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Abstract

In an outsourced database scheme, the data owner delegates the data management tasks to a remote service
provider. At a later time, the remote service is supposed to answer any query on the database. The essential
requirements are ensuring the data integrity and authenticity with efficient mechanisms. Current approaches employ
authenticated data structures to store security information, generated by the client and used by the server, to compute
proofs that show the answers to the queries are authentic. The existing solutions have shortcomings with multi-
clause queries and duplicate values in a column.

We propose a hierarchical authenticated data structure forstoring security information, which alleviates the
mentioned problems. Our solution handles many different types of queries, includingmulti-clause selectionand
join queries, in adynamicdatabase. We provide a unified formal definition of a secure outsourced database scheme,
and prove that our proposed scheme is secure according to this definition, which captures previously separate
properties such as correctness, completeness, and freshness. The performance evaluation based on our prototype
implementation confirms the efficiency of our proposed scheme, showing about 3x to 5x enhancement in proof size
and proof generation time in comparison to previous work, and about only 4% communication overhead compared
to the actual query result in a real university database.
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1 Introduction
Huge amount of data is being produced everyday due to the widespread use of computer systems in organizations
and companies. Data needs protection, and most of companieslack enough resources to provide it. By outsourcing
data storage and management, they free themselves from dataprotection difficulties, and concentrate on their own
proficiency.

Consider a university who stores all data about students, faculty, and courses in a relational database, with limited
resources and equipment for hosting a large amount of data and handling a large volume of queries, especially at
the beginning and end of each semester. The university wishes to outsource data management to a remote database
service provider who offers mechanisms to access and updatethe database online.

An important problem is that by data outsourcing, the owner loses the direct control over her data and should
rely on answers coming from the remote service provider (whois not fully trusted). Therefore, there should exist
mechanisms giving the data owner (the client) the ability for checking the integrity of the outsourced data. To make
sure that the remote server operates correctly, the client should verify the answers coming from the server in response
to her queries [15]. The remote server sends to the client averification object(vo) along with the answer to the query
(the result set). Thevo gives the client the ability to verify that the server’s answer is authentic. Since the client may
be a portable device with limited processing power, thevo should be small, and efficiently verifiable. The client uses
thevo to verify that the query answer is [42, 18, 41, 15, 29]:

• complete: the result set sent to the client is exactly the set of records that are the output of executing the query,
i.e., no record is added or removed.

• correct: the result set sent to the client is provided by the client already, i.e., no unauthorized modification.
• fresh: the result set sent to the client is provided using the most recent data on the server, and does not belong

to old versions, i.e., no replay attacks.
Assume that the university database is outsourced, and the client wants to execute the query:SELECT * FROM

Student WHERE stdID>105. A small part of the database together with the result of this query is shown in Figure
1. We want the completeness, correctness, and freshness properties hold in the returned answer, guaranteeing that the
answer is genuine.
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(a) Our sample database.
(b) The result set of the querySELECT *
FROM Student WHERE StdID > 105.

Figure 1: Our sample database (a), and the result of a query onit (b).

Theauthenticated range queryis a way of providing completeness in the outsourced database context. Multiple
implementations have been proposed by researchers using different data structures [33, 6, 25, 29, 42, 30, 18, 32, 28,
15]. In all these methods, the records are linked together ina way that we can prove there is no extra or missing record
in between. It requires two records surrounding the (sorted) result set: one immediately before the first record (theleft
boundary record) and one immediately after the last record (theright boundary record). They together are referred
to as theboundaryrecords. We call such data structures with the ability to prove the predecessor (left boundary) and
successor (right boundary)ordered.

We know that the primary key (PK) column in a table, as thestdID in theStudent table in our example, contains
unique values, while non-PK columns may contain duplicate values, as themajor and stdName columns in our
example. We want to perform authentic queries on allsearchablecolumns (the columns that can be used to build
clauses) of a table. The general method is to sort a table by each searchable column, and build an authenticated data
structure (ADS) on the result, that will be used to generate cryptographic proofs for queries having a clause using the
column. There is a problem with duplicate values in non-PK searchable columns [32, 19]: a total order on the values
of searchable columns is required to build the ADS, which together with the fact that the duplicate values belong to
different records, make building the ADSs complicated. As clarified later, the existing solutions are notefficient.

We introduce ahierarchical ADSscheme (HADS) for solving this problem. HADS is also advantageous in
proof generation for multi-clause (multi-dimensional) queries. The HADS can be stored in the same database [4], or
separately. Storing the HADS separately breaks the tie to a specific database and brings more flexibility. This way,
the DBMS used for data storage can be changed without affecting the proof system.

The rationale behind this work is to relate everything to thePKs. Since the PKs are unique identifiers of records
in a database, they enable us to compare and combine the results of different queries and check the correctness and
completeness at the same time (freshness is provided by storing a constant-size metadata locally at the client). This
is an important distinction between our HADS and similar (multi-level) ADSs, as their proofs cannot be combined
and compared together. We also support dynamic databases where the data owner issues modification queries (Insert,
Delete, Update), in a provable manner. We believe that our HADS may also be of independent interest, applicable to
other scenarios.

Our contributions can be summarized as follows:
• We provide aunified security definitionfor an outsourced database scheme (ODB) that capturescompleteness,

correctness, andfreshnesssimultaneously.
• We formalize thehierarchical ADSscheme and prove its security, for the first time.
• We build a provably-secure ODB using HADS that supports efficient proof generation for not only single-clause

but alsomulti-clausequeries.
• We handle proofs on columns containing duplicate values with around 3x to 5x better efficiency, regarding both

proof generation time and size, compared to previous work.
• Our scheme supports the tables withcomposite keys, for the first time.
• Our ODB construction efficiently handles proofs forjoin queries, even for multi-table joins, non-equijoins, and

queries containing both join and selection.
• Our ODB provides efficient proofs for almost all query types. We achieve only 4% communication overhead

compared to the actual result size, using our Koç University database.



1.1 Related Work

Inefficient approaches. An elementary way to verify the authenticity of an answer toan outsourced database query
is to sign each table and store the signature locally. This method requires sending the whole table to the client for
verification, and hence, does not scale up. Another method isto compute and store, with each record, a signature
that verifies the contents of the record. The problems are that computing a signature (for each record) is an expensive
operation, and this method does not provide completeness.

ADS-based approaches. A more suitable approach towards answer verification is to use ADSs [6, 21, 33, 9, 41,
42] to store authentication information, and send the relevant parts of these ADSs to the client to prove authenticity
of the answer.

Devanbuet al. [6] proposed one of the first schemes using ADS for checking integrity of the remote data. They
used a Merkle hash tree to store the security information about an outsourced static data (which changes infrequently).
The scheme supports the projection and simple join operations inefficiently.

Pang and Tan [33] used one or moreverifiableB-trees (VB-tree) for each table. The VB-tree is an extension of
B-tree using the Merkle hash tree. A VB-tree is generated (using the table sorted on that column) for each searchable
column of the table. This method does not support completeness [32], and found insecure for the insecurity of the
function used to compute the signatures [28].

A variant of this method, named MB-tree, is also used in the literature [6, 25, 29, 42]. MB-tree is similar to
VB-tree except that a light hash function is used instead of expensive signatures. The client stores locally the root’s
digest, or signs and stores it on the server.

Another line of work is using anauthenticated skip list to store the required information for the verification
[30, 41]. It is suitable and efficient enough for this purpose, especially when we consider dynamic scenarios. Wang
and Du [41] proved that such ADSs provide soundness and completeness for one-dimensional range queries, and
multiple ADSs are required for multi-dimensional range queries.

Palazzi [30, 31] built one authenticated skip list for each searchable column in each table. For a query with one
clause, a proof is computed using the corresponding skip list and sent back to the client along with the result set. For
multi-clause queries, the result set of one clause that is finished earlier is considered and separated into a ‘YesSet’ and
a ‘NoSet’ by applying the other clauses on top. The result sent to the client is a larger set than the real result set of
the query, and hence, is not efficient. The problem is that each proof authenticates a set, and these sets cannot be
compared against each other.

Authenticated range queryis an important method used to prove the completeness (i.e.,no extra records and no
missing ones), which works as follows [6, 18, 42, 28]:

• Find thecontiguousnodes storing the values corresponding to the result set of the query, as well as theleft
boundary recordand theright boundary record. Note that, to be able to work with such proofs, the underlying
ADS needs to beordered.

• Compute the ADS membership proofs of the boundary records.
• Put all these values into the verification object and send itto the client.
• The client uses the values in the result set together with the membership proofs to reconstruct the corresponding

part of the ADS, and computes the digest.
• She compares the computed digest with the locally stored metadata. If they are the same, then the query result

is accepted, and rejected otherwise.
If the proof is accepted, the set{left boundary record, result set, right boundary record} is guaranteed by the

orderedADS to be a sorted and contiguous set of values, with no extra or missing value between them [41, 21].
Hierarchical ADSs. Due to their widespread use, work has been done to improve the efficiency of authenticated

range queries. Nuckolls [29] proposed a flexible structure called Hybrid Authentication Tree, which uses the one-way
accumulators in upper levels to break the dependence on treeheight of the MB-tree.

Goodrichet al. [15] gave a super-efficient answer verification method by decoupling the authentication structure
from the search data structure. They divided a tree withn leaves (and height logn) into sub-trees with logn leaves
(and heightO(log logn)), and stored their roots in another structure. The sub-trees are divided further into sub-trees
with O(log logn) leaves. This process is repeated recursively up to an optimal level. Note that none of the previous
work formalizes or generalizes such hierarchical ADSs.

Hash chaining is another method for providing authentic query results where the records are linked together to
show that there is no extra or missing records between them. The client sorts the table by a searchable columns (and
repeats this process for all searchable columns), and link all two (or three in some approaches) consecutive records



[r i−1, ] r i , r i+1 together, i.e., computeh([h(r i−1)|]h(r i)|h(r i+1)), whereh is a collision resistant hash function, and ‘|’
denotes the concatenation. The first and last records are linked to special records indicating the beginning and end of
the records. [18, 32, 28, 15]. To provide authentic proofs, the client either computes signatures for the links, or relates
them to each other in a tree structure.

Upon receipt of a query, the server (1) executes the query, (2) finds the result set and the boundary records, (3)
computes the proof as either the set of links’ signatures, orthe corresponding part of the tree, and (4) sends them all to
the client. Using signatures, the verification object contains a linear (in the size of the result set) number of signatures,
and hence, computation and communication costs are high. The aggregated hash chaining[26, 28] tries to reduce
the proof size by combining multiple proofs into one, using the aggregation capability of the underlying scheme. The
main problems with such schemes are the cost of updates and the lack of join possibility.

Provable join. Devanbuet al. [7] pre-computed all possible joins and constructed the corresponding ADS to
enable proof generation by the server. They further suggested constructing the ADS on thedifferencesbetween the
values of the matching columns in the result set. This way, they can support queries with equi-join (difference = 0),
>-clause (difference> 0), and<-clause (difference< 0).

Li et al. [18] proposed the Embedded Merkle B-tree (EMB-tree) whose nodes consist of regularB+-tree entries
augmented with an embedded MB-tree, and used it to support authentic join queries. To join two tables R and S,
R⋊⋉Ci=Cj S, whereCi ∈ R andCj ∈ S, they: (1) find the smaller table, say R, (2) insert it as a whole into thevo,
along with its proof, and (3) for eachvk ∈Ci , construct a range query proof for the query ‘SELECT * FROM S WHERE
Cj = vk’, and append it to thevo. It requires|Ci|-many range queries, hence, is not efficient regarding the client and
server computation, and communication.

Panget al. [34] used signature aggregation to propose a scalable queryresult authentication mechanism for dy-
namic databases. Their first attempt is similar to the schemes of Li et al. [18], and results in a huge verification object.
Their second attempt uses a certified Bloom filter [2] to show that some of records of the first table has no matching
records on the second table.

