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Abstract

In an outsourced database scheme, the data owner deldyatdath management tasks to a remote service
provider. At a later time, the remote service is supposechtwar any query on the database. The essential
requirements are ensuring the data integrity and authigntiith efficient mechanisms. Current approaches employ
authenticated data structures to store security infoonagjenerated by the client and used by the server, to compute
proofs that show the answers to the queries are authentie.eXisting solutions have shortcomings with multi-
clause queries and duplicate values in a column.

We propose a hierarchical authenticated data structurstéoing security information, which alleviates the
mentioned problems. Our solution handles many differego¢syof queries, includingulti-clause selectioand
join queries, in alynamicdatabase. We provide a unified formal definition of a secuteoauiced database scheme,
and prove that our proposed scheme is secure accordingstaéfinition, which captures previously separate
properties such as correctness, completeness, and fesshftee performance evaluation based on our prototype
implementation confirms the efficiency of our proposed saheshowing about 3x to 5x enhancement in proof size
and proof generation time in comparison to previous work,aout only 4% communication overhead compared
to the actual query result in a real university database.
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1 Introduction

Huge amount of data is being produced everyday due to thesptidad use of computer systems in organizations
and companies. Data needs protection, and most of companlesnough resources to provide it. By outsourcing
data storage and management, they free themselves fronpridgation difficulties, and concentrate on their own
proficiency.

Consider a university who stores all data about studentaltfa and courses in a relational database, with limited
resources and equipment for hosting a large amount of datdhandling a large volume of queries, especially at
the beginning and end of each semester. The university wigheutsource data management to a remote database
service provider who offers mechanisms to access and ugigatiatabase online.

An important problem is that by data outsourcing, the owoses$ the direct control over her data and should
rely on answers coming from the remote service provider (ishwt fully trusted). Therefore, there should exist
mechanisms giving the data owner (the client) the abilitycliecking the integrity of the outsourced data. To make
sure that the remote server operates correctly, the clenti@ verify the answers coming from the server in response
to her queries [15]. The remote server sends to the cligatification objectvo) along with the answer to the query
(theresult sel. Thevo gives the client the ability to verify that the server’s aesus authentic. Since the client may
be a portable device with limited processing power,wbshould be small, and efficiently verifiable. The client uses
thevoto verify that the query answer is [42, 18, 41, 15, 29]:

» complete the result set sent to the client is exactly the set of rectrdt are the output of executing the query,

i.e., no record is added or removed.

* correct the result set sent to the client is provided by the cliergaaly, i.e., no unauthorized modification.

« fresh the result set sent to the client is provided using the mexstnt data on the server, and does not belong

to old versions, i.e., no replay attacks.

Assume that the university database is outsourced, andiém wants to execute the querELECT * FROM
St udent WHERE stdl D>105. A small part of the database together with the result of thisrg is shown in Figure
1. We want the completeness, correctness, and freshngseries hold in the returned answer, guaranteeing that the
answer is genuine.



Student S2C Course

StdID | StdName | Major | BCity StdID | CrsID | Mark | | CrsID CrsName Credit | CrsType

101 Ali CE | Istanbul 101 501 A 500 Soft. Eng. 3 A

102 Emir CE | Istanbul 101 502 B 501 Prog. Lang. 3 A

103 Hande CS | Istanbul 101 504 C 502 DB Design 3 A

104 Ates EE |Istanbul | [ 103 | 503 | B 503 | Alg. Design | 3 E

105 John CS | Ankara 103 [ 504 [ C 504 DB Lab. 1 X i i

106 | Tommy | CE | Ankara | | 106 | 500 | B 505 | OS Lab. 1 X StdID | StdName | Major | BCity

107 | Katty | EE | Tebriz 106 | 502 | A 106 Tommy CE Ankara

108 | Matt EE | Tebriz 106 | 504 | B 107 Katty EE Tebriz
108 501 C 108 Matt EE Tebriz
108 | 503 | A

(b) The result set of the quelSELECT *

(a) Our sample database. FROM St udent WHERE StdI D > 105.

Figure 1: Our sample database (a), and the result of a quatyton

The authenticated range queig a way of providing completeness in the outsourced databastext. Multiple
implementations have been proposed by researchers ufiegedi data structures [33, 6, 25, 29, 42, 30, 18, 32, 28,
15]. In all these methods, the records are linked togethaminy that we can prove there is no extra or missing record
in between. It requires two records surrounding the (sprieslilt set: one immediately before the first record [(#fie
boundary recordl and one immediately after the last record (tlght boundary recordl They together are referred
to as theboundaryrecords. We call such data structures with the ability tovprive predecessor (left boundary) and
successor (right boundargydered

We know that the primary key (PK) column in a table, asghél Din the St udent table in our example, contains
unique values, while non-PK columns may contain duplicatkies, as themj or andst dName columns in our
example. We want to perform authentic queries orsalirchablecolumns (the columns that can be used to build
clauses) of a table. The general method is to sort a tabledsyssarchable column, and build an authenticated data
structure (ADS) on the result, that will be used to genergatptographic proofs for queries having a clause using the
column. There is a problem with duplicate values in non-P&td®able columns [32, 19]: a total order on the values
of searchable columns is required to build the ADS, whicletogr with the fact that the duplicate values belong to
different records, make building the ADSs complicated. Rsified later, the existing solutions are redficient

We introduce ahierarchical ADSscheme (HADS) for solving this problem. HADS is also advgataus in
proof generation for multi-clause (multi-dimensional)eges. The HADS can be stored in the same database [4], or
separately. Storing the HADS separately breaks the tie fieaific database and brings more flexibility. This way,
the DBMS used for data storage can be changed without aftetite proof system.

The rationale behind this work is to relate everything tofis. Since the PKs are unique identifiers of records
in a database, they enable us to compare and combine thesrekdlfferent queries and check the correctness and
completeness at the same time (freshness is provided bygstconstant-size metadata locally at the client). This
is an important distinction between our HADS and similar lidavel) ADSs, as their proofs cannot be combined
and compared together. We also support dynamic databases thie data owner issues madification queries (Insert,
Delete, Update), in a provable manner. We believe that oubSmay also be of independent interest, applicable to
other scenarios.

Our contributions can be summarized as follows:

» We provide aunified security definitiofior an outsourced database scheme (ODB) that captorapleteness

correctnessandfreshnessimultaneously.

» We formalize thehierarchical ADSscheme and prove its security, for the first time.

» We build a provably-secure ODB using HADS that supportsieffit proof generation for not only single-clause

but alsomulti-clausequeries.

* We handle proofs on columns containing duplicate valudis around 3x to 5x better efficiency, regarding both

proof generation time and size, compared to previous work.

» Our scheme supports the tables wdthmposite keydor the first time.

» Our ODB construction efficiently handles proofs join queries, even for multi-table joins, non-equijoins, and

gueries containing both join and selection.

» Our ODB provides efficient proofs for almost all query typ&¥e achieve only 4% communication overhead

compared to the actual result size, using our Ko¢ Univedsdtabase.



1.1 Related Work

Inefficient approaches An elementary way to verify the authenticity of an answeamooutsourced database query
is to sign each table and store the signature locally. Thithadaerequires sending the whole table to the client for
verification, and hence, does not scale up. Another methtw gempute and store, with each record, a signature
that verifies the contents of the record. The problems atectimputing a signature (for each record) is an expensive
operation, and this method does not provide completeness.

ADS-based approachesA more suitable approach towards answer verification is®ADSs [6, 21, 33, 9, 41,
42] to store authentication information, and send the egleparts of these ADSs to the client to prove authenticity
of the answer.

Devanbuet al. [6] proposed one of the first schemes using ADS for checkitegiity of the remote data. They
used a Merkle hash tree to store the security informationtediooutsourced static data (which changes infrequently).
The scheme supports the projection and simple join opeasatiwefficiently.

Pang and Tan [33] used one or meexifiable B-trees (VB-tree) for each table. The VB-tree is an extansib
B-tree using the Merkle hash tree. A VB-tree is generateth@uhe table sorted on that column) for each searchable
column of the table. This method does not support compls&[&2], and found insecure for the insecurity of the
function used to compute the signatures [28].

A variant of this method, named MB-tree, is also used in ttexdiure [6, 25, 29, 42]. MB-tree is similar to
VB-tree except that a light hash function is used insteadkpénsive signatures. The client stores locally the root’s
digest, or signs and stores it on the server.

Another line of work is using amuthenticated skip list to store the required information for the verification
[30, 41]. It is suitable and efficient enough for this purposspecially when we consider dynamic scenarios. Wang
and Du [41] proved that such ADSs provide soundness and etem@ss for one-dimensional range queries, and
multiple ADSs are required for multi-dimensional range rige

Palazzi [30, 31] built one authenticated skip list for eaehrshable column in each table. For a query with one
clause, a proof is computed using the corresponding skiprid sent back to the client along with the result set. For
multi-clause queries, the result set of one clause thatighia earlier is considered and separated intteaSetand
a ‘NoSetby applying the other clauses on top. The result sent to fileatds a larger set than the real result set of
the query, and hence, is not efficient. The problem is that @acof authenticates a set, and these sets cannot be
compared against each other.

Authenticated range queryis an important method used to prove the completenessnaextra records and no
missing ones), which works as follows [6, 18, 42, 28]:

» Find thecontiguousnodes storing the values corresponding to the result séteofiiery, as well as theft

boundary recordand theright boundary record Note that, to be able to work with such proofs, the undegyin
ADS needs to berdered

» Compute the ADS membership proofs of the boundary records.

» Put all these values into the verification object and setwltite client.

» The client uses the values in the result set together wrt@émbership proofs to reconstruct the corresponding

part of the ADS, and computes the digest.

» She compares the computed digest with the locally storadda&. If they are the same, then the query result

is accepted, and rejected otherwise.

If the proof is accepted, the sékeft boundary record, result set, right boundary recpiid guaranteed by the
orderedADS to be a sorted and contiguous set of values, with no extnaissing value between them [41, 21].

Hierarchical ADSs. Due to their widespread use, work has been done to impreveffitiency of authenticated
range queries. Nuckolls [29] proposed a flexible structateed Hybrid Authentication Tree, which uses the one-way
accumulators in upper levels to break the dependence oheigbt of the MB-tree.

Goodrichet al. [15] gave a super-efficient answer verification method byodpling the authentication structure
from the search data structure. They divided a tree willaves (and height lag into sub-trees with log leaves
(and heightO(loglogn)), and stored their roots in another structure. The sulstaee divided further into sub-trees
with O(loglogn) leaves. This process is repeated recursively up to an optével. Note that none of the previous
work formalizes or generalizes such hierarchical ADSs.

Hash chainingis another method for providing authentic query resultsrelte records are linked together to
show that there is no extra or missing records between thém cllent sorts the table by a searchable columns (and
repeats this process for all searchable columns), and liria (or three in some approaches) consecutive records



[ri—1,] ri,rit1 together, i.e., compute([h(r;_1)|]h(r;)|h(ri+1)), whereh is a collision resistant hash function, and
denotes the concatenation. The first and last records &ealitm special records indicating the beginning and end of
the records. [18, 32, 28, 15]. To provide authentic prodis,dient either computes signatures for the links, or eslat
them to each other in a tree structure.

Upon receipt of a query, the server (1) executes the queryin@s the result set and the boundary records, (3)
computes the proof as either the set of links’ signaturetyecorresponding part of the tree, and (4) sends them all to
the client. Using signatures, the verification object coista linear (in the size of the result set) number of sigrestur
and hence, computation and communication costs are high.addregated hash chainin@6, 28] tries to reduce
the proof size by combining multiple proofs into one, usihg &ggregation capability of the underlying scheme. The
main problems with such schemes are the cost of updates atacthof join possibility.

Provable join. Devanbuet al. [7] pre-computed all possible joins and constructed theesponding ADS to
enable proof generation by the server. They further sugdesinstructing the ADS on thiifferencesbetween the
values of the matching columns in the result set. This wagy ttan support queries with equi-join (difference = 0),
>-clause (difference- 0), and<-clause (difference: 0).

