciphertexts. The output of such homomorphic computation is a “multi-
key ciphertext” which cannot be decrypted by any single party individually (as this would violate
semantic security of the other parties) but can be decrypted by the parties jointly using the com-
bination of all their secret keys. The work of [LTV12] constructed such an MFHE scheme based
on (a variant of) the NTRU assumption.

Using MFHE, we naturally get the following simplified template for MPC:

1. Each party individually chooses its own MFHE key pair (pki, ski), encrypts its input xi
under pki, and broadcasts the resulting ciphertext. At the end of this round, each party can
homomorphically compute the desired function f on the received ciphertexts and derive a
common multi-key ciphertext which encrypts the output y = f(x1, . . . , xN ).

2. The parties run a secure distributed protocol for “threshold decryption” using their secret
keys ski to decrypt the multi-key ciphertext and recover the output y in plaintext.

As before, a distributed threshold decryption can be implemented generically using general MPC
techniques, but this would require many rounds. Unfortunately, the MFHE scheme of [LTV12]
does not appear to admit any simpler threshold decryption protocol and therefore it is not known
how to use this scheme to get a 2 round MPC.

A recent work of Clear and McGoldrick [CM15] gives an alternate construction of MFHE
based on the LWE assumption, by cleverly adapting an FHE scheme of Gentry, Sahai and Waters
[GSW13]. We first present a significantly simplified construction of MFHE from LWE and give a
stand-alone presentation of this scheme. We then show that this scheme admits a simple 1-round
threshold decryption protocol. This threshold decryption protocol only satisfies a weak notion of
security which doesn’t allow us to directly plug it into the above template for MPC. However, we
show that we can make this approach work with only minor additional modifications.

As in [AJLA+12], we show that our basic scheme (based on LWE) achieves security in semi-
malicious setting, which is a strengthening of the honest-but-curious setting, where parties follow
the protocol specification but can choose their random coins adversarially. By using NIZKs, we
can then compile such a scheme into one which is secure in the fully malicious setting (and even
universally composable) without additional rounds.

2.2 Constructing Threshold Multi-Key FHE

We now give a high-level description of the MFHE construction and the threshold decryption
protocol. We begin by describing a recent FHE construction by Gentry, Sahai and Waters (GSW)
[GSW13] using the notation and exposition of [AP14]. Then describe how to convert it into a
MFHE scheme. Finally, we discuss how to perform threshold decryption.

Public Short Preimage Matrix. Before we describe the GSW encryption, we state a useful
fact from [MP12] which we heavily rely on in the construction.

Lemma 2.1 ([MP12]). For any m ≥ ndlog qe there exists a fixed efficiently computable matrix
G ∈ Zn×mq and an efficiently computable deterministic “short preimage” function G−1(·) satisfying
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the following. On input a matrix M ∈ Zn×m′q for any m′, the function G−1(M) outputs a bit-matrix

G−1(M) ∈ {0, 1}m×m
′

such that GG−1(M) = M.

We can think of G as a special matrix with a “public trapdoor” that allows us to solve the
short integer solution (SIS) problem. For those familiar with GSW encryption, multiplication by
G is the BitDecomp−1 operation and the function G−1(·) is called BitDecomp, but we can ignore
the low-level detail of how this is implemented. Note that G−1(·) is not itself a matrix but rather
an efficiently computable function.

Gentry-Sahai-Waters (GSW) FHE. Firstly, choose a random public matrix B ∈ Z(n−1)×m
q

where m = O(n log q). We can think of this as a common public parameter used by all parties. A
public/secret key pair is chosen by selecting a random vector s ∈ Zn−1

q and setting b = sB + e
where e is some short “error vector”. We set the secret key to t = (−s, 1) ∈ Znq and the public key
to the matrix

A :=

[
B
b

]
∈ Zn×mq

which ensures that tA = e ≈ 0 (throughout the introduction, we use ≈ to hide “short” values).
A valid GSW ciphertext of a bit µ ∈ {0, 1} with respect to a secret key t is a matrix C ∈ Zn×mq

such that tC ≈ µtG. To encrypt a bit µ using the public key A we set C = AR + µG where
R ∈ {0, 1}m×m is chosen as a random bit-matrix. This ensures that the result is a valid encryption
of µ under the secret key t since tC = tAR + µtG ≈ µtG.

Given two valid GSW ciphertexts C1,C2 encrypting the bits µ1, µ2 with respect to a secret key
t we can perform homomorphic addition by setting C+ = C1 + C2 and multiplication by setting
C× = C1G

−1(C2). It is a simple exercise to check that tC+ ≈ (µ1 +µ2)tG and tC× ≈ (µ1µ2)tG.
This allows us to homomorphically evaluate any circuit, subject to the error not getting “too large”.

Finally, to decrypt a ciphertext C we set w := (0, . . . , 0, dq/2e) and compute v = tCG−1(wT ).
If C is a valid encryption of µ under t then v ≈ µdq/2e. We recover µ by checking whether v is
closer to 0 or to q/2.

Multi-Key variant of GSW. We now describe how to convert the above GSW FHE into a
multi-key FHE. For simplicity, let’s assume that we only have N = 2 parties, but everything
extends naturally to any polynomial number of parties N . We assume that the matrix B of the
GSW encryption scheme is a common public parameter which is used by all parties.

The two parties choose independent GSW secret keys t1 = (−s1, 1), t2 = (−s2, 1) and compute
the corresponding public key components b1 = s1B + e1 and b2 = s2B + e2 using the common
(and random) B. We let

A1 :=

[
B
b1

]
, A2 :=

[
B
b2

]
be the two GSW public keys for parties 1 and 2 respectively.

Now assume that the two parties independently encrypt some data under their respective keys.
Unfortunately, we will not get anything meaningful by naively attempting to perform the GSW
homomorphic operations on these ciphertexts under different keys. Instead, our goal will be to
first convert both ciphertexts into a “common format” that will allow us to perform homomorphic
operations over them.
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In particular, we define a “combined secret key” t̂ = (t1, t2) ∈ Z2n
q as the concatenation of the

two individual secret keys. Our goal will be to take a ciphertext C ∈ Zn×mq which encrypts a bit
µ with respect to the secret key of a single party (along with some helper information specified
later) and expand it into multi-key ciphertext Ĉ ∈ Z2n×2m

q which encrypts µ with respect to

the combined secret key t̂. In particular, a multi-key encryption of a bit µ satisfies t̂Ĉ ≈ µt̂Ĝ

where Ĝ =

[
G 0
0 G

]
∈ Z2n×2m

q is an expanded public matrix with a corresponding short preimage

function Ĝ−1(·). Once we do this, we can expand all ciphertexts under individual keys into multi-key
ciphertexts under the key t̂ and then perform homomorphic operations on the multi-key ciphertexts
just like in basic GSW scheme (just with larger parameters n′ = 2n,m′ = 2m). Therefore, the only
challenge is how to perform the above “ciphertext expansion step”.

Ciphertext Expansion. To perform ciphertext expansion, we use a new primitive called “mask-
ing scheme” introduced by Clear and McGoldrick in [CM15]. Let C be a GSW encryption of some
bit µ. A masking scheme allows party 1 to create some additional helper information U about the
ciphertext C at encryption time and release the tuple (U ,C) while keeping the semantic security
of the message intact. This information is completely independent of party 2 whose identity is
unknown at encryption time. Later, if we are given the public key A2 for party 2, we can use the
information U to create a matrix X such that t1X + t2C ≈ µt2G where t2 is the secret key of
party 2. This allows us to perform ciphertext expansion by creating the expanded ciphertext:

Ĉ =

[
C X
0 C

]
so that,

t̂Ĉ = [ t1C , t1X + t2C ] ≈ [ µt1G, µt2G ] = µt̂Ĝ.

We can similarly expand the individually created ciphertexts of party 2 and then perform GSW
style homomorphic operations on the expanded ciphertexts.5 Therefore, the only thing left to do
is to construct such a “masking scheme” which we briefly describe below.

A Masking Scheme for GSW. The masking scheme consists of party 1 creating tuple (U ,C)
where C is a GSW encryption of the message µ under its own public key pk1 = A1 so that

C := A1R + µG =

[
BR
b1R

]
+ µG

for some random matrix R ∈ {0, 1}m×m. The additional helper information U consists of m2 GSW
encryptions of each of the scalars {R[a, b]}a∈[m],b∈[m] under the public key pk1. It is easy to show
that the pair (U ,C) computationally hides µ by relying on semantic security of the GSW scheme.

Later, assume we are given the public key A2 :=

[
B
b2

]
for party 2, corresponding to a secret

key t2 = (−s2, 1). Then

t2C = −s2BR + b1R + µt2G ≈ (b1 − b2)R + µt2G

5In the actual scheme involving N parties we first expand the single-key ciphertext of each party into a multi-key
ciphertext (under the concatenated keys of all the parties) and subsequently perform homomorphic operations on the
expanded ciphertexts.
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since b2 ≈ s2B. The value t2C corresponds to decrypting the GSW ciphertext C with the “incor-
rect” secret key t2 and it yields the correct value µt2G except that it is “masked” by the additional
term (b1 − b2)R.

