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Abstract. We put forward a new family of computational assumptions, the Kernel Matrix Diffie-
Hellman Assumption. This family abstracts and includes as a special case several assumptions used
in the literature under different names. Given some matrix A sampled from some distribution D`,k,
the kernel assumption says that it is hard to find “in the exponent” a nonzero vector in the kernel of
A>. Our assumption is the natural computational analogue of the Matrix Decisional Diffie-Hellman
Assumption (MDDH), proposed by Escala et al.

We show that theD`,k Kernel DH Assumption is a strictly increasing family of weaker computational
assumptions when k grows. This requires ruling out the existence of some black-box reductions
between flexible problems (i.e., computational problems with a non unique solution), which is
specially subtle. As opposed to the decisional MDDH Assumption, our kernel assumption might
hold in the recent candidate multilinear groups.

Kernel assumptions have implicitly been used in recent works on QA-NIZK and structure-preserving
signatures. We also provide a new construction of commitments to group elements in the multilinear
setting, based on any kernel assumption.

1 Introduction

It is always desirable to base security of cryptographic protocols on the weakest possible assumptions,
like discrete logarithm or factoring. Although this is possible in many scenarios, it usually limits either
the efficiency or the functionality of the protocols. This is the main reason why stronger assumptions
like DDH are broadly used. However, such a strong assumption is not always true, like in the case of
symmetric bilinear groups. Therefore, it is important to have a thorough understanding of the hardness
of computational assumptions and the relations among them.

This issue has been treated extensively in the cryptographic literature, i.e., in [6,17,24,25,26,27,28]
just to name a few. On the computational side, many of the proposed assumptions are often shown
to be equivalent [6,17,27]. Typically, most computational problems related to prime order groups are
equivalent or reducible to CDH. However, on the stronger side, it is difficult to find relations between
decisional assumptions [6,10,11,27] which makes it hard to compare the security achieved by different
cryptographic protocols based on different assumptions.

On the other hand, security notions can be classified mainly in hiding and unforgeability ones. The
former typically appear in encryption schemes and commitments, while the latter corresponds to signature
schemes and soundness in zero knowledge proofs. Although it is theoretically possible to base the hiding
property on computational problems, most of the practical schemes achieve this notion either information
theoretically or based on decisional assumptions, at least in the standard model. Likewise, unforgeability
naturally comes from computational assumptions (obviously implied by stronger decisional assumptions).

Most computational problems considered in the literature are search problems with a unique solu-
tion like discrete logarithm or CDH. But, unforgeability actually means the inability to produce one
among many solutions to a given problem (e.g., in many signature schemes or zero knowledge proofs).
Thus, unforgeability is more naturally captured by a flexible computational problem, namely, a problem
which admits several solutions. Unfortunately, flexible problems have received less attention until recently
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[2,7,9,14,15,21,23]. This is probably due to the difficulty of finding reductions among them, or even fully
understanding the meaning of a black-box reduction between two flexible problems.

A better knowledge and understanding flexible problems, which are weaker than non-flexible computa-
tional ones and harder than decisional ones would have a great impact on the design of efficient signature
and zero knowledge protocols with extended functionalities, similarly what happened with decisional
problems and encryption schemes.

Recently, Escala et al. [12] have put forward a new family of decisional assumptions in a prime order
group G, the Matrix Diffie-Hellman Assumption (D`,k-MDDH). The assumption says that given some
matrix A ∈ Z`×kq sampled from some matrix distribution D`,k, it is hard to decide membership in Im A
in “the exponent”. Rather than as a new assumption, the Matrix DH Assumption should be seen as an
algebraic framework for describing several decisional assumptions which includes as a special case the
widely used k-Lin family of assumptions. This abstraction is useful in several ways. First, schemes based
on any D`,k-MDDH Assumption, tend to highlight the algebraic structure of the construction. Further,
many instantiations of the given scheme can be written in a compact way. This abstraction points out to
a tradeoff between security and efficiency, since on one hand, the uniform assumption is the weakest of
all possible assumptions but has the worst representation size, while the symmetric cascade has optimal
representation size but is a stronger assumption.

In this paper we propose a computational analogue of the Matrix DH Assumption: the Kernel Matrix
DH Assumption. This new flexible assumption states that it is hard to find “in the exponent” an element
in the kernel of a matrix A>, for A← D`,k. For some special instances of D`,k, these assumptions have
appeared in the literature under different and sometimes confusing names.

Our new algebraic framework is useful to abstract and understand existing constructions of schemes
in the literature, leading to simplified/more efficient constructions of existing schemes or to new con-
structions based on weaker computational assumptions, as in the decisional case. For instance, the recent
paper of Jutla and Roy [19] presents a construction of a QA-NIZK of size k based on a variant of the
decisional k-Lin assumption. A close look at the proof reveals that in fact it is actually based on an
instance of our kernel assumption, which is weaker. Recently, Kiltz and Wee [20] have shown that one
can achieve the same functionality based on the kernel assumption for any matrix distribution.

Matrix DH Assumptions are a natural match for a recent line of work on structure-preserving cryptog-
raphy [1,2,5,22]. In a structure-preserving cryptographic primitive defined over some group G, essentially
all the elements are group elements. Thus, most algorithms of some structure preserving primitive admit
a natural algebraic interpretation. For instance, in a structure-preserving signature scheme, both the
verification key and the message are group elements. A signature which verifies the verification equation
can be naturally interpreted as an orthogonal vector to some public information [5]. This has naturally
led to lower bounds on the size of a structure preserving signature. Recent works on structure-preserving
signatures and QA-NIZK proofs of membership in linear spaces use assumptions which are special cases
of our new family of kernel assumptions.

Our Results. We define a new class of flexible problems over a primer order group, Kernel Matrix DH
Problem, inspired by the matrix DDH family. Indeed, for any matrix distribution D`,k ⊂ Z`×kq , we define
the D`,k-KerMDH problem, which is the natural computational version of D`,k-MDDH problem, defined
in [12], since the former is reducible to the latter, as happens with CDH and DDH. We show the new class
includes, as particular instances, the problems introduced in [2,9,14,15,21,23]. We also present a general-
ization of the kernel problem in multilinear maps where the solution must be in one of the intermediate
groups.

We also propose new interesting families. Namely, we define the circulant matrix distribution, CIk,d,
which generalizes the SCk in [12] to the case ` = k+d > k+1 and we prove its generic hardness in k-linear
maps. We prove that it has optimal representation size d independent of k (even in multilinear groups),
which is an important parameter for applications. The case ` > k+ 1 typically arises when one considers
commitments/encryption in which the message is a vector of group elements instead of a single group
element and the representation size of the assumptions typically affects the size of the public parameters.
Analyzing the security of a family of decisional assumptions (depending on a parameter k) can be rather
involved. This is why in [12], the authors gave a criterion for generic hardness when ` = k+ 1 in terms of



irreducibility of some polynomials involved in the description of the assumption. This criterion was used
then to prove the generic hardness of several families of assumptions. To analyze the generic hardness of
the CIk,d for any k, we need to extend the techniques of [12] to the case ` > k + 1. To the best of our
knowledge, the generic hardness criterion of [12] was not used so far to analyze families of assumptions
in this case.

Then we show that the families of matrix distributions in [12], U`,k, Lk, SCk, Ck and RLk, as well
as CIk,d, define families of kernel problems with strictly increasing hardness. That is, we show reduction
from the smaller to the larger problems in each family, likewise we prove that there is no black-box
meta-reduction from the larger to the smaller problems in the multilinear generic group model.

The last step requires dealing with the notion of black-box reduction between flexible problems. A
black-box reduction must work for any possible behavior of the oracle, but, on the contrary to the normal
(unique answer) black-box reductions, here the oracle has to choose among the set of valid answers in
every call. Ruling out the existence of a reduction implies that for any reduction there is an oracle behavior
for which the reduction fails. This is specially subtle when dealing with multiple oracle calls. The proof
technique used in this paper can be considered as a contribution in itself as it can potentially be used in
future works.

We show that the kernel assumption is not only generically hard in k-linear maps, but we also discuss
if in the current candidate k-linear maps [13], the assumption is not immediately broken. We propose it
as a candidate for a computational assumption in k-linear maps.

We then show how to construct commitments to any element in level m < k in k-linear groups
under the kernel assumption for any matrix distribution, generalizing the Pedersen commitment and the
commitment in Abe et al. [2]. In particular when the construction is instantiated with the new circulant
matrix distribution we have commitments with very short representation size.

2 Preliminaries

For λ ∈ N, we write 1λ for the string of λ ones. For a set S, s ← S denotes the process of sampling an
element s from S uniformly at random. For an algorithm A, we write z ← A(x, y, . . .) to indicate that A
is a (probabilistic) algorithm that outputs z on input (x, y, . . .).

2.1 Multilinear Maps

Let Gen be a probabilistic polynomial time (PPT) algorithm that on input 1λ returns a description
G = (G, q,P) of a cyclic group G of order q for a λ-bit prime q and a generator P of G.