Join algorithms that use the ADSs for both tables and generate reasonable proofs are proposed by Yanget al. [42].
The first algorithm,Authenticated Indexed Sort-Mergejoin, is an efficient form of previous join algorithms with one
ADS [18, 34], and eliminates the repeated range queries and redundant proofs. The second algorithm,Authenticated
Indexed Mergejoin, improves the previous algorithm using two ADSs, one for each table. It traverses each ADS
once, and each required node is inserted only once into thevo. Although it is efficient regarding both computation and
communication, for any (mis)match, two boundary records are inserted into thevo, which is unnecessary as we show
in our join algorithms. The third algorithm,Authenticated Sort-Mergejoin, is used to perform the join on a column for
which no ADS is generated. The server inserts the whole first table into thevo, together with the matching records of
the second table, and therank listsused to prove the matching. The client verifies all of them andgenerates matching
pairs (the expected result) locally.

Recently, an integrity-checking mechanism is given for join queries performed by anuntrustedcomputational
server working together with sometrustedstorage servers [5]. The client gives the storage servers a query, an encryp-
tion key, and information on how to inject some fake records (markers andtwins) into the result. The storage servers
execute the query, inject the fake records, encrypt and sendthe result to the computational server who performs the
join and sends the final result to the client.

Private query processing. Carbunar and Sion [3] suggested a private join on the outsourced databases that
supports equi-join, and can be extended to support range join queries, assuming an honest-but-curious server. For
each value in a column, the client finds all matching values inall other tables, encrypts them, and stores them all in
a Bloom filter. For a join between two tables, the client computes a trapdoor and sends it to the server, so that the
server can find all matching pairs of the requested tables, and send the corresponding records. The scheme is not
computation- and storage-efficient, especially for range queries and dynamic data. Another privacy-preserving join
scheme proposed by Maet al. [20] only supports equi-join, but uses randomized trapdoors. It is not computation-
efficient, since for a join between two columnsA andB, each valueai ∈A should be checked against all valuesb j ∈ B.
In both schemes, there are no (correctness, completeness, and freshness) proofs accompanying the server answers.

1.2 Overview of Our Solution

To be able to provide proof for different kinds of queries in adatabase, one ADS per searchable column in a given
table is built. We also follow a similar approach, and build ahierarchical ADS (HADS) for each searchable column.
Figure 4b visualizes the idea for a database. At the topmost ADS, thedatabase ADS, the table names are stored. For



each table, we have atable ADS, which stores the names of the columns in that table. For eachcolumn, we have
a column ADSthat stores the unique values in that column. Finally, the bottommost ADSs areprimary key ADSs,
associated with eachuniquevaluevi in a columnCj , storing the primary key (PK) values of the records havingvi in
columnCj . For example, in our sample database in Figure 1, a column-level ADS for major will contain only three
leaves, with labelsCE, CS, EE. The lower-level ADS connected to theCE will contain the primary key values 101, 102,
and 106. Similarly, the lower-level ADS connected toCS will contain 103 and 105. Note that, our HADS definition is
flexible, and hence such a four-level hierarchy is not a requirement, but a sample deployment that makes sense.

Efficient duplicate handling. The reason for the necessity of such a hierarchical structure comes from the short-
comings of previous ADS-based solutions. Note that columns, such asmajor, contain duplicate values. Obviously,
such duplicates can be made unique, for example, by appending a random perturbation [19], hash of the record [31],
or the replica number [32]. Yet, the server should traverse the whole resulting (big) ADS to search for a value. Since
the HADS stores the unique values in an upper level, which is amuch smaller ADS, the server first finds a value
in this ADS, and accesses the whole related values in the lower level, without further computation. As an example,
consider a column containing 1000 unique values, each of which is repeated 100 times. A regular (single-level) ADS
would need to integrate 100,000 values, whereas our HADS will have one upper-level ADS with 1000 values, and
1000 lower-level ADSs with 100 values each. Hence, instead of searching for 100 values in an ADS with 100,000
values, the server looks foronly one valuein an ADS withonly 1000 values(and access the whole lower-level ADS
storing 100 values). This results in great performance improvements regarding both communication and computation.

We use multi-proof supporting ADSs (e.g., the FlexList [11]) to construct the HADSs, which in turn, makes
efficient authenticated range queries possible. A multi-proof supporting ADS generates an efficient (non-)membership
proof for a set of values, instead of separate proofs for eachvalue in the set. The proof for the clausea< coli < b,
indeed, consists of membership proofs ofa andb, and the values matching the clause.

Figure 2: Server architecture.

Server architecture. There are two parts on the server side: the DBMS
(database management system) who stores the client data andresponds to the
SQL queries coming from the client, and the DBAS (database authentication
system) who stores the security information in the form of the ADSs and
HADSs, and generates cryptographic proofs to the queries. The DBMS choice
is independent of our work, and any available DBMS can be employed. But, we
design and implement our own DBAS. Since ourDBAS works independently of
the underlying DBMS(on the same query), our proofs do not include any extra
record, making it an efficient scheme. Figure 2 shows this architecture.

Join. Another advantage of the HADS is animproved join algorithm. Since we use similar ordered HADSs, the
items contained in them are comparable, and hence proving mutual memberships (i.e., for ‘AND’ connector and join
queries) is easy. To join two tables on two columns, we start at the leftmost leaf nodes of both ADSs and compare
them together. If they store the same value, it is reflected inthe proof. Otherwise, we jump over the nodes of the ADS
containing the smaller value, to a node containing the smallest value that is less than or equal to the bigger value. This
process goes on until the end of either ADS is met. The proof size and proof generation time is reduced due to the
lack of duplicates.

Combining proofs. Another important advantage of our scheme is that since theHADS ties all values to their
related PKs, all proofs prove to the client the authenticityof a set of PKs. This makes possible the results of the
proofs to be compared and combined together, which was a common problem among most of the existing solutions
[7, 32, 28, 31]. Stated differently, for queries with more than two clauses, the server starts by generating proof for the
first two clauses on their ADSs, and uses the result (that is not in the form of an ADS) with the next clause, who has
an ADS, to generate a new proof. This is repeated (with properordering on the clauses, detailed in Section 5.4) until
all clauses are processed.Thus, more than two clauses or joins on more than two tables can be handled as well.

2 Preliminaries
Notation. We useN to denote the number of records of a table, and|Ci | to denote the number ofdistinct values in a
column. The symbol ‘|’ denotes the concatenation,h denotes a collision-resistant hash function, andPPT stands for
probabilistic polynomial time. ‘PK’ denotes ‘primary key’in a database table, and ‘pk’ stands for ‘public key’.

A function ν(k) : Z+→ [0,1] is callednegligibleif ∀ polynomials p, ∃ constant k0 s.t.∀ k> k0, ν(k)< |1/p(k)|.
Overwhelmingprobability is greater than or equal to 1−ν(k) for some negligible functionν(k).



(a) ADS ofStudent table’s PK column. (b) A membership proof.

Figure 3: (a) An ADS storing the PK column of theStudent table, and (b) the membership proof for the querySELECT StdID
FROM Student WHERE StdID > 105.

Hash functions are functions that take arbitrary-length strings, and output strings of some fixed length. Let
h : K ∗M → C be a family of hash functions, whose members are identified byk ∈ K . A hash function family is
collision resistant if∀ PPT adversariesA ,∃ a negligible functionν(ℓ) such that:Pr[k← K ;(x,x′)← A(h,k) : (x′ 6=
x)∧ (hk(x) = hk(x′))]≤ ν(ℓ), whereℓ is the security parameter of the hash function family (e.g.,related to|k|).

An authenticated data structure (ADS)is a scheme for data authentication, where untrusted responders answer
client queries and provide cryptographic proofs that the answers are valid [39, 40, 35, 16]. The client constructs the
ADS and uploads it to a server who answers later queries. On receipt of membership queries, the server sends back a
proof, using which the client can verify the answer against some local metadata. There are different types of ADSs:
accumulators, authenticated skip lists, authenticated hash tables, Merkle hash trees, 2-3 trees. We provide a formal
definition in Appendix A.

A one-way accumulator[1] is defined as a family ofone-way, quasi-commutativehash functions. A function
f : X ∗Y→ X is quasi-commutativeif ∀x∈ X,y1,y2 ∈Y : f ( f (x,y1),y2) = f ( f (x,y2),y1). Benaloh and de Mare [1]
proposed a one-way accumulator based on an RSA modulus.

Theauthenticated skip list is an extension of a skip list [37]. It is constructed using a commutative hash function
h, which in turn can be constructed from a collision resistanthash functionf as:h(x,y) = f (min(x,y),max(x,y)). The
leaves store hashes of data items, and each intermediate node stores hash of a function of values of its children. The
values on the path from a leaf node up to the root constitute a proof of membership.Merkle hash tree [23] is another
widely used ADS forstaticdata. Both ADSs havelinear space complexity, andlogarithmicproof size and verification
time, in the number of the items stored [16]. Figure 3a presents an authenticated skip list storing the PK column of the
Student table, and Figure 3b illustrates the membership proof for the querySELECT StdID FROM Student WHERE
StdID>105.

Papamanthouet al. [36] introduced theauthenticated hash table, which constitutes a hierarchy of one-way
accumulators.It keeps either the query or update time constant while providing the other with sub-linear complexity.

An ordered ADScan be used to show some elements are consecutive (essentialfor authenticated range queries).
A total order on the elements to be stored in an ordered ADS is required. Assume thatx,y andz areconsecutive
elements of atotal order (A,<) such thatx < y< z, andA is stored atADSA. Informally, we sayADSA is ordered
if it can prove thatx = predecessor(y) andz= successor(y) for all consecutivex,y,z∈ A. The Merkle hash tree
and authenticated skip list are ordered ADSs, while the accumulator is not. An ordered ADS is perfectly suited for
authenticated range queries.

A multi-proof ADS can prove (non-)membership of multiple elements in one proof. To prove (non-)membership
of a set of elements, it does not need to do the job for each element one-by-one, and instead, generates a proof
showing (non-)membership of all elements in only one traversal of the ADS. This will reduce the server computation,
the communication, and the client verification, though not asymptotically. These ADSs suit the authenticated range
queries well. FlexList [11] is an ADS with multi-proof capabilities.

3 Hierarchical Authenticated Data Structures
The Hierarchical ADS (HADS) is an ADS consisting of multiplelevels of ADSs. Each ADS at leveli is constructed on
top of a number of ADSs at leveli+1. Each element of an ADS at leveli stores the digest of, and a link to an ADS at
level i+1. Therefore, multiple ADSs with different underlying structures can be linked together to form a hierarchical
ADS with multiple levels. The only restriction is that all ADSs at leveli must be of the same underlying structure to
have consistent proofs. (We can handle the heterogeneous case as well, but it complicates the presentation). At the
bottommost level, the hash of the data is stored as well (e.g., the hash of records in the database). The client stores
the digest of the topmost ADS as metadata. Figure 4a presentsa two-level HADS instantiation (based on our sample



(a) A two-level HADS. (b) A general four-level HADS to store a database.

Figure 4: HADS constructions with different levels to storesecurity information for a database.

database in Figure 1) using authenticated skip list and Merkle hash tree at the first and second levels, respectively.
Similarly, Figure 4b shows a general four-level HADS architecture to store a database (the ADSs are represented as
tree for simplicity, but they can be of any type as long as theycan store digest of the corresponding lower level ADSs).

An HADS schemeis an ADS scheme defined with three PPT algorithms(HKeyGen, HCertify, HVerify) to
distinguish them from non-hierarchical ADSs. Definitions A.1, A.2, A.3, A.4 (using HADS algorithm names) provide
a formal framework for HADS schemes.

3.1 HADS Construction

We construct an HADS using (possibly different) ADSs at multiple levels in a hierarchical structure. First, all lowest-
level ADSs are constructed using the data (in the form of different groups). Then, these ADSs are divided into groups
according to some relation, and their digests together withinformation about where they are stored and the data of the
upper level, are used to build the upper-level ADSs. This process is followed until a single ADS is built whose root
will be stored as metadata by the client.