Li et al. [18] proposed the Embedded Merkle B-tree (EMB-tree) whastes consist of reguld®™-tree entries
augmented with an embedded MB-tree, and used it to supptirertic join queries. To join two tables R and S,
R xc—c; S whereC € RandC;j € S they: (1) find the smaller table, say R, (2) insert it as a whoto thevo,
along with its proof, and (3) for each € C;, construct a range query proof for the queBgLECT * FROM S WHERE
C; = v/, and append it to theo. It requires|C;|-many range queries, hence, is not efficient regarding ieatchnd
server computation, and communication.

Panget al. [34] used signature aggregation to propose a scalable gesujt authentication mechanism for dy-
namic databases. Their first attempt is similar to the sckahki et al.[18], and results in a huge verification object.
Their second attempt uses a certified Bloom filter [2] to shiost some of records of the first table has no matching
records on the second table.

Join algorithms that use the ADSs for both tables and gemegasonable proofs are proposed by Yang. [42].

The first algorithm Authenticated Indexed Sort-Merg@an, is an efficient form of previous join algorithms with@n
ADS [18, 34], and eliminates the repeated range queriesexththdant proofs. The second algorithiuthenticated
Indexed Merggoin, improves the previous algorithm using two ADSs, onedach table. It traverses each ADS
once, and each required node is inserted only once inteath&lthough it is efficient regarding both computation and
communication, for any (mis)match, two boundary recordsimserted into th&o, which is unnecessary as we show
in our join algorithms. The third algorithruthenticated Sort-Mergein, is used to perform the join on a column for
which no ADS is generated. The server inserts the whole &ibdétinto thevo, together with the matching records of
the second table, and tinenk listsused to prove the matching. The client verifies all of themgarkrates matching
pairs (the expected result) locally.

Recently, an integrity-checking mechanism is given fonjqueries performed by amtrustedcomputational
server working together with sonteistedstorage servers [5]. The client gives the storage serveusiy,can encryp-
tion key, and information on how to inject some fake recordarkers andtwins) into the result. The storage servers
execute the query, inject the fake records, encrypt and gencesult to the computational server who performs the
join and sends the final result to the client.

Private query processing Carbunar and Sion [3] suggested a private join on the outedudatabases that
supports equi-join, and can be extended to support rangegjeéries, assuming an honest-but-curious server. For
each value in a column, the client finds all matching valuealliother tables, encrypts them, and stores them all in
a Bloom filter. For a join between two tables, the client cotapua trapdoor and sends it to the server, so that the
server can find all matching pairs of the requested tabled sand the corresponding records. The scheme is not
computation- and storage-efficient, especially for rangerigs and dynamic data. Another privacy-preserving join
scheme proposed by Mat al. [20] only supports equi-join, but uses randomized trapslodt is not computation-
efficient, since for a join between two columAsindB, each value; € A should be checked against all valugs: B.

In both schemes, there are no (correctness, completemesBeahness) proofs accompanying the server answers.

1.2 Overview of Our Solution

To be able to provide proof for different kinds of queries idaiabase, one ADS per searchable column in a given
table is built. We also follow a similar approach, and buildierarchical ADS (HADS) for each searchable column.
Figure 4b visualizes the idea for a database. At the topmb$§,Ahedatabase AD3he table names are stored. For



each table, we havetable ADS which stores the names of the columns in that table. For eakelmn, we have
a column ADShat stores the unique values in that column. Finally, thigobamost ADSs ar@rimary key ADSs
associated with eaalmiquevaluey; in a columnC;, storing the primary key (PK) values of the records hawinin
columnC;j. For example, in our sample database in Figure 1, a colunai-kDS for maj or will contain only three
leaves, with label€E, CS, EE. The lower-level ADS connected to tBE will contain the primary key values 101, 102,
and 106. Similarly, the lower-level ADS connectedC®will contain 103 and 105. Note that, our HADS definition is
flexible, and hence such a four-level hierarchy is not a reguent, but a sample deployment that makes sense.

Efficient duplicate handling. The reason for the necessity of such a hierarchical streiclbmes from the short-
comings of previous ADS-based solutions. Note that colyransh asmgj or, contain duplicate values. Obviously,
such duplicates can be made unique, for example, by appeadiandom perturbation [19], hash of the record [31],
or the replica number [32]. Yet, the server should travensenthole resulting (big) ADS to search for a value. Since
the HADS stores the unique values in an upper level, whichrisuah smaller ADS, the server first finds a value
in this ADS, and accesses the whole related values in ther llewel, without further computation. As an example,
consider a column containing 1000 unigue values, each daftwikirepeated 100 times. A regular (single-level) ADS
would need to integrate 100,000 values, whereas our HADIShaile one upper-level ADS with 1000 values, and
1000 lower-level ADSs with 100 values each. Hence, instdamktarching for 100 values in an ADS with 100,000
values, the server looks fonly one valuein an ADS withonly 1000 valuegand access the whole lower-level ADS
storing 100 values). This results in great performance avgnments regarding both communication and computation.

We use multi-proof supporting ADSs (e.g., the FlexList )1t construct the HADSs, which in turn, makes
efficient authenticated range queries possible. A mutibpsupporting ADS generates an efficient (non-)membership
proof for a set of values, instead of separate proofs for gattke in the set. The proof for the clauge< col; < b,
indeed, consists of membership proofsa@ndb, and the values matching the clause.

Server architecture. There are two parts on the server side: the DBMS
(database management system) who stores the client dat@spahds to the
SQL queries coming from the client, and the DBAS (databagkeatication
system) who stores the security information in the form o #hDSs and
HADSSs, and generates cryptographic proofs to the queriee.DBMS choice
is independent of our work, and any available DBMS can be eyepl. But, we
Client Server design and implement our own DBAS. Since @BAS works independently of
the underlying DBMSon the same query), our proofs do not include any extra
record, making it an efficient scheme. Figure 2 shows thisitecture.

Join. Another advantage of the HADS is anproved join algorithm Since we use similar ordered HADSSs, the
items contained in them are comparable, and hence provitgaimmemberships (i.e., for ‘AND’ connector and join
gueries) is easy. To join two tables on two columns, we statialeftmost leaf nodes of both ADSs and compare
them together. If they store the same value, it is reflectéldarproof. Otherwise, we jump over the nodes of the ADS
containing the smaller value, to a node containing the ssiaalue that is less than or equal to the bigger value. This
process goes on until the end of either ADS is met. The praef ahd proof generation time is reduced due to the
lack of duplicates.

Combining proofs. Another important advantage of our scheme is that sincéikieS ties all values to their
related PKs, all proofs prove to the client the authentiofya set of PKs. This makes possible the results of the
proofs to be compared and combined together, which was a conproblem among most of the existing solutions
[7, 32, 28, 31]. Stated differently, for queries with morarhwo clauses, the server starts by generating proof for the
first two clauses on their ADSs, and uses the result (thatti;rtbe form of an ADS) with the next clause, who has
an ADS, to generate a new proof. This is repeated (with prop#ring on the clauses, detailed in Section 5.4) until
all clauses are processéerhus, more than two clauses or joins on more than two tables eabe handled as well.

Query

Result+Proof

Figure 2: Server architecture.

2 Preliminaries

Notation. We useN to denote the number of records of a table, #h{to denote the number afistinctvalues in a
column. The symbol|' denotes the concatenationdenotes a collision-resistant hash function, BRI stands for
probabilistic polynomial time. ‘PK’ denotes ‘primary keyi a database table, and ‘pk’ stands for ‘public key’.

A functionv(k) : Z™ — [0,1] is callednegligibleif ¥ polynomials p3 constant ks.t.V k > ko, v(k) < |1/p(k)]|.
Overwhelmingorobability is greater than or equal to-v (k) for some negligible functiom(k).



|:| Normal ADS nodes

|:| Nodes contained in the
query result

E The boundary nodes

V/ Nodes required for re-
%

constructing the proof

h2 h3
|h(101)| |h(102)|—|h(103)| |h(104)Hh(105)Hh(106)| |h(107)Hh(108)|

(a) ADS ofSt udent table’s PK column. (b) A membership proof.

Figure 3: (a) An ADS storing the PK column of tBeudent table, and (b) the membership proof for the queyECT Stdl D
FROM St udent WHERE StdID > 105.

Hash functions are functions that take arbitrary-length strings, and alugtrings of some fixed length. Let
h: X« M — C be a family of hash functions, whose members are identifield ®yX. A hash function family is
collision resistant if PPT adversariesq,3 a negligible functiorw(¢) such thatPrk «+— K; (x,X) < A4(h,k) : (X #

X) A (hk(x) = he(X))] < v(£), where/ is the security parameter of the hash function family (eedated tolk|).

An authenticated data structure (ADS)is a scheme for data authentication, where untrusted rdsppanswer
client queries and provide cryptographic proofs that thenemms are valid [39, 40, 35, 16]. The client constructs the
ADS and uploads it to a server who answers later queries. €ampteof membership queries, the server sends back a
proof, using which the client can verify the answer againsia local metadata. There are different types of ADSs:
accumulators, authenticated skip lists, authenticateth kebles, Merkle hash trees, 2-3 trees. We provide a formal
definition in Appendix A.

A one-way accumulator[1] is defined as a family obne-way quasi-commutativéash functions. A function
f: XY — X is quasi-commutativf Vx € X,y1,y> €Y : f(f(x,y1),y2) = f(f(X,y2),y1). Benaloh and de Mare [1]
proposed a one-way accumulator based on an RSA modulus.

Theauthenticated skip listis an extension of a skip list [37]. It is constructed usinggemutative hash function
h, which in turn can be constructed from a collision resistargh functionf as:h(x,y) = f(min(x,y),maxXx,y)). The
leaves store hashes of data items, and each intermediagestayds hash of a function of values of its children. The
values on the path from a leaf node up to the root constituteaf pf membershipMerkle hash tree [23] is another
widely used ADS fostaticdata. Both ADSs haviinear space complexity, anldgarithmic proof size and verification
time, in the number of the items stored [16]. Figure 3a prissam authenticated skip list storing the PK column of the
St udent table, and Figure 3b illustrates the membership proof fergherySELECT St dl D FROM St udent WHERE
St dl D>105.

Papamanthowet al. [36] introduced theauthenticated hash table which constitutes a hierarchy of one-way
accumulators.It keeps either the query or update time anhsthile providing the other with sub-linear complexity.

An ordered ADS can be used to show some elements are consecutive (estmndiathenticated range queries).
A total order on the elements to be stored in an ordered AD8dgired. Assume thaty and z are consecutive
elements of dotal order (A, <) such thatx < y < z, andA is stored atADS.. Informally, we sayADS, is ordered
if it can prove thatx = predecessdy) and z = successdyy) for all consecutivex,y,z € A. The Merkle hash tree
and authenticated skip list are ordered ADSs, while theractator is not. An ordered ADS is perfectly suited for
authenticated range queries.

A multi-proof ADS can prove (non-)membership of multiple elements in onefpfBmprove (non-)membership
of a set of elements, it does not need to do the job for eachesieone-by-one, and instead, generates a proof
showing (non-)membership of all elements in only one treadeof the ADS. This will reduce the server computation,
the communication, and the client verification, though reynaptotically. These ADSs suit the authenticated range
gueries well. FlexList [11] is an ADS with multi-proof caplities.

3 Hierarchical Authenticated Data Structures

The Hierarchical ADS (HADS) is an ADS consisting of multipdeels of ADSs. Each ADS at levels constructed on

top of a number of ADSs at level- 1. Each element of an ADS at leviedtores the digest of, and a link to an ADS at
leveli+ 1. Therefore, multiple ADSs with different underlying sttures can be linked together to form a hierarchical
ADS with multiple levels. The only restriction is that all A3 at level must be of the same underlying structure to
have consistent proofs. (We can handle the heterogenesasasavell, but it complicates the presentation). At the
bottommost level, the hash of the data is stored as well, (d.g.hash of records in the database). The client stores
the digest of the topmost ADS as metadata. Figure 4a preadwis-level HADS instantiation (based on our sample



Database ADS
Table names

Table ADSs

.| Column names

Column ADSs
Column values

Primary key ADSs

Primary keys
(a) A two-level HADS. (b) A general four-level HADS to store a database.
Figure 4: HADS constructions with different levels to steegeurity information for a database.

database in Figure 1) using authenticated skip list and Mdrésh tree at the first and second levels, respectively.