For any fixed k ≥ 1, let MGenk be a PPT algorithm that on input 1λ returns a description of
an (ideal) graded encoding MGk = (e,G1,G2, . . . ,Gk, q,P1, . . . ,Pk), where G1,G2, . . . ,Gk are cyclic
groups of prime-order q, Pi is a generator of Gi and e is a non-degenerate efficiently computable bilinear
map. Sometimes G0 is used to refer to Zq. For group elements we use the following implicit notation: for
all i = 1, . . . , k, [a]i := aPi. The notation extends in a natural way to vectors and matrices and to linear
algebra operations. We sometimes drop the index when referring to elements inG1, i.e., [a] := [a]1 = aP1.
The map e is defined as e([a]i, [b]j) = [ab]i+j , for all i, j such that i+ j ≤ k.

Additionally, let AGen2 be a PPT algorithm that on input 1λ returns a description of an asymmetric
bilinear map AG2 = (e,G,H,T, q,P,Q), where G,H,T are cyclic groups of prime-order q, P is a
generator of G, Q is a generator of H and e : G ×H → T is a non-degenerate, efficiently computable
bilinear map. In this case we refer to group elements as: [a]G := aP, [a]H := aQ and [a]T := e(P,Q)a.

2.2 The Matrix Decisional Diffie-Hellman Assumption

We recall here the definition of the decisional assumptions introduced in [12], which are the starting point
of our flexible computational matrix problems.

Definition 1. [12], Let `, k ∈ N with ` > k. We call D`,k a matrix distribution if it outputs (in
polynomial time, with overwhelming probability) matrices in Z`×kq of full rank k. We denote Dk := Dk+1,k.



Definition 2 (D`,k-MDDH Assumption). [12] Let D`,k be a matrix distribution. We say that the
D`,k-Matrix Diffie-Hellman (D`,k-MDDH) Assumption holds relative to Gen if for all PPT adversaries
D,

AdvD`,k,Gen(D) = Pr[D(G, [A], [Aw]) = 1]− Pr[D(G, [A], [u]) = 1] ∈ negl(λ),

where the probability is taken over G = (G, q,P) ← Gen(1λ), A ← D`,k,w ← Zkq ,u ← Z`q and the coin
tosses of adversary D.

Definition 3. A matrix distribution D`,k is hard if the corresponding D`,k-MDDH problem is hard in the
generic k-linear group model.

(A)symmetric Multilinear Groups. In this paper we will consider both symmetric and asymmetric k-linear
groups. In the symmetric case, we will say that the D`,k-MDDH Assumption holds relative to G = (G, q,P)
when the distribution of G is the one induced by running the symmetric bilinear map generator. In the
asymmetric case, we will say that the D`,k-MDDH Assumption holds in the left (similarly, in the right)
if it holds in the group G (similarly in H) with the distribution of the group G being the one induced by
the asymmetric bilinear map generator AGen2.

2.3 Examples of D`,k-MDDH

Some particular families of matrix distributions were presented in [12]. Namely,

SCk : A =

a 0
1

. . .. . . a
0 1

 Ck : A =

a1 0
1

. . .. . . ak
0 1

 Lk : A =

a1 0
. . .

0 ak
1 · · · 1

 ,

where a, ai ← Zp, and U`,k which is simply the uniform distribution in Z`×kp . The SCk-MDDH Assumption
is the Symmetric Cascade Assumption, the Ck-MDDH Assumption is the Cascade Assumption, which
were proposed for the first time. U`,k-MDDH and Lk-MDDH were implicitly used in some previous works.
Actually, Lk-MDDH is the Decisional Linear Assumption in [8].

2.4 Computational Assumptions in Multilinear Groups

In this section we recall some computational problems in the cryptographic literature, that appear as
unrelated but we unify as particular instances of our framework. There is some confusion about the
terminology for the problems listed below. In this section we merely write the computational problems
as they appear in the literature.

Definition 4. In the following, all parameters ai and bi are assumed to be randomly chosen in Zq.

1. Find-Rep [9]: Given ([a1], . . . , [a`]), find a nonzero tuple (x1, . . . , x`) such that x1a1 + . . .+ a`x` = 0.
2. Simultaneous Double Pairing (SDP) [2]: Given the two tuples, ([a1], [b1]) and ([a2], [b2]), find a nonzero

tuple ([x1], [x2], [x3]) such that x1b1 + x2a1 = 0, x1b2 + x3a2 = 0.
3. Simultaneous Triple Pairing [14]: Given the two tuples, ([a1], [a2], [a3]) and ([b1], [b2], [b3]), find a

nonzero tuple ([x1], [x2], [x3]) such that x1a1 + x2a2 + x3a3 = 0, x1b1 + x2b2 + x3b3 = 0.
4. Simultaneous Pairing [15]: Given ([a1], [a2], . . . , [a`]) and ([a21], [a22], . . . , [a2` ]), find a nonzero tuple

([x1], . . . , [x`]) such that
∑`
i=1 xiai = 0,

∑`
i=1 xia

2
i = 0.

5. 1-Flexible Diffie-Hellman (1-FlexDH) [23]: Given ([1], [a], [b]), find a triple ([r], [ra], [rab]) with r 6= 0.
6. 1-Flexible Square Diffie-Hellman (1-FlexSDH) [21]: Given ([1], [a]), find a triple ([r], [ra], [ra2]) with

r 6= 0.
7. `-Flexible Diffie-Hellman (`-FlexDH) [23]: Given ([1], [a], [b]), find a (2`+1)-tuple ([r1], . . . , [r`], [r1a],

[r1r2a], . . . , [(
∏`
i=1 ri)a], [(

∏`
i=1 ri)ab]) such that rj 6= 0 for all j = 1, . . . , `.

8. Double Pairing (DP) [14]: In an asymmetric group (G,H,T), given a pair of random elements
([a1]H , [a2]H) ∈ H2, find a nonzero tuple ([x1]G, [x2]G) such that [x1a1 + x2a2]T = [0]T .



3 New Matrix DDH Assumptions

In this section we give examples of matrix distributions which did not appear in [12]. The two distributions
given in the next definition appear naturally when one considers the natural decisional versions of the
computational problems 2 and 4 in Definition 4.

Definition 5. The Randomized Linear and the Square Polynomial distributions are:

RLk : A =


a1 0

. . .
0 ak
b1 · · · bk

 P`,2 : A =


a1 a

2
1

a2 a
2
2

...
...

a` a
2
`


where ai ← Zq and bi ← Z×q .

Jutla and Roy [19] referred to RLk-MDDH Assumption as the k-lifted Assumption. From the results in
Section 4.5 it is easy to see that RLk is a hard matrix distribution. The hardness of the P`,2 matrix
distribution is partially analyzed, under the name of Simultaneous Pairing Assumption, by Groth and Lu
[15]. However, they actually prove that the associated flexible problem (P`,2-KerMDH, in our notation)
is generically hard.

For some applications it would be useful having at hand some D`,k-MDDH assumptions in which
` > k + 1, and for this case, the only example considered in [12] is one corresponding to the uniform
matrix distribution U`,k. Although every other D`,k-MDDH problem reduces to the U`,k-MDDH problem, it
is also interesting to have matrix distributions with a smaller description size. A natural way to construct
such a distribution is to pick one of the known distributions Dk+1,k (e.g., Lk) and add ` − k − 1 new
random rows. It can be easily seen that the obtained D`,k-MDDH assumption is equivalent to the original
Dk+1,k-MDDH assumption. Again, for efficiency reasons, we are interested in matrix distributions with
an even smaller representation size. This motivates us to introduce a new family of matrix distributions,
the CIk,d family.

Definition 6 (Circulant Matrix Distribution). We define the distribution CIk,d as follows

A =



a1 0
... a1

ad
...

. . .

1 ad a1

1
. . .

...
. . . ad

0 1


∈ Z(k+d)×k

q , where ai ← Zq

Matrix A is such that each column can be obtained by rotating one position the previous column,
which explains the name. Notice that when d = 1, CIk,d is exactly the symmetric cascade distribution
SCk, introduced in [12].

Following [16, Thm. 5.15 and corollaries], for the special case that all matrices produced by the
matrix distribution are full-rank, we can prove that CIk,d is a hard matrix distribution. Indeed, an
algorithm solving the CIk,d-MDDH problem in the generic k-linear group model must be able to compute
a polynomial in the ideal H ⊂ Zq[a1, . . . , ad, z1, . . . , zk+d] generated by all the (k + 1)-minors of A‖z as
polynomials in a1, . . . , ad, z1, . . . , zk+d. Although this ideal can actually be generated using only a few
of the minors, we need to build a Gröbner basis of H to reason about the minimum degree a nonzero
polynomial in H can have. We show that, carefully selecting a monomial order, the set of all (k+1)-minors
of A‖z form a Gröbner basis, and all these minors have total degree exactly k+ 1. Therefore, all nonzero
polynomials in H have degree at least k + 1, and then they cannot be evaluated by any algorithm in the
generic k-linear group model.



On the other hand, it can also be shown that the representation size of CIk,d, which is the number of
parameters d, is the optimal among all hard matrix distributions Dk,k+d defined by linear polynomials
in the parameters. The proofs of optimality and generic hardness of CIk,d can be found in the appendix.