Our goal is to come up with a matrix X for which t1X ≈ (b2 − b1)R and therefore adding
t1X + t2C ≈ µt2G as desired. One can do this by homomorphically combining the m2 ciphertexts
contained in U , which encrypt each of the scalars R[a, b] of the matrix R under t1, to get a
“pseudo ciphertext” X which acts like an encryption of the vector (b2 − b1)R in the sense that
t1X ≈ (b2 − b1)R. This is not a standard homomorphic operation yielding a standard ciphertext
– for example, the output is a vector rather than a scalar – but the idea for how to do this is very
similar to the way we do standard GSW homomorphic operations. We skip the details of this step
in the introduction, and refer the reader to Section 5.1.1 for details.

Threshold Decryption of Multi-Key GSW. A multi-key GSW ciphertext encrypting a bit
µ with respect to the expanded secret key t̂ = (t1, . . . , tN ) corresponding to N parties, is a matrix
Ĉ ∈ ZnN×mNq such that t̂Ĉ ≈ µt̂Ĝ.

If we were given all of the secret keys t̂ = (t1, . . . , tN ) simultaneously, we could decrypt this
ciphertext using the GSW decryption procedure, scaled up to the larger dimension: let ŵ =
(0, . . . , 0, dq/2e) ∈ ZnNq and compute v = t̂ĈĜ−1(ŵT ) ≈ µdq/2e.

However, our goal is to design a distributed decryption protocol, where the parties collabora-
tively decrypt µ without revealing their secret keys to each other. We do this as follows. Let’s
think of Ĉ as consisting of N matrices Ĉ(i) ∈ Zn×mNq stacked on top of each other. Then each

party i uses its secret key ti to output a “partial decryption” pi = tiĈ
(i)Ĝ−1(ŵT ) + ei where ei is

some “medium-sized smudging error”. This error is needed to smudge out any information about
the error contained in the ciphertext Ĉ, which might contain sensitive information beyond just the
plaintext bit. These partial decryptions can be combined to compute

∑
i pi ≈ v ≈ µdq/2e and

therefore recover the plaintext bit µ.
The above process satisfies the following security notion: given the ciphertext Ĉ, the bit µ that

it encrypts, and the secret keys {ti : i 6= j} of all-but-one of the parties, we can simulate the
partial decryption pj of party j without knowing its secret key tj . Intuitively, this property says
that the partial decryption pj cannot reveal too much information about tj .

The above security property of partial decryption is tricky to use since it allows us to simulate
the partial decryption of only one party at a time. Nevertheless, we show that this security property
of threshold decryption is sufficient in the context of implementing MPC.

2.3 Road-Map Through the Paper

We begin by giving a definition of multi-key FHE (MFHE) first and then MFHE with threshold
decryption in Section 4. Then in Section 5 we construct such a scheme from the LWE assumption
and in Section 6 we show how to construct MPC from such a scheme. These two sections are
independent of each other and can be read in any order. The construction of MFHE with threshold
decryption in Section 5 follows in four parts. First, we present the GSW encryption scheme along
with a non-standard but useful homomorphic property that it satisfies. Secondly, we define the
notion of a masking scheme for GSW and show how to construct it. Thirdly, we use GSW and the
masking scheme to construct multi-key FHE. Finally, we show how to perform threshold decryption
for such scheme.
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3 Preliminaries

Throughout, we let λ denote the security parameter and negl(λ) denote a negligible function. We
represent elements in Zq as integers in the range (−q/2, q/2]. Let x = (x1, . . . , xn) ∈ Zn be a
vector. We use the notation x[i] to denote the ith component scalar. Similarly for a matrix
M ∈ Zn×m we use M[i, j] to denote the scalar element located in the i-th row and the j-th column.
In general, vectors are represented as single row matrices. The infinity norm (often called simply
norm) of a vector x is defined as ‖x‖∞ = maxi(|x[i]|). The norm of matrices is defined similarly.
An n-dimensional all-zero vector is usually denoted by 0n and similarly 0n×m denotes an all-zero
matrix.

For two distributions X,Y , over a finite domain Ω, the statistical distance between X and Y is

defined by ∆(X,Y )
def
= 1

2

∑
ω∈Ω |X(ω)− Y (ω)|. If X,Y are distribution ensembles parameterized

by the security parameter, we write X
stat
≈ Y if the quantity ∆(X,Y ) is negligible. Similarly, we

write X
comp
≈ Y if they are computationally indistinguishable. We write ω ← X to denote that ω

is sampled at random according to distribution X. We write ω ← Ω to denote that it is sampled
uniformly at random from the set Ω. For a distribution ensemble χ = χ(λ) over the integers, and
integers bounds B = B(λ), we say that χ is B-bounded if Prx←χ(λ)[|x| ≤ B(λ)] = 1.

We rely on the following lemma, which says that adding large noise “smudges out” any small
values (see e.g.,[AJW11] for proof).

Lemma 3.1 (Smudging Lemma). Let B1 = B1(λ), and B2 = B2(λ) be positive integers and let
e1 ∈ [−B1, B1] be a fixed integer. Let e2 ← [−B2, B2] be chosen uniformly at random. Then the
distribution of e2 is statistically indistinguishable from that of e2 + e1 as long as B1/B2 = negl(λ).

Learning With Errors. The decisional learning with errors ( LWE) problem, introduced by
Regev [Reg05], is defined as follows.

Definition 3.2 (LWE [Reg05]). Let λ be the security parameter, n = n(λ), q = q(λ) be integers
and let χ = χ(λ), be distributions over Z. The LWEn,q,χ assumption says that for any polynomial
m = m(λ) we have

(A, sA + e)
comp
≈ (A, z)

where A← Zn×mq , s← Znq , e← χm and z← Zmq .

The works of [Reg05, Pei09] show that the LWE problem is as hard as approximating the shortest
vector problem in lattices (for appropriate parameters). The version of the LWE assumption that
we need here is that for any polynomial p = p(λ) there is a polynomial n = n(λ), a modulus
q = q(λ) of singly-exponential size, and a distribution χ = χ(λ) such that χ is Bχ-bounded and
q ≥ 2pBχ such that LWEn,q,χ holds. This is as hard as approximating the shortest vector with
sub-exponential approximation factors.

4 Defining Threshold Multi-Key FHE

4.1 Multi-Key FHE (MFHE)

We start with our definition of (leveled) multi-key FHE which is adapted from the definition given
by Lopez-Alt, Tromer and Vaikuntanathan [LTV12] with some minor differences which reflect
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differences in the properties achieved by the schemes of [LTV12] and [CM15]. On the positive side,
in the scheme of [CM15] the number of parties N need not be known ahead of time during key
generation or encryption. On the negative side, the scheme of [CM15] requires some common public
parameters that are available to the parties during key generation.

Below we call any ciphertext which is associated with multiple keys an “expanded” ciphertext.
Also, the ciphertexts that are generated by the encryption procedure (and thus corresponds to a
single key) are called “fresh” ciphertexts, and the expanded ciphertexts that are output by the
homomorphic evaluations are called “evaluated” ciphertexts.

Definition 4.1. (Multi-key (Leveled) FHE) A multi-key (leveled) FHE is a tuple of algorithms
MFHE = (Setup,Keygen,Encrypt,Expand,Eval,Decrypt) described as follows:

• params ← Setup(1λ, 1d): Setup takes as input the security parameter λ and the circuit depth
d and outputs the system parameters params. We assume that all the other algorithms take
params as an input implicitly.

• (sk, pk)← Keygen(params): Output secret key sk and public key pk.

• c← Encrypt(pk, µ): On input pk and some message µ output a ciphertext c.

• ĉ ← Expand((pk1, . . . , pkN ), i, c): Given a sequence of N public-keys and a fresh ciphertext c
under the i-th key pki, it outputs an “expanded” ciphertext ĉ.

• ĉ := Eval(params, C, (ĉ1, . . . , ĉ`)): Given a (description of ) boolean circuit C of depth ≤ d
along with ` expanded ciphertexts (ĉ1, . . . , ĉ`), outputs an evaluated ciphertext ĉ.

• µ := Decrypt(params, (sk1, . . . , skN ), c): On input some ciphertext ĉ and a sequence of N
secret keys output a message µ.

We require the following properties:

Semantic security of encryption: For any polynomial d = d(λ) and any two messages µ0, µ1

the following distributions are computationally indistinguishable:

(params, pk,Encrypt(pk, µ0))
comp
≈ (params, pk,Encrypt(pk, µ1))

where params← Setup(1λ, 1d), (sk, pk)← Keygen(params).