Similarly, Figure 4b shows a general four-level HADS aretitire to store a database (the ADSs are represented as

tree for simplicity, but they can be of any type as long as t@ystore digest of the corresponding lower level ADSSs).
An HADS schemeis an ADS scheme defined with three PPT algoritiiidseyGen, HCertify, Hverify) to

distinguish them from non-hierarchical ADSs. Definitiond AA.2, A.3, A.4 (using HADS algorithm names) provide

a formal framework for HADS schemes.

3.1 HADS Construction

We construct an HADS using (possibly different) ADSs at mplgtlevels in a hierarchical structure. First, all lowest-
level ADSs are constructed using the data (in the form oédiffit groups). Then, these ADSs are divided into groups
according to some relation, and their digests togetheriwitimation about where they are stored and the data of the
upper level, are used to build the upper-level ADSs. This@se is followed until a single ADS is built whose root
will be stored as metadata by the client.

To generate a membership proof, the client should providesdéinver with the required information directing the
traversal on the HADS at all levels. In other words, the ¢lteiis the server which element(s) at each level should be
looked for. The server follows down the HADS until the lastdk generates and combines the proofs for all levels,
and sends the resultant proof to the client. If ADSs with rficdiion capabilities are used, a similar recursive stsateg
is employed for provable modification operations as well.

We provide the input as a set (feyvalue) pairs in a way that the pairs needed for the upper levels afipsta
The command execution will begin on the topmost ADS, and becthd by the input data customized to proper
sub-ADSs at each level. A qguery command uses the keys, whiledification requires both the keys and values.

3.2 HADS Operations

TheHKeyGen algorithm generates a public and private key pairs for eaatl,| combines all public keys infok, and

all private keys intesk and outputs the result as the private and public key palme@HADS (Algorithm 3.1). Again,
even though conceptually one may employ different ADS siin@s or use the same structure with different keys
within the same level, to keep the presentation simple, veegnt as all ADSs at levebeing of the same type and
with the same key pair.

Algorithm 3.1: HKeyGen, run by the client.

Input: the security parametér no. of levelsn, and the underlying structure of each level.
Output: the private and public keys of the HADS

skiaps={}//private key of the HADS.

pkiaps={} //public key of the HADS.

fori=1tondo
(sk pk) = ADS.KeyGen(1¥) // Ask I evel i ADS to produce its security keys.
Skiaps = SkqiapsU sk
PkiaDs = PkHaDsU pk

return (skqaps, PkHADS)

N OO O~ W NP

TheHCertify performs the proof generation and modification on HADS. Téwursive operation starts at the
topmost ADS, and is repeated on all affected ADSs in the hibya The ADS in each level generates its own proof.



Since the ADSs are tied together such that each leaf node AD&at leveli stores a link to an ADS at levéek-1,

their proofs will be combined together according to thettesrin the hierarchy, as presented in Algorithm 3.2. The
HADS proof contains all required ADS proofs. To simplifystoperation, we use another PPT algorithm as a helper
method to find the sub-ADSs of a given ADS:

Find(keyvalue) — ({(ADS,{(key,valu€)})}) This is used (insideéiCerti fy) to interpret the input data and find
the next level ADS(s) together with the related input vadlie(t traverses the current ADS with the provided
key(s) and finds the leaf node(s) storing address(es) of the b the next level to continue with. Finally, it
outputs the set of next-level ADSs and th@iey, valu€) pairs. Examples are given in Section 4.3.1.

Algorithm 3.2: HCerti fy, run by the server.

Input: the public keypk, the commandmd the data given as ey, valuepairs.
Output: the generated proof

1 Pown={}/! Proof of the current ADS.

Penita ={}// Proof of all children conbined together.

{(ADS',{(key', value'})} = Find(key, value)

[/ Qutput is null if already at the bottomost |evel.

4  for each element e {(ADS', (key', value'})do

5 P =eADS.HCertify(pk cmd e (key,valu€))//Ask each child conpute proof.
6 Pehild = Pchi|d|P// Conbi ne the proofs.
;
8

w N

Pown = Certify(pk, OP, (keyvalue))// Conpute this ADS proof (not hierarchical).
return Peniid|Pown

TheHVerify is also a recursive process that is run by the client to veafyh level’s proof in a bottom-up manner.
It first verifies the bottommost ADSs. If they are all acceptbdn it uses their digests together with the proofs of the
above-level ADSs to verify the level above, and so forth.alyn when the upper-most level is reached and a single
digest is obtained, which is verified against the local metiad

4 Qutsourced Database Scheme

4.1 Model

The outsourced database (ODB) model, as depicted in Figusecdmposed of three parties: thata owney the
querier, and theservice provider The data owner performs the required pre-computatiorisadp the database, and
gives the querier(s) the security information she needsddfication. The data owner then may perform modifica-
tions (insertion, deletion, or update) on the outsourcedlzese.
Data owner The service provider (or simply, treerve) has the required equipment
- % Database upload (software, hardware, and network resources) for storimpraaintaining the
ALY

database in a provable manner. We do not know or care abouttéreal

Modification > i .
m structure of the server, i.e., the server may use some lef/edplication and
Proof distribution to increase the performance and availabilitye querier (or the

y

Info required

for "e$‘°a“°" usel issues a query to the server, who executes the query, cesha result

@E Query DBAS set, generates the proof, and sends all back to the quetierqilerier then
N

d

verifies the answer using the security information givenhsy data owner.
server  FOr the sake of a simpler presentation, we refer to them asligrt It is

Querier _(Client possible to have multiple queriers or data owners, and dateis can also

Figure 5: The ODB model. act as queriers. In this paper, we focus on the single-ctiase.

We decouple the real data from the authentication infoilmnadin the service provider. TH2BMSis a regular
database management system responsible for storing aatingpthe data, and executing the queries on the data and
giving the answer back. THEBAS(database authentication systestores the authentication information about the
data, and generates the proofs to be sent to the client. &HDBAS can be used together with any DBMS, and the
focus of this work is to construct an efficient and secure DBR& DBMS and DBAS together constitute an ODB.

Adversarial Model. The remote server is not fully trusted: he can either aciaioaisly, or be subverted by
attackers to do so, or may suffer failures. He may cheat lagldtig the integrity of the outsourced data (modifying
the records) and giving fake responses to the client quégiescuting the query processing algorithm incorrectly, or
modifying the results), or by performing unauthorized nficdtions on data, while trying to be undetected.

)l
Answer + Proof




4.2 Definitions

An outsourced database requires certification and verdicalgorithms, similar to an ADS. Thus, the following
definitions follow the same ideas. A corollary to this is thatADS scheme can be employed to construct an ODB
system (or vice versa).

Definition 4.1 An outsourced database scheme consists of three probabilistic polynomial-time algonith
(OKeyGen, QCertify, OVerify)where:

* OKeyGen(1K) — (sk pk): is a probabilistic algorithm run by the client to generatepair of secret and public
keys(sk pk) given the security parameter k. She keeps both keys, anesstialy the public key with the server.

* OCertify(pk,cmd) — (ansT): is run by the server to respond to a command cmd issued bylitre.clt
produces an answer ans and a praothat proves authenticity of the answer. If the command is dification
command, the answer is empty, and the proof proves that tddioadion is done properly.

» OVerify(pk,skcmdanstst) — ({accept,reject},st'): is run by the client upon receipt of the answer
ans and proofrm, to be verified using the public and private key pair. It ougpan ‘accept’ or ‘rej ect’
notification. If the command was a modification command aerdvéhification result isaccept ’, then, the
client updates her local metadata a$, stccording to the proof.

Definition 4.2 ODB security game. There are two parties playing this game: the challenger abis as the client,
and the adversary who plays the role of the server.

Key generation The challenger generates the private and public key fsirpk) usingOKey Gen. She keeps both
keys locally, and sends the public key to the adversary.

Setup The adversary specifies a command cmd (either a query or dficaiitin) together with an answer ans and
a proof 1, and sends them to the challenger. The challenger runs tparithim OVer i f y, and notifies the
adversary about the result. If the command was a modificat@mnmand, and the proof is accepted, then the
challenger applies the changes on her local metadata. Theradry can repeat this interaction polynomially-
many times. Let D be the database resulting from verified comis

Challenge The adversary specifies a command grad answer arisand a proofit, and sends them to the challenger.
He wins if the answer ahss different from the result set of running chwh D, and cmd ans, and 1 are verified
as accepted by the challenger.

Definition 4.3 ODB Security. We say that an ODB scheme is secure if no PPT adversary cathe/i@DB security
game with non-negligible probability.

Note thatthe ODB security game covers all previously separate guaes correctness, completeness, and
freshnessThis is simply due to the fact that the game requires thatdvergary can return a query answer together
with a valid proof such that the returned answer is diffefemtn the answer that would have been produced by the
actual database. If any one of the freshness, completesrassrectness guarantees were to be invaded, the adversary
would have won the game. Looking ahead, in our proofs, théesiger keeps a local copy of the database, and can
detect whether or not the adversary succeeded. If he sugce@dreduction shows that we break some underlying
security assumption.

4.3 Generic ODB Construction

A generic way to construct an ODB is to employ a regular DBMfggether with a DBAS built using a number of
ADSs. A common problem among all previous ODB schemes isxistemce of duplicate values in non-PK columns,
since making an ordered ADS (which is necessary for ranggéag)eequires a total order on the data items. The
existing solutions [6, 32, 19, 31] are not efficient (see Badb.2). Our HADS solves the problem efficiently, and
easily generates proofs for the answers to multi-dimemsiqueries.

If the query has a clause on a non-PK column, saly, containing duplicate values, the result set of the query
includes all records with the specified value(stat. The way we can identify these records and compare them with
the result set of the other clauses is to relate each recatsidorresponding (unique) PK.

Definition 4.4 PK-set. For each distinct value;vin a non-PK column of a table T, the set of all PK values cor-
responding to yvin all records of T is called the PK-set of,wvepresented as P ), i.e., PK(v;) = {k; € PK(T):
Jdrecord Re T st. kj e RAV, € R}



Note that the PK-set includes only the PK values, not the e/hetords. Any membership scheme can be used
for assigning the PK-set to a non-PK value, regarding thentland server processing power, and communication
requirements of the application under construction. THg difference is the type of corresponding proof that is
generated by the server and verified by the client. This brihg flexibility to support multiple membership schemes,
and select one based on the state of the system at that tirtfee(fdiscussed in Section 4.4). The PK-sets of distinct
elements of colummaj or are shown in Figure 4a.

We construct the DBAS in the following way. Since all valueghe PK column(s) are distinct, we use a regular
(single-level) ordered ADS to store the corresponding sgcimformation, similar to the ones presented in the pre-
vious work [30, 41]. An example ADS for storing the PK columirtlee St udent table, using an authenticated skip
list is presented in Figure 3a. For a non-PK column, for siaity] a two-level HADS stores the security informa-
tion: the distinct values are located at the first (uppergliéve., each duplicate value is stored exactly once), had t
corresponding PK-sets of these values are located at tbacg¢lower) level. A sample HADS for storing thej or
column of theSt udent table is illustrated in Figure 4a. It uses an authenticakgullist at the first level, whose leaves
are tied to Merkle hash tree digests at the second level.

The client locally stores the digests of the HADSs of eachctedole column as metadata. Later, she checks the
authenticity of server’'s answers against these digestis rméthod requires the client to store digests in the number
of searchable columns in the database. As an alternativgnilélse client can put the digests of searchable column
of each table in another ADS (the table ADS), and on top of theske another ADS (the database ADS) just as
in Figure 4b. Then, she needs to store only the digest of this(four-level) HADS as metadata. One may further
extend this idea to multiple databases a user owns, and thkipleusers in a group, and so forth. By increasing the
number of levels of the HADS, it is possible to always makeshe client stores a single digest. This presents a nice
trade-off between the client storage and the proof-vetibiogperformance. For the sake of simple presentation, we
will employ two-level HADS constructions.