4 The Matrix Diffie-Hellman Computational Problems

In this section we introduce two families of search problems naturally related to the Matrix Decisional
Diffie-Hellman problems. Given a matrix distribution, D`,k, the first family consists of the problems of
given a matrix [A], where A ← D`,k, and the first k components of a vector [z], complete it so that
z ∈ Im A. The second family consists of the problems of finding [x] such that x ∈ ker A> \ {0}. It
is noticeable that the computational problems listed in Definition 4 are particular cases of this second
family.

We next show that any solution of the new search problems is enough to solve the corresponding
decisional MDDH problem. Finally, we study the existence of reductions between the kernel problems
for the matrix distributions previously given: for different sizes within the same distribution, and also
between different distributions with the same size.

Definition 7 (D`,k-MCDH). Given a matrix distribution D`,k in a group G, the computational matrix
Diffie-Hellman Problem is given ([A], [z0]), with A ← D`,k, z0 ← Zkq , compute [z1] ∈ G`−k such that
(z0‖z1) ∈ Im A.

Notice that CDH and the computational k-Lin problems are particular examples of MCDH problems.
Namely, CDH is exactly L1-MCDH and the computational k-Lin problem is Lk-MCDH. MCDH are com-
putational problems with unique solution. It appears naturally when using MDDH Assumptions, for
instance, the one-wayness of the encryption scheme in [12] is equivalent to this problem. However, this
problem amounts to computing some polynomial on the elements of A and it is equivalent to CDH ([6,17]),
although the tightness of the reduction depends on the degree of these polynomials.

The second family is more interesting. It is a family of flexible problems. Flexible computational
problems are the natural way to model the adversarial capability is some scenarios like unforgeability,
and finding reductions between flexible problems is not an obvious task. This new problem family is
closely related to the various flavors of “simultaneous pairing” assumptions in the literature.

Definition 8 (D`,k-KerMDH). Given a matrix distribution D`,k in a group G, the Kernel Diffie-Hellman
Problem is given [A], with A← D`,k, find a nonzero vector [x] ∈ G` such that x is orthogonal to Im A,
that is, x ∈ ker A> \ {0}.

Note that one can efficiently test if a vector [x] is a solution to the problem KerMDH in a bilinear
group, by checking whether e([x>], [A]) = [0]2.

Definition 8 naturally generalizes to asymmetric bilinear groups. There, given [A]H , the problem is to
find [x]G such that x ∈ ker A> \{0}. A solution can be obviously verified by checking if e([x>]G, [A]H) =
[0]T . We can also consider a generalization of this problem in which the goal is to solve the same problem
but giving the solution in a different group Gr, in some ideal graded encoding MGm, for some 0 ≤ r ≤
min(m, k − 1). The case r = 1 corresponds to the previous problem defined in a m-linear group.

Definition 9 ((r,m,D`,k)-KerMDH). Given a matrix distribution D`,k over a m-linear group MGm and
r an integer 0 ≤ r ≤ min(m, k − 1), the (r,m,D`,k)-KerMDH Problem is to find [x]r ∈ G`

r such that
x ∈ ker A> \ {0}.

When the precise degree of multilinearity m is not an issue, we will write (r,D`,k)-KerMDH instead
of (r,m,D`,k)-KerMDH, for any m ≥ r.

Again, we note that if m ≥ r+1 one can efficiently test if a vector [x]r solves the (r,m,D`,k)-KerMDH
by checking whether e([x>]r, [A]) = [0]r+1. However, if m = r the solution of the problem cannot be
checked as it would require the use of a (m+ 1)-linear map.

Notice that we do not consider the case r ≥ k because it makes the problem easy.



Lemma 1. The (r,m,D`,k)-KerMDH Problem for k ≤ r ≤ m is easy.

Proof. If ` = k + 1, a solution to the problem is the vector [(A1,−A2, . . . , (−1)kAk+1)]r where Ai is the
minor of A obtained by deleting the i-th row, computed by means of the m-linear map, as m ≥ r. In
the case ` > k + 1 the solution can be obtained with a similar trick applied to any full-rank (k + 1)× k
submatrix of A.

4.1 Decisional vs. Computational Matrix Problems

In this section we detail the relation between the new search problems given in definitions 7 and 8 and
the Matrix Decisional Diffie-Hellman Problems. Specifically, any solution to the computational problems
allows to tell apart the real and the random instances of the corresponding MDDH problem.

The first lemma states the obvious relation between MCDH and MDDH.

Lemma 2. In a k-linear group, D`,k-MDDH ⇒ D`,k-MCDH.

The kernel problem is also harder than the corresponding decisional problem, in multilinear groups.

Lemma 3. In a m-linear group with m ≥ 2, D`,k-MDDH ⇒ D`,k-KerMDH.

Proof. Given an instance of the D`,k-MDDH problem ([A], [z]), a solution to test membership in Im A is

simply checking whether e([x>], [z]) = [x>z]2
?
= [0]2, where [x] is the output of the D`,k-KerMDH solver

on input [A].

Analogously, we have

Lemma 4. In a m-linear group, D`,k-MDDH ⇒ (r,m,D`,k)-KerMDH for any 0 ≤ r ≤ m− 1.

4.2 The Kernel DH Assumptions in Real Multilinear Maps

We have shown that for any hard matrix distribution D`,k the D`,k-KerMDH problem is generically hard in
m-linear groups. However, in the only candidate multilinear groups which have resisted cryptanalysis [13],
every D`,k-MDDH Assumption is false (see [13], full version, Section 4.4). Indeed, every matrix problem
amounts to deciding whether a matrix has full rank or not.

Roughly speaking, in an m-linear group MGm, given a matrix [A]r, A ← D`,k, 0 ≤ r ≤ m − 1 and
the zero-test given in the multilinear group description (which allows to decide if two encodings in Gm

correspond to the same element), one can compute a matrix of “weak discrete logarithms”, i.e., a noisy
encoding at level 0 of the matrix which has full rank if and only if the original matrix has full rank. This
can be determined easily at level 0 (without multilinear maps, so independently of `, k).

However, this attack does not apply in a straightforward way to break the Kernel DH Assumption.
With the matrix of “weak discrete logarithms” of A, one can compute a noisy version of a vector of the
kernel, but this vector is not in Gi for any i = 1, . . . ,m. Thus, this attack does not immediately apply to
break the (r,m,D`,k)-KerMDH, which means that the Kernel DH Assumptions could be still used to build
cryptographic protocols in the multilinear group setting. We leave it as an open question to examine this
issue further.

4.3 A Unifying View on Computational Matrix Problems

We show that the KerMDH problem family includes as particular instances the problems defined in
Section 2.4, giving an unifying view of many previously unrelated flexible computational problems in the
literature. Namely, Find-Rep (Def. 4.1) is just (0,U`,1)-KerMDH, SDP in Definition 4.2 is RL2-KerMDH,
the Simultaneous Triple Pairing problem (Def. 4.3) is U2-KerMDH, the Simultaneous Pairing problem
(Def. 4.4) is P`,2-KerMDH. DP in Definition 4.8 corresponds to U1-KerMDH in an asymmetric bilinear
setting. On the other hand, 1-FlexDH is C2-KerMDH, 1-FlexSDH problem is SC2-KerMDH and `-FlexDH
for ` > 1 is the only one which is not in the KerMDH problem family. However, `-FlexDH ⇒ C`+1-
KerMDH. Getting the last three results require a bit more work, as we show in the next two lemmas.



Lemma 5. 1-FlexDH = C2-KerMDH and 1-FlexSDH = SC2-KerMDH.

Proof. The proof of the first statement is obvious from the fact that the solutions ([r], [ra], [rab]) of
the 1-FlexDH problem instance ([1], [a], [b]) correspond exactly to the nonzero vectors in ker A> for

A =

−a 0
1 −b
0 1

. The second statement is proven in a similar way.

Lemma 6. `-FlexDH ⇒ C`+1-KerMDH.

Proof. Given a `-FlexDH problem instance ([1], [a], [b]), pick random r2, . . . , r` ∈ Z∗q and compute the
matrix [A] where

A =



−a 0
1 −r2

. . .
. . .

1 −r`
1 −b

0 1


Then, run the C`+1-KerMDH solver on [A], obtaining the vector ([r1], [r1a], [r1r2a], . . . , [r1 · · · r`a], [r1 · · · r`
ab]) for some r1 ∈ Z∗q , which along with ([r2], . . . , [r`]) solves the `-FlexDH problem.

Notice that simply reformulating existing problems as Kernel DH problem instances, not only gives a
homogeneous naming but also it shows up the existing relations among them. For example, it is now self
evident that Triple Pairing and SDP problems are essentially the same.

4.4 Increasing Families of KerMDH Problems

Most matrix distributions are indeed families parameterized by their size. In this section we show that
the examples described in previous sections, namely U`,k, Lk, CIk,d, SCk, Ck and RLk, define families of
kernel problems with increasing hardness. We provide specific reductions for each family, as they require
different techniques.

Lemma 7. U˜̀,k̃-KerMDH⇒ U`,k-KerMDH for k̃ ≤ k and ˜̀≤ `.
Proof. Given an instance [Ã], with Ã ← U˜̀,k̃, we choose random invertible matrices L ∈ Z`×`q and

R ∈ Zk×kq and define A = L(Ã⊕B)R, where B is any full-rank matrix in Z
(`−˜̀)×(k−k̃)
q and ⊕ operation

denotes diagonal block matrix concatenation. Clearly, the new matrix is uniformly distributed in Z`×kq .

