
Succinct Randomized Encodings and their Applications∗

Nir Bitansky† Sanjam Garg‡ Huijia Lin§ Rafael Pass¶ Sidharth Telang§

April 21, 2015

Abstract

A randomized encoding allows to express a “complex” computation, given by a function f and
input x, by a “simple to compute” randomized representation f̂(x) whose distribution encodes
f(x), while revealing nothing else regarding f and x. Existing randomized encodings, geared
mostly to allow encoding with low parallel-complexity, have proven instrumental in various
strong applications such as multiparty computation and parallel cryptography.

This work focuses on another natural complexity measure: the time required to encode. We
construct succinct randomized encodings where the time to encode a computation, given by a
program Π and input x, is essentially independent of Π’s time complexity, and only depends
on its space complexity, as well as the size of its input, output, and description. The scheme
guarantees computational privacy of (Π, x), and is based on indistinguishability obfuscation for a
relatively simple circuit class, for which there exist instantiations based on polynomial hardness
assumptions on multi-linear maps.

We then invoke succinct randomized encodings to obtain several strong applications, including:

• Succinct indistinguishability obfuscation, where the obfuscated program iO(Π) computes the
same function as Π for inputs x of apriori-bounded size. Obfuscating Π is roughly as fast as
encoding the computation of Π on any such input x. Here we also require subexponentially-
secure indistinguishability obfuscation for circuits.

• Succinct functional encryption, where a functional decryption key corresponding to Π allows
decrypting Π(x) from encryptions of any plaintext x of apriori-bounded size. Key derivation
is as fast as encoding the corresponding computation.

• Succinct reusable garbling, a stronger form of randomized encodings where any number of
inputs x can be encoded separately of Π, independently of Π’s time and space complexity.

• Publicly-verifiable 2-message delegation where verifying the result of a long computation given
by Π and input x is as fast as encoding the corresponding computation. We also show how
to transform any 2-message delegation scheme to an essentially non-interactive system where
the verifier message is reusable.

Previously, succinct randomized encodings or any of the above applications were only known
based on various non-standard knowledge assumptions.

At the heart of our techniques is a generic method of compressing a piecemeal garbled
computation, without revealing anything about the secret randomness utilized for garbling.

∗This paper unifies [BGT14] and [LP14]. An extended abstract will appear in the proceedings of STOC 15’.
†MIT, nirbitan@csail.mit.edu. Part of this research was done at IBM T.J. Watson Research Center.
‡University of California, Berkeley, sanjamg@berkeley.edu.
§University of California, Santa Barbara, rachel.lin@cs.ucsb.edu.
¶Cornell University, {rafael,sidtelang}@cs.cornell.edu. Work supported in part by a Alfred P. Sloan Fellowship, Microsoft

New Faculty Fellowship, NSF Award CNS-1217821, NSF CAREER Award CCF-0746990, NSF Award CCF-1214844, AFOSR YIP Award FA9550-

10-1-0093, and DARPA and AFRL under contract FA8750-11-2-0211. The views and conclusions contained in this document are those of the

authors and should not be interpreted as representing the official policies, either expressed or implied, of the Defense Advanced Research Projects

Agency or the US Government.

Contents

1 Introduction 1
1.1 Contributions . 2
1.2 Techniques . 6

1.2.1 Main Ideas behind the Applications . 9
1.3 Concurrent and Subsequent Work . 10

2 Preliminaries 11
2.1 Models of Computation . 12
2.2 Garbling Schemes . 13
2.3 Indistinguishability Obfuscation . 17
2.4 Puncturable Pseudo-Random Functions . 19

3 Succinct Garbling for Bounded-Space Turing Machines 19
3.1 A Non-Succinct Garbling Scheme . 20
3.2 A Garbling Scheme for TM with Space-dependent Complexity 25

4 Succinct Garbling in Other Models of Computation 33
4.1 Improved Construction and Analysis . 34

5 Applications 37
5.1 From Randomized Encodings to iO . 38
5.2 Publicly-Verifiable Delegation, SNARGs for P, and Succinct NIZKs for NP 42

5.2.1 P-delegation . 42
5.2.2 SNARGs for P . 44
5.2.3 Succinct Perfect NIZK for NP . 48

A Obfuscating Circuits with Quasi-Linear Blowup 55

1 Introduction

The notion of a randomized encoding, coined by Ishai and Kushilevitz [IK00], aims to trade the
computation of a “complex” function f(x) for the computation of a “simpler” randomized function
whose output distribution f̂(x) encodes f(x), but hides anything else regarding f and x. The
“complexity” of computing f is shifted to a decoding procedure that extracts f(x) from f̂(x).