Correctness and compactness: Let params ← Setup(1λ, 1d). Consider any sequences of N
correctly generated key pairs {(pki, ski) ← Keygen(params)}i∈[N ] and any `-tuple of mes-
sages (µ1, . . . , µ`). For any sequence of indices (I1, . . . , I`) where each Ii ∈ [N ] let {ci ←
Encrypt(pkIi , µi)}i∈[`] be encryptions of the messages µi under the Ii-th public key and let
ĉi ← Expand((pk1, . . . , pkN ), Ii, ci)}i∈[`] be the corresponding expanded ciphertexts. Let C be
any (boolean) circuit of depth ≤ d and let ĉ := Eval(C, (ĉ1, . . . , ĉ`) be the evaluated ciphertext.
Then the following holds:

Correctness of Expansion: ∀ i ∈ [`] , Decrypt((sk1, . . . , skN ), ĉi) = µi.

Correctness of Evaluation: Decrypt((sk1, . . . , skN ), ĉ) = C(µ1, . . . , µ`).

Compactness: There exists a polynomial p(· · · ) such that |ĉ| ≤ p(λ, d,N). In other words
the size of ĉ should be independent of C and `, but can depend on λ, d and N .
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Public-Coin Parameter Generation. By default, we will consider schemes where the Setup al-
gorithm is “public-coin” meaning that its randomness is included in its output. For such algorithms,
we can derive params from a common random string.

4.2 Threshold Decryption for MFHE

We now define a multi-key FHE which supports a one-round threshold distributed decryption
protocol. Such a protocol consists of two components: (1) given an expanded ciphertext (possibly
evaluated) ĉ each party can compute a partial decryption using its secret key ski, (2) there is a
way to combine the partial decryptions computed by each party to recover the plaintext.

Definition 4.2. A Threshold multi-key FHE scheme (TMFHE) is a multi-key FHE scheme with two
additional algorithms MFHE.PartDec,MFHE.FinDec described as follows:

• pi ← MFHE.PartDec(ĉ, (pk1, . . . , pkN ), i, ski): On input an expanded ciphertext under a se-
quence of N keys and the i-th secret key output a partial decryption pi.

• µ← MFHE.FinDec(p1, . . . , pN ): On input N partial decryption output the plaintext µ.

Along with the properties of multi-key FHE we require the scheme to satisfy the following properties.

Correctness and Simulation: Let params ← Setup(1λ, 1d). Consider any sequences of N cor-
rectly generated key pairs {(pki, ski) ← Keygen(params)}i∈[N ] and any `-tuple of messages
(µ1, . . . , µ`). For any sequence of indices (I1, . . . , I`) where each Ii ∈ [N ] let {ci ← Encrypt(pkIi , µi)}i∈[`]

be encryptions of the messages µi under the Ii-th public key and let ĉi ← Expand((pk1, . . . , pkN ), Ii, ci)}i∈[`]

be the corresponding expanded ciphertexts. Let C be any (boolean) circuit of depth ≤ d and let
ĉ := Eval(C, (ĉ1, . . . , ĉ`) be the evaluated ciphertext.

Correctness of Decryption: The following holds with probability 1:

MFHE.FinDec(ĉ, (p1, . . . , pN )) = C(µ1, . . . , µ`)

where {pi ← MFHE.PartDec(ĉ, (pk1, . . . , pkN ), i, ski)}i∈[N ] are the partial decryptions.

Simulatability of partial decryption: There exists a PPT simulator Sthr which, on
input and index i ∈ [N ] and all but the i-th keys {skj}j∈[N ]\{i} the evaluated ciphertext
ĉ and the output message µ := C(µ1, . . . , µ`) produces a simulated partial decryption
p′i ← Sthr(µ, ĉ, i, {skj}j∈[N ]\{i}) such that

pi
stat
≈ p′i

where pi ← MFHE.PartDec(ĉ, (pk1, . . . , pkN ), i, ski). Note that the randomness is only
over the random coins of the simulator and the MFHE.PartDec procedure and all other
values are assumed to be fixed (and known).

The simulatability of partial decryptions property says that we can simulate the partial de-
cryption pi produced by a single party i given the plaintext value µ and the secret keys of all
other parties. Ideally, we would have a stronger definition that allows us to simulate the partial
decryptions {pi}i∈S of any subset of the parties S given the secret keys of all other parties (rather
than just a single values), but unfortunately we do not know how to achieve this type of security. It
turns out that, with a little additional work, the given definition suffices in our MPC construction.
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5 Constructing Threshold Multi-Key FHE from LWE

We now show how to construct threshold multi-key FHE from LWE. The construction proceeds in
four parts. First, we present the GSW encryption scheme along with a non-standard but useful
homomorphic property that it satisfies. Secondly, we define the notion of a masking scheme for
GSW and show how to construct it. Thirdly, we use GSW and the masking scheme to construct
multi-key FHE. Finally, we show to perform threshold decryption for this scheme.

5.1 GSW Fully Homomorphic Encryption

We now describe the GSW fully homomorphic encryption scheme.

• params ← GSW.SetUp(1λ, 1d): Choose a lattice dimension parameters n = n(λ, d) and Bχ-
bounded error distribution χ = χ(λ, d) and a modulus q of size q = Bχ2ω(dλ log λ) such that
LWEn−1,q,χ,Bχ holds.6 Choose m = n log(q) + ω(log λ). Finally choose a random matrix
B ∈ Zn−1×m

q . Output params := (q, n,m, χ,Bχ,B). We stress that all the other algorithms
implicitly get params as input even if we usually do not write this explicitly.

• GSW.Keygen(params) : We separately describe two sub-algorithms to generate secret-key and
pubic-key respectively:

– GSW.SKGen(params): Sample s
$← Zn−1

q . Output sk = t = (−s, 1) ∈ Znq .

– GSW.PKGen(params, sk): Sample e ← χm. Set b := sB + e ∈ Zmq . Output pk = A

where, A ∈ Zn×mq is defined as A :=

[
B
b

]
• GSW.Encrypt(pk, µ): Choose a short random matrix as the randomness R

$← {0, 1}m×m.
Then output the encryption of message µ ∈ {0, 1} as C ∈ Zn×mq where,

C := AR + µG

• GSW.Decrypt(sk,C): Let t := sk. Define a vector w ∈ Znq as follows:

w = [0, . . . , 0, dq/2e]

Then compute v = tCG−1(wT ) ∈ Zmq . Finally output µ′ =
∣∣∣⌊ v
q/2

⌉∣∣∣ as the decrypted message.

• On input two ciphertexts C1,C2 ∈ Zn×mq we can define homomorphic addition, multiplication:

– GSW.Add(C1,C2): Output C1 + C2 ∈ Zn×mq .

– GSW.Mult(C1,C2): Output the matrix product C1G
−1(C2) ∈ Zn×mq .

This also allows us to compute a homomorphic NAND gate by outputting G−C1G
−1(C2).

We sketch the proof of the following theorem for completeness.

Theorem 5.1 ([GSW13]). The scheme described above is a secure FHE under the LWEn−1,q,χ,Bχ

assumption.

6The size of q here is bigger than needed for GSW encryption alone in order to support our extensions.

11



Security. The proof of semantic security consists of two steps. First, we can use the LWE
assumption to replace the public key pk = A with a uniformly random matrix in Zn×mq . Then we
can use the leftover hash lemma to replace the ciphertext C := AR+µG with a uniformly random
value C′. We refer the reader to [GSW13] for details.

Correctness. To analyze correctness, it is helpful to define the following notion of a “noisy
ciphertext”.

Definition 5.2. (β-noisy ciphertext) A β-noisy ciphertext of some message µ under secret-key
sk = t ∈ Znq is a matrix C ∈ Zn×mq such that: tC = µtG + e for some e with ‖e‖∞ ≤ β.

Encryption: Consider a fresh ciphertext C = AR + µG which is generated by encrypting
some message µ with some public key A with corresponding secret key t. First recall that
tA = e such that ‖e‖∞ ≤ Bχ. Therefore tC = e′ + µtG where e′ = eR which implies
‖e′‖∞ ≤ mBχ. Hence C is mBχ-noisy encryption of µ under t. Let us call this value initial
noise or βinit = mBχ.

Evaluation: Let C1 and C2 be two ciphertexts which are β1 and β2 noisy encryption of µ1, µ2 ∈
{0, 1} under the key t respectively, so that: tC1 = e1 + µ1tG and tC2 = e2 + µ2tG with
‖e1‖∞ ≤ β1, ‖e2‖∞ ≤ β2.

• Addition: Then their addition will result in a ciphertext C(+) = C1 + C2 such that,
tC(+) = e′ + (µ1 + µ2)tG where e′ = e1 + e2. Clearly this is β1 + β2-noisy.

• Multiplication: On the other hand the multiplication would produce a ciphertext C(×) =
C1G

−1(C2) such that tC(×) = e′′ + µ1µ2G where e′′ = eG−1(C2) + µ1e2. Clearly
‖e′′‖∞ ≤ (mβ1 + β2) and the ciphertext C(×) is (mβ1 + β2)-noisy. The same calculation
holds for NAND gates.

Decryption: Let C be a β-noisy encryption of µ so that: tC = e + µtG where ‖e‖∞ = β. Then
v = tCG−1(wT ) = e′+µ(q/2) such that e′ = 〈e , G−1(wT )〉. Clearly, ‖e′‖∞ ≤ mβ. Now one
can observe that decryption works correctly as long as ‖e′‖∞ < q/4. Therefore correctness
holds as long as β < q/(4m). We call this value βmax := q/(4m).