Any vector [x] such that x ∈ ker A> \ {0} can be transformed into [x̃] such that x̃ ∈ ker Ã> \ {0} by
just letting [x̃] = L>[x].

Lemma 8. Lk-KerMDH⇒ Lk+1-KerMDH.

Proof. Observe that given a matrix A ∈ Lk+1, with parameters a1, . . . , ak+1, we can obtain a matrix

Ã ∈ Lk by deleting the row and the column corresponding to ak+1. Moreover, given x = (x1, . . . , xk+2) ∈
ker A> \ {0}, the vector x̃ = (x1, . . . , xk, xk+2) is in ker Ã> \ {0}.

The reduction consists of choosing a random ak+1, then building [A] from [Ã] as above, and finally
obtaining [x̃] from [x] by deleting the (k + 1)-th coordinate.

Lemma 9. CIk,d-KerMDH⇒ CIk+1,d-KerMDH.

Proof. From a matrix A ∈ CIk+1,d, with parameters a1, . . . , ad, we can obtain a matrix Ã ∈ CIk,d by
deleting the last row and the last column. Now given x = (x1, . . . , xk+d+1) ∈ ker A> \ {0}, it is easy to

see that the vector x̃ = (x1, . . . , xk+d) is in ker Ã> \ {0}.
The reduction proceeds analogously as in the linear matrix distribution.

This lemma also shown that SCk-KerMDH ⇒ SCk+1-KerMDH as a particular case. The proofs of
Ck-KerMDH⇒ Ck+1-KerMDH and RLk-KerMDH⇒ RLk+1-KerMDH directly follow from the same ideas.



4.5 Algebraic Reductions

Now we analyze the possible reductions among different families of KerMDH problems of the same size.
Thanks to the algebraic nature of matrix distributions it is easy to find some generic reductions among
the corresponding problems.

Definition 10. We say that D1
`,k is algebraically reducible to D2

`,k if there exist two efficiently samplable

matrix distributions, L which outputs a matrix L ∈ Z`×`q matrix and R which outputs a matrix R ∈ Zk×kq ,
such that given A← D1

`,k the distribution of the matrix LAR is negligibly close to D2
`,k. In this case we

write D1
`,k

a⇒ D2
`,k.

We note that since we assume that the matrices output by either of the distributions D1
`,k, D2

`,k have
full rank with overwhelming probability, the distributions L,R must output full rank matrices also with
overwhelming probability.

Next, we show two examples of algebraic reductions. Using random L and R we obtain D`,k, D`,k
a⇒

U`,k, for any matrix distribution D`,k, and considering L the identity matrix and R a random invertible

diagonal matrix, Lk
a⇒ RLk holds.

The notion of algebraic reducibility is useful to find reductions among the MDDH problems and also
the Kernel problems.

Lemma 10. D1
`,k

a⇒ D2
`,k implies both D1

`,k-MDDH ⇒ D2
`,k-MDDH and D1

`,k-KerMDH ⇒ D2
`,k-KerMDH.

Proof. Given instance of the D1
`,k-MDDH problem, ([A], [z]), the tuple ([LAR], [Lz]), with L ← L,

R← R is a properly distributed instance of the D2
`,k-MDDH problem. Indeed, it is easy to see that ‘real’

instances are transformed into ‘real’ instances, and ‘random’ instances into ‘random’ ones.
On the other hand, we show that given an algorithm A which solves D2

`,k-KerMDH there exists another

algorithm which solves D1
`,k-KerMDH with the same probability. Given A ← D1

`,k-KerMDH problem,

sample two matrices L← L, R← R and construct an instance LAR of D2
`,k. Let [x] be the output of A

on input [LAR], that is, x is a nonzero vector such that x>LAR = 0>. Since L and R are invertible with
overwhelming probability, x>LA = 0> also holds. Then output the nonzero vector [L>x] as a solution
to the D1

`,k-KerMDH problem.

From the above results, it is straightforward that D`,k-KerMDH ⇒ U`,k-KerMDH, for any matrix
distribution D`,k, and Lk-KerMDH ⇒ RLk-KerMDH.

5 Separation of Kernel Diffie-Hellman Problems

One can easily prove that any family of hard matrix distributions D`,k of increasing k defines a de-
cisional problem family D`,k-MDDH of strictly increasing hardness. Indeed, any efficient m-linear map
can efficiently solve any D`,k-MDDH problem with k ≤ m− 1, and therefore every two D`,k-MDDH and

D˜̀,k̃-MDDH problems with k̃ < k are separated by an oracle computing a k-linear map.
When dealing with the computational D`,k-KerMDH family, no such a trivial argument is known to

exist. Actually, a m-linear map does not seem to help at all solving any D`,k-KerMDH problem with
k > 1. Therefore, without further analysis there is no reason for using k > 2, and this is why there are so
many works which use the RL2-KerMDH Assumption.

In this section we show a separation result for KerMDH problems. Namely, we show that there is no
black-box reduction in the generic group model from D`,k-KerMDH to D˜̀,k̃-KerMDH for k > k̃, assuming
that the corresponding D`,k-MDDH problems are generically hard on a multilinear group. We will consider
only the (plain) generic group model in the analysis, since the solution of the D`,k-KerMDH problem over
a group G is a particular vector of elements in G, while the result of computing any multilinear map is
an element of a different group Gm, and no efficient map from Gm to G is supposed to exist.

In order to achieve this goal, we prove some lemmas and we introduce a new concept on a family of
subspaces of a vector space, named t-Elusiveness.



The natural reductions between kernel DH problems defined over a group are algebraic black-box
reductions that transform an instance of a problem into an instance of the other by means of a (ran-
domized) linear map. In the first lemma in this section we show that natural reductions between kernel
DH problems have a very special form. Observe that a black-box reduction to a flexible problem must
work for any adversary solving it. In particular, the reduction should work for any solution given by this
adversary, or for any probability distribution of the solutions given by it. The lemma is very technical
but it mainly states that the output of a successful reduction can be computed in essentially two ways:

– by just applying a (randomized) linear map to the answer given by the adversary in the last call.
Therefore, all possibly existing previous calls to the adversary are just used to prepare the last one.

– by just ignoring the last call to the adversary.

Let R be a black-box reduction of D`,k-KerMDH to D˜̀,k̃-KerMDH, in the generic group G, for some
matrix distributions D`,k and D˜̀,k̃. Namely, R solves D`,k-KerMDH with a non-negligible probability by
making Q ≥ 1 queries to an oracle solving D˜̀,k̃-KerMDH with probability one. As we aim at ruling out the
existence of some reductions, we consider the best possible case any black-box reduction must be able to
deal with. Now consider the splitting R = (R0,R1) defined by the last oracle call, depicted in Figure 1.
That is, R0 stops by outputting the last query to the oracle together with some state information s for

R1, while R1 resumes the execution from the state information and the answer [w] ∈ Gl̃ given by the
oracle. Without loss of generality, we assume that both stages R0 and R1 receive the same random tape
(and perhaps R1 will redo some of the computations performed by R0).

In the generic group model, following Maurer’s model [24,25], the output of the reduction [v] ∈ Gl is
computed as linear combinations of the group elements received from the input or from the oracle answers.
In particular, we can write v = u+ η(w), for some vector u ∈ Zlq depending on s (i.e., depending on the

input, the random tape and the first Q−1 oracle answers), and some (randomized) linear map η : Zl̃q → Zlq
depending only on the random tape of R. Actually, [u] is computed by R1 as linear combinations of the
group elements contained in s, but the explicit linear combination is not relevant here.

S

$

R0

O

Q− 1 queries

O

last query

R1 v = u + η(w)
s

S̃

w

Fig. 1. Splitting of the black-box reduction.

Let us denote S = ker A>, where A ← D`,k and S′ = S \ {0}. Analogously, S̃ = ker Ã>, where

Ã← D˜̀,k̃ and S̃′ = S̃ \ {0}.

Lemma 11. Let R = (R0,R1) be a black-box reduction from D`,k-KerMDH to D˜̀,k̃-KerMDH, in the
generic group G, making Q ≥ 1 calls to an oracle solving the latter with probability one. If R is successful
then, for all behaviour of the oracle, either Pr(η(w) ∈ S \ {0}) > negl or Pr(u ∈ S \ {0}) > negl , where
the output of the reduction is [u + η(w)], u only depends on the state output by R0, [w] is the answer



to the last oracle query, and η : Zl̃q → Zlq is a (randomized) linear map that only depends on the random
tape of R.