The privacy of the function f and input x is naturally captured by an efficient simulator
Sim(f(x)), who given only the output f(x), produces a simulated encoding indistinguishable from
f̂(x); privacy can be perfect, statistical, or computational, according to the attained indistinguisha-
bility. Capturing what it means to “simplify the computation of f(x)” may take quite different
forms according to the complexity measure of interest. Most previous work have focused on comput-
ing the randomized encoding f̂(x) with lower parallel-time complexity than required for computing
the original function f , and has been quite successful. In particular, all log-space computations were
shown to have perfectly-private randomized encodings in NC0 [IK00, IK02a, AIK04]. When settling
for privacy against computationally bounded adversaries, and assuming low-depth pseudo-random
generators, the latter extends to arbitrary poly-time computations [AIK06], which was already
demonstrated in Yao’s seminal work on garbling circuits [Yao82]. The constructed randomized
encodings were in turn shown to have various strong applications to parallel cryptography, secure
computation, verifiable delegation, and more (see [App11b] for a survey).

Succinct Randomized Encodings. In this work, we focus on another natural complexity mea-
sure: the time required to compute f̂(x). Specifically, given the description of f and the input x,
we would like to compute the encoding f̂(x) in time T̂ that is significantly smaller than the time T
required to compute f(x). Decoding time, in contrast, would be as large as T , perhaps with some
tolerable overhead. For this goal to be achievable, f has to be given in some succinct representation
that is smaller than T , and cannot be given by, say, a size-T circuit. Concretely, we focus on the
natural case that f is represented by a succinct program Π, e.g., a Turing machine (TM) or a
random-access machine (RAM).

Besides being interesting from a purely complexity-theoretic perspective, such succinct ran-
domized encodings may have powerful applications analogous to those of the known randomized
encodings. One such immediate application is private delegation of computation: a weak client
that wishes to use the aid of a server to run a long computation Π on a short private input x, may
quickly compute a succinct randomized encoding Π̂(x), and have the server decode the result Π(x),
without the server learning anything regarding x (with a little more effort, we can even ensure
privacy of the output, and be able to verify that the server computed correctly).

Beyond shifting computation from weak parties to strong parties, succinct randomized encod-
ings may sometimes save in communication and computation altogether. For instance, one of the
first demonstrated applications of randomized encodings [IK00, IK02a] was to achieve such sav-
ings in multi-party computation (MPC). Indeed, most known MPC solutions explicitly utilize the
circuit Cf (x1, . . . , xm) representing a function f(x1, . . . , xm), and the overhead they incur, e.g. in
communication, may depend on the circuit size |C|. When the function f is succinctly represented
by a program Π, we may have the parties compute first a succinct randomized Π̂(x1, . . . , xm), and
only decode at the end, thereby making communication overhead proportional to the smaller cir-
cuit that computes Π̂. Furthermore, the effort of decoding (proportional to Π’s running time) falls
only on the parties that obtain the output. If the overhead of decoding is small, it may reduce
the computational complexity of the MPC protocol as well. (For instance, now only a single party,
rather than each one of the parties, has to invest resources proportional to the running time of f .)

Do Succinct Randomized Encodings Exist? Under commonly believed complexity-theoretic

1

assumptions, perfectly-private randomized encodings for all of P are unlikely to be computable
too fast, e.g. in fixed polynomial time.1 In contrast, restricting attention to privacy against
computationally-bounded adversaries, no lower bounds or barriers are known. In fact, succinct
indistinguishability obfuscation (iO) for any model of computation (e.g., iO for Turing machines)
would directly imply corresponding succinct randomized encodings.2 Still, constructions of suc-
cinct iO [BCP14, ABG+13], or direct constructions of succinct randomized encodings [GKP+13a,
GHRW14b] are based on considerably strong computational assumptions such as extractable wit-
ness encryption, succinct non-interactive arguments, and differing-inputs obfuscation. In the lan-
guage of [Nao03] these assumptions are not efficiently-falsifiable; furthermore, in some cases they
have been shown implausible [BP13, BCPR14, GGHW14].