Consider evaluating a (boolean) circuit of depth d consisting of NAND gates. It takes input fresh
ciphertexts (βinit-noisy) and each level multiplies the noise by a factor of at most (m+1). Therefore,
the final output is βfinal-noisy ciphertexts where βfinal = (m + 1)dβinit. To ensure correctness of
decryption we need βfinal ≤ βmax meaning Bχ4m2(m+ 1)d < q which is satisfied by our choice of
parameters. This concludes the proof.

5.1.1 Homomorphic Linear Combinations and Pseudo Encryption

We now define an additional homomorphic operation. This operation takes as input GSW cipher-
texts Ci,j encrypting the individual entries M[i, j] of some matrix M ∈ Zm×mq under a secret key t.
It also takes a plaintext vector v ∈ Zmq which specifies the homomorphic function to be computed.
The operations outputs a “pseudo ciphertext” Clc which we can think of as a pseudo encryption
of the vector vM, meaning that tClc ≈ vM. Note that the “pseudo ciphertext” Clc cannot be
correctly decrypted (we can only recover something close to vM but not the exact value) nor can
we further perform any of the standard GSW homomorphic operations on it.
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Property 5.3. (Linear combination) Let M ∈ {0, 1}m×m be a matrix and for i ∈ [m], j ∈ [m]
let Ci,j ∈ Zn×mq be a β-noisy GSW encryption of M[i, j] under a secret key t ∈ Znq . Let v ∈ Zmq be
some vector (not necessarily short). Then there is a polynomial-time deterministic algorithm

Clc = GSW.LComb((C1,1, . . . ,Cm,m),v)

which outputs Clc ∈ Zn×mq such that tClc = vM + e where ‖e‖∞ ≤ m3β.

Implementation. The algorithm GSW.LComb((C1,1, . . . ,Cm,m),v) is implemented as follows:

1. For each i ∈ [m], j ∈ [m] define a matrix Zi,j ∈ Zn×mq as follows:

Zi,j [a, b] :=

{
v[i] when a = n and b = j
0 otherwise

In other words Zi,j will have 0 everywhere except the n-th (final) row and j-th column where
it has the value v[i].

2. Now output Clc ∈ Zn×mq where: Clc =

m,m∑
i=1,j=1

Ci,jG
−1(Zi,j)

Correctness. Correctness follows because,

tClc = t
∑
i,j

Ci,jG
−1(Zi,j)

=
∑
i,j

(M[i, j]tG + ei,j)G
−1(Zi,j)

=
∑
i,j

(M[i, j]tZi,j + e′i,j)

= t
∑
i,j

M[i, j]Zi,j +
∑
i,j

e′i,j

= (−s, 1)

[
0n−1

vM

]
+ e′′ = vM + e′′

where ei,j is the noise contained in Ci,j which is of magnitude ‖ei,j‖∞ ≤ β, e′i,j = ei,jG
−1(Zi,j)

has magnitude ‖ei,j‖∞ ≤ mβ, and finally e′′ =
∑
i,j

e′i,j has magnitude ‖e′′‖∞ ≤ m3β.

5.2 A Masking Scheme for GSW

We now define and show how to construct a “masking scheme” for GSW, which serves as the
main component of the multi-key FHE scheme. Intuitively, a masking scheme allows us to take a
GSW public key pk = A (having a corresponding secret key t) and a bit µ and output a pair of
values (U ,C) such that C is a GSW encryption of µ with pk and U is an auxiliary value such that
(1) the pair (U ,C) computationally hide µ (just like C alone) and (2) later, given another GSW
public key pk = A′ (having a corresponding secret key t′) we can compute a matrix X such that
tX + t′C = µt′G.
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Property 5.4. (GSW Masking Scheme) There exists a pair of algorithms (UniEnc,Extend):

• UniEnc(µ, pk): On input a message µ ∈ {0, 1} and a GSW public key pk it generates a pair
(U ,C) where C ∈ Zn×mq and U ∈ {0, 1}∗.

• Extend(U , pk, pk′): On input U and GSW public keys pk, pk′ it outputs X ∈ Zn×mq .

for which the following properties holds:

Semantic Security: For any polynomial d = d(λ) security of GSW encryption implies that:

(params, pk,UniEnc(0, pk))
comp
≈ (params, pk,UniEnc(1, pk))

where params← GSW.SetUp(1λ, 1d), (sk, pk)← GSW.Keygen(params).

Correctness: Let params ← GSW.SetUp(1λ, 1d) and let (sk = t, pk), (sk′ = t′, pk′) be two
independent key pairs generated with GSW.Keygen(params). For any µ ∈ {0, 1} let (U ,C)←
UniEnc(µ, pk) and X← Extend(U , pk, pk′). Then

µ := GSW.Decrypt(sk,C) and tX + t′C = µt′G + e

where ‖e‖∞ ≤ βmask for βmask := (m4 +m)Bχ.

Instantiation. We now show how to implement such masking scheme.

• UniEnc(pk, µ): On input a message µ and a public key pk the algorithm outputs U , which is
a m2-tuple of matrices in Zn×mq , and C ∈ Zn×mq as follows.

1. Let A = pk. Set C ← GSW.Encrypt(pk, µ) ∈ Zn×mq so that C = AR + µG where

R ∈ {0, 1}m×m is the encryption randomness.

2. Encrypt each element of the random matrix R (chosen in Step 1) to get m2 ciphertexts:

V(a,b) ← GSW.Encrypt(pk,R[a, b]). Set U :=
(
V(1,1), . . . ,V(m,m)

)
∈
(
Zn×mq

)(m2)
.

• Extend(U , pk, pk′): On input a U ∈
(
Zn×mq

)(m2)
and public keys pk, pk′ the algorithm com-

putes X ∈ Zn×mq as follows:

1. Parse pk = A =

[
B
b

]
, pk′ = A′ =

[
B
b′

]
and, U =

(
{V(a,b)}a,b∈[m]

)
.

2. Set X = GSW.LComb
(
(V(1,1), . . . ,V(m,m)),b′ − b

)
.

Semantic Security. The view of the attacker is the following distribution:(
params,A,C,U =

(
V(11), . . . ,V(m,m)

))
generated via params ← GSW.SetUp(1λ, 1d), (sk, pk = A) ← GSW.Keygen(params) and (C,U) ←
UniEnc(pk, µ), where either µ = 0 or µ = 1. We prove semantic security of the masking scheme by
relying on the semantic security of the underlying GSW scheme. The proof consists of the following
hybrids:
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• Firstly, we modify each of the ciphertexts V(a,b) so that instead of being GSW encryptions of
R[a, b], we just choose them as GSW encryptions of 0. This just relies on semantic security
of GSW encryption.

• Secondly, we also choose C as a GSW encryption of 0. This also just follows from the semantic
security of GSW encryption, since after the first step no information about the randomness
R is given out.

Finally, this distribution is completely independent of the bit µ which concludes the proof of
semantic security.

Correctness. Let ((sk = t, pk = A), (sk′ = t′, pk′ = A′)) be two correctly generated GSW key-

pairs. Now recall that, sk = t = (−s, 1) ∈ Znq , and sk′ = t′ = (−s′, 1) ∈ Znq ; pk = A =

[
B
b

]
∈

Zn×mq , pk′ = A′ =

[
B
b′

]
∈ Zn×mq where b = sB + e, b′ = s′B + e′ with ‖e‖∞, ‖e′‖∞ ≤ βχ.

Furthermore, for any message µ let (U ,C)← UniEnc(pk, µ) and X← Extend(U , pk, pk′) where
U =

(
V(1,1), . . . ,V(nm)

)
. Then it is easy to see that µ := GSW.Decrypt(sk,C) which implies that

C = AR + µG =

[
B
b

]
R + µG for some R ∈ {0, 1}m×m and hence

t′C = (−s′, 1)

[
B
b

]
R + µt′G

= −s′BR + bR + µt′G

= −(b′ − e′)R + bR + µt′G

= (b− b′)R + µt′G + eC

where eC = e′R has norm ‖eC‖∞ = mBχ.
On the other hand, by the correctness of linear combinations, we have:

tX = (b′ − b)R + eX

where ‖eX‖∞ = m4Bχ.
Combining these equations, we get tX + t′C = µt′G + e∗ where ‖e∗‖∞ ≤ (m4 + m)Bχ as

claimed.

5.3 Construction of Multi-Key FHE

First recall the fixed matrix G ∈ Zn×mq that played an important role for the earlier construction

and analysis. In this section we define an “expanded matrix” ĜN ∈ ZnN×mNq as:

ĜN =


G · · · · · · 0

0 G · · ·
...

... · · · G 0
0 · · · · · · G
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We note that there exists a corresponding efficiently computable function Ĝ−1
N (·) such that for any

m′ ∈ N any matrix M ∈ ZnN×m′q , Ĝ−1
N (M′) ∈ {0, 1}mN×mN is “short ” and ĜNĜ−1

N (M) = M.