Using the authenticated range query for proof generatiGuress completeness. Freshness is provided through
storing the digest(s) at the client side. To provide corress (i.e., the horizontal proof [30]), we store the hash of
the corresponding recorth(record), with each PK. In flat ADSs like the accumulator, the hash eslare tied to
the elements, while in tree-structured ADSs, the hash sade stored at the leaves. (The computation of values of
the intermediate nodes, if there exists any, depends onntherlying structure of the ADS in use.) The ADS of the
PK column of a tableT is built using the set of all PK values and hashes of theirndaz:@(plq,h(record))}!l‘1 as
(key, value) pairs. For a non-PK searchable colwoln of a tableT with d distinct values{vi}ﬁzl, the corresponding
HADS is constructed as follows: For each distingtc col;, a second-level ADS is built using the (key, value)
pairs {(pks, h(record))}, where pks € PK(vi). Then, a first-level ADS storing pair§vi,h(h(vi)|h(digest of the
corresponding second-level AD$) is constructed.

The client outsources these (H)ADSs together with the datbwhile keeping their digests locally as metadata.
Later, upon receipt of a proof and answer (result set), shenpes the verification using the information provided in
the proof and hashes of the records in the result set. If etirds are used (to be discussed in Section 4.3.2) and the
proofs verify according to the local digests, then the ¢tlastepts the proof and the answer.

We decouple the security information from the real data asd@chet al.[15] did. The DBAS stores the security
information and generates proofs to be sent to the cliene DBMS stores the client’s data. They can reside both
on the same machine, or on different machines. By using tgebs in [30, 41, 4], it is possible to implement
authenticated skip list or Merkle tree proofs of the DBASwgsa DBMS as well. In such a case, the DBAS can share
the same DBMS with the data, or use a separate DBMS. When ther seceives a command, he relays it to both
the DBMS and the DBAS, collects their responses, and forsvereim to the client. We focus on the DBAS, since the
DBMS has nothing to do with proof generation and autheritoat

HADS proofs. The membership proofs of HADSs for non-PK columns condisivo parts: the first part proves

the (non-)existence of thaniquevalue(s) in the column, and the second part ties each valine teespective PK-set.
A key difference with a regular ADS is that after showing tixéstence of a value in the first-level ADS, all values
in the related second-level ADS (storing the related PK-siebuld be included without further computation, since
they all share the same values in the queried column. Thiscesdboth the proof size (communication) and proof
generation time (server computation). However, the chamification cost for HADS is very close to ADS, since
she needs to reconstruct the whole second-level ADS alotigtivé membership path in the first-level ADS. For the
ADS, the client reconstructs the whole sub-tree consigiirtge values in the proof.

Consider a table witkl distinct values in columiE;, each repeatedtimes, on average, leading to records in



A proof path
of size O(log(d))

Range query with two proof paths,
each of size O(log(rd))

Result set of size r

Left boundary record ~ Result set of size r - Right boundary record
(a) Proof generation in an ADS after duplicate elimination.  (b) Proof generation using HADS

Figure 6: A comparison of proof generation and proof sizeen®DS and an HADS.

total. Using a duplicate elimination mechanism [6, 32, 18, @/e can store such a table inside a regular ADS. The
HADS builds a first-level ADS of sizd, whose leaves are each connected to a second-level ADSeof fading to
HADS sizerd. Therefore, the server storage remains the same. Howeverdguery about a valug in C;, the ADS
proof size and proof generation time both @@ logrd +r) = O(logr +logd +r), while those of the HADS are both
O(logd+r). The ADS uses a range query witb@ogrd) cost, and processes thealues as the result set. However,
the HADS findsy; at the first-level ADS with cogD(logd) and accesses allvalues in the second-level ADS. This is
presented in Figure 6 and further detailed in Section 4.3.2.

4.3.1 lllustrative Examples

We give some examples to better understand our construction

Selection in a four-level HADS (Figure 4b) The DBAS first converts the querySELECT
* FROM Student WHERE major in(‘CE,*CS) and BCGty='Istanbul’ to (key, value) pairs:
(Student, {(mgj or, {CE,CS}), (BCty, {Istanbul })}). Then, it asks the HADS to generate and return the
corresponding proof. The HADS ruhierti fy. With the help of the-i nd algorithm that decomposes the converted
guery into the proper parts and finds the next-level AD€srti fy works as follows: It asks the database ADS to
give its proof, given the converted query. The database AD&irn, executes thei nd algorithm, which interprets
the converted query and uses the Beydent to find the next-level ADS. Then, the database ADS asks$tthdent
ADS to recursively give its proof, supplying it with the inp{( maj or, {CE, CS}), (BCity, {Istanbul })}. Now,
the St udent ADS, via theFi nd algorithm, finds two next-level ADSs: thej or ADS and theBCity ADS, and
asks them to give their proofs by providing the required ted@E, CS} and{l st anbul }, respectively. These two
ADSs, working in parallel, repeat the same steps and findasielével ADSs storing the PK-sets of valu@s CS,
andl st anbul , and ask them to give their proofs. After receiving prootsrirthe last-level ADSs, themj or ADS
and theBG ty ADS generate and add their own proofs, and relay the resok teatheSt udent ADS who will do
the same job and send the result to the database ADS. ThadatADS generates and adds its own proof and sends
the resultant full proof to DBAS to hand on to the client.

Selection in a two-level HADSFigure 7 presents another example showing the proof gemeraith a two-level
HADS, for the querySELECT * FROM Student WHERE maj or='CS and stdl d=103, which is translated by the
DBAS into (St udent, {(maj or, {CS}), (stdld, {103})}). The firstlevel is an authenticated skip list containing
unique values of themj or column, and the second level has three Merkle hash treesaiomgst dI d values match-
ing eachngj or value (i.e., their PK-sets). The first-level ADS needs tovprmembership ofS. This can be done
by returning ‘H1,CS,h(EE),h(+0)’; essentially the result, together with the hashes of theées required to obtain
the corresponding digest. At the second level, the Merlkde treeds to prove membershipl68. This is done by
returning 103h(105)’. The generated verification object will look likeo='"h’1,CS(103h(105)),h(EE),h(e)’. The
client can verify both levels using thi® together with the hash of the records in the returned result.

Modification. As an example targeting modification, consider adding a rneverd into theSt udent ta-



The query is converted to: key=Student, value={(major, CS), (stdld, 103)}

Normal
ADS nodes

key=major
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the proof sub-list

Figure 7: Proof generation f&ELECT * FROM Student WHERE maj or="CS' and stdl d=103.

ble: I NSERT | NTO Student VALUE(109,  Cemi,'CE',‘lzmr’'). This adds the pairlQ9, h(record)), where
h(record)=h(h(109) | h(* Cem )| h(*CE )| h('lzm ")), into the ADS of the PK column. We further need to
add @09, h(record)) to the second-level ADS associated with. Once this is done, since the digest of e
ADS would be modified, we need to reflect this in ting or ADS as well. Similarly, we need to construct a
newlzmr ADS, containing only 109, h(record)), and add its digest to thBCi t y ADS. Therefore, using two-
level HADS constructions, there will be three parts in translated command:1@9, h(record)) to be executed
by the ADS of the PK column,CE, (109, h(record))) for the maj or HADS, and (zmir, (109, h(record)))
for the BG ty HADS. In a four-level HADS construction, the translated ecoamd looks like: $t udent, {(stdl d,
(109, h(record)) ), (maj or, (CE, (109, h(record)))), (BCity, (Izmr, (109, h(record))))}).
Verification. Verification is fulfilled similarly in a bottom-up mannerh& client first verifies the PK-sets’ proofs.
If all are verified, it goes on to use them for verifying thewwoh ADSs’ proofs. If this step also was successful, its
results are used to verify proofs of the table ADSs @hedent table, in our example). Finally, the database ADS
proof is verified in a similar manner. If all proofs are verifiemployingall andonly the records in the answer, then
the client accepts the answer as authentic.
Since the verification is accomplished similarly at all leysve
[n1] [h2] |5y jnros) acton) frtos) T give an example showing verification in the ADS of Figure 3beve
- the proofvo='h1,h2,h(104),108,06,107,108 h(+x)’ is given for the
[n1][n2] [rtosfpcrosroo] frsonf-toa 2 queFr)ySELECT * FRO\SI St JdentEL V%’-IERE StadI(D>1)05. $he verifica-

5 tion algorithm extracts the result sgt06,107,108 and the bound-
ary records{105,+e}, and checks whether 18306 <107<108<
-|h(1os)|-|h(1os)| |h(107)|-|h(1os)| +oo (step 1). If the check is passed, it uses h(104) to comp@e h

(step 2). In the step 3, it use$hand h(107) to compute$ which
4  is used together with h2 to comput&hwhich in turn, is used along

with h1 to compute 16. Finally, it uses 6 and h(+0) to computes
— W7, the digest of the computed ADS. Now, it comparésdgainst
m m |h(104)-|h(105)|—|h(106)| |h(1o7)|.|h(1oa)| the digest stored locally (h7). This process is illustratésiially

in Figure 8. Note that, a full proof would also contain infation

Figure 8:  Proof verification for vo='h1l, about the levels of these nodes in a skip list, but those paethid-
h2,h(104),105,06107,108 h(+e)". den for the sake of a simpler presentation. Thus, assumehbat
server also tells the client where to connect these nodestlag iproof.

4.3.2 Proof Generation

To provide details on how the DBAS generates proofs, we dendlifferent cases where the query has only one
clause, or multiple clauses. For each case we discuss hquvabeis generated, and what is included in the proof.

One-dimensional queries:contain only one clause. There are two possible cases:

* The clause is on the PK columnFor example, the query BELECT * FROM St udent WHERE stdl D > 105.
The server asks the HADS of the PK column of ®teident table to compute and return its range proof,
and sends it back to the client. The proof includeslibandaryrecords, and all intermediate nodes’ values
required for verification at the client. (Note that we empiIYSs supporting multi-proofs.) Figure 3b depicts



an example, using authenticated skip list as the underkd§, where the result set is (106, 107, 108), and the
boundary records are 105 ando. The proof looks likevo=‘h1,h2,h(104),103,06107,108 +’.

* The clause is on a non-PK columnA sample query iSELECT * FROM Student WHERE nmj or='CE . The
server uses the HADS of tlj or column to findCE at the first level. If not found, he puts the non-membership
proof in va. Otherwise, he puts théE's membership proof and all values in its PK-set (in the sddenel
ADS) in thevo. In contrast to storing duplicate-eliminated data in ragdDSs, the first-level ADS is very
small, and all values in the second-level ADS are used withather computation. The proof will look like:
vo=‘h(—),CE(101,102106),H 5,h(+x)’, using Figure 7.

Multi-dimensional queries: For each clause, the server asks the corresponding HADiSgdtg) proof, collects
them into the verification objeeto, and sends it to the client. Upon receipt, the client ver#ikproofs one-by-one,
and accepts if all are verified. If the clauses were conndaye®R’, then each proof verifies a subset of the received
records, and the result set should be the union of all thasgederecords. For ‘AND’, each proof verifies a superset
of records in the result set, and hence the answer is thesguion of results of the individual clauses. Therefore,
each proof must verify all records in the result g&t.important distinction between our HADS and previous stwse
[7, 32, 28, 31] is that our proofs can be compared and combiogdther Possible scenarios for two-clause case are:

* One clause on the PK, the other on a non-PK columnFor example, the query BELECT * FROM St udent

WHERE StdID > 105 AND major = ‘' CE . Since the order in which the clauses are applied is not itapbr
for the proof, we can consider the non-PK clause first, thgryahe PK clause on the results of the first step.
Therefore, the server first applies the non-PK clause ondiresponding first-level ADS, and then, applies the
PK clause on the resultant second-level ADSs. Finally, lus éidem both to theo, and sends it to the client.
On Figure 7, this method produces the preof‘h(-«),CE(h(101),102106),h' 5,h(4)’.

» Both clauses on non-PK columnsA sample query iSELECT * FROM St udent WHERE BCity='1stanbul’

AND maj or =* CE' . The server generates one proof for each clause, each miogtafe first-level ADS proof
for the value itself (e.gl,st anbul andCE) and the corresponding PK-set, puts them intovyeand sends it to
the client. Each proof proves authenticity of a set of PK gal(of the same table) that can be combined and
compared together. If the clauses were connected by ‘ANIR’ctient only takes their intersection and checks
whether the result set contains only records with these P&S'OR’, union of these authentic sets is used.