Proof. As a black-box reduction, R is successful means that it is successful for all possible behaviours of
the oracle in its Q queries. We arbitrarily fix its behaviour in the first Q − 1 queries. Then concerning
the last one, for all w ∈ S̃′, Pr(u + η(w) ∈ S′) > negl , where the probability is computed with respect
the random tape of R and the randomness of the D`,k-KerMDH input instance. Now, defining

pw = Pr(u ∈ S ∧ u + η(w) ∈ S′)

rw = Pr(u /∈ S ∧ u + η(w) ∈ S′)

we have pw + rw > negl . But not all rw can be non-negligible since the corresponding events are disjoint.
Indeed, for every nonzero vector w and any different α1, α2 ∈ Z×q ,

u + η(α1w) ∈ S, u + η(α2w) ∈ S ⇒ (α2 − α1)u ∈ S ⇒ u ∈ S

and then
∑
α∈Z×

q
rαw ≤ 1. Therefore, there is some αm such that rαmw ≤ 1

q−1 , which in turn implies

pαmw > negl . Now, we can split pαmw depending on whether u ∈ S′ or u = 0, obtaining

pαmw = Pr(η(w) ∈ S′) + Pr(u ∈ S′ ∧ u + η(αmw) ∈ S′) ≤
≤ Pr(η(w) ∈ S′) + Pr(u ∈ S′)

and concluding that either Pr(u ∈ S′) > negl or for all nonzero w ∈ S̃′, Pr(η(w) ∈ S′) > negl . However,
which one is true could depend on the particular behaviour of the oracle in the first Q− 1 calls.

In some cases, one of the two strategies of the reduction mentioned above can be ruled out. Namely,
we can prove that Pr(η(w) ∈ S \ {0}) ∈ negl .

Lemma 12. Consider integers l = k + d, l̃ = k̃ + d̃ such that l, l̃ > 0 and k > k̃. Let η : Zl̃q → Zlq be

a linear map, exists a subspace F of Im η of dimension at most k such that for all S̃ subspaces of Zl̃q of

dimension d̃, either S̃ ⊂ ker η or dimF ∩ η(S̃) ≥ 1.

Proof. If rank η ≤ k it suffices to take F = Im η. Indeed, if S̃ 6⊂ ker η, i.e., η(S̃) 6= {0}, then dimF∩η(S̃) =

dim η(S̃) ≥ 1.
Otherwise, rank η > k, let F a subspace of Im η of dimension k, using the Grassman’s formula,

dimF ∩ η(S̃) = dimF + dim η(S̃)− dim(F + η(S̃)) ≥
≥ k + dim η(S̃)− rank η ≥ k + dim S̃ − dim ker η − rank η =

= k + d̃− l̃ = k − k̃ ≥ 1

Definition 11 (t-Elusiveness). A family of subspaces S of a vector space X over the finite field Zq is
called t-elusive for some t < dimX if for all t-dimensional subspaces F ⊂ X, Pr(F ∩ S 6= {0}) ∈ negl ,
where the probability is computed with respect to the choice of S ∈ S.

A matrix distribution D`,k is called t-elusive if the family {ker A>}A∈D`,k is t-elusive.

Lemma 13. If a matrix distribution D`,k is hard (as given in Definition 3) then D`,k is k-elusive.

Proof. By definition, given a non-k-elusive matrix distribution D`,k, there exists a k-dimensional vector
subspace F ⊂ Z`q such that PrA←D`,k(F ∩ ker A> 6= {0}) > negl . F can be efficiently computed from the
description of D`,k with standard tools from linear algebra.

Let M ∈ Zk×`q be a maximal rank matrix such that Im M> = F . Then, dim(F ∩ ker A>) =

dim(Im M> ∩ ker A>) ≤ dim ker(A>M>) = dim ker(MA)> = dim ker(MA), as MA is a k × k square
matrix. Thus, we know that

Pr
A←D`,k

(rank(MA) < k) > negl



Now we show how to solve the D`,k-MDDH problem on some k-linear group G, by means of a k-linear
map. Let [(A‖z)] be an instance of the D`,k-MDDH problem. In a ‘real’ instance z = Ax for a uni-
formly distributed vector x ∈ Zkq , while in a ‘random’ instance, z is uniformly distributed Z`q. A dis-
tinguisher can efficiently compute [MA] and [Mz]. Observe that in a ‘real’ instance rank(MA‖Mz) =
rank(MA‖MAx) = rank(MA), while in a ‘random’ instance Mz is uniformly distributed in Zkq . There-
fore, for a ‘random’ instance there is a non-negligible probability that rank(MA) < k and rank(MA‖Mz)
= rank(MA) + 1, because Mz ∈ Im(MA) occurs only with a negligible probability < 1

q . Then, the dis-
tinguisher can efficiently tell apart the two cases because with a k-linear map at hand computing the
rank of a k × k or a k × k + 1 matrix can be done efficiently.

Theorem 1. Let D`,k be k-elusive. If there exists a black-box reduction in the generic group model from

D`,k-KerMDH to another problem D˜̀,k̃-KerMDH with k̃ < k, then D`,k-KerMDH is easy.

Proof. Let us assume the existence of the claimed reduction, R = (R0,R1), making Q ≥ 1 oracle queries,

where Q is minimal. Then, by Lemma 11, its output can be written as [u + η(w)], where η : Zl̃q → Zlq

is a (randomized) linear map that does not depend on the particular choice of the matrix A in the
D`,k-KerMDH input instance.

Let us denote as above S = ker A>, and S′ = S \ {0}. Analogously, S̃ = ker Ã>, where Ã ← D˜̀,k̃
and S̃′ = S̃ \ {0}.

We now proof that in Lemma 11, for any possible behaviour of the oracle in the first Q − 1 calls,
there exists a particular behaviour in the last call such that Pr(η(w) ∈ S′) is negligible. Specifically, the

answer of the oracle, w, is uniformly distributed in S̃′.

Pr(η(w) ∈ S′) = Pr(η(w) ∈ S)− Pr(η(w) = 0)

Now, developing the second term,

Pr(η(w) = 0) = Pr(η(w) = 0 | S̃ ⊂ ker η) Pr(S̃ ⊂ ker η) +

+ Pr(η(w) = 0 | S̃ 6⊂ ker η) Pr(S̃ 6⊂ ker η) =

= Pr(S̃ ⊂ ker η) + Pr(w ∈ S̃ ∩ ker η | S̃ 6⊂ ker η) Pr(S̃ 6⊂ ker η) =

= Pr(S̃ ⊂ ker η) + negl

where the last equality uses that the probability that a vector uniformly distributed in S̃′ belongs to a
proper subspace of S̃′ is negligible.

And, analogously for the first term,

Pr(η(w) ∈ S) = Pr(η(w) ∈ S | η(S̃) ⊂ S) Pr(η(S̃) ⊂ S) +

+ Pr(η(w) ∈ S | η(S̃) 6⊂ S) Pr(η(S̃) 6⊂ S) =

= Pr(η(S̃) ⊂ S) + Pr(w ∈ S̃ ∩ η−1(S) | η(S̃) 6⊂ S) Pr(η(S̃) 6⊂ S) =

= Pr(η(S̃) ⊂ S) + negl

Thus,
Pr(η(w) ∈ S′) = Pr(η(S̃) ⊂ S)− Pr(S̃ ⊂ ker η) + negl

Now, using Lemma 12, we know that there exists a subspace F such that if S̃ 6⊂ ker η, then dimF ∩
η(S̃) ≥ 1. Therefore Pr(η(S̃) ⊂ S)−Pr(S̃ ⊂ ker η) ≤ Pr(η(S̃) ⊂ S∧dimF∩η(S̃) ≥ 1) ≤ Pr(dimF∩S ≥ 1).
Since dimF ≤ k, the last probability is negligible due to the k-elusiveness of D`,k.

Now applying Lemma 11 we know that Pr(u ∈ S \ {0}) > negl for any possible behaviour of the
oracle in the first Q−1 calls. Therefore, we can modify the reduction R to output u, without making the
Q-th oracle call. The modified reduction is also successful, with only Q− 1 oracle calls, which contradicts
the assumption that Q is minimal. In summary, if the claimed reduction exists then there also exists an
algorithm (a “reduction with Q = 0”) directly solving D`,k-KerMDH without the help of any oracle.



Corollary 1. If a matrix distribution family {D`,k} is hard then for any D`,k and D˜̀,k̃ in the family with

k > k̃ there is no black-box reduction in the generic group model from D`,k-KerMDH to D˜̀,k̃-KerMDH.

Proof. As all D`,k-MDDH problems in the family are generically hard on a k-linear group, we know that
D`,k is k-elusive by Lemma 13, and also D`,k-KerMDH is hard in that group (otherwise, any solution
to D`,k-KerMDH can be used to solve D`,k-MDDH in a straightforward way). By the above theorem, no

black-box reduction in the generic group model from D`,k-KerMDH to D˜̀,k̃-KerMDH can exist for k > k̃.

To conclude, combining the above corollary and the results in the previous section, all U`,k, Lk, CIk,d,
SCk, Ck and RLk define families of kernel problems with strictly increasing hardness. Thus, it makes
sense relying on D`,k-KerMDH Assumption for larger k.

6 Applications

The Double Pairing Assumption (in asymmetric groups) and the Simultaneous Double Pairing Assump-
tion (in symmetric groups) correspond in our language to, respectively, the U1-KerMDH Assumption and
the RL2-KerMDH Assumption. They are used in a large number of protocols, most notably in the design
of structure preserving cryptographic primitives [1,2,5,22] (to name a few). We expect that these protocols
can all be generalized to work with the Kernel DH Assumption and to lead to simplified constructions
and/or constructions based on weaker assumptions.