To generate a membership proof, the client should provide the server with the required information directing the
traversal on the HADS at all levels. In other words, the client tells the server which element(s) at each level should be
looked for. The server follows down the HADS until the last level, generates and combines the proofs for all levels,
and sends the resultant proof to the client. If ADSs with modification capabilities are used, a similar recursive strategy
is employed for provable modification operations as well.

We provide the input as a set of(key,value) pairs in a way that the pairs needed for the upper levels appear first.
The command execution will begin on the topmost ADS, and be directed by the input data customized to proper
sub-ADSs at each level. A query command uses the keys, while amodification requires both the keys and values.

3.2 HADS Operations

TheHKeyGen algorithm generates a public and private key pairs for each level, combines all public keys intopk, and
all private keys intosk, and outputs the result as the private and public key pair of the HADS (Algorithm 3.1). Again,
even though conceptually one may employ different ADS structures or use the same structure with different keys
within the same level, to keep the presentation simple, we present as all ADSs at leveli being of the same type and
with the same key pair.

Algorithm 3.1: HKeyGen, run by the client.
Input : the security parameterk, no. of levelsn, and the underlying structure of each level.
Output : the private and public keys of the HADS

1 skHADS= {} //private key of the HADS.
2 pkHADS= {} //public key of the HADS.
3 for i = 1 to n do
4 (sk, pk) = ADSi.KeyGen(1k) //Ask level i ADS to produce its security keys.
5 skHADS= skHADS∪sk
6 pkHADS= pkHADS∪ pk
7 return (skHADS, pkHADS)

The HCertify performs the proof generation and modification on HADS. The recursive operation starts at the
topmost ADS, and is repeated on all affected ADSs in the hierarchy. The ADS in each level generates its own proof.



Since the ADSs are tied together such that each leaf node of anADS at leveli stores a link to an ADS at leveli +1,
their proofs will be combined together according to their order in the hierarchy, as presented in Algorithm 3.2. The
HADS proof contains all required ADS proofs. To simplify this operation, we use another PPT algorithm as a helper
method to find the sub-ADSs of a given ADS:

Find(key,value)→ ({(ADS′,{(key′,value′)})}) This is used (insideHCertify) to interpret the input data and find
the next level ADS(s) together with the related input value(s). It traverses the current ADS with the provided
key(s) and finds the leaf node(s) storing address(es) of the ADS(s) at the next level to continue with. Finally, it
outputs the set of next-level ADSs and their(key′,value′) pairs. Examples are given in Section 4.3.1.

Algorithm 3.2: HCertify, run by the server.
Input : the public keypk, the commandcmd, the data given as a(key, value)pairs.
Output : the generated proof

1 Pown= {} // Proof of the current ADS.
2 Pchild = {} // Proof of all children combined together.
3 {(ADS',{(key', value')})} = Find(key, value)

// Output is null if already at the bottommost level.
4 for each element e∈ {(ADS', (key', value'))} do
5 P= e.ADS′.HCertify(pk,cmd,e.(key′,value′)) //Ask each child compute proof.
6 Pchild = Pchild|P // Combine the proofs.
7 Pown= Certify(pk,OP,(key,value)) //Compute this ADS proof (not hierarchical).
8 return Pchild|Pown

TheHVerify is also a recursive process that is run by the client to verifyeach level’s proof in a bottom-up manner.
It first verifies the bottommost ADSs. If they are all accepted, then it uses their digests together with the proofs of the
above-level ADSs to verify the level above, and so forth. Finally, when the upper-most level is reached and a single
digest is obtained, which is verified against the local metadata.

4 Outsourced Database Scheme
4.1 Model

The outsourced database (ODB) model, as depicted in Figure 5, is composed of three parties: thedata owner, the
querier, and theservice provider. The data owner performs the required pre-computations, uploads the database, and
gives the querier(s) the security information she needs forverification. The data owner then may perform modifica-
tions (insertion, deletion, or update) on the outsourced database.

Figure 5: The ODB model.

The service provider (or simply, theserver) has the required equipment
(software, hardware, and network resources) for storing and maintaining the
database in a provable manner. We do not know or care about theinternal
structure of the server, i.e., the server may use some levelsof replication and
distribution to increase the performance and availability. Thequerier (or the
user) issues a query to the server, who executes the query, computes the result
set, generates the proof, and sends all back to the querier. The querier then
verifies the answer using the security information given by the data owner.
For the sake of a simpler presentation, we refer to them as theclient. It is
possible to have multiple queriers or data owners, and data owners can also
act as queriers. In this paper, we focus on the single-clientcase.

We decouple the real data from the authentication information on the service provider. TheDBMS is a regular
database management system responsible for storing and updating the data, and executing the queries on the data and
giving the answer back. TheDBAS(database authentication system) stores the authentication information about the
data, and generates the proofs to be sent to the client. Thus,a DBAS can be used together with any DBMS, and the
focus of this work is to construct an efficient and secure DBAS. The DBMS and DBAS together constitute an ODB.

Adversarial Model. The remote server is not fully trusted: he can either act maliciously, or be subverted by
attackers to do so, or may suffer failures. He may cheat by attacking the integrity of the outsourced data (modifying
the records) and giving fake responses to the client queries(executing the query processing algorithm incorrectly, or
modifying the results), or by performing unauthorized modifications on data, while trying to be undetected.



4.2 Definitions

An outsourced database requires certification and verification algorithms, similar to an ADS. Thus, the following
definitions follow the same ideas. A corollary to this is thatan ADS scheme can be employed to construct an ODB
system (or vice versa).
Definition 4.1 An outsourced database scheme consists of three probabilistic polynomial-time algorithms
(OKeyGen, OCertify, OVerify) where:

• OKeyGen(1k)→ (sk, pk): is a probabilistic algorithm run by the client to generate apair of secret and public
keys(sk, pk) given the security parameter k. She keeps both keys, and shares only the public key with the server.

• OCertify(pk,cmd)→ (ans,π): is run by the server to respond to a command cmd issued by the client. It
produces an answer ans and a proofπ that proves authenticity of the answer. If the command is a modification
command, the answer is empty, and the proof proves that the modification is done properly.

• OVerify(pk,sk,cmd,ans,π,st) → ({accept,reject},st′): is run by the client upon receipt of the answer
ans and proofπ, to be verified using the public and private key pair. It outputs an ‘accept’ or ‘ reject’
notification. If the command was a modification command and the verification result is ‘accept’, then, the
client updates her local metadata as st′, according to the proof.

Definition 4.2 ODB security game. There are two parties playing this game: the challenger whoacts as the client,
and the adversary who plays the role of the server.

Key generation The challenger generates the private and public key pair(sk, pk) usingOKeyGen. She keeps both
keys locally, and sends the public key to the adversary.

Setup The adversary specifies a command cmd (either a query or a modification) together with an answer ans and
a proof π, and sends them to the challenger. The challenger runs the algorithm OVerify, and notifies the
adversary about the result. If the command was a modificationcommand, and the proof is accepted, then the
challenger applies the changes on her local metadata. The adversary can repeat this interaction polynomially-
many times. Let D be the database resulting from verified commands.

Challenge The adversary specifies a command cmd′, an answer ans′, and a proofπ′, and sends them to the challenger.
He wins if the answer ans′ is different from the result set of running cmd′ on D, and cmd′,ans′, andπ′ are verified
as accepted by the challenger.

Definition 4.3 ODB Security. We say that an ODB scheme is secure if no PPT adversary can winthe ODB security
game with non-negligible probability.

Note thatthe ODB security game covers all previously separate guarantees: correctness, completeness, and
freshness. This is simply due to the fact that the game requires that no adversary can return a query answer together
with a valid proof such that the returned answer is differentfrom the answer that would have been produced by the
actual database. If any one of the freshness, completeness,or correctness guarantees were to be invaded, the adversary
would have won the game. Looking ahead, in our proofs, the challenger keeps a local copy of the database, and can
detect whether or not the adversary succeeded. If he succeeds, our reduction shows that we break some underlying
security assumption.

4.3 Generic ODB Construction

A generic way to construct an ODB is to employ a regular DBMS, together with a DBAS built using a number of
ADSs. A common problem among all previous ODB schemes is the existence of duplicate values in non-PK columns,
since making an ordered ADS (which is necessary for range queries) requires a total order on the data items. The
existing solutions [6, 32, 19, 31] are not efficient (see Section 6.2). Our HADS solves the problem efficiently, and
easily generates proofs for the answers to multi-dimensional queries.

If the query has a clause on a non-PK column, saycoli , containing duplicate values, the result set of the query
includes all records with the specified value(s) incoli . The way we can identify these records and compare them with
the result set of the other clauses is to relate each record toits corresponding (unique) PK.

Definition 4.4 PK-set. For each distinct value vi in a non-PK column of a table T , the set of all PK values cor-
responding to vi in all records of T is called the PK-set of vi , represented as PK(vi), i.e., PK(vi) = {k j ∈ PK(T) :
∃ record R∈ T s.t. k j ∈R∧vi ∈ R}.



Note that the PK-set includes only the PK values, not the whole records. Any membership scheme can be used
for assigning the PK-set to a non-PK value, regarding the client and server processing power, and communication
requirements of the application under construction. The only difference is the type of corresponding proof that is
generated by the server and verified by the client. This brings the flexibility to support multiple membership schemes,
and select one based on the state of the system at that time (further discussed in Section 4.4). The PK-sets of distinct
elements of columnmajor are shown in Figure 4a.

We construct the DBAS in the following way. Since all values in the PK column(s) are distinct, we use a regular
(single-level) ordered ADS to store the corresponding security information, similar to the ones presented in the pre-
vious work [30, 41]. An example ADS for storing the PK column of the Student table, using an authenticated skip
list is presented in Figure 3a. For a non-PK column, for simplicity, a two-level HADS stores the security informa-
tion: the distinct values are located at the first (upper) level (i.e., each duplicate value is stored exactly once), and the
corresponding PK-sets of these values are located at the second (lower) level. A sample HADS for storing themajor
column of theStudent table is illustrated in Figure 4a. It uses an authenticated skip list at the first level, whose leaves
are tied to Merkle hash tree digests at the second level.

The client locally stores the digests of the HADSs of each searchable column as metadata. Later, she checks the
authenticity of server’s answers against these digests. This method requires the client to store digests in the number
of searchable columns in the database. As an alternative design, the client can put the digests of searchable column
of each table in another ADS (the table ADS), and on top of themmake another ADS (the database ADS) just as
in Figure 4b. Then, she needs to store only the digest of this new (four-level) HADS as metadata. One may further
extend this idea to multiple databases a user owns, and then multiple users in a group, and so forth. By increasing the
number of levels of the HADS, it is possible to always make sure the client stores a single digest. This presents a nice
trade-off between the client storage and the proof-verification performance. For the sake of simple presentation, we
will employ two-level HADS constructions.

Using the authenticated range query for proof generation ensures completeness. Freshness is provided through
storing the digest(s) at the client side. To provide correctness (i.e., the horizontal proof [30]), we store the hash of
the corresponding record,h(record), with each PK. In flat ADSs like the accumulator, the hash values are tied to
the elements, while in tree-structured ADSs, the hash values are stored at the leaves. (The computation of values of
the intermediate nodes, if there exists any, depends on the underlying structure of the ADS in use.) The ADS of the
PK column of a tableT is built using the set of all PK values and hashes of their records {(pki ,h(recordi))}

|T |
i=1 as

(key, value) pairs. For a non-PK searchable columncol j of a tableT with d distinct values{vi}
d
i=1, the corresponding

HADS is constructed as follows: For each distinctvi ∈ col j , a second-level ADS is built using the (key, value)
pairs {(pks,h(records))}, where pks ∈ PK(vi). Then, a first-level ADS storing pairs{(vi ,h(h(vi)|h(digest of the
corresponding second-level ADS)))} is constructed.

The client outsources these (H)ADSs together with the database, while keeping their digests locally as metadata.
Later, upon receipt of a proof and answer (result set), she performs the verification using the information provided in
the proof and hashes of the records in the result set. If all records are used (to be discussed in Section 4.3.2) and the
proofs verify according to the local digests, then the client accepts the proof and the answer.