Such Ĝ−1
N (·) can be computed using G−1(·) in the natural way.

Construction. Now we describe our multi-key FHE construction.

• MFHE.SetUp(1λ, 1d): Run the set-up algorithm of GSW to generate the parameters:

params := (q, n,m, χ,Bχ,B)← GSW.SetUp(1λ, 1d).

• MFHE.Keygen(params): Run the key-generation algorithm of GSW to generate:

sk := t← GSW.SKGen(params) pk := A← GSW.PKGen(params, sk)

• MFHE.Encrypt(pk, µ): Execute the following steps:

– Just use the masking scheme: (U ,C)← UniEnc(µ, pk).

– Output the pair c := (U ,C) as the ciphertext for µ.

• MFHE.Expand((pk1, . . . , pkN ), i, c): On receiving a sequence of public-keys (pk1, . . . , pkN ) and
a fresh ciphertext c = (U ,C) under the public key pki run the Extend algorithm for all pkj
where i 6= j.

– For j ∈ {pk1, . . . , pkN} \ {i}, compute Xj ← Extend(U , pki, pkj).

– Then define a matrix Ĉ ∈ ZnN×mNq as a concatenation of N2 sub-matrices where each
sub-matrix Ca,b ∈ Zn×mq for a, b ∈ [N ] is defined as:

Ca,b :=


C when a = b
Xj when a = i 6= j and b = j

0n×m otherwise

For reader’s convenience we provide a pictorial representation of Ĉ in Fig. 1:

Finally output ĉ := Ĉ as the expanded ciphertext.

• MFHE.Eval(params, C, (ĉ1, . . . , ĉ`)) On input ` expanded ciphertexts simply use the GSW ho-
momorphic evaluation algorithms namely GSW.Add and GSW.Mult, albeit with expanded
dimensions n′ = nN and m′ = mN and the expanded ĜN , Ĝ

−1
N (in place of n,m and

G,G−1).

• MFHE.Decrypt(params, (sk1, . . . , skN ), c): On input a ciphertext c = Ĉ and the sequence of
secret keys (sk1, . . . , skN ) parse each ti := ski and then construct the joint secret key by
horizontally appending all the secret-keys in sequence t̂ =

[
t̂1 t̂2 · · · t̂N

]
∈ ZnNq . Then run

the GSW decryption algorithm albeit with expanded dimensions n′ = nN and m′ = mN and
the expanded ĜN , Ĝ

−1
N (in place of n,m and G,G−1).
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Row i

Column i



C 0 · · · 0 0

0
. . . · · · · · ·

...
... 0 0 · · · 0

X1 · · · C · · · XN

0 · · · 0 0
...

... · · · · · · . . . 0
0 0 · · · 0 C



Figure 1: Structure of the expanded ciphertext Ĉ

5.3.1 Correctness and Security of MFHE Construction

Theorem 5.5. The scheme described above is a secure MFHE under the LWEn−1,q,χ,Bχ assumption
(with the same parameters as we defined for GSW encryption).

Semantic security. The semantic security of the above multi-key FHE follows directly from that
of the GSW masking scheme.

Correctness of Expansion. Consider a sequences of N correctly generated key pairs ((sk1 =
t1, pk1), . . . , (skN = tN , pkN )) such that {(pki, ski) ← MFHE.Keygen(params)}i∈[N ]. Now suppose
for any message µ and any i ∈ [N ] we have a ciphertext c← MFHE.Encrypt(pki, µ) under the i-th
key and the corresponding expanded ciphertext Ĉ ← MFHE.Expand((pk1, . . . , pkN ), i, c) as shown
in Fig. 1. Let t̂ = [t1, . . . , tN ]. Then

t̂Ĉ = [tiX1 + t1C, . . . , tiC, . . . , tiXN + tNC]

= [µt1G + e1, . . . , µtiG + ei, . . . , µtNG + eN ]

= µt̂Ĝ + [e1, . . . , eN ]

where ‖ei‖∞ ≤ mBχ by the correctness of GSW encryption and for j 6= i, ‖ej‖∞ ≤ (m4 +m)Bχ by

the correctness of the GSW masking scheme. Therefore, t̂Ĉ = µt̂Ĝ+e where ‖e‖∞ ≤ (m4 +m)Bχ.
Let’s call this value β′init = (m4 + m)Bχ = 2O(log λ)Bχ. The correctness of GSW encryption is
guaranteed as long as β′init ≤ q/(4m′) which holds with the choice of q we defined.

Correctness of Evaluation. Let Ĉ1, . . . , Ĉ` be expanded ciphertexts corresponding to bit µ1, . . . , µ`
so that, by the above correctness property, t̂Ĉi = µit̂Ĝ+ei where ‖ei‖∞ ≤ β′init. If Ĉ is the output
of a homomorphic evaluation of a circuit C of depth d over the above ciphertexts such that µ =
C(µ1, . . . , µ`) then by the correctness of GSW homomorphic evaluation with scaled up parameters
n′ = nN,m′ = mN we have t̂Ĉ = µt̂Ĝ + e where ‖e‖∞ ≤ β′init(m′+ 1)d = (m4 +m)Bχ(mN + 1)d.
Let’s call this value β′final = Bχ(m4 + m)(mN + 1)d = 2O(d log λ)Bχ. The correctness of GSW
encryption is guaranteed as long as β′final ≤ q/(4m′) which holds with the choice of q we defined.
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5.4 Threshold Decryption for Multi-key FHE

We now show how to implement threshold decryption for the MFHE construction outlined in the
previous section.

MFHE.PartDec(ĉ, (pk1, . . . , pkN ), i, ski): On input an expanded ciphertext ĉ = Ĉ ∈ ZnN×mNq under
a sequence of keys (pk1, . . . , pkN ) and the i-th secret key ski = ti ∈ Znq do the following:

• Parse Ĉ as consisting of N sub-matrices Ĉ(i) ∈ Zn×mNq such that

Ĉ =

 Ĉ(1)

...

Ĉ(N)

 .
• Define ŵ ∈ ZnNq as ŵ = [0, . . . , 0, dq/2e].

• Then compute γi = tiĈ
(i)Ĝ−1(ŵT ) ∈ Zq and output pi = γi + esmi ∈ Zq where esmi

$←
[−Bdec

smdg,−Bdec
smdg] is some random “smudging noise” where Bdec

smdg = 2dλ log λBχ.

MFHE.FinDec(p1, . . . , pN ): Given p1, . . . , pN , compute the sum p :=
∑N

i=1 pi. Output µ :=
∣∣∣⌈ p
q/2

⌋∣∣∣.
5.4.1 Correctness and Simulation Security

Theorem 5.6. The above threshold decryption procedures for MFHE satisfy correctness and (sta-
tistical) simulation security.

Correctness. Here the entire scheme is same as MFHE except the decryption. So if Ĉ is an
evaluated ciphertext encrypting a bit µ and the secret keys are t̂ = [̂t1, . . . , t̂N ] then, by the
analysis used for non-threshold correctness, we have

t̂Ĉ =
∑
i∈[N ]

tiĈ
(i) = µt̂Ĝ + e

where ‖e‖∞ ≤ β′final = (m4+m)Bχ(mN+1)d. Therefore if the partial decryptions pi are computed
as specified we have:∑

i∈[N ]

pi =
∑
i∈[N ]

γi +
∑
i∈[N ]

esmi =
∑
i∈[N ]

tiĈ
(i)Ĝ−1(ŵT ) + esm

= (µt̂Ĝ + e)Ĝ−1(ŵT ) + esm

= µdq/2e+ e′ + esm

where esm =
∑

i∈[N ] e
sm
i has norm |esm| ≤ NBdec

smdg = 2O(dλ log λ)Bχ and e′ = eĜ−1(ŵT ) has norm

|e′| ≤ β′finalmN = 2O(d log λ)Bχ. Since q = 2ω(dλ log λ)Bχ we have |e′ + esm| < q/4 and correctness
holds.
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Simulatability: The simulator Sthr(µ, Ĉ, i, {tj}j∈[N ]\{i}), on input the secrets keys {tj}j 6=i the

evaluated ciphertext Ĉ ∈ ZnN×mNq and the output value µ = C(µ1, . . . , µ`) encrypted in Ĉ outputs
the simulated partial decryption:

p′i = µdq/2e+ esmi −
∑
i 6=j

γj (1)

for esmi
$← [−Bdec

smdg, B
dec
smdg] where γj = tjĈ

(j)Ĝ−1(ŵT ).
To see the indistinguishability note that, by the same calculation as used to argue correctness, we

know that
∑

j∈[N ] γj = µdq/2e+e′ where |e′| ≤ β′finalmN = 2O(d log λ)Bχ. Therefore if pi = γi+esmi
is the real partial decryption then

pi = µdq/2e+ e′ + esmi −
∑
i 6=j

γj

The difference between the real value pi and the simulated value p′i is the noise e′ of norm |e′| =
2O(d log λ)Bχ. But by the smudging lemma 3.1, the distributions of esmi and esmi +e′ are statistically

close since esmi
$← [−Bdec

smdg,−Bdec
smdg] where Bdec

smdg = 2dλ log λBχ so that Bdec
smdg/|e′| ≥ 2λ. Therefore

the simulated partial decryption and the real one are statistically indistinguishable.