QA-NIZK for Linear Spaces. All the recent constant-size arguments of membership in linear spaces
[18,19,20,22] are based on some D`,k-KerMDH Assumption (e.g. the SP or SDP Assumptions). Among
them we are particularly interested in the work of [19,20], who give a family of instances of their scheme.
More specifically, [20] give an instance of proof size k based on our new family of computational assump-
tions, the Dk-KerMDH. On the other hand, Jutla and Roy [19] achieve the same proof size under what
they call the “Switching Lemma”, which is proven under a decisional assumption, the RLk-MDDH As-
sumption. However, a close look at the proof reveals that in fact it is based on (the weaker, computational)
RLk-KerMDH Assumption 3

In either case, as the proof size grows with k, the only reason to construct these arguments based on
such a family of computational assumptions (k = 1 would suffice in the asymmetric case groups) is if
the assumptions are strictly increasingly weaker, which was unknown prior to this work. So our results
fundament the general constructions of [19,20].

Lower Bounds for Structure-Preserving Cryptography. A number of works investigate lower bounds for
structure-preserving signatures. For instance, [3,4] investigate (among others) lower bounds for the num-
ber of (pairing-product) equations necessary to verify a structure preserving signature, and [5] deals
with the minimal number of (pairing-product) equations necessary to verify an opening of a structure-
preserving commitment. Implicitly, these works use the inexistence of kernel assumptions of a certain
size, e.g the inexistence of D1-KerMDH Assumption in symmetric bilinear groups.

6.1 Generalized Pedersen Commitments in Multilinear Groups

In a group (G, q,P) where the discrete logarithm is hard, the Pedersen commitment is a statistically hiding
and computationally binding commitment to a scalar. It can be naturally generalized to several scalars.
Abe et al. [2] show how to do similar Pedersen type commitments to group elements in bilinear groups
under what they call the SDP Assumption, which in our language is the RL2-KerMDH Assumption. With
our new assumption family we can write both the Pedersen commitment and the commitment of [2] as a
single construction and generalize it to graded encodings.

3 To see this, note that in the proof of their “Switching Lemma” on which soundness is based, they use the output

of the adversary to decide if f
?
∈ ImA, A ← RLk, by checking whether [f ] is orthogonal to the adversary’s

output (equation (1), proof of Lemma 1, [19], full version).



– Setup(1λ, k, n): Let MGk = (e,G1,G2, . . . ,Gk, q,P1, . . . ,Pk) ← MGenk(1λ). Sample A ← D`,k.
Output ck := (MGk, [A]1), tk := (A).

– Commit(ck, [m]r): To commit to a vector [m]r ∈ Gn
r , r < k, pick [s]r ← Gk

r , and output

[c]r+1 := e([(s>||m>]r, [A]1) = [(s>||m>)A]r+1 ∈ Gk
r+1.

– TrapdoorCommit(ck, tk, r): Generate an equivocal commitment [c]r+1 ∈ Gk
r+1 by picking [s]r ← Gk

r

and computing [c]r+1 = e([s>]r, [A]1) ∈ Gk
r+1.

– TrapdoorOpen(A, [c]r+1): On an equivocal commitment [c]r+1 ∈ Gk
r+1, compute and return the trap-

door opening to some message [m]r ∈ Gn
r as follows. Pick s← Zkq . Let f i, i ∈ [k], be the ith column

of A. For each i ∈ [k], let:

[ai]r := [(s>||m>)]rf i = [(s>||m>)f i]r ∈ Gr.

Let A0 be the minor of A consisting of the first k rows. W.l.o.g. we can assume A−10 exists. Output
[s]r as the opening of [c]r+1 to [m]r, where:

s := A−10

a1...
ak

 .

The proof for the general case is almost identical to [2]. The hiding property of the commitment is
unconditional, while the soundness (at level r) is based on the (r, k,D`,k)-KerMDH Assumption. The
correctness of the trapdoor opening property follows easily from an algebraic argument.

Existing constructions. The Pedersen commitment (to multiple elements) corresponds to m = 0 and
A ← Un+1,1 and soundness is based on the (0,Un+1,1)-KerMDH. The construction proposed in [2] to
commit to group elements corresponds to m = 1 and A← Un+1,1, and to m = 2 (in symmetric bilinear
maps) and A ← Un+2,2. Soundness (binding property) is proven based on the corresponding kernel
problems.

Tradeoff Efficiency - Security. With our family of assumptions we can describe in a compact-way
many instances of the scheme to commit to messages [m]i at different levels under any family of D`,k-
KerMDHAssumption. In particular, this highlights that there is a tradeoff between the size of the public
parameters and security. That is, while Un+k,k-KerMDH is the weakest possible Assumption, the number
of elements necessary to represent [A] is k(n+ k). On the other hand, if A← CIk,d, soundness is based
on the stronger CIk,d-KerMDH Assumption, but the representation size of the public parameters is just
n+ k.

Multilinear maps. As we discussed in Section 4.2, the Kernel Assumption might be a good candidate
assumption in multilinear groups. The commitment scheme described above could be an interesting
construction there, because the hiding property of the commitment is unconditional and there are no
interesting decisional assumptions in Gi, i < m, so one should expect to achieve the hiding property only
unconditionally.
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A More Details About the Circulant Matrix Distribution

In this appendix we give more details about both the hardness and the optimality of the representation
size of the circulant matrix distribution.

A.1 Optimality of the Representation Size

Lemma 14. A matrix distribution D`,k defined by linear polynomials in the parameters, A(t1, . . . , td) =
A0 + A1t1 + . . . + Adtd, where A1, . . . ,Ad are linearly independent matrices, can only be hard if the
number of parameters d is at least `− k.

Proof. Assume for contradiction that d < ` − k. Then, by gaussian elimination in A we can transform
the matrix into another one, B(t1, . . . , td) = LA(t1, . . . , td) for a constant invertible matrix L, such that
the first column of B has zeroes in the lower ` − d − 1 ≥ k positions (as at most d + 1 entries can
be linearly independent as polynomials in t1, . . . , td). Now, it is straightforward to see that this can be

used to solve the associated D`,k-MDDH problem. Indeed, if L̂ denotes the lowest k rows of L, given

an instance ([A], [z]), we transform it into ([L̂A], [L̂z]) and then compare the ranks of L̂A and L̂A‖L̂z
(computed by means of the k-linear map). The ranks are equal for ‘real’ instances, while they are different
with overwhelming probability for ‘random’ instances of the D`,k-MDDH problem, which contradicts the
hardness of D`,k.

The linear independency requirement in the lemma just means that there is no redundancy among
the d parameters (that is, the map (t1, . . . , td) 7→ A(t1, . . . , td) is injective). The representation of A
must contain at least d group elements, due to the previous injectivity. Therefore, CIk,d has optimal
representation size.

A.2 Hardness

Here we prove that CIk,d is a hard matrix distribution (i.e., the CIk,d-MDDH problem is generically hard
in k-linear groups), using Theorem 5.15 and specially its Corollary 5.16 in [16] in the linear polynomial
case, and Gröbner basis computations in some polynomial ideal.

Intuitively, an algorithm solving CIk,d-MDDH problem in the generic k-linear group model must know
some nonzero polynomial in t1, . . . , td, z1, . . . , zk+d vanishing whenever z ∈ Im A(t). But this can only



happen if such polynomial belongs to the ideal H ∈ Zq[t1, . . . , td, z1, . . . , zk+d]4 generated by the relations
between t1, . . . , td, z1, . . . , zk+d obtained by elimination of the variables w1, . . . , wk in the equation z =
A(t)w.
CIk,d has some interesting properties that makes possible the generic hardness proof. Namely, it is

defined by linear polynomials (i.e., A(t) is made of polynomials of degree one in the parameters t1, . . . , td),
and rank A(t) = k for all possible choices of t1, . . . , td ∈ Zq (i.e., in the algebraic closure of Zq). This
second property comes from the fact that the lowest k-minor of A(t) is constant and equal to 1. With
these two properties, Theorem 5.15 and its Corollary 5.16 in [16] essentially state that H is precisely
the ideal generated by all the (k + 1)-minors of A(t)‖z as polynomials in t1, . . . , td, z1, . . . , zk+d. More
precisely,

Theorem 2 (from Theorem 5.15 and its Corollary 5.16 in [16]). Let D`,k = {A(t) | t← Zdq} be a
polynomial matrix distribution of degree one such that the matrices A(t) in the distribution have always
full rank, for all choices of the parameters t1, . . . , td in the algebraic closure of Zq. Let

H = I({(t,A(t)w) | t ∈ Zdq , w ∈ Zkq})

that is the ideal of the polynomials in Zq[t, z] vanishing at all (rational) points such that z = A(t)w, for
some w ∈ Zkq , and

D = ({det i1,...,ik+1
(A(t)‖z) | 1 ≤ i1 < i2 < · · · < ik+1 ≤ `})

the ideal generated by all (k + 1)-minors of A(t)‖z. Then H = D and it is a prime ideal.