We decouple the security information from the real data as Goodrichet al. [15] did. The DBAS stores the security
information and generates proofs to be sent to the client. The DBMS stores the client’s data. They can reside both
on the same machine, or on different machines. By using techniques in [30, 41, 4], it is possible to implement
authenticated skip list or Merkle tree proofs of the DBAS using a DBMS as well. In such a case, the DBAS can share
the same DBMS with the data, or use a separate DBMS. When the server receives a command, he relays it to both
the DBMS and the DBAS, collects their responses, and forwards them to the client. We focus on the DBAS, since the
DBMS has nothing to do with proof generation and authentication.

HADS proofs. The membership proofs of HADSs for non-PK columns consist of two parts: the first part proves
the (non-)existence of theuniquevalue(s) in the column, and the second part ties each value tothe respective PK-set.
A key difference with a regular ADS is that after showing the existence of a value in the first-level ADS, all values
in the related second-level ADS (storing the related PK-set) should be included without further computation, since
they all share the same values in the queried column. This reduces both the proof size (communication) and proof
generation time (server computation). However, the clientverification cost for HADS is very close to ADS, since
she needs to reconstruct the whole second-level ADS along with the membership path in the first-level ADS. For the
ADS, the client reconstructs the whole sub-tree consistingof the values in the proof.

Consider a table withd distinct values in columnCj , each repeatedr times, on average, leading tord records in



(a) Proof generation in an ADS after duplicate elimination. (b) Proof generation using HADS

Figure 6: A comparison of proof generation and proof sizes inan ADS and an HADS.

total. Using a duplicate elimination mechanism [6, 32, 19, 31], we can store such a table inside a regular ADS. The
HADS builds a first-level ADS of sized, whose leaves are each connected to a second-level ADS of size r, leading to
HADS sizerd. Therefore, the server storage remains the same. However, for a query about a valuevi in Cj , the ADS
proof size and proof generation time both areO(2logrd+ r) =O(logr + logd+ r), while those of the HADS are both
O(logd+ r). The ADS uses a range query with 2O(logrd) cost, and processes ther values as the result set. However,
the HADS findsvi at the first-level ADS with costO(logd) and accesses allr values in the second-level ADS. This is
presented in Figure 6 and further detailed in Section 4.3.2.

4.3.1 Illustrative Examples

We give some examples to better understand our construction.
Selection in a four-level HADS (Figure 4b). The DBAS first converts the querySELECT

* FROM Student WHERE major in(‘CE’,‘CS’) and BCity=‘Istanbul’ to (key, value) pairs:
(Student,{(major,{CE,CS}),(BCity,{Istanbul})}). Then, it asks the HADS to generate and return the
corresponding proof. The HADS runsHCertify. With the help of theFind algorithm that decomposes the converted
query into the proper parts and finds the next-level ADSs,HCertify works as follows: It asks the database ADS to
give its proof, given the converted query. The database ADS,in turn, executes theFind algorithm, which interprets
the converted query and uses the keyStudent to find the next-level ADS. Then, the database ADS asks theStudent
ADS to recursively give its proof, supplying it with the input {(major, {CE,CS}), (BCity, {Istanbul})}. Now,
the Student ADS, via theFind algorithm, finds two next-level ADSs: themajor ADS and theBCity ADS, and
asks them to give their proofs by providing the required inputs {CE,CS} and{Istanbul}, respectively. These two
ADSs, working in parallel, repeat the same steps and find the last-level ADSs storing the PK-sets of valuesCE, CS,
andIstanbul, and ask them to give their proofs. After receiving proofs from the last-level ADSs, themajor ADS
and theBCity ADS generate and add their own proofs, and relay the result back to theStudent ADS who will do
the same job and send the result to the database ADS. The database ADS generates and adds its own proof and sends
the resultant full proof to DBAS to hand on to the client.

Selection in a two-level HADS. Figure 7 presents another example showing the proof generation with a two-level
HADS, for the querySELECT * FROM Student WHERE major=‘CS’ and stdId=103, which is translated by the
DBAS into ‘(Student,{(major, {CS}),(stdId, {103})})’. The first level is an authenticated skip list containing
unique values of themajor column, and the second level has three Merkle hash trees containingstdId values match-
ing eachmajor value (i.e., their PK-sets). The first-level ADS needs to prove membership ofCS. This can be done
by returning ‘h′1,CS,h(EE),h(+∞)’; essentially the result, together with the hashes of the nodes required to obtain
the corresponding digest. At the second level, the Merkle tree needs to prove membership of103. This is done by
returning ‘103,h(105)’. The generated verification object will look like:vo=‘h′1,CS(103,h(105)),h(EE),h(+∞)’. The
client can verify both levels using thisvo together with the hash of the records in the returned result.

Modification . As an example targeting modification, consider adding a newrecord into theStudent ta-



Figure 7: Proof generation forSELECT * FROM Student WHERE major=‘CS’ and stdId=103.

ble: INSERT INTO Student VALUE(109,‘Cem’,‘CE’,‘Izmir’). This adds the pair (109,h(record)), where
h(record)=h(h(109)|h(‘Cem’)|h(‘CE’)|h(‘Izmir’)), into the ADS of the PK column. We further need to
add (109,h(record)) to the second-level ADS associated withCE. Once this is done, since the digest of theCE
ADS would be modified, we need to reflect this in themajor ADS as well. Similarly, we need to construct a
new Izmir ADS, containing only (109,h(record)), and add its digest to theBCity ADS. Therefore, using two-
level HADS constructions, there will be three parts in the translated command: (109,h(record)) to be executed
by the ADS of the PK column, (CE,(109,h(record))) for the major HADS, and (Izmir,(109,h(record)))
for theBCity HADS. In a four-level HADS construction, the translated command looks like: (Student,{〈stdId,
(109,h(record))〉,〈major,(CE,(109,h(record)))〉,〈BCity,(Izmir,(109,h(record)))〉}).

Verification . Verification is fulfilled similarly in a bottom-up manner. The client first verifies the PK-sets’ proofs.
If all are verified, it goes on to use them for verifying the column ADSs’ proofs. If this step also was successful, its
results are used to verify proofs of the table ADSs (theStudent table, in our example). Finally, the database ADS
proof is verified in a similar manner. If all proofs are verified employingall andonly the records in the answer, then
the client accepts the answer as authentic.

Figure 8: Proof verification for vo=‘h1,
h2,h(104),105,106,107,108,h(+∞)’.

Since the verification is accomplished similarly at all levels, we
give an example showing verification in the ADS of Figure 3b, where
the proofvo=‘h1,h2,h(104),105,106,107,108,h(+∞)’ is given for the
querySELECT * FROM Student WHERE StdID>105. The verifica-
tion algorithm extracts the result set{106,107,108} and the bound-
ary records{105,+∞}, and checks whether 105<106<107<108<
+∞ (step 1). If the check is passed, it uses h(104) to compute h′3
(step 2). In the step 3, it uses h′5 and h(107) to compute h′5, which
is used together with h2 to compute h′4, which in turn, is used along
with h1 to compute h′6. Finally, it uses h′6 and h(+∞) to computes
h′7, the digest of the computed ADS. Now, it compares h′7 against
the digest stored locally (h7). This process is illustratedvisually
in Figure 8. Note that, a full proof would also contain information
about the levels of these nodes in a skip list, but those partsare hid-
den for the sake of a simpler presentation. Thus, assume thatthe

server also tells the client where to connect these nodes at in the proof.

4.3.2 Proof Generation

To provide details on how the DBAS generates proofs, we consider different cases where the query has only one
clause, or multiple clauses. For each case we discuss how theproof is generated, and what is included in the proof.

One-dimensional queries:contain only one clause. There are two possible cases:

• The clause is on the PK column: For example, the query isSELECT * FROM Student WHERE stdID > 105.
The server asks the HADS of the PK column of theStudent table to compute and return its range proof,
and sends it back to the client. The proof includes theboundaryrecords, and all intermediate nodes’ values
required for verification at the client. (Note that we employADSs supporting multi-proofs.) Figure 3b depicts



an example, using authenticated skip list as the underlyingADS, where the result set is (106, 107, 108), and the
boundary records are 105 and+∞. The proof looks like:vo=‘h1,h2,h(104),105,106,107,108,+∞’.

• The clause is on a non-PK column: A sample query isSELECT * FROM Student WHERE major=‘CE’. The
server uses the HADS of themajor column to findCE at the first level. If not found, he puts the non-membership
proof in vo. Otherwise, he puts theCE’s membership proof and all values in its PK-set (in the second-level
ADS) in thevo. In contrast to storing duplicate-eliminated data in regular ADSs, the first-level ADS is very
small, and all values in the second-level ADS are used without further computation. The proof will look like:
vo=‘h(−∞),CE(101,102,106),h′5,h(+∞)’, using Figure 7.

Multi-dimensional queries: For each clause, the server asks the corresponding HADS to give its proof, collects
them into the verification objectvo, and sends it to the client. Upon receipt, the client verifiesall proofs one-by-one,
and accepts if all are verified. If the clauses were connectedby ‘OR’, then each proof verifies a subset of the received
records, and the result set should be the union of all these verified records. For ‘AND’, each proof verifies a superset
of records in the result set, and hence the answer is the intersection of results of the individual clauses. Therefore,
each proof must verify all records in the result set.An important distinction between our HADS and previous schemes
[7, 32, 28, 31] is that our proofs can be compared and combinedtogether. Possible scenarios for two-clause case are:

• One clause on the PK, the other on a non-PK column: For example, the query isSELECT * FROM Student
WHERE StdID > 105 AND major = ‘CE’. Since the order in which the clauses are applied is not important
for the proof, we can consider the non-PK clause first, then apply the PK clause on the results of the first step.
Therefore, the server first applies the non-PK clause on the corresponding first-level ADS, and then, applies the
PK clause on the resultant second-level ADSs. Finally, he adds them both to thevo, and sends it to the client.
On Figure 7, this method produces the proofvo=‘h(-∞),CE(h(101),102,106),h′5,h(+∞)’.

• Both clauses on non-PK columns: A sample query isSELECT * FROM Student WHERE BCity=‘Istanbul’
AND major=‘CE’. The server generates one proof for each clause, each containing the first-level ADS proof
for the value itself (e.g.,Istanbul andCE) and the corresponding PK-set, puts them into thevo, and sends it to
the client. Each proof proves authenticity of a set of PK values (of the same table) that can be combined and
compared together. If the clauses were connected by ‘AND’, the client only takes their intersection and checks
whether the result set contains only records with these PKs.For ‘OR’, union of these authentic sets is used.

The above process can be generalized to more than two clausesand supports any combination of ‘AND’, ‘OR’,
and ‘NOT’ operators. The client verifies the proofs, performs a number of set operations on the resulting authentic
sets of PKs, and compares them with the result set. Note that in all our proofs,we do not require any additional
records to be sent to the client on top of the result set of the original query .

4.3.3 Tables with Composite Keys

The foreign keys are used to relate the tables to each other, and hence some tables may employ composite keys (i.e., a
PK includes multiple columns). This, in turn, makes the construction problematic: we cannot relate a non-PK column
to any of the foreign key columns due to the existence of duplicate values (each foreign key column alone may contain
duplicate values). Previous schemes [31, 42] that use regular ADSs cannot handle this case efficiently, as they need
to construct and use multiple ADSs for each column.

Figure 9: Storing the columnMark from tableS2C with composite PK
(stdId andcrsId).

HADS solves this problem efficiently. Note
that generally the concatenation of multiple for-
eign keys forms the composite key. Thus, we use
this composite key as the PK of the table, and use it
to construct the HADSs. One HADS is constructed
for each searchable column(including foreign key
columns), relating the column’s values (containing
duplicates) stored at the first-level ADS (remember
that the ADS contains only one copy of each repli-
cated value) to the unique PK values (constructed
as the composite key) stored at the second-level
ADSs. These HADSs can be used in connection
with other HADSs to generate the proofs. An ex-

ample is depicted in Figure 9 where the composite key for tableS2C is stdId||crsId.