5.5 Bootstrapping

Note that the above MFHE scheme is leveled i.e., it depends on the multiplicative depth of the
circuit to be computed. However, this dependency can be avoided easily by boot-strapping and
assuming circular security. We briefly describe the straightforward procedure and omit the details.

During key generation, each party i chooses a key pair (ski, pki) and uses the MFHE scheme
to encrypt the secret key ski under pki bit-by-bit.7 It appends these encryptions to the public key.
Later, given a sequence of public keys {pk1, . . . , pkN} anyone can create an expanded multi-key
encryption of each ski using the MFHE expansion procedure. This allows us to use Gentry’s boot-
strapping technique [Gen09] to to “refresh” a highly noisy multi-key ciphertext by homomorphically
computing the MFHE decryption procedure. Therefore, to compute a circuit of arbitrary depth,
we only need to set the parameters of the MFHE scheme so as to be evaluate circuits of some fixed
depth d+ 1 where d is the depth of the MFHE decryption procedure.

Note that, by circular security it is assured that an encryption of a secret key under itself is
semantically secure which implies that the semantic security of the above modified MFHE scheme
remains intact.

6 Secure MPC via Threshold MFHE

Basic Template. We now present a protocol for general MPC, using any threshold multi-key
fully homomorphic scheme. The protocol is based on the template discussed in the introduction
which we recall below:

7We ignore the algebraic structure of the secret key here and assume each element in Zq can be represented as a
dlog(q)e + 1 binary string.
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1. Each party individually chooses its own MFHE key pair (pki, ski), encrypts its input xi
under pki, and broadcasts the resulting ciphertext. At the end of this round, each party can
homomorphically compute the desired function f on the received ciphertexts and derive a
common multi-key ciphertext which encrypts the output y = f(x1, . . . , xN ).

2. The parties run a distributed protocol for “threshold decryption” using their secret keys ski
to decrypt the multi-key ciphertext and recover the output y in plaintext. In particular
each party first generates partial decryptions pi from the common (evaluated) ciphertext ĉ
and then broadcasts them. Finally each party, on receiving all those partial decryptions can
compute the final decryption y.

Our goal is to prove the security of this protocol (as least in the honest-but-curious setting, as
a start). The natural attempt to construct a MPC simulator S would be to first use the simulator
of threshold decryption, Sthr to replace the correct partial decryptions pi with simulated ones p′i
and then use semantic security of the encryption to replace each ciphertext (broadcast in the first
round) by encryptions of 0.

The Problem. Unfortunately, we notice that the simulatability of the threshold decryption does
not suffice when there is more than one honest party. Essentially, our definition of simulation
security for threshold decryption only allows us to simulate the partial decryption of a single party
at a time while knowing the secret keys of all other parties. We cannot, however, simultaneously
simulate the partial decryptions of (even) two honest parties without knowing either of their secret
keys.

Solution. Essentially we solve the above problem by two steps. We first show that the “basic”
protocol as described above is already secure when there is exactly one honest party. Then, later in
Sec. 6.2 we extend the basic protocol to another protocol which can handle any arbitrary number
of corruption. The extended protocol additionally requires only pseudorandom functions (PRFs)
and thus no new assumptions are used. Combining, we get a protocol which securely realizes any
functionality against any arbitrary number of corruptions. Below we provide the basic protocol
from any MFHE scheme and prove security against exactly N − 1 corruptions. Later in Sec. 6.2 we
present the extension in detail.

Semi-Malicious Security. Following [AJLA+12], we will actually prove that the above proto-
col satisfies something called “semi-malicious” security which is stronger than honest-but-curious.
Intuitively, it means that adversarial parties need to follow the protocol specification, but can use
arbitrary values for their random coins. In fact, the adversary only needs to decide on the input
and the random coins to use for each party in each round at the time that the party sends the first
message. See Appendix A for a formal definition. We will then rely on a theorem of [AJLA+12]
showing that one can compile any such protocol which is secure in the semi-malicious setting into
one that is secure in the fully malicious setting, without adding any rounds, by using non-interactive
zero-knowledge proofs (NIZKs).

6.1 Protocol Secure against Exactly N − 1 Corruptions
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Let f : ({0, 1}`in)N → {0, 1}`out be the function to compute. Let d be the depth of the circuit for
f .

Preprocessing. Run setup← MFHE.Setup(1λ, 1d). All the parties share the common setup.

Input: Each party Pk has input xk ∈ {0, 1}`in .

The Protocol:

Round I. Each party Pk executes the following steps.

• Generate a key-pair (skk, pkk)← MFHE.Keygen(setup).

• Encrypt the message bit-by-bit:

{ck,j ← MFHE.Encrypt(pkk,xk[j])}j∈[`in].

• Broadcast the public-key and the ciphertexts (pkk, {ck,j}j∈[`in]).

Round II. Each party Pk on receiving values {pki, ci,j}i∈[N ]\{k},j∈[`in] executes the following steps:

• First expand each ci,j :

{ĉi,j ← MFHE.Expand((pk1, . . . , pkN ) , i, ci,j)}i∈[N ],j∈[`in]

• Run the evaluation algorithm to generate the evaluated ciphertext:

{ĉj ← MFHE.Eval(fj , (ĉ1,1, . . . , ĉN,`in))}j∈[`out]
.

where fj is the boolean function for j-th bit of the output of f .

• Finally all the parties concurrently take part in one-round threshold decryption to obtain
the output message bit-by-bit as follows:

– Each Pk computes the partial decryption for all j ∈ [`out]:

p
(j)
k ← MFHE.PartDec(ĉj , (pk1, . . . , pkN ), k, skk)

– Pk broadcasts all the values {p(j)
k }j∈`out .

Output. On receiving all the values {p(j)
i }i∈[N ],j∈[`out] run the final decryption to obtain the j-th

output bit: {yj ← MFHE.FinDec(p
(j)
1 , . . . , p

(j)
N )}j∈[`out]. Output y = y1 . . . y`out .

Figure 2: πf : A basic MPC protocol for f secure against N − 1 corruptions
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The protocol, given in Figure 2, realizes general multiparty computation for any polynomial-
time deterministic functions f which produces a common output for all parties. It does so with
respect to a static semi-malicious attackers corrupting exactly N − 1 parties (see Appendix A).
Formally we prove the following theorem.

Theorem 6.1. Let f be a poly-time computable deterministic function with N inputs and 1 output.
Let the scheme MFHE = (Setup,Keygen,Encrypt,Expand,Eval,PartDec,FinDec) be a multi-key FHE
scheme with threshold decryption. Then the protocol πf described in Fig. 2 UC-realizes the function
f against any static semi-malicious adversary corrupting exactly N − 1 parties.

Proof: The correctness of the protocol follows in a straightforward way from the correctness of
the underlying threshold MFHE scheme.

To prove security basically we need to construct an efficient (PPT) simulator S for any adversary
corrupting exactly N − 1 parties. Let A be a static semi-malicious adversary and Ph be the only
honest party. The simulator simulates the protocol execution on behalf of the honest party Ph as
follows.

The Simulator. In round-I, the simulator encrypts 0s instead of the real input bits of the honest
party Ph. After round-I it gets the inputs and the secret keys of the N −1 corrupt parties from the
“witness tape”. It gives these inputs to the ideal functionality and receives the output bits yj for
each j ∈ [`out]. At this point it can also compute the evaluated ciphertexts ĉj . Then it computes

the simulated partial decryptions for the honest party p̃
(j)
h ← Sthr(yj , ĉj , h, {ski}i∈[N ]\{h}) and

broadcast those in round-II instead of correctly computed partial decryptions p
(j)
h generated via

MFHE.PartDec(· · · ).

Hybrid Games. We now define a series of hybrid games that will be used to prove the indistin-
guishability of the real and ideal worlds:

IDEALF ,S,Z
comp
≈ REALπ,A,Z (2)

The output of each game is always just the output of the environment.

The game REALπ,A,Z : This is exactly an execution of the protocol π in the real world with envi-
ronment Z and semi-malicious adversary A.

The game HYB1
π,A,Z : In this game, we modify the real world experiment as follows. Assume (as

a mental experiment) that Ph is given the all the secret keys {ski}i∈[N ]\{h} (as written on the
“witness tape” of the adversary) after round I. In the second round, instead of broadcasting a

correctly generated partial decryptions p
(j)
h generated via MFHE.PartDec(· · · ), it broadcasts

simulated ones {p̃(j)
h ← S

thr(yj , ĉj , h1, {ski}i 6=h)}j∈[`out].

The game IDEALF ,S,Z : This is similar to the game HYB1
π,A,Z except instead of encrypting its real

input, Ph now broadcasts encryption of 0s in the first round.