The above process can be generalized to more than two clandesupports any combination of ‘AND’, ‘OR’,
and ‘NOT’ operators. The client verifies the proofs, perfsrannumber of set operations on the resulting authentic
sets of PKs, and compares them with the result set. Notenhalt our proofs,we do not require any additional
records to be sent to the client on top of the result set of ther@inal query .

4.3.3 Tables with Composite Keys

The foreign keys are used to relate the tables to each otitbhence some tables may employ composite keys (i.e., a
PK includes multiple columns). This, in turn, makes the ¢tagdion problematic: we cannot relate a non-PK column
to any of the foreign key columns due to the existence of daf#ivalues (each foreign key column alone may contain
duplicate values). Previous schemes [31, 42] that useaegldSs cannot handle this case efficiently, as they need
to construct and use multiple ADSs for each column.

HADS solves this problem efficiently. Note
that generally the concatenation of multiple for-
eign keys forms the composite key. Thus, we use
this composite key as the PK of the table, and use it
to construct the HADSs. One HADS is constructed
for each searchable column(including foreign key
columns), relating the column’s values (containing
duplicates) stored at the first-level ADS (remember
that the ADS contains only one copy of each repli-
cated value) to the unique PK values (constructed
as the composite key) stored at the second-level
Figure 9: Storing the columir k from tableS2C with composite PK Apgs. These HADSSs can be used in connection
(stdid andcrs! d). with other HADSSs to generate the proofs. An ex-
ample is depicted in Figure 9 where the composite key foet82Cis st di d||cr s| d.




4.4 Efficient ODB Construction

Different ADSs can be chosen for HADS levels subject to thequirements and the application. We employed
two-level HADSSs, with special role and considerations factelevel. We compare the existing ADSs and investigate
their eligibility to be used in each level. We consider theiesses of ADSslinear (e.g., one-way accumulator [1]),
sublinear(e.qg., authenticated hash tables [36]), &ghrithmic (e.g., authenticated skip list [13, 10]).

For each level in an HADS, an ADS can be chosen subject to theresnents of that level and the application.
We employed two-level HADSs, each level having a specia amid posing special considerations. We compare the
existing ADSs and investigate their eligibility to be usedeiach level. We consider three classes of ADB&ar
(e.g., one-way accumulator [1Bublinear(e.g., authenticated hash tables [36]), foghrithmic (e.g., authenticated
skip list [13, 10]).

First level. This level stores the distinct values of a column, and gdasrthe first part of the proof to be sent
to the client. Proof generation is based on the authentlgaiege queries, which implies that this level should use
anorderedADS. One-way accumulator and hash tables do not supporptbperty efficiently, and hence cannot be
used for this level.

Therefore, we choose the authenticated skip list (alteelgt the Merkle hash tree) to be used in the first level.
The proof time/space i©(log(|Ci|)) for an update, an®(log(|Ci|) +t) for a query withO(t) records in the result
set. There ar¢C;| distinct values, on average, stored in the first-level AD8refore, the storage complexity iKC3,
which isO(|C;)).

Second level This level stores the PK-sets of values in the first level: dfee-dimensional queries, and multi-
dimensional queries connected with ‘OR’, the order of valirethe PK-set is not a matter of importance, thus, any
ADS can be used with time/space trade-offs discussed bdlbe.second-level ADSs of multi-dimensional queries
connected with ‘AND’ should be compared to generate effigieaofs, hence, an ordered ADS should be employed.

Accumulator. For each distinct value in a column, an accumulated valmisputed using all values in its
PK-set. For each PK value, a witness is computed which prihast belongs to the specified PK-set. If we need
to select all PK values, the second-level proof is esséntiahpty, but to select a subset of the PK values (mostly
required for ‘AND’), the witnesses of the selected PK valassrequired to be sent to the client.

For each distinct value in the first-level ADN/|C;| PK values and witnesses should be computed and stored,
on average, wherl is the total number of records in the table. In totdGiP+ |Ci| «N/|Ci| = 2|Ci| + N (which is
O(|Ci| + N)) storage is required (including théC2| space for the first-level ADS).

A proof for each value is made up of two parts, one for the fege! ADS (e.g., for authenticated skip list, a path
from the leaf up to the root, which ©(log|Ci|)), and the other is the accumulated value along with all wainghe
PK-set, which iN/|C;| (the accumulated value is already included in the hash \stbred at the corresponding leaf
of the first-level ADS). The client herself can check validif the PK-set against the accumulated value. Therefore,
for a result set of sizg the asymptotic size ofowill be O(log|C;|) + 2t ~ O(log|Ci| +t).

The main problem with the accumulator is the cost of updaith @ach update, all withesses should be updated
using costly operations (e.g., modular exponentiation).

Authenticated hash table This is a sublinear membership scheme with constant quatyarification time,
making it an interesting scheme for clients with resourgestrained devices. It is a good choice if the data is static.
For a leaf node storing, we put the PK-set of; in an authenticated hash table, and store its digest atakdbove.

On averageN/|Ci| PK values are linked to each leaf node, hence, we redd{f€| + (1 + €)N/|Ci| * |Ci|) =
O(|Ci|+ (14€)N)) =~ O(|Ci| + N) storage (including th®(|C;|) space for the first-level ADS). Herejs a constant.

The first-level ADS proof is the same, but the authentica@shttable requires only constant proof siZ@5],
reaching(O(log|Ci|) +t) for t records in the result set. Moreover, hash operations aréd faster than modular
exponentiations of the accumulator.

Merkle tree or authenticated 2-3 tree or authenticated skiplist. These are logarithmic membership schemes
with logarithmic height and proof size. The way the secanel schemes are modified, or the proofs are generated,
are the same as for the first-level.

Each node requires: 2(N/|C;|) storage to store the PK-set, therefor¢CiP+ 2|Ci| « N/|Ci| = 2(|Ci| + N) =
O(|CGi| + N) storage is required to store a column. The proof size and fimene record are botl®(log|Ci| +
log(N/|Ci|)) = O(logN), and forr = tN/|C;| records are bot®(log|Ci| +r).

A comparison of ODB construction via various ADS schemesivgrgin Table 1, where the first level is a
logarithmic ordered ADS and the second levels are showreittathle. Note, however, that the unit operations in the
accumulator are more costly than those in the others. It shioat using a logarithmic ADS such as an authenticated



Table 1: A comparison of schemes for the second level wherBrti level is a logarithmic ADS, for storing a single talfRFoof
size and verification time is given for one-dimensional ¢gges andt denote the number of searchable columns, and the number
of records in the first level, respectively.

Accumulator Authenticated hash table
Storage 2N+ (s—1)(2|Ci| +2N) 2N+ (s—1)(2|Ci| +N)
Proof size 2log|Ci|+t+ 2tN/|Ci] 2log|Gi| +t+2txN/|C|
Verification time t(log|Gi|+ N/|Ci|) t(log|Ci| + N/|Ci|)
Update time logN + (s—1)(log|Ci| + N/|Ci]) | logN+ (s—1)(log|Ci| + N/|Ci|)

Authenticated skip list

Storage 2N+ (s—1)(2|Ci| + 2N)

Proof size 2log|Ci| +t+tN/|G]
Verification time t(log|Ci| +2N/|Ci|)

Update time logN + (s—1)(log|Ci| +10gN/|Ci|) = slogN

skip list at both levels is the efficient choice leadingQ@og|Ci| +r) proof size and time for = tN/|C;| records,
andO(logN) update time for one record. Other alternatives can be cheggmding the requirements of applications,
such as the database being static or dynamic.

5 Join

In relational database systems, data is organized (diviaol a set of tables. An important and frequently-used
operation is, therefore, thjein operation, which collects data from two (or more) tablesrmdpce new results. In
outsourced databases, the server should perform the jdigearerate the proof that will be verified by the client. The
server can utilize any existing optimal join algorithm,cgrwe put no restriction on the DBMS part. Instead, we design
our DBAS proof generation algorithms to produce efficiemtgis minimizing the server’s effort, the communication,
and the client’'s computation.

5.1 Overview

Our join algorithms use HADSs for both (all) tables that andtton the columns on which the join is formed. Since
the HADSs keep the same relationships between the (valy¢aldés they are created for, we can generate proofs
proving correctness of those relations.

Without loss of generality, consider a one-to-many retedfop, which is the most widely used relationship:
Mrid=rid S I.€., the PK column oR, rid, is used as a foreign key B R contains only distinct values in columid,
while S may contain duplicate values. The HADSSties each distinct value ind to its respective PK-set ii Now,
we can easily compare the ADS Rbuilt onrid with the first-level ADS of the HADS o8 (storing unique values)
built onrid, and generate efficient proofs. (Note that only the firselDS of the HADS, which is very small in
size, is used for comparison, and in case of any match, alegah the respective second-level ADS are reflected into
thevowithout further computation.) Besides, as the values aredtsorted, the server traverses each ADS only once.

Efficient proof generation. Compared to [18, 34] that for each value of the first tablefgpe a range query on
the second table, and [42] that uses range queries effigientts is more efficient as it converts range gueries into
equalities for matches. The problem with [42] is that fortesalue in the first ADS, the set of matching values in
the second ADS is surrounded two more records, for completeness. Since we store and compareeuniiues in
HADSSs, a value in the first (H)ADS either matches only one @afuthe second (H)ADS that is shown by equality in
vo, or does not match any value in the second (H)ADS that is shairg range queries. In addition, the first-level
ADSs that we use for proof generation are very small comptaréitbse of all previous work, reducing the proof size
and proof generation time.

Other join types. The HADS, in addition to the equi-join, supports non-emii+ and multi-way join as well.
Although an inefficient way of doing a non-equi-join betwésamdS is performing a range query @&tor each record
in R, our non-equi-join algorithm traverses each ADS only orar® is very efficient. Our algorithm for multi-way
join queries can be generalized to support queries of the 1erx,—; To Xg—a T3 Xa—3 ..., Detweem tables.

5.2 Two-way Join

Consider equi-join on two tableR and S represented aR xc—c; S whereC; andC; are columns oR and S
respectively. The HADSs of these columns will be used foropgeneration. We categorize possible cases and
discuss each one separately.



Either C; or C; is a PK columnthat is used as foreign key in the other table. The genenaiésia set of PKs
that can be used for comparison or combining with otrgs.

The server useBlADS(Ci) andHADS(C;) for proof generation. He starts by the smallest item (eegtimiost
leaf node in a tree or skip list type ADS) in the first-level ADSone of the HADSs, and searches for its value,
sayV;, on the other HADS. If the value is found on the other HADS hbadlues are inserted into thve showing a
matching. Otherwise, the boundary records (the ¢ansecutiveralues on the other HADS thst would have been
located between them), together with theare inserted into theo. This shows that; has no matching on the other
table. Once finished working on it, he jumps to the resiectechode. By the expected node, we mean the item that
either is immediately after the current node or stores tbsedt value to the current value of the other HADS. If the
current and expected nodes are not successive, then theeceiptermediate information (e.g., for authenticateip sk
list, the levels and digests corresponding to a part of th&Abt included in the proof) needed for verifying the ADS
by the client, will be added to theo. We use the algorithrRi ndNext to find the expected node:

FindNext(vi) — (nodg,node) If v; is null, then return the node immediately following the emtrnode asiodg
(node will be null). Given a valuey;, if a node storings; is found, add the required information of the interme-
diate nodes into theo and return the node storing asnodg (node will be null again). Otherwise, add the
needed information of the intermediate nodes intovihand return the twaonsecutivéooundary nodesodg
andnode storingv; andvy, respectively, such tha < v; < w.

Consider the joinStudent Mgigra—staza S2C, where both tables have an HADS on colunshdl d:
HADSstugent (stdId) andHADSsoc(stdId). The proof generation works as follows: Traverse both HADSS
the leftmost leaf node (at the first level) storing the valeSn HADSs;ygent (stdId)) andvy (in HADSsoc(stdId)):

* vi = Vj: Add them into thevo (showing a matching), run thié ndNext () on both HADSs to find the next
valuesv, andv,, and repeat the process withandv,.