4.4 Efficient ODB Construction

Different ADSs can be chosen for HADS levels subject to theirrequirements and the application. We employed
two-level HADSs, with special role and considerations for each level. We compare the existing ADSs and investigate
their eligibility to be used in each level. We consider threeclasses of ADSs:linear (e.g., one-way accumulator [1]),
sublinear(e.g., authenticated hash tables [36]), andlogarithmic (e.g., authenticated skip list [13, 10]).

For each level in an HADS, an ADS can be chosen subject to the requirements of that level and the application.
We employed two-level HADSs, each level having a special role and posing special considerations. We compare the
existing ADSs and investigate their eligibility to be used in each level. We consider three classes of ADSs:linear
(e.g., one-way accumulator [1]),sublinear(e.g., authenticated hash tables [36]), andlogarithmic (e.g., authenticated
skip list [13, 10]).

First level. This level stores the distinct values of a column, and generates the first part of the proof to be sent
to the client. Proof generation is based on the authenticated range queries, which implies that this level should use
anorderedADS. One-way accumulator and hash tables do not support thisproperty efficiently, and hence cannot be
used for this level.

Therefore, we choose the authenticated skip list (alternatively, the Merkle hash tree) to be used in the first level.
The proof time/space isO(log(|Ci |)) for an update, andO(log(|Ci|)+ t) for a query withO(t) records in the result
set. There are|Ci | distinct values, on average, stored in the first-level ADS, therefore, the storage complexity is 2|Ci |,
which isO(|Ci|).

Second level. This level stores the PK-sets of values in the first level. For one-dimensional queries, and multi-
dimensional queries connected with ‘OR’, the order of values in the PK-set is not a matter of importance, thus, any
ADS can be used with time/space trade-offs discussed below.The second-level ADSs of multi-dimensional queries
connected with ‘AND’ should be compared to generate efficient proofs, hence, an ordered ADS should be employed.

Accumulator. For each distinct value in a column, an accumulated value iscomputed using all values in its
PK-set. For each PK value, a witness is computed which provesthat it belongs to the specified PK-set. If we need
to select all PK values, the second-level proof is essentially empty, but to select a subset of the PK values (mostly
required for ‘AND’), the witnesses of the selected PK valuesare required to be sent to the client.

For each distinct value in the first-level ADS,N/|Ci| PK values and witnesses should be computed and stored,
on average, whereN is the total number of records in the table. In total, 2|Ci |+ |Ci| ∗N/|Ci| = 2|Ci |+N (which is
O(|Ci |+N)) storage is required (including the 2|Ci | space for the first-level ADS).

A proof for each value is made up of two parts, one for the first-level ADS (e.g., for authenticated skip list, a path
from the leaf up to the root, which isO(log|Ci |)), and the other is the accumulated value along with all values in the
PK-set, which isN/|Ci | (the accumulated value is already included in the hash valuestored at the corresponding leaf
of the first-level ADS). The client herself can check validity of the PK-set against the accumulated value. Therefore,
for a result set of sizet, the asymptotic size ofvowill be O(log|Ci |)+2t ≃O(log|Ci |+ t).

The main problem with the accumulator is the cost of update: with each update, all witnesses should be updated
using costly operations (e.g., modular exponentiation).

Authenticated hash table. This is a sublinear membership scheme with constant query and verification time,
making it an interesting scheme for clients with resource-constrained devices. It is a good choice if the data is static.
For a leaf node storingvi , we put the PK-set ofvi in an authenticated hash table, and store its digest at the level above.

On average,N/|Ci| PK values are linked to each leaf node, hence, we requireO(|Ci |+(1+ ε)N/|Ci| ∗ |Ci|) =
O(|Ci |+(1+ ε)N))≈O(|Ci |+N) storage (including theO(|Ci|) space for the first-level ADS). Here,ε is a constant.

The first-level ADS proof is the same, but the authenticated hash table requires only constant proof sizeε [35],
reaching(O(log|Ci |)+ t) for t records in the result set. Moreover, hash operations are much faster than modular
exponentiations of the accumulator.

Merkle tree or authenticated 2-3 tree or authenticated skiplist. These are logarithmic membership schemes
with logarithmic height and proof size. The way the second-level schemes are modified, or the proofs are generated,
are the same as for the first-level.

Each node requires≈ 2(N/|Ci |) storage to store the PK-set, therefore, 2|Ci |+ 2|Ci | ∗N/|Ci| = 2(|Ci |+N) =
O(|Ci |+N) storage is required to store a column. The proof size and timefor one record are bothO(log|Ci|+
log(N/|Ci|)) = O(logN), and forr = tN/|Ci| records are bothO(log|Ci|+ r).

A comparison of ODB construction via various ADS schemes is given in Table 1, where the first level is a
logarithmic ordered ADS and the second levels are shown in the table. Note, however, that the unit operations in the
accumulator are more costly than those in the others. It shows that using a logarithmic ADS such as an authenticated



Table 1: A comparison of schemes for the second level where the first level is a logarithmic ADS, for storing a single table.Proof
size and verification time is given for one-dimensional queries.sandt denote the number of searchable columns, and the number
of records in the first level, respectively.

Accumulator Authenticated hash table
Storage 2N+(s−1)(2|Ci|+2N) 2N+(s−1)(2|Ci|+N)
Proof size 2 log|Ci |+ t+2tN/|Ci| 2log|Ci |+ t+2t ∗N/|Ci |
Verification time t(log|Ci |+N/|Ci|) t(log|Ci |+N/|Ci|)
Update time logN+(s−1)(log|Ci |+N/|Ci|) logN+(s−1)(log|Ci |+N/|Ci|)

Authenticated skip list
Storage 2N+(s−1)(2|Ci|+2N)
Proof size 2 log|Ci |+ t+ tN/|Ci|
Verification time t(log|Ci |+2N/|Ci|)
Update time logN+(s−1)(log|Ci |+ logN/|Ci |) = slogN

skip list at both levels is the efficient choice leading toO(log|Ci |+ r) proof size and time forr = tN/|Ci| records,
andO(logN) update time for one record. Other alternatives can be chosenregarding the requirements of applications,
such as the database being static or dynamic.

5 Join
In relational database systems, data is organized (divided) into a set of tables. An important and frequently-used
operation is, therefore, thejoin operation, which collects data from two (or more) tables to produce new results. In
outsourced databases, the server should perform the join and generate the proof that will be verified by the client. The
server can utilize any existing optimal join algorithm, since we put no restriction on the DBMS part. Instead, we design
our DBAS proof generation algorithms to produce efficient proofs minimizing the server’s effort, the communication,
and the client’s computation.

5.1 Overview

Our join algorithms use HADSs for both (all) tables that are built on the columns on which the join is formed. Since
the HADSs keep the same relationships between the (values of) tables they are created for, we can generate proofs
proving correctness of those relations.

Without loss of generality, consider a one-to-many relationship, which is the most widely used relationship:R
⋊⋉rid=rid S, i.e., the PK column ofR, rid , is used as a foreign key inS. R contains only distinct values in columnrid ,
while S may contain duplicate values. The HADS ofS ties each distinct value inrid to its respective PK-set inS. Now,
we can easily compare the ADS ofR built on rid with the first-level ADS of the HADS ofS (storing unique values)
built on rid , and generate efficient proofs. (Note that only the first-level ADS of the HADS, which is very small in
size, is used for comparison, and in case of any match, all values in the respective second-level ADS are reflected into
thevowithout further computation.) Besides, as the values are stored sorted, the server traverses each ADS only once.

Efficient proof generation. Compared to [18, 34] that for each value of the first table, perform a range query on
the second table, and [42] that uses range queries efficiently, ours is more efficient as it converts range queries into
equalities for matches. The problem with [42] is that for each value in the first ADS, the set of matching values in
the second ADS is surrounded bytwo more records, for completeness. Since we store and compare unique values in
HADSs, a value in the first (H)ADS either matches only one value in the second (H)ADS that is shown by equality in
vo, or does not match any value in the second (H)ADS that is shownusing range queries. In addition, the first-level
ADSs that we use for proof generation are very small comparedto those of all previous work, reducing the proof size
and proof generation time.

Other join types. The HADS, in addition to the equi-join, supports non-equi-join and multi-way join as well.
Although an inefficient way of doing a non-equi-join betweenR andS is performing a range query onS for each record
in R, our non-equi-join algorithm traverses each ADS only once,and is very efficient. Our algorithm for multi-way
join queries can be generalized to support queries of the form T1 ⋊⋉a=a T2 ⋊⋉a=a T3 ⋊⋉a=a ..., betweenn tables.

5.2 Two-way Join

Consider equi-join on two tablesR and S represented asR ⋊⋉Ci=Cj S, whereCi andCj are columns ofR and S,
respectively. The HADSs of these columns will be used for proof generation. We categorize possible cases and
discuss each one separately.



Either C i or C j is a PK column that is used as foreign key in the other table. The generatedvo is a set of PKs
that can be used for comparison or combining with othervo’s.

The server usesHADSR(Ci) andHADSS(Cj) for proof generation. He starts by the smallest item (e.g., leftmost
leaf node in a tree or skip list type ADS) in the first-level ADSof one of the HADSs, and searches for its value,
sayvi , on the other HADS. If the value is found on the other HADS, both values are inserted into thevo showing a
matching. Otherwise, the boundary records (the twoconsecutivevalues on the other HADS thatvi would have been
located between them), together with thevi , are inserted into thevo. This shows thatvi has no matching on the other
table. Once finished working on it, he jumps to the nextexpectednode. By the expected node, we mean the item that
either is immediately after the current node or stores the closest value to the current value of the other HADS. If the
current and expected nodes are not successive, then the required intermediate information (e.g., for authenticated skip
list, the levels and digests corresponding to a part of the ADS not included in the proof) needed for verifying the ADS
by the client, will be added to thevo. We use the algorithmFindNext to find the expected node:

FindNext(vi)→ (nodej ,nodek) If vi is null, then return the node immediately following the current node asnodej

(nodek will be null). Given a valuevi , if a node storingvi is found, add the required information of the interme-
diate nodes into thevo and return the node storingvi asnodej (nodek will be null again). Otherwise, add the
needed information of the intermediate nodes into thevoand return the twoconsecutiveboundary nodesnodej

andnodek storingv j andvk, respectively, such thatv j < vi < vk.

Consider the joinStudent ⋊⋉stdId=stdId S2C, where both tables have an HADS on columnstdId:
HADSStudent(stdId) andHADSS2C(stdId). The proof generation works as follows: Traverse both HADSsuntil
the leftmost leaf node (at the first level) storing the valuesv1 (in HADSStudent(stdId)) andv′1 (in HADSS2C(stdId)):

• v1 = v′1: Add them into thevo (showing a matching), run theFindNext() on both HADSs to find the next
valuesv2 andv′2, and repeat the process withv2 andv′2.

• v1 6= v′1: Add the larger value, sayv1, into thevo and runHADSS2C(stdId).FindNext(v1) to find a matching
on HADSS2C(stdId). If it returns one node, a matching has been found, therefore, repeat the process with
v1 and the value of the matched node. On the other hand, ifHADSS2C(stdId).FindNext(v1) returns two
nodes, saynodej andnodek, there is no matching, but the value ofnodek may be equal to the value of the
next node ofv1. Therefore, addv1, nodej .val, andnodek.val into thevo, then find the node immediately after
v1 asnode2=HADSStudent(stdId).FindNext(), and repeat the process withnode2.val, andnodek.val. The
Algorithm 5.1 illustrates this process.

Figure 10: HADS ofstdId (tableS2C).

Using HADSStudent(stdId) from Figure 3a and
HADSS2C(stdId) from Figure 10, we generate proof forStudent
⋊⋉stdId=stdId S2C. For simple presentation, we put in thevo only
the values and hashes stored on nodes, and leave out the otherinfor-
mation required for verification (e.g., the level in an authenticated
skip list). Furthermore, we separate each round by a column ‘:’,
parts belonging to each HADS inside a round by a semi-column ‘;’,
and values inside each part by a comma ‘,’. Within a round, values
of HADSStudent(stdId) appear first.