At this point, proving the generic hardness of CIk,d amounts to proving that there is no nonzero
polynomial of total degree less that k + 1 in H. Indeed, this means that the only way to generically
solve the CIk,d-MDDH problem is computing a polynomial of degree strictly greater than k, which is not
feasible in k-linear groups. Notice that in the general case d ≥ 1, finding a lower bound for the total
degree in H is a nontrivial task, while in the case ` = k + 1 or d = 1, as seen in [12], it is as easy as
computing the degree of the determinant polynomial det(A(t)‖z). The main reason for that difficulty is
the fact that the ideal H is not principal. Therefore, we need to compute a Gröbner basis of H, and show
that all the polynomials in it have total degree at least k + 1.

Gröbner bases can be computed quite easily for specific ideals by means of a computer, but here we
will build bases for an infinite collection of ideals, that is for arbitrary values of the size parameters k
and d. Thus, we have to compute them by hand. Fortunately, we manage to show that the set of all
(k + 1)-minors of A(t)‖z as polynomials in t1, . . . , td, z1, . . . , zk+d, where A← CIk,d, is a Gröbner basis
of H.

We recall some basic notions related to ideals and Gröbner basis. An admissible monomial order ≺ in
the polynomial ring Zq[t1, . . . , td, z1, . . . , zk+d] is a total order among the monomials in it such that for
any monomials m1,m2,m3

1. m1 6= 1 ⇒ 1 ≺ m1

2. m1 ≺ m2 ⇒ m1m3 ≺ m2m3

The leading monomial of a polynomial p, denoted by LM(p) is defined as the greatest of its monomials
(without the coefficient)5 with respect of the monomial order. We recall that a Gröbner basis of H ⊂
Zq[t1, . . . , td, z1, . . . , zk+d] with respect of an admissible monomial order is a set of nonzero polynomials
G = {g1, . . . , gs} ⊂ H with the following properties

1. for every f ∈ H there exist c1, . . . , cs ∈ Zq[t1, . . . , td, z1, . . . , zk+d] such that f = c1g1 + . . .+ csgs,
2. for every f ∈ H, LM(f) is divisible by LM(g) for some g ∈ G.

The following lemma comes in a straightforward way from the previous definition

4
Zq denotes the algebraic closure of the field Zq. We define the ideal in the algebraic closure for technical reasons,
although the polynomial used by the algorithm will necessarily have its coefficients in Zq.

5 We call leading term to the leading monomial multiplied by the corresponding coefficient.



Lemma 15. The minimal degree of nonzero polynomials in an ideal H is the minimal degree of the
polynomials in any Gröbner basis of H with respect to any admissible monomial order compatible with the
total degree.

From now on we fix the following admissible monomial order:

1. degm1 < degm2 ⇒ m1 ≺ m2, where deg denotes the total degree of the monomial,
2. z1 ≺ . . . ≺ zk+d ≺ t1 ≺ . . . ≺ td,
3. if degm1 = degm2,≺ is the lexicographical order. That is, we write m1 = zα1

1 · · · z
αk+d
k+d t

αk+d+1

1 · · · tαk+2d

d

and m2 = zβ1

1 · · · z
βk+d
k+d t

βk+d+1

1 · · · tβk+2d

d . Then, for the same total degree, m1 ≺ m2 if and only if the
first nonzero difference βi − αi is positive.

Given A ← CIk,d we denote by ∆(i) = ∆(i1, . . . , ik+1) = deti1,...,ik+1
(A(t)‖z) the (k + 1)-minor of

A(t)‖z defined by the rows 1 ≤ i1 < i2 < · · · < ik+1 ≤ k + d. From now on we will use i ∈
(
k+d
k+1

)
as a

shorthand for the previous inequalities. These determinants have very special properties. Indeed, we show
that with respect to the previous monomial order the main diagonal defines their leading monomial.

Lemma 16. For all i ∈
(
k+d
k+1

)
, LM(∆(i)) = zik+1

ti1ti2−1 · · · tik−k+1.

Proof. In order to simplify the notation, we can always write the (k + 1)-minors of A(t)‖z as

∆(i) =

∣∣∣∣∣∣∣∣∣∣∣∣

ti1 ti1−1 · · · ti1−k+1 zi1

ti2 ti2−1 · · · ti2−k+1 zi2
...

...
...
...
...

...
...

tik tik−1 · · · tik−k+1 zik

tik+1
tik+1−1 · · · tik+1−k+1 zik+1

∣∣∣∣∣∣∣∣∣∣∣∣
assuming that td+1 = 1, and ti = 0 for any i outside the range i = 1, . . . , d + 1. Then we show that
in the development of the determinant, the monomial corresponding to the main diagonal mdiag =
zik+1

ti1ti2−1 · · · tik−k+1 is the leading monomial. Firstly, notice that all the terms occurring in the main
diagonal are proper terms (i.e., neither 0 nor 1). Indeed, 1 ≤ i1 ≤ i2−1 ≤ · · · ≤ ik−k+1 ≤ ik+1−k ≤ d,
which is something that deeply depends on the circulant structure of the matrix A.

Now, assume by contradiction that there is another term in the development of the determinant,
m = ziσ(k+1)

tiσ(1)tiσ(2)−1 · · · tiσ(k)−k+1 (written in a possibly unsorted way), for a permutation σ ∈ Sk+1,
such that mdiag ≺ m. Due to the monomial order, the last column must contribute to this term with the
variable zk+1 (that is σ(k + 1) = k + 1). Otherwise, ziσ(k+1)

≺ zik+1
, which contradicts mdiag ≺ m.

We can rewrite m in terms of the inverse permutation π = σ−1 as

m = zik+1
ti1−π(1)+1ti2−π(2)+1 · · · tik−π(k)+1

Then, π(1) 6= 1 would imply ai1−π(1)+1 ≺ ai1 , which is also in contradiction with mdiag ≺ m. Therefore,
σ(1) = 1. Observe that it could happen that i1 − π(1) + 1 ≤ 0, which means that ti1−π(1)+1 is actually
0, which also contradicts mdiag ≺ m.

Proceeding similarly with subsequent indexes (rows) in increasing order, we easily show that σ can
only be the identity permutation, which concludes the proof.

Now we prove that the set of all (k + 1)-minors of A‖z is a Gröbner basis. The proof of this result is
rather technical and deeply relies on the properties of determinants.

Theorem 3. The set G = {∆(i) | i ∈
(
k+d
k+1

)
} is a Gröbner basis of H with respect to the monomial order

≺.

Proof. The usual way to prove that a set G = {g1, . . . , gs} is a Gröbner basis is by means of the so-called
S-polynomials. The S-polynomial of a pair gi, gj ∈ G for i 6= j is defined by

si,j = SPOL(gi, gj) =
mi,j
mi

gi −
mi,j
mj

gj (1)



where mi = LM(gi), mj = LM(gj), and mi,j denotes the least common multiple of mi and mj . Then, G
is a Gröbner basis if and only if for all i 6= j, REDG(si,j) = 0, where REDG(p) denotes the reduction
of a polynomial p by repeatedly taking the remainder of the division by elements in G until no further
division can be properly performed6. Indeed, the famous Buchberger’s algorithm for computing Gröbner
basis iteratively uses the previous computation to either verify that a pair gi, gj ∈ G passes the check, or
to add its reduced S-polynomial to G.

Observe that any expression of the form p = c1g1 + . . . + csgs, where all the leading monomials
nj = LM(cjgj), j = 1, . . . , s, are different, shows that REDG(p) = 0. Indeed, without loss off generality
we can sort the previous terms to ensure that n1 ≺ . . . ≺ ns. Clearly, LM(p) = ns and reducing p by gs
gives the remainder c1g1 + . . .+ cs−1gs−1. Therefore, by induction, we get REDG(p) = 0.

Buchberger also provided two optimization rules to speed up the algorithm. In particular, the second
one (Buchberger’s chain criterion) says that if for some indexes i, j, v, REDG(si,v) = REDG(sj,v) = 0 and
mv divides mi,j , then also REDG(si,j) = 0. We use this criterion to inductively show that in our case, we
only need to deal with pairs of (k + 1)-minors differing only in one row.

We now split the proof into several technical claims. The idea is drawing a path between any two
(k + 1)-minors in which at each step we only change one row of the minor.

The first claim says that from any two (k+ 1)-minors with the same upper α− 1 rows but that differ
in the α-th row, we can build a third “hybrid” minor by moving the α-th row from one determinant
to the other, and the corresponding three leading monomials are related in a suitable way for the chain
criterion described above.