* v1 # Vj: Add the larger value, say, into thevo and runHADSsoc(stdId).FindNext(vq) to find a matching
on HADS¢(stdId). If it returns one node, a matching has been found, therefepeat the process with
vi; and the value of the matched node. On the other hand ADS;o¢(stdId).FindNext(vi) returns two
nodes, saynodg andnodeg, there is no matching, but the value mddeg may be equal to the value of the
next node ofv;. Therefore, add, nodg.val, andnode.val into thevo, then find the node immediately after
v1 asNode=HADSs;,4ent (stdId).FindNext(), and repeat the process witlode.val, andnode.val. The
Algorithm 5.1 illustrates this process.

Using HADSstugent(stdId) from Figure 3a and
HADSsoc(stdId) from Figure 10, we generate proof f6t udent
Mstata—staza 92C. For simple presentation, we put in the only
the values and hashes stored on nodes, and leave out théenfbiner
mation required for verification (e.g., the level in an autiwated
skip list). Furthermore, we separate each round by a column °
parts belonging to each HADS inside a round by a semi-column *
and values inside each part by a comma ‘,. Within a roundjesl
of HADSstudent (stdId) appear first.

We start with the smallest values in the HADSg:= 101 and

Figure 10: HADS obtdl d (table52C). Vv, = 101. Since there is a matching, 101 is added into tbe
(vo="101;,101(501,502,504)). Then, thé&i ndNext () is run on both HADSs to find the next values: = 102
andv, = 103. SinceV, > v», 103 is inserted into theo and HADSs¢ygent (stdId).FindNext(103) is executed
(during whichh(102) will be added into theso as an intermediate value, resultingvio='101,101(501,502,504) :
h(102);103(503,504)", returning the node storig= 103. Due to the matching, 103 is again added intouvbe
(vo="101;,101(501,502,504) : h(102103103503,504)), and-i ndNext () is run on both HADSs that will result in:
v4 = 104 andv, = 106. Again, 106 is added into th® andHADSs;ugent (std1d).FindNext(106) is executed (dur-
ing which h(104),h(105) will be added into thevo as intermediate values, resultingvo='101;101(501,502,504)
: h(102),103103503,504) : h(104),h(105);106(500,502,504)"), retugnthe node storings = 106, to be added
into the vo due to the matching. Therki ndNext () is executed on both HADSs, which will givev; = 107
and v, = 108. 108 will be added intvo and HADSstydent (stdId).FindNext(108) results invg = 108. Fi-
nally, vo will be vo="101,101(501,502,504) : h(102)03103503,504) : h(104),h(105)06106500,502,504) :
h(107)108108501,503)'.




Algorithm 5.1: Joi nCertify, run by the server.

Input: Two second-level ADSs of the joining tableSDS; andADSs, and their current nodeslode; andNode;, which
are initialized by the leftmost nodes of the correspondiffA.
Output: the verification objectvo

1 if Node&yis null OR Nodeis null then
2 | return vo=the intermediate information of the other ADS
3 if Nodey.val = Nodes.val then
4 vo= Node.val + "+ Node.val //A matching is found.
5 Nexk = ADS.FindNext()
6 Nexg = ADSs FindNext()
7 vo=vo+ "’ + JoinCertify(Nexk,Next) //Go to the next round.
g8 else

[IFind the matching on the other ADS.
9 Find the node holding the bigger value, $dgde: (Nextls, Nexs) = ADSs.FindNext(Noder.val)
10 if Nextlsis null then

[/ End of ADSg

11 vo=vo+ '’ + Node.val, intermediate information of AQ&until the end
12 else
13 if Nex2sis nullthen
14 | vo= Node.val + ;" + Nextlsval //A matching is found.
15 else
16 | vo= Node.val +*;"+ Nextls.val + ‘'’ + Nexts.val //No matching is found.
17 Nexk = ADS.FindNext()
18 Nexg = ADSs FindNext()
19 vo=Vvo+ " + JoinCertify(Nexk,Nexg) //Go to the next round.

20 return vo

Neither Ci nor C; is a PK column. Each column has an HADS storing its distinct values andad|&K-sets. If
each distinct value df; andC; has an average PK-set of sizandm, respectively, and there akenatching records,
then the result set will halenmrecords, on average. Our proof for this query is of €&(n+ m)), showing again
the HADS proofs are efficient.

Imagine two tablesT; and T,, both having an integer PK column
and a non-PK column of type character with two matching \alt#
and ‘F', whose HADSs are shown in Figure 11. The algorithnartst
ing at the leftmost nodes of both HADSs, finds out thatA and
executesFi ndNext (‘B") on Ty, leading tovo= ‘h(—o), r1,B(102,104,
107);h(-),B(3562)". It goes on, putting intermediate value h5 in the
vo, finds another matching ‘F’, which is the last node Th. Later,

Fi ndNext (‘F’) on T, puts h6 invo, and realizes that both columns are fully
traversed. These steps yield="h(—o), r1,B(102,104,107);h{~),B(3562) :
h5,F(105,108)E(8759,9658) : h{);h6,h{).

For verification, the client interprets the proof wo, and investigates
whether the values in each step are either equal, or onevigbentthe two
others. Ifit is correct, she adds them to the correspondib® Ast, and goes
on with the next step proof (any problem leads to rejecti&imally, she uses
the Vertify() function of the (H)ADS to verify the two ADS lists. If both
Figure 11: Non-PK join. passed the verification successfully, she accepts the, pthafrwise, rejects.

5.3 Queries with Join and Selection

As denoted by Mishra and Eich [24], the general query opttion rule for queries containing various operations
is that the join operation is performed after all selectiperations. The reason is that the selection operation#t resu
in intermediate sub-tables (to be used as input to the joamatwns) that are likely to vary substantially in size [24]
Since all proof are based on PKs in our approach, the reduhe gelection queries are integrated easily into those of
join queries, resulting in small proofs (in terms of both@and computation). We distinguish the following cases:



» The selection uses the same column as the joifihe same HADSs are used to generate proofs for both selec-
tion and join, i.e., records in the result set should sattsfyselection constraint in addition to the join constraint
For example, the proof generation for qu&BLECT * FROM Student S, S2c¢ C WHERE S. stdl d=C. stdld
and S.stdld > 105 starts from the node storing the value 104 (the boundaryrd@gcand both clauses are
applied simultaneously during the join.

» The selection uses different columns than the join The selection proof is generated first that results in an
authenticated set of PKsThen, if this is connected to the join clause with ‘OR’, thegf of the join clause
is also generated, and both proofs are sent together to ith@.cBut for ‘AND’, the join proof-generation
algorithm should consider only those records that are irséection proof, instead of the whole table, leading
to smaller join proofs. The server runs the join proof-gatien algorithm on sorted authentic PK-set resulting
from the selection proof, and the other table. For each PKeval the sorted authentic PK values, if there
is a matching on the corresponding HADS of the other tabli#eatit on the proof. Otherwise, supply a
non-membership proof. For the queSELECT * FROM Student S, S2¢ C WHERE S.stdld=C. stdld and
S.mgjor = CS', for instance, the selection proof supplies the sortedeatith set of PK value$103 105},
used together with tablg2C by the join proof-generation algorithm to compute the (dempjoin proof.

5.4 Multi-way Join

Since data is distributed over multiple tables, users mayeigjueries with join on multiple tables, e.@,xc —c;
T2 Xge=c T3 @ ..., to combine them back together. Yaagal. [42] performed the three-table join &6T; xc—c,
Tz2) Mc=¢ Ts) or (T Xg=c; (T2 Xg=q T3)). But, the output of the join that is performed first, is not bl¢ahaving
an ADS on the column of the next join. Therefore, their AIMn@lgorithm is not applicable, and their AISM join
algorithm (which uses only one ADS on one table) is used a&ubteEssentially, they apply AIM for the first join,
followed by AISM! We treat the case that all joins are on the same column sefyefi@m the case that the columns
differ, and present efficient solutions for all such scessri
Multi-way join on the same column. As noted by Ramaset al. [38] and Yanget al. [42], these queries are
common in data warehousing applications, where a fact taj@ned with other tables, on the same column. Our
algorithm performs much better for the multi-way join with jain clauses on the same colummj Xa—q To Xa—a
T3 Xa=a .... MOreover, our algorithm can be generalized to supportimay joins betweem tables, without change.
We start by the smallest items in all HADSs. If all are the sathis is reflected in th&o, showing a matching.
Otherwise, the maximum value among themsy, is selected and added into theand all the remaining HADSs are
queried (i.e.Fi ndNext (vmay)) to either find a matching, or prove non-existence of theealThis is repeated until
the last node of one of the HADSs is met. Then, the verificatigject is finalized with the remaining intermediaries.
Each HADS is traversed exactly once, and no item is checkdtipieuimes. Jumping to the maximum value when
no matching is found enables us to skip the largest possibtebar of items, providing an optimally efficient proof.
An example showing our join proof
generation algorithm foFy Ma—gq To Xa—a T3
is given in Figure 12. It first starts by
the leftmost nodes that are 1,1,5. Since
5 is their maximum,Fi ndNext (5) is run
on both Tl and T2, leading tao="h(
—),h1,h(4)5;h2,h(3)5;h(—),5'. Af-
ter this matching, the algorithm then
jumps to and processes the next nodes,
which are 6,9,7, and thus continues
by FindNext(9) on T1 and T3. Fol-
lowing the same logic, it finally out-

puts vo="h(—00),h1,h(4)5;h2,h(3)5;

h(-»),5 : h(6),9;9;h(7)9 : h(15),16,

18;14,19;17 : 191919 h(20),h3,
Figure 12: Proof generation fdi Ma—a T2 Xa—g Ta. h(+);h(20),h4,h{-00);h(+0)’.

ITheir algorithms are not directly applicable for multiiotase, so, they provided new versions m-AISM, m-ASM, and Ii-AThey
require some prior information about the third table thatsed for reducing the proof size of the first join, betweerfitlseéand second tables,
before the second join is performed.



(a) The sample database. (b) T3 refers to T2 who refers to T1. (c) Both T1 and T3 refer to T2.

Figure 13: Ordering graphs for different cases.

Multi-way join on different columns. Since our proofs are composed of a set of PKs, we can compdre a
combine them together. To perform a multi-way join, we saf&it into a set of two-way joins (with selections, if
there exists any), and apply our two-way join algorithm ascdbed previously. For a query withjoins, we generate
and send proofs to the client who verifies them, and accepts the answaproofs are verified.

To perform a multi-way join of the fori; xc —c; T2 Xc,=¢ T3, one way is to deal witfi; xg—c; T2 independently
from T, xc.—c, T3, and generate the proofs directly using the HADSs. Anothay i to perform one of them first,
and use its result, which is an authentic PK-set, to gen¢hnat@ext proof. This means that the proof for each join
depends on the previous join, which depends, in turn, on teeegding one. Since a join leaves out some records,
using its result for the next join is expected to generatdlsmaroofs. Thus, we can perform the joins according to an
order that generates efficient proofs. We categorize thgilescases and investigate employing an efficient ordering

Efficient ordering. We define therdering graphas a directed graph to show the relationship between thestabl
and use it to determine the order of joins. The joined tabtestitute the vertices, and an edge fr@no T; indicates
that tabl€eT; contains a column that refers to a columiTjr{and the join is on these two columns). The ordering graph
of our database model (Figure 1a) is represented in Figuae 13

Consider the case in Figure 13b: We should performTthe T3 join first, followed byT; — T, join. The reason
is that theT, — T3 join results in an authentic set ®'s PKs that can be used in tfige — T join (that is onT,'s PK),
while the result ofTy — T, join (authentic sets of PK values of tabl&sor T,) cannot be used i, — T3 join that is on
Ts's PK. Hence, performing th& — T3 join first, generates efficient proofs.

In Figure 13c, bothl; andT; use the PK ofl, as foreign key. Therefore, both joins are Br's PK, and hence,
the order of joins is not a matter of importance. We perforthegijoin first, determine the authentic set of PKSpf
contributing to the join, and do the other join between thihantic set and the other table. Figure 13a is also dealt
with in a similar manner. Since both joins can output an autibeset of (composite) PK values 82C, the other join
can be easily handled using this set and the other table.