We start with the smallest values in the HADSs:v1 = 101 and
v′1 = 101. Since there is a matching, 101 is added into thevo

(vo=‘101;101(501,502,504)’). Then, theFindNext() is run on both HADSs to find the next values:v2 = 102
and v′2 = 103. Sincev′2 > v2, 103 is inserted into thevo and HADSStudent(stdId).FindNext(103) is executed
(during whichh(102) will be added into thevo as an intermediate value, resulting invo=‘101;101(501,502,504) :
h(102);103(503,504)’), returning the node storingv3 = 103. Due to the matching, 103 is again added into thevo
(vo=‘101;101(501,502,504) : h(102),103;103(503,504)’), andFindNext() is run on both HADSs that will result in:
v4 = 104 andv′3 = 106. Again, 106 is added into thevo andHADSStudent(stdId).FindNext(106) is executed (dur-
ing which h(104),h(105) will be added into thevo as intermediate values, resulting invo=‘101;101(501,502,504)
: h(102),103;103(503,504) : h(104),h(105);106(500,502,504)’), returning the node storingv6 = 106, to be added
into the vo due to the matching. Then,FindNext() is executed on both HADSs, which will give:v7 = 107
and v′4 = 108. 108 will be added intovo and HADSStudent(stdId).FindNext(108) results inv8 = 108. Fi-
nally, vo will be vo=‘101;101(501,502,504) : h(102),103;103(503,504) : h(104),h(105),106;106(500,502,504) :
h(107),108;108(501,503)’.



Algorithm 5.1: JoinCertify, run by the server.
Input : Two second-level ADSs of the joining tables:ADSR andADSS, and their current nodes:NodeR andNodeS, which

are initialized by the leftmost nodes of the corresponding ADSs.
Output : the verification object:vo

1 if NodeR is null OR NodeS is null then
2 return vo=the intermediate information of the other ADS
3 if NodeR.val = NodeS.val then
4 vo= NodeR.val + ‘;’ + NodeS.val //A matching is found.
5 NextR = ADSR.FindNext()
6 NextS= ADSS.FindNext()
7 vo= vo+ ‘:’ + JoinCertify(NextR,NextS) //Go to the next round.
8 else

//Find the matching on the other ADS.
9 Find the node holding the bigger value, sayNodeR (Next1S,Next2S) = ADSS.FindNext(NodeR.val)

10 if Next1S is null then
//End of ADSS

11 vo= vo+ ‘;’ + NodeR.val, intermediate in f ormation o f ADSR until the end
12 else
13 if Next2S is null then
14 vo= NodeR.val + ‘;’ + Next1S.val //A matching is found.
15 else
16 vo= NodeR.val + ‘;’ + Next1S.val + ‘,’ + Next2S.val //No matching is found.
17 NextR = ADSR.FindNext()
18 NextS= ADSS.FindNext()
19 vo= vo+ ‘:’ + JoinCertify(NextR,NextS) //Go to the next round.
20 return vo

Neither Ci nor C j is a PK column. Each column has an HADS storing its distinct values and related PK-sets. If
each distinct value ofCi andCj has an average PK-set of sizen andm, respectively, and there arek matching records,
then the result set will haveknmrecords, on average. Our proof for this query is of sizeO(k(n+m)), showing again
the HADS proofs are efficient.

Figure 11: Non-PK join.

Imagine two tablesT1 and T2, both having an integer PK column
and a non-PK column of type character with two matching values ‘B’
and ‘F’, whose HADSs are shown in Figure 11. The algorithm, start-
ing at the leftmost nodes of both HADSs, finds out that B>A, and
executesFindNext(‘B’) on T1, leading to vo= ‘h(−∞), r1,B(102,104,
107);h(−∞),B(3562)’. It goes on, putting intermediate value h5 in the
vo, finds another matching ‘F’, which is the last node inT1. Later,
FindNext(‘F’) on T2 puts h6 invo, and realizes that both columns are fully
traversed. These steps yieldvo=‘h(−∞), r1,B(102,104,107);h(−∞),B(3562) :
h5,F(105,108);F(8759,9658) : h(+∞);h6,h(+∞)’.

For verification, the client interprets the proof invo, and investigates
whether the values in each step are either equal, or one is between the two
others. If it is correct, she adds them to the corresponding ADS list, and goes
on with the next step proof (any problem leads to rejection).Finally, she uses
the Vertify() function of the (H)ADS to verify the two ADS lists. If both
passed the verification successfully, she accepts the proof, otherwise, rejects.

5.3 Queries with Join and Selection

As denoted by Mishra and Eich [24], the general query optimization rule for queries containing various operations
is that the join operation is performed after all selection operations. The reason is that the selection operations result
in intermediate sub-tables (to be used as input to the join operations) that are likely to vary substantially in size [24].
Since all proof are based on PKs in our approach, the results of the selection queries are integrated easily into those of
join queries, resulting in small proofs (in terms of both space and computation). We distinguish the following cases:



• The selection uses the same column as the join. The same HADSs are used to generate proofs for both selec-
tion and join, i.e., records in the result set should satisfythe selection constraint in addition to the join constraint.
For example, the proof generation for querySELECT * FROM Student S, S2c C WHERE S.stdId=C.stdId
and S.stdId > 105 starts from the node storing the value 104 (the boundary record), and both clauses are
applied simultaneously during the join.

• The selection uses different columns than the join. The selection proof is generated first that results in an
authenticated set of PKs. Then, if this is connected to the join clause with ‘OR’, the proof of the join clause
is also generated, and both proofs are sent together to the client. But for ‘AND’, the join proof-generation
algorithm should consider only those records that are in theselection proof, instead of the whole table, leading
to smaller join proofs. The server runs the join proof-generation algorithm on sorted authentic PK-set resulting
from the selection proof, and the other table. For each PK value in the sorted authentic PK values, if there
is a matching on the corresponding HADS of the other table, reflect it on the proof. Otherwise, supply a
non-membership proof. For the querySELECT * FROM Student S, S2c C WHERE S.stdId=C.stdId and
S.major =‘CS’, for instance, the selection proof supplies the sorted authentic set of PK values{103,105},
used together with tableS2C by the join proof-generation algorithm to compute the (smaller) join proof.

5.4 Multi-way Join

Since data is distributed over multiple tables, users may issue queries with join on multiple tables, e.g.,T1 ⋊⋉Ci=Cj

T2 ⋊⋉Ck=Cl T3 ⋊⋉ ..., to combine them back together. Yanget al. [42] performed the three-table join as((T1 ⋊⋉Ci=Cj

T2) ⋊⋉Ck=Cl T3) or (T1 ⋊⋉Ci=Cj (T2 ⋊⋉Ck=Cl T3)). But, the output of the join that is performed first, is not a table having
an ADS on the column of the next join. Therefore, their AIM join algorithm is not applicable, and their AISM join
algorithm (which uses only one ADS on one table) is used instead. Essentially, they apply AIM for the first join,
followed by AISM.1 We treat the case that all joins are on the same column separately from the case that the columns
differ, and present efficient solutions for all such scenarios.

Multi-way join on the same column. As noted by Ramanet al. [38] and Yanget al. [42], these queries are
common in data warehousing applications, where a fact tableis joined with other tables, on the same column. Our
algorithm performs much better for the multi-way join with all join clauses on the same column:T1 ⋊⋉a=a T2 ⋊⋉a=a

T3 ⋊⋉a=a .... Moreover, our algorithm can be generalized to support multi-way joins betweenn tables, without change.
We start by the smallest items in all HADSs. If all are the same, this is reflected in thevo, showing a matching.

Otherwise, the maximum value among them,vmax, is selected and added into thevoand all the remaining HADSs are
queried (i.e.,FindNext(vmax)) to either find a matching, or prove non-existence of the value. This is repeated until
the last node of one of the HADSs is met. Then, the verificationobject is finalized with the remaining intermediaries.
Each HADS is traversed exactly once, and no item is checked multiple times. Jumping to the maximum value when
no matching is found enables us to skip the largest possible number of items, providing an optimally efficient proof.

Figure 12: Proof generation forT1 ⋊⋉a=a T2 ⋊⋉a=a T3.

An example showing our join proof
generation algorithm forT1 ⋊⋉a=a T2 ⋊⋉a=a T3

is given in Figure 12. It first starts by
the leftmost nodes that are 1,1,5. Since
5 is their maximum,FindNext(5) is run
on both T1 and T2, leading tovo=‘h(
−∞),h1,h(4),5;h2,h(3),5;h(−∞),5’. Af-
ter this matching, the algorithm then
jumps to and processes the next nodes,
which are 6,9,7, and thus continues
by FindNext(9) on T1 and T3. Fol-
lowing the same logic, it finally out-
puts vo=‘h(−∞),h1,h(4),5;h2,h(3),5;
h(−∞),5’ : h(6),9;9;h(7),9 : h(15),16,
18;14,19;17 : 19;19;19 : h(20),h3,
h(+∞);h(20),h4,h(+∞);h(+∞)’.

1Their algorithms are not directly applicable for multi-join case, so, they provided new versions m-AISM, m-ASM, and m-AIM. They
require some prior information about the third table that isused for reducing the proof size of the first join, between thefirst and second tables,
before the second join is performed.



(a) The sample database. (b) T3 refers to T2 who refers to T1. (c) Both T1 and T3 refer to T2.

Figure 13: Ordering graphs for different cases.

Multi-way join on different columns . Since our proofs are composed of a set of PKs, we can compare and
combine them together. To perform a multi-way join, we separate it into a set of two-way joins (with selections, if
there exists any), and apply our two-way join algorithm as described previously. For a query withn joins, we generate
and sendn proofs to the client who verifies them, and accepts the answerif all proofs are verified.

To perform a multi-way join of the formT1 ⋊⋉Ci=Cj T2 ⋊⋉Ck=Cl T3, one way is to deal withT1 ⋊⋉Ci=Cj T2 independently
from T2 ⋊⋉Ck=Cl T3, and generate the proofs directly using the HADSs. Another way is to perform one of them first,
and use its result, which is an authentic PK-set, to generatethe next proof. This means that the proof for each join
depends on the previous join, which depends, in turn, on the preceding one. Since a join leaves out some records,
using its result for the next join is expected to generate smaller proofs. Thus, we can perform the joins according to an
order that generates efficient proofs. We categorize the possible cases and investigate employing an efficient ordering.

Efficient ordering . We define theordering graphas a directed graph to show the relationship between the tables
and use it to determine the order of joins. The joined tables constitute the vertices, and an edge fromTi to Tj indicates
that tableTi contains a column that refers to a column inTj (and the join is on these two columns). The ordering graph
of our database model (Figure 1a) is represented in Figure 13a.

Consider the case in Figure 13b: We should perform theT2−T3 join first, followed byT1−T2 join. The reason
is that theT2−T3 join results in an authentic set ofT2’s PKs that can be used in theT1−T2 join (that is onT2’s PK),
while the result ofT1−T2 join (authentic sets of PK values of tablesT1 or T2) cannot be used inT2−T3 join that is on
T3’s PK. Hence, performing theT2−T3 join first, generates efficient proofs.

In Figure 13c, bothT1 andT3 use the PK ofT2 as foreign key. Therefore, both joins are onT2’s PK, and hence,
the order of joins is not a matter of importance. We perform either join first, determine the authentic set of PKs ofT2

contributing to the join, and do the other join between this authentic set and the other table. Figure 13a is also dealt
with in a similar manner. Since both joins can output an authentic set of (composite) PK values ofS2C, the other join
can be easily handled using this set and the other table.

Multi-way joins with more than two joins can be divided into aset of two-way joins, and the above-mentioned
categories can be used to determine the order in which these joins should be performed to generate efficient proofs.
In cases where the order is not important, the DBAS can use thetable sizes and database optimization techniques to
estimate the result size, and select the one with small expected size [12, 24, 17].

5.5 Special joins

Equijoin is defined to be the join in which the operator is equality [24, 8]. The non-equijoin, which is also called
theband join, is defined as the join operation that the operator is not equality [24]; i.e., the values of one of the join
columns fall within abandof values of the other column [8].