Claim 1. For any two sequences i, i∗ ∈
(
k+d
k+1

)
such that the first difference occurs at position α, for

1 ≤ α ≤ k, that is ij = i∗j if j < α and iα < i∗α,

LM(∆(i1, . . . , iα, i
∗
α+1 . . . , i

∗
k+1)) divides lcm(LM(∆(i)),LM(∆(i∗)))

Proof (of Claim 1). According to Lemma 16,

LM(∆(i1, . . . , iα, i
∗
α+1 . . . , i

∗
k+1)) =

{
zi∗k+1

ti1 · · · tiα−α+1ti∗α+1−α · · · ti∗k−k+1 if α < k

zi∗k+1
ti1 · · · tik−k+1 if α = k

Then the claim directly comes from the fact that this monomial can be split into two coprime factors
ti1 · · · tiα−α+1 and zi∗k+1

ti∗α+1−α · · · ti∗k−k+1, each dividing LM(∆(i)) and LM(∆(i∗)), respectively. Indeed,
both factors are coprime because i1 ≤ · · · ≤ iα − α+ 1 < i∗α − α+ 1 ≤ i∗α+1 − α ≤ · · · ≤ i∗k+1 − k. ut
We call adjacent pair to any pair of minors ∆(i) and ∆(i∗) such that i and i∗ differ only at position α,
for some 1 ≤ α ≤ k + 1, that is ij = i∗j if j 6= α and iα < i∗α. This pair can be actually described by

an increasing sequence of length k + 2, 1 ≤ i1 < · · · < iα < i∗α < · · · < ik+1 ≤ k + d ∈
(
k+d
k+2

)
and the

index α. The previous claim allows us to build a path connecting any two (k+ 1)-minors such that every
consecutive pairs of minors in the path is an adjacent pair. An example for k = 5 is depicted below. The
numbers in every column in the table correspond to the indices of the rows in every minor in the path
connecting ∆(1, 5, 6, 9, 12, 13) and ∆(2, 4, 7, 8, 11, 14).

i1 1 1 1 1 1 1 2

i2 5 4 4 4 4 4 4

i3 6 6 6 6 6 7 7

i4 9 9 8 8 8 8 8

i5 12 12 12 11 11 11 11

i6 13 13 13 13 14 14 14

6 The reduction algorithm repeatedly takes a polynomial p and checks whether some LM(gi) divides LM(p). If
so, the algorithm cancels out the leading term of p by substracting from it the appropriate multiple of gi, and
repeats the procedure with the resulting polynomial. Otherwise, the algorithm adds the leading term of p to
the output polynomial and proceeds with the remaining terms of p, until they are exhausted. The output has
the property that none of its monomials is divisible by any LM(gi).



Using the above path we show that, according to Buchberger’s chain criterion, to prove that G is a
Gröbner basis it suffices to check only the S-polynomials of adjacent pairs.

Claim 2. If the S-polynomial of every adjacent pair of (k+ 1)-minors is reducible to 0, then so are all the
other S-polynomials (and therefore G is a Gröbner basis of H).

Proof (of Claim 2). We prove the claim by (descending) induction in α, the index of the first row-difference
between two (k + 1)-minors. For α = k + 1 (i.e., the minors only differ in the last row) the statement
is obviously true, as the two minors form an adjacent pair. Now, let us assume that the statement is
true for α = α0, where 1 < α0 ≤ k + 1. Then for any two minors with the first row-difference occurring
at row α0 − 1, say g = ∆(i1, . . . , iα0−2, iα0−1, . . . , ik+1) and g∗ = ∆(i1, . . . , iα0−2, i

∗
α0−1, . . . , i

∗
k+1) with

iα0−1 < i∗α0−1, we define as in the first claim the “hybrid” minor h = ∆(i1, . . . , iα0−1, i
∗
α0
, . . . , i∗k+1).

Then, by Claim 1 we know that LM(h) divides lcm(LM(g),LM(g∗)). On the other hand, the induction
assumption implies REDG(SPOL(h, g)) = 0, since the first row-difference between g and h occurs at row
α0. Moreover, REDG(SPOL(h, g∗)) = 0 because (h, g∗) is an adjacent pair. Thus, by Buchberger’s chain
criterion, REDG(SPOL(g, g∗)) = 0, concluding the proof of the second claim. ut

The last step in the proof of the theorem is showing that the S-polynomial of every adjacent pair of
(k+1)-minors is reducible to 0. Actually, the S-polynomial of an adjacent pair of minors can be embedded
into the determinant of a (k + 2)× (k + 2) matrix. This matrix gives us a syzygy (i.e., a linear relation
with polynomial coefficients among elements in G) that allows to manually reduce the S-polynomial to
0.

Claim 3. For any adjacent pair of (k+1)-minors given by the sequence i ∈
(
k+d
k+2

)
and the index 1 ≤ α ≤ k+

1, that is g = ∆(i1, . . . , iα, iα+2 . . . , ik+2) and g∗ = ∆(i1, . . . , iα−1, iα+1 . . . , ik+2), REDG(SPOL(g, g∗)) =
0.

Proof (of Claim 3). Let us consider for the case α ≤ k the extended matrix

B =



ti1 ti1−1 · · · ti1−k+1 zi1 ti1−α+1
...

...
...
...
...

...
...

...
tiα tiα−1 · · · tiα−k+1 ziα tiα−α+1

tiα+1
tiα+1−1 · · · tiα+1−k+1 ziα+1

tiα−1−α+1
...

...
...
...
...

...
...

...
tik+2

tik+2−1 · · · tik+2−k+1 zik+2
tik+2−α+1


which is a (k + 2) × (k + 2) matrix7 with two repeated columns: the α-th and the last columns. Thus,
det B = 0, and using Laplace expansion of the determinant along the last column we obtain the following
syzygy:

k+2∑
j=1

j 6=α,α+1

(−1)k+jtij−α+1hj + (−1)k+α
(
tiα−α+1g

∗ − tiα+1−α+1g
)

= 0 (2)

where hj = ∆(i1, . . . , ij−1, ij+1, . . . , ik+2). Actually, g = hα and g∗ = hα+1.
Notice that the S-polynomial s = SPOL(g, g∗), as given by Equation 1, is exactly tiα+1−α+1g −

tiα−α+1g
∗, since

LM(g) = zik+2
ti1 · · · tiα−α+1tiα+2−α · · · tik+1−k+1

and

LM(g∗) = zik+2
ti1 · · · tiα−1−α+2tiα+1−α+1 · · · tik+1−k+1

7 Recall that we are using the notational convention introduced in Lemma 16. Thus, some entries in the matrix
can be equal to 0 or 1.



As a consequence, Equation 2 gives an explicit reduction of s to 0. Namely,

s =

k+2∑
j=1

j 6=α,α+1

(−1)α+jtij−α+1hj (3)

Actually, to see that Equation 3 implies REDG(s) = 0, we only need to show that all leading monomials
nα,j = LM(tij−α+1hj) = tij−α+1LM(hj), for j = 1, . . . , k + 2, j 6= α, α + 1, corresponding to nonzero
terms8 are different. We now compute all leading monomials nα,j for any j 6= α, α+1 (written as possibly
unsorted products):

nα,j =


zik+2

ti1−α+1ti2 · · · tik+1−k+1 for j = 1

zik+2
ti1 · · · tij−1−j+2tij−α+1tij+1−j+1 · · · tik+1−k+1 for 1 < j < k + 1

zik+2
ti1 · · · tik−k+1tik+1−α+1 for j = k + 1

zik+1
ti1 · · · tik−k+1tik+2−α+1 for j = k + 2

Clearly, nα,k+2 is different to the others, and the only coincidence can be nα,j = nα,j∗ for some 1 ≤ j <
j∗ ≤ k + 1. But this would imply (removing all common terms)

tij−α+1tij+1−j+1 · · · tij∗−1−j∗+3ti∗j−j∗+2 = tij−j+1tij+1−j · · · tij∗−1−j∗+2ti∗j−α+1

But due to the inequalities of the indices, the least index in the righthand side, ij − j + 1, can only be
cancelled out with the term ij −α+ 1 in the lefthand side, thus implying j = α. Similarly, i∗j − j∗+ 2 on
the left must be the same as i∗j − α + 1 on the right, and then j∗ = α + 1. But these values of j, j∗ are
out of the correct range, what shows that no collision among the nα,j is actually possible.

For the remaining case, α = k + 1, we proceed similarly, defining

B =


ti1 ti1−1 · · · ti1−k+1 zi1 zi1
...

...
...
...
...

...
...

...
tik+1

tik+1−1 · · · tik+1−k+1 zik+1
zik+1

tik+2
tik+2−1 · · · tik+2−k+1 zik+2

zik+2


Now, the syzygy is

k∑
j=1

(−1)k+jzijhj − zik+1
g∗ + zik+2

g = 0

where hj = ∆(i1, . . . , ij−1, ij+1, . . . , ik+2). Then

s = SPOL(g, g∗) = zik+2
g− zik+1

g∗ = −
k∑
j=1

(−1)k+jzijhj (4)

and for any j < k + 1

nk+1,j = LM(zijhj) = zijLM(hj) =

{
zi1zik+2

ti2ti3−1 · · · tik+1−k+1 for j = 1

zijzik+2
ti1 · · · tij−1−j+2tij+1−j+1 · · · tik+1−k+1 for 1 < j < k + 1

which are clearly different. This shows that again Equation 4 is a reduction to 0 of SPOL(g, g∗), which
covers all the remaining adjacent pairs of (k + 1)-minors. ut

Now, the theorem statement is a direct consequence of Claims 2 and 3.

8 Some terms in Equation 3 can be zero due to tij−α+1 = 0, what happens exactly when ij − α + 1 ≤ 0 or
ij − α+ 1 ≥ d+ 2



The next corollary finally proves that CIk,d is a hard matrix distribution, that is, the CIk,d-MDDH
problem is generically hard in k-linear groups.

Corollary 2. All nonzero polynomials in H have degree at least k + 1.

Proof. According to Lemma 16 the degree of all polynomials ∆(i) for i ∈
(
k+d
k+1

)
is exactly k + 1. Thus,

by Lemma 15 and Theorem 3 the statement follows directly.
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