Claim 6.2. REALπ,A,Z
stat
≈ HYB1

π,A,Z
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Proof: Notice that, the only change between those experiments are that, the partial decryption
of party Ph is generated through simulator Sthr instead of correctly using MFHE.PartDec. By
simulatability of threshold decryption the partial decryptions are statistically indistinguishable
hence so are the experiments.

Claim 6.3. HYB1
π,A,Z

comp
≈ IDEALF ,S,Z

Proof: The only change between those experiments are in generating encryptions of party Ph . By
semantic security of the underlying MFHE the encryptions are computationally indistinguishable.
Hence the experiments are also computationally indistinguishable. Note that here it is possible to
use the semantic security as the partial decryptions of Ph in both the experiments are simulated
and hence independent of the secret key skh.

This concludes the proof of the theorem.

6.2 An Extended Protocol for Arbitrary Many Corruptions

In this section we construct an “extended” MPC protocol π̂f which securely computes any function
f against any semi-malicious adversary that can corrupt any t ∈ [N ] parties. We do so by relying
on the “basic” MPC protocol πf from the previous section, which is secure against a semi-malicious
adversary that corrupts exactly N − 1 parties. To compute a function f , our extedned protocol
simply runs the basic protocol π

f̂
on an extended function f̂ defined as follows.

Definition 6.4. (Extended function) For any polynomial `in, `out, N ∈ N let f : {{0, 1}`in}N →
{0, 1}`out be a poly-time computable function and PRF : {0, 1}λ × [N ] → {0, 1}`in be a PRF. Then
we define an extended function f̂ : {{0, 1}`in×{1, 2, 3}×{0, 1}λ}N → {0, 1}`out which takes as input
((x1, mode1, z1), . . . , (xN , modeN , zN )) and does the following:

• If ∀ i ∈ [N ], modei = 1 then output f(x1, . . . ,xN ).

• If ∃ unique i ∈ [N ] such that modei = 2 then let K := zi. For all j ∈ [N ]:

– If modej = 3 then set x′j := PRF(K, j)⊕ xj.

– Else set x′j := xj.

Output f(x′1, . . . ,x
′
N ).

• Otherwise output 0`out.

Roughly speaking, the extended function does the same thing as the original function if all the
inputs have modei = 1. However, if there is one special party with modei = 2 then the function uses
a PRF key K = zi provided by that party to “decrypt” the inputs of all the parties with modej = 3.

We define an “extended protocol” π̂f in Figure 3. It essentially just runs the original basic

protocol π
f̂

with an extended function f̂ and appropriately extended inputs.
We now prove that that the extended protocol π̂f is secure against any arbitrary number of

semi-malicious corruptions.

Theorem 6.5. Let f be a function with N inputs and 1 output. Let PRF : {0, 1}λ×[N ]→ {0, 1}`out
be a PRF. Then, under the LWE assumption, the protocol π̂f shown in Figure 3 UC-realizes f
against a static semi-malicious adversary that can corrupt any number of parties.
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Let f : {{0, 1}`in}N → `out be the function we wish to compute and let and PRF : {0, 1}λ × [N ]→
{0, 1}`in be a PRF. Let f̂ : {{0, 1}`in × {1, 2, 3} × {0, 1}λ}N → {0, 1}`out be the corresponding
extended function (Definition 6.4). Let π

f̂
be the protocol from Figure 2 applied to the extended

function f̂ . The extended protocol π̂f is defined as follows:

Setup: The setup is the same as the that of the protocol π
f̂
.

Input: Each party Pk has input xk ∈ {0, 1}`in . Additionally each party sets modek := 1, zk := 0,

and defines its extended input as x̂k := (xk, modek, zk) ∈ {0, 1}
̂̀
in where ̂̀in = `in + λ+ 2. a

Protocol: The parties run the protocol π
f̂

using the extended inputs {x̂k}k∈[N ]. They output
whatever π

f̂
outputs.

aHere any 0 denotes a string of 0s of appropriate size. We abuse notation for simplification.

Figure 3: π̂f : Extended protocol secure against any any number of semi-malicious corruptions.

Proof: Correctness is clear from the definition of extended function. In particular note that each
extended input has the flag modek set to 1 which means the extended function computes the correct
output f(x1, . . . ,xN ).

Let A be a static semi-malicious adversary against π̂f , and let I be the set of corrupt parties
with |I| = t. We can assume 0 < t ≤ N − 1 as otherwise security is trivial to show. Let
(h1, h2, . . . , hN−t) ∈ [N ] \ I be some arbitrary ordering of the honest parties {Phi}i∈[N−t].

The Simulator S. The simulator S executes the protocol with the adversary A acting on behalf
oh the honest parties as specified, except that:

• In round-I: For party Ph1 the simulator uses the input x̂h1 = 0
̂̀
in and for all other honest

parties Phi , i > 1 it uses the input x̂hi = (x′hi , modehi = 3, zhi = 0`in) where x′hi ← {0, 1}
`in is

chosen uniformly at random. It follows round I of the protocol π
f̂

honestly with these inputs.

• After round-I it gets the inputs and the secret keys of the t corrupt parties from the “witness
tape”. It gives the inputs to the ideal functionality and received the output y = (y1, . . . , y`out).

• In round-II: The simulator homomorphically computes the evaluated ciphertexts ĉj for j ∈
`out, encrypting the output. For honest parties Phi , i > 1 it gives the correctly generated

partial decrpytions p
(j)
hi
← MFHE.PartDec(ĉj , (pk1, . . . , pkN ), hi, skhi) using the secret key

skhi chosen for that party in round I. For the honest party Ph1 it computes simulated partial

decryptions p̃
(j)
h1
← Sthr(yj , ĉj , h1, {ski}i∈[N ]\{h1}) using the secret keys ski of the other honest

and corrupted parties.

Below we argue that the simulated view is computationally indistinguishable from the view of
the adversary in the real world:

IDEALF ,S̃,Z
comp
≈ REALπ̂,A,Z (3)
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Hybrid Games. We move from the real execution to the ideal execution through a series of hybrid
games as defined below. The output of each game is always just the output of the environment.

The game REALπ̂,A,Z : This is exactly an execution of the protocol π̂f in the real world with
environment Z and semi-malicious adversary A. Recall that, here each honest party Pk
follows protocol π

f̂
with inputs (xk, 1, 0).

The game HYB1,1: In this game, we modify the real world experiment as follows. After round I,
let {ski}i∈[N ] be the secret keys chosen by the honest parties and written on the “witness tape”
of the corrupt parties. Let y = (y1, . . . , y`out) be the output of the ideal functionality f when
given the actual inputs of the honest parties and the inputs written on the “witness tape” of
the corrupt parties. In the second round of the protocol, instead of party Ph1 broadcasting

correctly generated partial decryptions p
(j)
h1

generated via MFHE.PartDec(· · · ), it broadcasts

simulated partial decryptions {p̃(j)
h ← S

thr(yj , ĉj , h1, {ski}i 6=h1)}j∈[`out].

The game HYB1,2: In this same as HYB1,1 except that, in round I, instead of Ph1 using the value
(xh1 , modeh1 = 1, zh1 = 0) as its input for π

f̂
, it now chooses a random PRF key K ← {0, 1}λ

and uses the value (xh1 , modeh1 = 2, zh1 = K) as its input.

The game HYB1,3: In this same as HYB1,2 except that, in round II, the party Ph1 goes back to

broadcasting the correctly generated partial decryptions p
(j)
h1

generated via MFHE.PartDec(· · · ).

The games {HYBi,1}i=2,...,N−t: Each game HYBi,1 is same as the game HYBi−1,3 except that,
in round II of the protocol, instead of party Phi broadcasting correctly generated partial

decryptions p
(j)
hi

generated via MFHE.PartDec(· · · ), it broadcasts simulated ones {p̃(j)
hi
←

Sthr(yj , ĉj , hi, {skk}k 6=hi)}j∈[`out], where skk and y are defined the same way as in HYB1,1.

The games {HYBi,2}i=2,...,N−t: Each game HYBi,2 is same as the game HYBi,1 except that, in
round I of the protocol, instead of Phi using the value (xhi , 1, 0) as its input for π

f̂
, it now

uses the input (xhi ⊕ PRF(K,hi), 3, 0), where K is the same PRF key that was defined in
Hybrid HYB1,2.

The games {HYBi,3}i=2,...,N−t: Each game HYBi,3 is same as the game HYBi,2 except that, in
round II of the protocol, the party Phi goes back to broadcasting the correctly generated

partial decryptions p
(j)
hi

generated via MFHE.PartDec(· · · ).

The game HYBN−t+1,1. This is the same as HYBN−t,3 except that, in round II of the protocol,

instead of party Ph1 broadcasting correctly generated partial decryptions p
(j)
h1

generated via

MFHE.PartDec(· · · ), it broadcasts simulated ones {p̃(j)
hi
← Sthr(yj , ĉj , hi, {skk}k 6=hi)}j∈[`out],

where skk and y are defined the same way as in HYB1,1.

The game HYBN−t+1,2. This is the same as HYBN−t+1,1 except that, in round I of the protocol,

instead of Ph1 using the value (xh1 , 2,K) as its input to π
f̂
, it now uses the value 0

̂̀
in .