Equijoin of the form T 1.Ci = T2.Cj ∓n,n ∈ N. This is a special case of the equijoin. We treatT1.Ci = T2.Cj ∓n
as matching (instead ofT1.Ci = T2.Cj ) and apply the equijoin algorithm. Proof generation for thequeryT1.a+1 =
T2.a = T3.a− 2 on Figure 12 works as follows: The algorithm starts with thesmallest values 1, 1, 5, respectively.
Since the relationT1.a+1= T2.a= T3.a−2 does not hold, the greatest number according to the relation, which is 5,
is used to find the expected node on the two other ADSs. But since we are not looking for 5 in the other tables, we need
to adjust our parameter. 5 would be matched with 5-2=3 inT2, so we runFindNext(3) onT2. It will also be matched
with 5-2-1=2 inT1, so we runFindNext(2) onT1. Using our join proof generation algorithm this way generatesvo=
‘h(−∞),h(1),2;h2,3;h(−∞),5 : 4;5;7 : 6,9;9;9,17 : 15;14,19;17 : h(16),18;19;19,h(+∞) : h5,h(+∞);h(20),h4,h(+∞);’,
indicating that the queryT1.a+1= T2.a= T3.a−2 executed on Figure 12 has two matchings: (2, 3, 5) and (4, 5, 7).

Non-equijoin. The general form of a non-equijoin query is|T1.Ci−T2.Cj |< n,n∈ N. A simple proof generation
algorithm for this join is to select the HADS of the table withsmaller number of records, and for each node of this
HADS, perform an authenticated range query on the other HADS. But, this is less efficient regarding computation
and communication, due to the many intersections among the sets the authenticated range queries return.

We modify our join algorithm slightly to support the non-equijoin more efficiently, where each HADS is traversed
only once. We select the smaller HADS, and for each record in this HADS, compute the matching records on the
other HADS. Since one record may correspond to many records,we need to include the boundary records (remember



we are using multi-proof ADSs). To prevent the values to be processed multiple times, we perform as follows:

• If the left boundary of the current record is greater than the right boundary of the previous record, then it is
necessary, and hence we add the required intermediate information, the left boundary, the matching records,
and the right boundary into thevo. Since the left boundary record, and hence, all matching records of the
current record reside after the right boundary record of theprevious record, the server does not need to go
backward after completion of processing of the previous record. He jumps to the left boundary record of the
current record, while adding the required intermediate information for reconstructing the HADS.

• If the left boundary of the current record is less than or equal to the right boundary of the previous record, there
may be common matching records. Due to the security of the HADS that prevents a malicious server from
adding or deleting matching records, no need to go backward.Such a malicious server can try to delete some
matching records and put the corresponding intermediate information to pass the client verification. But, such
intermediate information can only appear between two sets of matching records (not inside a set of matching
records). Therefore, we go on from the current position in the second HADS, and add into thevo the remaining
matching records until the right boundary record.

Algorithm 5.2: NEQJoinCertify, run by the server.
Input : thebandof the query:n, and two HADSs of the two joining tables.
Output : the verification object:vo

1 Select the smaller table. Call it R, and the other S.
2 Traverse both HADSs to reach the leftmost node at the first level.
3 vo= {}
4 RNode= R.CurrentNode
5 SLe f t= SRight= S.CurrentNode
6 while RNode.val 6=+∞ AND SRight.val 6=+∞ do
7 if |RNode.val−SRight.val|> n then
8 SLe f t= FindLeftBoundary(RNode.val)
9 SRight= FindRightBoundary(RNode.val)

10 Add SLe f t.val, all records untilSRight.val, andSRight.val into thevo
11 else
12 SRight= FindRightBoundary(RNode.val)
13 Add all records untilSRight.val, andSRight.val into thevo
14 RNode= R.NextNode

15 return vo

Therefore, in both case, the server traverses both HADSs once. The same facts hold for the client during the
verification. She only checks the given boundary records andreconstructs the HADS without the need to going
backward. This is an important observation that simplifies the client and server computation. This process is shown
in Algorithm 5.2. Two helper functionsFindLeftBoundary() andFindRightBoundary() with obvious functionality
are used during the algorithm.

Figure 14: Non-equijoin proof generation for
|T1.a−T2.a|< 3.

Assume that we want to execute the non-equijoin query|T1.a−
T2.a| < 3 on the example given in Figure 14. We start byT1 (who
has fewer records) and for each record, find the set of matching
records onT2. For the first record, 5,FindLeftBoundary(5) and
FindRightBoundary(5) return the boundary records 1 (|5−1| >=
3) and 9 (|5− 9| >= 3), respectively. These boundary records to-
gether with the matching records in between, are added into thevo:
vo=‘5;1,3,5,9’. The next record is 7 for which|7− 9| < 3, hence,
its left boundary record is already in the proof, and we only need
to find the right boundary record which is 14. Since all matching
records are already in thevo, we add only 14, i.e.,vo=‘5;1,3,5,9 :
7;14’. Nothing is inserted for the next record, 9, since|9−14|>= 3,
meaning that even the right boundary is already in the proof,leading
to vo=‘5;1,31,5,9 : 7;14 : 9;-’. Regarding 24, since|24−14|> 3, we
call FindLeftBoundary(24) to find the left boundary record, which
addsh(19) as the intermediate information into thevo, and returns



20. FindLeftBoundary(24) returns 28. There are no matching records in between, therefore, only the boundary
records are added into thevo=‘5;1,3,5,9 : 7;14 : 9;- : 24;h(19),20,28’. Since the end ofT1 is reached, we addh(30)
as the intermediate information ofT2. Finally, vo=‘5;1,3,5,9 : 7;14 : 9;- : 24;h(19),20,28 : h(+∞);h(30),h(+∞)’ is
returned as the proof.

The proof verification is also accomplished in a similar way as shown in Algorithms 5.3.

Algorithm 5.3: NEQJoinVeriify, run by the client.
Input : the verification object:vo, the difference:n.
Output : 0 for acceptance, -1 for rejection.

1 ADSR = ADSS= {};
2 RoundProo f= vo.GetRoundProof(); //Get the proof until the next ‘:’.

//First, interpret the proof and see if non-equijoin condition holds for all records.
3 while RoundProofdo
4 RNode= RoundProo f.GetLeftPart(); //In each round, only one record of R exists.
5 ADSR.Add(RNode); //All R records are stored here for later ADS verification.
6 SProo f= RoundProo f.GetRightPart(); //The corresponding proof of S.
7 SNode= SProo f.FirstNode;
8 if SNode== NULL then
9 continue;//No matching, go to the next round.

//First, add all intermediate information into the ADS, if there is any.
10 while SNode is intermediatedo
11 ADSS.Add(SNode);
12 SNode= SProo f.NextNode;

//Now, check and add to the ADS the left boundary record, if there is any.
13 if SNode.val< RNode.val then
14 ADSS.Add(SNode);
15 SNode= SProo f.NextNode;

//Add all matching records into the ADS, if there is any.
16 while |SNode.val−RNode.val|< n do
17 ADSS.Add(SNode);
18 SNode= SProo f.NextNode;

//Check and add to the ADS the right boundary record, if there is any.
19 if SNode.val> RNode.val then
20 ADSS.Add(SNode);
21 SNode= SProo f.NextNode;

//Error: if there are remaining nodes.
22 if SNode6= NULL then
23 return −1; //Error occured.
24 RoundProo f= vo.GetRoundProof();

//Now, all verified matching nodes are in ADSR and ADSS, verify them.
25 if !ADSR.Verify() OR !ADSS.Verify() then
26 return −1; //Error occurred.
27 return 0; //No error.

6 Analysis
6.1 Security

Theorem 6.1 (Security of ADS)The ADS is secure according to Definition A.4.

Proof 6.1 This theorem is proved for different schemes separately by different researchers. Merkle [23] showed the
security of Merkle hash tree, Papamanthou et al. [36] did thejob for the authenticated hash table, Goodrich et al.
[14] proved security of the RSA one-way accumulator [1] based ADS, Noar and Nissim [27] showed security of the
2-3 tree, and Papamanthou and Tamassia [35] proved securityof the ADSs constructed using authenticated skip list
or red black tree.

Theorem 6.2 (Security of HADS) Our HADS construction is secure according to Definition A.4 (employing HADS
algorithm names) if the underlying ADSs are secure.



Proof 6.2 We reduce security of the HADS scheme to the security of the underlying ADSs. If a PPT adversaryA
wins the HADS security game with non-negligible probability, we can use it to construct a PPT algorithmB who
breaks the security of at least one of the ADS schemes used, with non-negligible probability.B acts as the server
in the ADS game played with the ADS challengerC , and simultaneously,B plays the role of the challenger in the
HADS game with the adversaryA . He receives the public key of an ADS fromC , and himself produces n−1 pairs
of ADS public and private keys. Then, he puts the received keyin random ith position, and sends the n public keys
as the public key of an n-level HADS toA . During the setup phase,B builds a local copy of the HADS for herself.
Note that this is invisible to the adversaryA , and thus will not affect his behavior. After the setup phase, A selects
a command, generates the answer and proof for the command, and sends them toB . For the adversary to win, the
answer must be different from the real answer in at least one location, with its verifying sub-proof.B can find it since
she maintains a local copy. WhenB receives them, she selects the related command, answer and proof parts for the
ith position, and forwards them toC . If the guess of i was correct, thenB would succeed. IfA passes the verification
with non-negligible probability p, thenB passes the ADS verification with probability greater than orequal to p/n
(breaking the ADS security with non-negligible probability, since n, the number of HADS levels, is polynomial in the
security parameter).

Since we employ secure ADSs, p/n must be negligible, which implies that p is negligible, andhence, the adversary
A has negligible probability of winning the HADS game. Therefore, if the underlying ADSs are secure, then the HADS
scheme is secure.

Theorem 6.3 (Security of the ODB scheme)Our proposed ODB scheme is secure according to Definition 4.3, pro-
vided that the underlying HADS scheme is secure.
Proof 6.3 We reduce security of the ODB scheme to the security of underlying HADSs. If a PPT adversaryA wins
the ODB security game with non-negligible probability, we can use it to construct a PPT algorithmB who breaks
the security of HADS scheme with non-negligible probability. B acts as the server in the HADS game played with
the HADS challengerC , and simultaneously,B plays the role of the challenger in the ODB game with the adversary
A . He receives the public key of an HADS fromC , and relays it toA (note that all HADSs built for each searchable
column will use the same key). During the setup phase,B builds a local database for herself (which does not change
the adversary’s view). After the setup phase,A selects a query, generates the answer and proof for the query, and
sends them toB . For the adversary to win, his answer must be different from the real answer on at least one location,
but with a verifying proof. On receipt,B selects the related command, answer and proof parts for the answer that
differs from the real answer (she can find it since she maintains a local copy), and forwards them toC . If A passes
the ODB verification with non-negligible probability p, then B can also pass the HADS verification (i.e., break HADS
security) with non-negligible probability p.

Since we employ a secure HADS, p must be negligible, which implies that the adversary has negligible probability
of breaking ODB. Therefore, our ODB scheme is secure (and provides the required properties for an outsourced
database: correctness, completeness, and freshness), if the underlying HADS is secure.

Note that this proof is not specific to our two-level construction. If one uses a four-level construction, as we talked
in Section 4.3.1, thenB plays the HADS game with a four-level HADS challenger. In general, for an n-level ODB
construction,B should play the game with an n-level HADS challenger, in the same manner as described above. The
proof or the probabilities will not be affected by this change.

6.2 Performance

Setup. To evaluate our ODB scheme, we implemented a DBAS prototypeusing the efficient two-level HADS con-
struction, which uses FlexList [11] at both levels, in C++ using Cashlib library [22]. All experiments were performed
on a 2.5GHz machine with 4 cores (but the test running on a single core), with 4GB RAM and Ubuntu 11.10 operating
system. The performance numbers are averages of 50 runs.