Multi-way joins with more than two joins can be divided inteset of two-way joins, and the above-mentioned
categories can be used to determine the order in which tbaseghould be performed to generate efficient proofs.
In cases where the order is not important, the DBAS can ustalhe sizes and database optimization techniques to
estimate the result size, and select the one with small ¢eeghasize [12, 24, 17].

5.5 Special joins

Equijoin is defined to be the join in which the operator is dify§24, 8]. The non-equijoin which is also called
theband join is defined as the join operation that the operator is notlégi24]; i.e., the values of one of the join
columns fall within abandof values of the other column [8].

Equijoin of the form T 1.C; = T».Cj =n,n € N. This is a special case of the equijoin. We tr&a€; = T>.C; = n
as matching (instead df.C; = T>.C;) and apply the equijoin algorithm. Proof generation for theryT,;.a+ 1 =
T,.a=T3.a— 2 on Figure 12 works as follows: The algorithm starts with $heallest values 1, 1, 5, respectively.
Since the relatiof;.a+ 1 = T,.a= T3.a— 2 does not hold, the greatest number according to the rejatibich is 5,
is used to find the expected node on the two other ADSs. Bu siecare not looking for 5 in the other tables, we need
to adjust our parameter. 5 would be matched with 5-2=Bjrs0 we rurFi ndNext (3) onTs. It will also be matched
with 5-2-1=2 inTy, so we rurFi ndNext (2) onT;. Using our join proof generation algorithm this way genesab=
‘h(—),h(1)2;h23;h(—),5: 4;5;7: 6,9;9;9,17 : 15;14,19;17 : h(16),18;19;194) : h5,h{);h(20),h4,h{);’,
indicating that the query,.a+ 1= Tr.a= T3.a— 2 executed on Figure 12 has two matchings: (2, 3,5) and (4, 5, 7

Non-equijoin. The general form of a non-equijoin query|i§.C; — T,.Cj| < n,n € N. A simple proof generation
algorithm for this join is to select the HADS of the table withmaller number of records, and for each node of this
HADS, perform an authenticated range query on the other HARS this is less efficient regarding computation
and communication, due to the many intersections amongetisdlse authenticated range queries return.

We modify our join algorithm slightly to support the non-gqin more efficiently, where each HADS is traversed
only once. We select the smaller HADS, and for each recortlisiHADS, compute the matching records on the
other HADS. Since one record may correspond to many recawalggeed to include the boundary records (remember



we are using multi-proof ADSSs). To prevent the values to lme@ssed multiple times, we perform as follows:

« If the left boundary of the current record is greater tham riight boundary of the previous record, then it is

necessary, and hence we add the required intermediateniaion, the left boundary, the matching records,
and the right boundary into theo. Since the left boundary record, and hence, all matchingrdscof the
current record reside after the right boundary record ofplevious record, the server does not need to go
backward after completion of processing of the previousnmgcHe jumps to the left boundary record of the
current record, while adding the required intermediatermfation for reconstructing the HADS.

If the left boundary of the current record is less than oratduithe right boundary of the previous record, there
may be common matching records. Due to the security of the SlAtiat prevents a malicious server from
adding or deleting matching records, no need to go backw#wmdh a malicious server can try to delete some
matching records and put the corresponding intermedifdenmation to pass the client verification. But, such
intermediate information can only appear between two detsadching records (not inside a set of matching
records). Therefore, we go on from the current position ésaicond HADS, and add into tkiethe remaining
matching records until the right boundary record.

Algorithm 5.2: NEQJoi nCerti fy, run by the server.
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Input: thebandof the query:n, and two HADSSs of the two joining tables.
Output: the verification objectvo

Select the smaller table. Call it R, and the other S.
Traverse both HADSSs to reach the leftmost node at the first.lev
vo={}
RNode= RCurrentNode
SLeft= SRight= SCurrentNode
while RNodeval # +0 AND SRighival # +c do
if |RNodeval — SRightval| > nthen

SLeft=Fi ndLef t Boundary (RNodeval)

SRight= Fi ndRi ght Boundar y (RNodeval)

Add SLeftval, all records untiSRightval, andSRightval into thevo
else

SRight= Fi ndRi ght Boundary (RNodeval)

Add all records untiSRightval, andSRightval into thevo
RNode= R.NextNode

return vo

Therefore, in both case, the server traverses both HADSs. olbe same facts hold for the client during the

verification. She only checks the given boundary recordsrandnstructs the HADS without the need to going
backward. This is an important observation that simpliffesdlient and server computation. This process is shown
in Algorithm 5.2. Two helper functionBi ndLef t Boundar y() andFi ndRi ght Boundar y() with obvious functionality

are used during the algorithm.

Assume that we want to execute the non-equijoin qui€ra —

T,.al < 3 on the example given in Figure 14. We startfy(who
3]

has fewer records) and for each record, find the set of majchin
records onl,. For the first record, 5Fi ndLef t Boundary(5) and

3 o}
Fi ndRi ght Boundar y(5) return the boundary records [b¢ 1| >=
3) and 9 (5—9| >= 3), respectively. These boundary records to-
[ 9 | (19| [20 H 28] 30] gether with the matching records in between, are added tietoct

T vo='5;1,3,5,9". The next record is 7 for whick7 — 9| < 3, hence,
its left boundary record is already in the proof, and we ordgd
to find the right boundary record which is 14. Since all matghi
records are already in the, we add only 14, i.eyo='5;1,3,5,9 :
7,14’. Nothing is inserted for the next record, 9, sin@e- 14| >= 3,

T4 meaning that even the right boundary is already in the pfeafling
tovo='5;1,315,9 : 7,14 : 9;-". Regarding 24, sind@4— 14| > 3, we

Figure 14: Non-equijoin proof generation foga|| Fi ndLef t Boundar y(24) to find the left boundary record, which

|Ti.a—To.al < 3.

addsh(19) as the intermediate information into tle, and returns



20. FindLeft Boundar y(24) returns 28. There are no matching records in betweenefthre, only the boundary
records are added into the='5;1,3,5,9 : 7;14 : 9;- : 24;h(19),20,28’". Since the endBfis reached, we add(30)
as the intermediate information @. Finally, vo="5;1,3,5,9 : 7;14 : 9;- : 24;h(19),20,28 : he#);h(30),h(4e0)’ is
returned as the proof.

The proof verification is also accomplished in a similar wayshown in Algorithms 5.3.

Algorithm 5.3: NEQJoi nVeri i fy, run by the client.
Input: the verification objectvo, the differencen.
Output: 0 for acceptance, -1 for rejection.
1 ADSR=ADS={};
RoundProo f= vo.Get RoundProof (); // Get the proof until the next ':'.
[IFirst, interpret the proof and see if non-equijoin condition holds for all records.

N

3 while RoundProofdo
4 RNode= RoundProofGet Left Part (); //1n each round, only one record of R exists.
5 ADS.Add(RNodé;//All Rrecords are stored here for later ADS verification.
6 SProof= RoundProofGet Ri ght Part (); // The correspondi ng proof of S
7 SNode= SProofFirstNode
8 if SNode==NULL then
9 continue/ / No matching, go to the next round.
[IFirst, add all internmediate information into the ADS, if there is any.
10 while SNode is intermediatdo
11 ADS.Add(SNode;
12 SNode= SProofNextNode
/I Now, check and add to the ADS the left boundary record, if there is any.
13 if SNodeval < RNodeval then
14 ADSs Add(SNodge;
15 SNode= SProofNextNode
//Add all matching records into the ADS, if there is any.
16 while |[SNodeval — RNodeval| < ndo
17 ADSs.Add(SNode;
18 SNode= SProofNextNode
/I Check and add to the ADS the right boundary record, if there is any.
19 if SNodeval > RNodeval then
20 ADSs Add(SNodge;
21 SNode= SProofNextNode
[IError: if there are remaining nodes.
22 if SNodeZ NULL then
23 | return —1;//Error occured.
24 RoundProo f= vo.Get RoundPr oof ();

[/ Now, all verified matching nodes are in ADS and ADSs, verify them
25 if IADSg.Verify() OR!IADS Veri fy() then
26 | return —1;//Error occurred.
27 return O;//No error.

6 Analysis

6.1 Security

Theorem 6.1 (Security of ADS) The ADS is secure according to Definition A.4.

Proof 6.1 This theorem is proved for different schemes separatelyiftereht researchers. Merkle [23] showed the
security of Merkle hash tree, Papamanthou et al. [36] did jthte for the authenticated hash table, Goodrich et al.
[14] proved security of the RSA one-way accumulator [1] tb&®S, Noar and Nissim [27] showed security of the
2-3 tree, and Papamanthou and Tamassia [35] proved secdfitile ADSs constructed using authenticated skip list
or red black tree.

Theorem 6.2 (Security of HADS) Our HADS construction is secure according to Definition Aedhploying HADS
algorithm names) if the underlying ADSs are secure.



Proof 6.2 We reduce security of the HADS scheme to the security of tiherlyimg ADSs. If a PPT adversarg
wins the HADS security game with non-negligible probagilive can use it to construct a PPT algoritithwho
breaks the security of at least one of the ADS schemes ustdnavi-negligible probability.B acts as the server
in the ADS game played with the ADS challengerand simultaneouslyB plays the role of the challenger in the
HADS game with the adversajy. He receives the public key of an ADS frgiand himself produces-a1 pairs
of ADS public and private keys. Then, he puts the receiveihkendom i" position, and sends the n public keys
as the public key of an n-level HADS &b During the setup phaseB builds a local copy of the HADS for herself.
Note that this is invisible to the adversag, and thus will not affect his behavior. After the setup phaseselects
a command, generates the answer and proof for the commanddseards them t®. For the adversary to win, the
answer must be different from the real answer in at least onatlon, with its verifying sub-proof8 can find it since
she maintains a local copy. Whéhreceives them, she selects the related command, answer@oidoarts for the
it position, and forwards them t6. If the guess of i was correct, thehwould succeed. Ifl passes the verification
with non-negligible probability p, the® passes the ADS verification with probability greater tharequal to p'n
(breaking the ADS security with non-negligible probalilgince n, the number of HADS levels, is polynomial in the
security parameter).

Since we employ secure ADSgnpnust be negligible, which implies that p is negligible, &edce, the adversary
A4 has negligible probability of winning the HADS game. Themrefif the underlying ADSs are secure, then the HADS
scheme is secure.

Theorem 6.3 (Security of the ODB schemeour proposed ODB scheme is secure according to Definitionptd3
vided that the underlying HADS scheme is secure.

Proof 6.3 We reduce security of the ODB scheme to the security of yndgrHADSs. If a PPT adversarg wins

the ODB security game with non-negligible probability, v ase it to construct a PPT algorithi who breaks
the security of HADS scheme with non-negligible probahili8 acts as the server in the HADS game played with
the HADS challenget, and simultaneouslyB plays the role of the challenger in the ODB game with the ashugr

4. He receives the public key of an HADS frgimand relays it ta4 (note that all HADSs built for each searchable
column will use the same key). During the setup ph&deuilds a local database for herself (which does not change
the adversary’s view). After the setup phageselects a query, generates the answer and proof for the gaad/
sends them t@. For the adversary to win, his answer must be different froenreal answer on at least one location,
but with a verifying proof. On receiptB selects the related command, answer and proof parts for tisgvar that
differs from the real answer (she can find it since she maistailocal copy), and forwards them o If 4 passes
the ODB verification with non-negligible probability p, thé can also pass the HADS verification (i.e., break HADS
security) with non-negligible probability p.

Since we employ a secure HADS, p must be negligible, whidresripat the adversary has negligible probability
of breaking ODB. Therefore, our ODB scheme is secure (anudiges the required properties for an outsourced
database: correctness, completeness, and freshneds,uhterlying HADS is secure.

Note that this proof is not specific to our two-level condtirt. If one uses a four-level construction, as we talked
in Section 4.3.1, them plays the HADS game with a four-level HADS challenger. Inegaln for an n-level ODB
construction,B should play the game with an n-level HADS challenger, in #freesmanner as described above. The
proof or the probabilities will not be affected by this chang

6.2 Performance

Setup. To evaluate our ODB scheme, we implemented a DBAS protoiigo®g the efficient two-level HADS con-
struction, which uses FlexList [11] at both levels, in C+ingsCashlib library [22]. All experiments were performed
on a 2.5GHz machine with 4 cores (but the test running on destage), with 4GB RAM and Ubuntu 11.10 operating
system. The performance numbers are averages of 50 runs.