The game IDEALF ,S̃,Z : This is the ideal-world execution with simulator S and environment Z.

It is the same as HYBN−t+1,2 except that, instead of the honest parties Phi , i > 1 using the
values (xhi ⊕PRF(K,hi), 3, 0) as their inputs to π

f̂
they use the inputs (x′hi , 3, 0) where x′h is

random.
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For notational convenience let us rename the real game REALπ̂,A,Z as HYB0,3. Let us also define
hN−t+1 = h1.

Claim 6.6. For all i ∈ [N − t+ 1]: HYBi−1,3 stat
≈ HYBi,1.

Proof: Notice that, the only change between these hybrids is in whether a single party Phi
computes its partial decryptions honestly via p

(j)
hi
← MFHE.PartDec(ĉj , (pk1, . . . , pkN ), hi, skhi) or

whether it gives simulated ones p̃
(j)
hi
← Sthr(yj , ĉj , hi, {skk}k 6=hi). Each of the evaluated ciphertexts

ĉj is an encryption of yj by correctness and the way we chose the inputs of all honest parties.
Therefore the above indistinguishability holds by the simulatability of partial decryption of the
MFHE scheme.

Claim 6.7. For all i ∈ [N − t+ 1]: HYBi,1
comp
≈ HYBi,2.

Proof: Notice that, the only change between these hybrids is in the value encrypted by the party
Phi in round I. However, the secret key skhi of that party is not used anywhere in either of these
hybrids. Therefore the hybrids are indistinguishable by the semantic security of the MFHE scheme.

Claim 6.8. For all i ∈ [N − t]: HYBi,2
stat
≈ HYBi,3.

Proof: Notice that, the only change between these hybrids is in whether a single party Phi
computes its partial decryptions honestly via p

(j)
hi
← MFHE.PartDec(ĉj , (pk1, . . . , pkN ), hi, skhi) or

whether it gives simulated ones p̃
(j)
hi
← Sthr(yj , ĉj , hi, {skk}k 6=hi). Each of the evaluated ciphertexts

ĉj is an encryption of yj by correctness and the way we chose the inputs of all honest parties.
Therefore the above indistinguishability holds by the simulatability of partial decryption of the
MFHE scheme.

Claim 6.9. HYBN−t+1,2
comp
≈ IDEALF ,S̃,Z

Proof: The only difference between these hybrids is whether the inputs of the honest parties Phi
i ∈ [2, . . . , N − t] are of the form (xhi ⊕ PRF(K,hi), 3, 0

`in) or (x′hi , 3, 0
`in) where x′hi ← {0, 1}

`in .
This is indistinguishable by PRF security. Note that the key K is not used anywhere else in either
of these hybrids other than the PRF evaluations PRF(K,hi).

Combining the above claims, we get IDEALF ,S̃,Z
comp
≈ REALπ̂,A,Z which concludes the proof of

Theorem 6.5.

6.3 Extensions and Applications

Generalized functionalities. Our protocol (Fig. 2) considers deterministic functionalities where
all the parties receive the same output. One can extend that to handle randomized functionali-
ties and individual output in a straightforward manner using known standard techniques just
like [AJW11]. We refer to [AJW11] for more details.
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Fully malicious adversary. Our protocol protects only against semi-malicious adversaries.
However, since we are in the CRS model such protocol can be generically converted to one se-
cure against fully-malicious adversary using non-interactive zero-knowledge (NIZK) arguments.
For more detail on this again we refer to [AJW11].

Communication Complexity. Although our main focus was on round complexity, we mention
that our scheme also achieves essentially optimal communication complexity which is only pro-
portional to the total input size, output size and circuit depth. We can get rid of the reliance on
circuit depth by using bootstrapping and relying on circular security: each party would simply send
a GSW encryption of its secret key under its public key and then we would perform a boostrapping
step after each homomorphic operation to reduce the noise in the ciphertext.

Computation on the Web. Our results also relate to the idea of “computation on the web”
[HLP11] where parties can’t interact with each other but can only interact with some central website
without further coordination. Using our scheme (or any 2 round protocol) each party needs to log
in twice: once to give its ciphertext to the sever and once to give a partial decryption of the output.

7 Conclusions

We have shown how to implement MPC with only two rounds of interaction by relying on the LWE
assumption (and NIZKs for malicious security). Several interesting open problems remain. Firstly,
is is possible to get a 2 round MPC protocol under general assumptions such as the existence of
oblivious transfer? Secondly, is it possible to get a protocol that achieves adaptive security? A
recent work of [GP15] does this using indistinguishability obfuscation (iO) but it remains an open
problem to do this using more standard assumptions such as LWE. Lastly, it would be interesting
to get a 2 round protocol in the honest-but-curious model without a CRS. One way to achieve this
would be to a build a threshold multi-key FHE without any common public parameters.
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A Definitions of MPC

The content of this section is taken essentially verbatim from [AJW11] and is included for com-
pleteness.

A.1 The Universal Composability Framework (UC)

We work in the standard universal composability framework of Canetti [Can01] with static corrup-
tion. The UC framework defines a ppt environment Z that is invoked on security parameter 1λ

and an auxiliary input z, and oversees the execution of a protocol in one of two worlds. The “ideal
world” executions involves dummy parties P̃1, . . . , P̃N , an ideal adversary S who may corrupt some
of the dummy parties, and a functionality F . The “real world” execution involves the ppt parties
P1, . . . , PN , and a real-world adversary A who may corrupt some of the parties. The environment Z
chooses the inputs of the parties, may interact with the ideal / real adversary during the execution,
and at the end of the execution need to decide whether a real or ideal execution has been taken
place. The output of the execution is simply the output of the environment. We refer to [Can01]
for further details.

Let IDEALF ,S,Z(1λ, z) denote the random variable describing the output of the environment Z
after interacting in the ideal process with adversary S, the functionality F , on security parameter
1λ and input z. Let IDEALF ,S,Z denote the ensemble {IDEALF ,S,Z(1λ, z)}λ∈N,z∈{0,1}∗ . Similarly,
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let REALπ,A,Z(1λ, z) denote the random variable describing the output of the environment Z after
interacting with the adversary A and parties running protocol π on security parameter λ, and input
z. Let REALπ,A,Z denote the ensemble {REALπ,A,Z(1λ, z)}λ∈N,z∈{0,1}∗ .

Definition A.1. For N ∈ N, let F be an N -ary functionality, and let π be a N -party protocol. We
say that π securely realizes F if for any ppt adversary A there exists a ppt ideal adversary S such
that for any ppt environment Z we have:

IDEALF ,S,Z
comp
≈ REALπ,A,Z

We sometime want to restrict the definition so that it quantifies over adversaries from a certain
class: semi-honest adversaries, or malicious adversary that corrupted only a certain number of
parties. That is done in a straightforward way.

General functionality. We consider the general UC–functionality F , which securely evaluates
any function f : ({0, 1}`in)N → ({0, 1}`out)N . The functionality Ff is parameterized with a function
f and is defined as follows:

• Each party Pi sends (xi, sid) to the functionality.

• Once all parties send their inputs, evaluate (y1, . . . , yN )← f(x1, . . . , xN ).

• Send to each party Pi the output (yi, sid).

A.2 Security Against Semi-Malicious Adversaries

As a stepping stone towards realizing the standard definition of secure multi-party computation
against active adversaries, we provide definition of a semi-malicious adversary below which is taken
verbatim from [AJW11]. We formalize security against semi-malicious adversaries, however one can
use the generic transformation provided in [AJW11] from an MPC protocol that is secure against
semi-malicious adversaries, to a protocol that is secure against fully malicious adversaries.

Semi–malicious adversary. A semi-malicious adversary is modeled as an interactive Turing
machine (ITM) which, in addition to the standard tapes, has a special witness tape. In each round
of the protocol, whenever the adversary produces a new protocol message m on behalf of some
party Pk, it must also write to its special witness tape some pair (x, r) of input x and randomness
r that explains its behavior. More specifically, all of the protocol messages sent by the adversary on
behalf of Pk up to that point, including the new message m, must exactly match the honest protocol
specification for Pk when executed with input x and randomness r. Note that the witnesses given
in different rounds need not be consistent. Also, we assume that the attacker is rushing and hence
may choose the message m and the witness (x, r) in each round adaptively, after seing the protocol
messages of the honest parties in that round (and all prior rounds). Lastly, the adversary may also
choose to abort the execution on behalf of Pk in any step of the interaction.

Definition A.2. We say that a protocol π securely realizes F for semi-malicious adversaries if it
satisfies Definition A.1 when we only quantify over all semi-malicious adversaries A.
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We remark that this definition captures the semi-honest adversary who always follows the
protocol with honestly chosen random coins (and can be easily modified to write those on its
witness tape). On the other hand, a semi-malicious adversary is more restrictive than a fully
malicious adversary, since its behavior follows the protocol with some input and randomness which
it must know. Note that the semi-malicious adversary may choose the different input or random
tape in an adaptive fashion using any ppt strategy according to the partial view it has seen.
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