Our DBAS application is deployed on the same machine where the DBMS resides, and stores the security in-
formation of our database. Each dynamic query (Insert,Update, Delete,Drop,Alter,...) affects this part
as well, but the query should be converted into the (key, value)-based format. For example, the querySELECT
* FROM Student WHERE major in(‘CE’,‘CS’) and BCity=‘Istanbul’ is converted to(Student,{(major,
{CE,CS}),(BCity,{Istanbul})}). We did not implement an automatic converter, but it should not affect the
timing since its overhead is much smaller than the proofs.

We use a database containing three tables:Student and Course tables, each with 105 randomly-generated
records, andS2C table storing the courses taken by students, with 106 randomly-generated records. There are two



scenarios: each registered student has taken 10 courses in the first scenario, and 100 courses in the second scenario,
on average. (In the second scenario, not all students are taking courses since we only have 106 S2C records in total.)
This means that a distinctStdId is used as a foreign key inS2C 10 times in the first scenario, and 100 times in the
second scenario, on average.

Given this database, we observe the system behavior (proof generation time and proof size) for different query
types. Since in our scheme proofs are generated using only the hashes of the values of the column(s) forming the
clause (not the whole records),the proof size is independent of the record size. Our scheme enhances the efficiency
by reducing the required computation and proof size, confirmed by experimental results:

• The proofs are generated using only values of the required columns, and these values already exist in the DBMS
answer to the query.

• The concept of PK-sets divides a large ADS into small ADSs ina hierarchy. Hence, the proof size and the
computation time decrease as well.

• Using the PK-sets, there is a one-to-one correspondence for the matching records, and there is no need for
boundary records. This is a very important property for computing boolean operations and join proofs easily.

Comparison to previous work. Different methods were proposed for making the duplicate values unique [6, 32,
19, 31] to store them in a regular ADS. Since they produce the same number of distinct values (= number of records in
the table),their ADS sizes are the same, leading tosimilar performances. For the sake of comparison, we concatenate
each duplicate value with a replica number as in [32], and build a regular ADS to compare our HADS against it. This
is referred to as ‘previous work’ in our figures. (Therefore,the ‘previous work’ in the figures correspond to all these
works, if they used the same ADS as us.)

6.2.1 Selection Queries on One Table

We consider three cases:One-clause queries. We investigate the case that the clause is on a non-PK column(e.g.,
SELECT * FROM Student WHERE major=‘CE’). Since the number of distinct values in the non-PK column isless
than that of the PK column, the first-level ADS of the HADS storing a non-PK column is smaller than the (single-
level) ADS storing the same column in the way of the previous work. (We do not count the second-level ADSs in the
one-clause case, since they are included in whole, without any computation to find and select some.) This corresponds
to the fact that, some values are repeated on non-PK columns,whereas the PK column contains only unique values.
The proof generation time and proof size for a non-PK clause using HADS are thus expected to be smaller compared
to the previous work. The Figures 15a and 15b show≈5x smaller proofs, and≈3x faster proof generations, compared
to the previous work. There is a≈10% efficiency gain even with range queries.

Two-clause queries. There are two cases: the query has either one PK and one non-PK clause (e.g.,SELECT
* FROM Student WHERE StdID>105 AND major=‘CE’), or two non-PK clauses (e.g.,SELECT * FROM Student
WHERE BCity=‘Istanbul’ AND major=‘CE’). In the HADS of the non-PK columns, all values of the second-level
ADSs are included in the result (without further computation), therefore, the dominant factors are the proof generation
time and proof size of the first-level ADSs. We apply each clause on its own HADS and generate two proofs to put
in the verification object. Figures 16a and 16b show the proofgeneration time and proof size for two-clause queries.
We observe≈2x smaller proofs and≈1.5x faster proof generations using HADS, compared to previous work, for the
case with one PK and one non-PK clauses. For the case with two non-PK clauses, the proof is≈5x smaller in size,
and≈3.5x faster in generation time, compared to previous work.

Multi-clause queries. There are more than two clauses in this case, and the two-clause case is a special case of
this one. Again, we can separate this case into two cases depending on whether one of the clauses is on the PK column
or none of them are. The server asks each HADS sequentially togive its first-level proof. The total proof generation
time and proof size of the server is summation of the corresponding values taken by all HADSs. We are not presenting
any figures for this, but based on the results presented above, we expect similar gains. Indeed, the gains would be
even greater if all clauses are on non-PK columns.

Communication overhead. Another important factor is the overhead of our scheme on the communication,
i.e., how much does the proof increase the traffic. As the proof size is independent from the record size, for tables
with small record size (≈1KB), the proof size is about 10-40% compared to the result size. As a real example, we
used theStudent table from Koç University database that stores (student ID, name, address, phone, email, standing,
department, advisor, photo) for each student. The records of this table are between 5 and 20KB in size, where the



photo size is dominant. Using the HADS for proof generation imposes only 1−4% communication overhead. The
results are shown in Figure 17a. Compared to similar algorithms such as [31] that requireO(logN+ t) cost for a query
result of sizet, using range queries, the cost of our algorithm isO(log|Ci|+ t).

Client computation. We observed that the HADS doesnot increase the client verification time compared to the
previous work. The reason is that while the server just puts what a second-level ADS stores into thevo, the client
has to reconstruct the second-level ADS together with the proof path in the first-level ADS. The computation at the
second-level (first-level) ADS of our HADS is very similar tothat of the previous schemes at the lower (upper) part
of their ADSs. Therefore, the total client computation using our HADS and previous ADSs are very close. This is
illustrated in Figure 17b for one-clause queries.

6.2.2 Join Queries

We consider two cases. In the first case, thekey-based join, thestdID column of theStudent table is referred to in
theS2C table as a foreign key (e.g.,SELECT * FROM Student,S2C WHERE Student.StdID=S2C.StdID), while in
the second case, thegeneral join, we add two unrelated columns of the same type toStudent andCourse for this
join (e.g.,SELECT * FROM Student,Course WHERE Student.TempCol1=Course.TempCol2).

In the key-based join scenario, we consider two cases. In the first case, each student has chosen 10 courses,
therefore, the first-level ADS stores the students, and for each one, a second-level ADS containing 10 elements stores
the selected courses. The first-level ADS contains all 104 student IDs. In the second case, each student has taken 100
courses, therefore, a second-level ADS containing 100 courses is linked to each first-level ADS. The first-level ADS
in this case is smaller, containing 103 records. The experimental results are shown in Figures 18a and 18b. The figures
show≈2.5x enhancement for both proof size and proof generation time in 10-course case. There are≈4x smaller
proofs and≈6x faster proof generations in 100-course case, compared tothe previous work.

We observe a similar behaviour for thegeneral join scenario, where each value in temporary columnsTempCol1
and TempCol2 is duplicated about 10 or 100 times, similar to our main scenario. Figures 19a and 19b show the
experimental results. The proof sizes are reduced≈3x and≈4x in 10-element and 100-element cases, respectively.
The proof generation times are decreased≈2x and≈5x in 10-element and 100-element cases, respectively.

Asymptotic complexity. Moreover, the cost of the approach proposed by Liet al. [18] for joining two tablesT1

andT2 of approximate sizeN is O(N logN), while that of ours isO(N+N) = O(N). Compared to [42] who has the
same asymptotic costO(N), our HADS generates more efficient proofs as it does not use the boundary records for the
matching records, in addition to the fact that it operates onsmaller ADSs. Assume thatα|Ci |,0≤ α≤ 1, records of a
column have matching on the other table. The cost of our join algorithms using HADS isα|Ci |∗N/|Ci |+(1−α)|Ci |=
αN+(1−α)|Ci |, which means that the cost is close toO(|Ci|) whenα is close to zero, and approachesO(N) asα
approaches one; i.e., ours drops in the worst case to the algorithm of [42].

Communication overhead. In our scheme, the proof size does not depend on the record size. This is an important
difference between ours and the join algorithms proposed byYanget al. [42], where the proof size increases with the
record size.
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Figure 15: Proof generation time and proof size for one-clause queries.
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Figure 16: Proof generation time and proof size for queries with two clauses. (Note that the values on the x-axis are upper
bounds on the query result size, since if the two clauses are connected by ‘AND’, or if they are connected by ‘OR’ but have many
common PKs in the PK-set, then the actual result size of the query will be less than the values shown in the diagrams.)
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Figure 17: Proof overhead and client verification time.
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Figure 18: Proof generation time and proof size (key-based join).
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Figure 19: Proof generation time and proof size (general join).

7 Conclusion
In this paper, we presented a hierarchical ADS for storing the security information required for proof generation in
outsourced databases. The HADS extends the ADS to support storing duplicate values, and generating comparable
and combinable proofs efficiently (useful for boolean operators and joins). We employed the HADS to construct
outsourced databases with proofs for query result authenticity, including completeness, correctness, and freshness
guarantees. We proved these properties using a new unified security definition we provided.

Our outsourced database construction can provably handle selection queries with one or multiple clauses con-
nected by ‘OR’ or ‘AND’ connectors in any manner, join queries including equijoins, non-equijoins, band joins, joins
on non-PK columns, joins over more than two tables, and combinations of selection and join queries. Besides, with
reduced use of boundary records, we can easily support clauses formed using the SQL ‘IN’ operator. This allows us
to present efficient proofs for a wide range of database queries. We only support the sequential proof generation, and
leave the concurrent version as future work.

We have presented performance gains due to our solution overthe previous work where regular (one-level) ADSs
are used. Our solution achieves≈3x smaller proofs in size and≈5x faster proof generations time when HADS is
used for queries with one clause. Moreover, for join querieswe observed≈4x enhancement in proof size and≈5x
enhancement in proof generation time using HADS, when each foreign key is repeated 100 times, on average. With
reasonable record sizes, e.g., 5−20KB in our Koç University database’sStudent table, the communication overhead
is ≈4% compared to the result size, becoming even smaller with larger record sizes. Thus, we believe outsourced
databases are finally ready for prime-time.
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A ADS Definitions
Definition A.1 ADS scheme consists of three polynomial-time algorithms (KeyGen, Certify,Verify) [35]:

KeyGen(1k)→ (sk,pk) is a probabilistic algorithm executed by the client to generate a private and public key pair
(sk, pk) given the security parameter k. The client then shares the public key pk with the server.

Certify (pk,cmd)→ (ans,π) is run by the server to respond to a command issued by the client. The public key pk
and the command cmd are given as input. If cmd is a query command, it outputs a verification proofπ that
enables the client to verify the authenticity of the answer ans. If cmd is a modification command, then the ans
is null, andπ is a consistency proof that enables the client to update her local metadata.

Verify (sk,pk,cmd,ans,π,st)→ ({accept,reject},st′) is run by the client upon receipt of a response. The public
and private keys(pk,sk), the answer ans, the proofπ, and the client’s current metadata st are given as input.
It outputs anaccept or reject based on the result of the verification. Moreover, if cmd was amodification
command and the proof is accepted, the client updates her metadata accordingly (to st′).

Definition A.2 Correctness of ADS. For all valid proofsπ and answers ans returned by the server in response to a
command issued by the client, the verify algorithm accepts with overwhelming probability.

Definition A.3 The ADS security game is played between the challenger who acts as the client and the adversary
who plays the role of the server:

Key generation The challenger runs KeyGen(1k) to generate the private and public key pair(sk, pk), and sends the
public key pk to the adversary.

Setup The adversary specifies a command cmd, and sends it together with an answer ans and proofπ to the chal-
lenger. The challenger runs the algorithm Verify, and notifies the adversary about the result. If the command
was a modification command, and the proof is accepted, then the challenger applies the changes on her lo-
cal metadata accordingly. The adversary can repeat this interaction polynomially-many times. Call the latest
version of the HADS, constructed using all the commands whose proofs verified, D.

Challenge The adversary specifies a command cmd, an answer ans′, and a proofπ′, and sends them all to the
challenger. He wins if the answer ans′ is different from the result set of running cmd on D, and cmd,ans′,π′ are
verified as accepted by the challenger.

Definition A.4 Security of ADS. We say that the ADS is secure if no PPT adversary can win the ADS security game
with non-negligible probability.