Our DBAS application is deployed on the same machine whexeDBBMS resides, and stores the security in-
formation of our database. Each dynamic qudmysért, Update, Delete,Drop, Alter,...) affects this part
as well, but the query should be converted into the (key, e)abased format. For example, the qu&BLECT
* FROM Student WHERE mgjor in(‘CE,'CS) and BCity='Istanbul’ is converted to( Student, {(mgjor,
{CE, CS}), (BGity, {Istanbul }) }). We did not implement an automatic converter, but it shoud affect the
timing since its overhead is much smaller than the proofs.

We use a database containing three tablgtsudent and Cour se tables, each with forandomly-generated
records, and2C table storing the courses taken by students, withré@domly-generated records. There are two



scenarios: each registered student has taken 10 courdesfirst scenario, and 100 courses in the second scenario,
on average. (In the second scenario, not all students argjtaturses since we only have®18C records in total.)
This means that a distin& dl d is used as a foreign key 2C 10 times in the first scenario, and 100 times in the
second scenario, on average.

Given this database, we observe the system behavior (peswrgtion time and proof size) for different query
types. Since in our scheme proofs are generated using amlgabhes of the values of the column(s) forming the
clause (not the whole recordsie proof size is independent of the record sizeDur scheme enhances the efficiency
by reducing the required computation and proof size, corfifiny experimental results:

» The proofs are generated using only values of the requokoims, and these values already exist in the DBMS
answer to the query.

» The concept of PK-sets divides a large ADS into small ADSa imierarchy. Hence, the proof size and the
computation time decrease as well.

» Using the PK-sets, there is a one-to-one correspondencindamatching records, and there is no need for
boundary records. This is a very important property for cotimg boolean operations and join proofs easily.

Comparison to previous work. Different methods were proposed for making the duplicalees unique [6, 32,
19, 31] to store them in a regular ADS. Since they producedahsesnumber of distinct values (= number of records in
the table)their ADS sizes are the sagieading tosimilar performancesFor the sake of comparison, we concatenate
each duplicate value with a replica number as in [32], antfitauregular ADS to compare our HADS against it. This
is referred to as ‘previous work’ in our figures. (Therefdtes ‘previous work’ in the figures correspond to all these
works, if they used the same ADS as us.)

6.2.1 Selection Queries on One Table

We consider three case®ne-clause queries We investigate the case that the clause is on a non-PK cofargn
SELECT * FROM Student WHERE maj or =' CE' ). Since the number of distinct values in the non-PK columiess
than that of the PK column, the first-level ADS of the HADS sigra non-PK column is smaller than the (single-
level) ADS storing the same column in the way of the previooskw(We do not count the second-level ADSs in the
one-clause case, since they are included in whole, withgut@mputation to find and select some.) This corresponds
to the fact that, some values are repeated on non-PK coluriiegeas the PK column contains only unique values.
The proof generation time and proof size for a non-PK classeguHADS are thus expected to be smaller compared
to the previous work. The Figures 15a and 15b shdw smaller proofs, anet3x faster proof generations, compared
to the previous work. There issa10% efficiency gain even with range queries.

Two-clause queries There are two cases: the query has either one PK and onekatatse (e.g.SELECT
* FROM Student WHERE Stdl D>105 AND mmj or=' CE'), or two non-PK clauses (e.gSELECT * FROM St udent
WHERE BCity='1stanbul’ AND maj or='CE ). In the HADS of the non-PK columns, all values of the sectave
ADSs are included in the result (without further computaytjagherefore, the dominant factors are the proof generatio
time and proof size of the first-level ADSs. We apply each staon its own HADS and generate two proofs to put
in the verification object. Figures 16a and 16b show the pgeoferation time and proof size for two-clause queries.
We observe=2x smaller proofs anek1.5x faster proof generations using HADS, compared to presvivork, for the
case with one PK and one non-PK clauses. For the case withan®K clauses, the proof i5x smaller in size,
and=3.5x faster in generation time, compared to previous work.

Multi-clause queries. There are more than two clauses in this case, and the tweelzase is a special case of
this one. Again, we can separate this case into two casegadiegeon whether one of the clauses is on the PK column
or none of them are. The server asks each HADS sequentialiiyeats first-level proof. The total proof generation
time and proof size of the server is summation of the cormneding values taken by all HADSs. We are not presenting
any figures for this, but based on the results presented ab@vexpect similar gains. Indeed, the gains would be
even greater if all clauses are on non-PK columns.

Communication overhead Another important factor is the overhead of our scheme encttmmunication,
i.e., how much does the proof increase the traffic. As thefpsize is independent from the record size, for tables
with small record sizes£1KB), the proof size is about 10-40% compared to the respdt. SAs a real example, we
used théeSt udent table from Kog University database that stores (studenndine, address, phone, email, standing,
department, advisor, photo) for each student. The recdrtiistable are between 5 andKRB in size, where the



photo size is dominant. Using the HADS for proof generatimpases only 1 4% communication overhead. The
results are shown in Figure 17a. Compared to similar alyostsuch as [31] that requi@(logN +t) cost for a query
result of sizet, using range queries, the cost of our algorithr®itg|Ci| +t).

Client computation. We observed that the HADS doast increase the client verification time compared to the
previous work. The reason is that while the server just putatva second-level ADS stores into the the client
has to reconstruct the second-level ADS together with thefgpath in the first-level ADS. The computation at the
second-level (first-level) ADS of our HADS is very similar tizat of the previous schemes at the lower (upper) part
of their ADSs. Therefore, the total client computation gsour HADS and previous ADSs are very close. This is
illustrated in Figure 17b for one-clause queries.

6.2.2 Join Queries

We consider two cases. In the first case, kbg-based jointhest dI D column of theSt udent table is referred to in
the S2C table as a foreign key (e.@SELECT * FROM Student, S2C WHERE St udent . St dl D=S2C. St dI D), while in
the second case, tlgeneral join we add two unrelated columns of the same typ8ttadent andCour se for this
join (e.g.,SELECT * FROM Student, Course WHERE St udent. TenpCol 1=Cour se. TenpCol 2).

In the key-based join scenario, we consider two cases. In the first case, eachnstbde chosen 10 courses,
therefore, the first-level ADS stores the students, anddoh®ne, a second-level ADS containing 10 elements stores
the selected courses. The first-level ADS contains dlist@dent IDs. In the second case, each student has taken 100
courses, therefore, a second-level ADS containing 100sesus linked to each first-level ADS. The first-level ADS
in this case is smaller, containing®l@cords. The experimental results are shown in Figuresi@agb. The figures
show=2.5x enhancement for both proof size and proof generatioe th 10-course case. There ardx smaller
proofs and~6x faster proof generations in 100-course case, comparbe farevious work.

We observe a similar behaviour for tgeneral join scenario, where each value in temporary coluffarpCol 1
and TenpCol 2 is duplicated about 10 or 100 times, similar to our main sgenaFigures 19a and 19b show the
experimental results. The proof sizes are redue8d and~4x in 10-element and 100-element cases, respectively.
The proof generation times are decreas&tx and~5x in 10-element and 100-element cases, respectively.

Asymptotic complexity. Moreover, the cost of the approach proposed bgtlal. [18] for joining two tablesT;
andT, of approximate siz&\ is O(NlogN), while that of ours iO(N+ N) = O(N). Compared to [42] who has the
same asymptotic co§(N), our HADS generates more efficient proofs as it does not wsbdbndary records for the
matching records, in addition to the fact that it operatesroaller ADSs. Assume thatCi|,0 < a < 1, records of a
column have matching on the other table. The cost of our jgiorghms using HADS is|Ci| «N/|Ci|+ (1—a)|Ci| =
aN + (1—a)|Ci|, which means that the cost is close@g/Ci|) whena is close to zero, and approach@§N) asa
approaches one; i.e., ours drops in the worst case to thethlgoof [42].

Communication overhead In our scheme, the proof size does not depend on the re@ardiis is an important
difference between ours and the join algorithms proposeddmg et al. [42], where the proof size increases with the
record size.
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Figure 15: Proof generation time and proof size for onesgayueries.
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Figure 16: Proof generation time and proof size for querigh two clauses. (Note that the values on the x-axis are upper
bounds on the query result size, since if the two clausesmescted by ‘AND’, or if they are connected by ‘OR’ but havenypa
common PKs in the PK-set, then the actual result size of teeyquill be less than the values shown in the diagrams.)
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Figure 17: Proof overhead and client verification time.
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7 Conclusion

In this paper, we presented a hierarchical ADS for storirgsiiicurity information required for proof generation in
outsourced databases. The HADS extends the ADS to suppadrigstluplicate values, and generating comparable
and combinable proofs efficiently (useful for boolean ofmsaand joins). We employed the HADS to construct
outsourced databases with proofs for query result auttigntincluding completeness, correctness, and freshness
guarantees. We proved these properties using a new unifiadtgedefinition we provided.

Our outsourced database construction can provably haetdetion queries with one or multiple clauses con-
nected by ‘OR’ or ‘AND’ connectors in any manner, join queriacluding equijoins, non-equijoins, band joins, joins
on non-PK columns, joins over more than two tables, and coatioins of selection and join queries. Besides, with
reduced use of boundary records, we can easily supporteddasmed using the SQL ‘IN’ operator. This allows us
to present efficient proofs for a wide range of database gsieWWe only support the sequential proof generation, and
leave the concurrent version as future work.

We have presented performance gains due to our solutiorttoy@revious work where regular (one-level) ADSs
are used. Our solution achieves8x smaller proofs in size and5x faster proof generations time when HADS is
used for queries with one clause. Moreover, for join quewesobservedv4x enhancement in proof size artbx
enhancement in proof generation time using HADS, when eaigigh key is repeated 100 times, on average. With
reasonable record sizes, e.g- B0KB in our Kog¢ University database& udent table, the communication overhead
is ~4% compared to the result size, becoming even smaller witfedaecord sizes. Thus, we believe outsourced
databases are finally ready for prime-time.
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A ADS Definitions

Definition A.1 ADS scheme consists of three polynomial-time algorithm&ef Gen, Certify, Veri fy)[35]:

KeyGen(1¥) — (sk,pk) is a probabilistic algorithm executed by the client to gexiera private and public key pair
(sk pk) given the security parameter k. The client then shares théqkey pk with the server.

Certify (pk,cmd) — (ans ) is run by the server to respond to a command issued by thet.cllére public key pk
and the command cmd are given as input. If cmd is a query comnilaputputs a verification proaft that
enables the client to verify the authenticity of the answes. df cmd is a modification command, then the ans
is null, andrtis a consistency proof that enables the client to update dwalImetadata.

Verify (sk,pk,cmd,ans 1, st) — ({accept,reject},st) is run by the client upon receipt of a response. The public
and private keygpk, sk), the answer ans, the proaf and the client’s current metadata st are given as input.
It outputs anaccept orrej ect based on the result of the verification. Moreover, if cmd wasagification
command and the proof is accepted, the client updates hexdaiet accordingly (to $}.

Definition A.2 Correctness of ADS. For all valid proofsttand answers ans returned by the server in response to a
command issued by the client, the verify algorithm accefitsaverwhelming probability.

Definition A.3 The ADS security game is played between the challenger who acts as the client am@dersary
who plays the role of the server:

Key generation The challenger runs KeyGégtf) to generate the private and public key péik, pk), and sends the
public key pk to the adversary.

Setup The adversary specifies a command cmd, and sends it togeithearwanswer ans and proat to the chal-
lenger. The challenger runs the algorithm Verify, and negifihe adversary about the result. If the command
was a modification command, and the proof is accepted, therhhllenger applies the changes on her lo-
cal metadata accordingly. The adversary can repeat thisradtion polynomially-many times. Call the latest
version of the HADS, constructed using all the commands evha®fs verified, D.

Challenge The adversary specifies a command cmd, an answér and a proofrt’, and sends them all to the
challenger. He wins if the answer diis different from the result set of running cmd on D, and camd, 7 are
verified as accepted by the challenger.

Definition A.4 Security of ADS. We say that the ADS is secure if no PPT adversary can win tie gdourity game
with non-negligible probability.