1.1 Contributions

Our core contribution is a succinct randomized encoding relying on (non-succinct) iO for circuits,
for any class of a-priori bounded-space computations. That is, the time to encode depends on the
space complexity of the computation, but is essentially independent of its time complexity. The
construction, in fact, satisfies the enhanced guarantee of a succinct garbling schemes [Yao82, AIK06,
BHR12b], with the extra feature that inputs can be encoded independently of the program and its
complexity.

Theorem 1 (Main Theorem, Informally Stated). Assume the existence of iO for P/poly and one-
way functions. Then, for every polynomial s(·), there exists a succinct randomized encoding (or
garbling scheme) for all polynomial-time programs Π with space-complexity S(n) ≤ s(n). Specifi-
cally, the time to encode depends polynomially on the size of Π, the lengths (n,m) of its input and
output, and the space bound s(n), but only polylogarithmically on Π’s running-time.

On the Underlying Assumption: Assuming puncturable pseudo-random functions in NC1 (known
based on various hardness assumptions, such as the hardness of the learning with errors prob-
lem [BLMR13]), and restricting attention to any class of computations with a-priori-bounded run-
ning time t(n), we can settle for iO for circuits in NC1 with input size O(log(t(n)) (which is a
poly(t(n))-time falsifiable assumption on its own). Obtaining iO for this class may be done based
on qualitatively weaker assumptions; indeed, for any polynomial t(·) the construction of Gentry et
al. [GLSW14] would imply iO for the corresponding class based on a polynomial hardness assump-
tion on multi-linear maps.3

We then demonstrate the power of succinct randomized encodings in several applications, some new,
and some analogous to previous applications of randomized encodings, but with new succinctness
properties.

1Specifically, it can be shown that, for a language L, recognized by a given T (n)-time Turing machine Π, succinct
randomized encodings with perfect-privacy computable in time t(n) � T (n), would imply that L has 2-message
interactive proofs with a O(t(n))-time verifier, which already suggests that t(n) should at least depend on the space
(or depth) of the computation. Furthermore, under commonly believed derandomization assumptions (used to show
that AM ⊆ NP [Kv99, MV99]), the above would imply that L can be non-deterministically decided in time poly(t(n)),
for some fixed polynomial poly. Thus, any speedup in encoding would imply related speedup by non-determinism,
whereas significant speedup is believed to be unlikely.

2To encode (Π, x) simply obfuscate a program that given no input computes Π(x). This can be simulated from
y = Π(x) by obfuscating a program that only performs dummy steps and outputs y.

3More generally, one of the challenges in basing iO on an efficient black-box reduction is that the reduction may
have to exhaust the input space to check if the challenge circuits are functionally equivalent. In the above case, this
can be done in time poly(t(n)).

2

Application 1: Succinct Indistinguishability Obfuscation. Our first (and somewhat strongest)
application of succinct randomized encodings is succinct iO for bounded-space computations. In-
distinguishability here means that the (succinct) obfuscations of two programs that have the same
output and running time on all inputs x of some apriori-bounded length n are computationally
indistinguishable. The construction is based on subexponential iO, whereas any form of succinct
iO realized so far [ABG+13, BCP14, IPS15] relies on differing-inputs obfuscation in conjunction
with succinct non-interactive arguments (which already entail strong succinctness properties); as
mentioned before, these are considered very strong up to implausible in certain settings.

Theorem 2 (Informally Stated). Assume the existence of succinct randomized encodings for space-
bounded programs, one-way functions, and iO for P/poly that are all subexponentially-secure. Then,
for every polynomial s(·), there exists a succinct iO for all polynomial-time programs Π with space-
complexity S(n) ≤ s(n), Specifically, the time to obfuscate Π depends polynomially on the size of
Π, the input length n, and the space bound s(n), but only polylogarithmically on Π’s running-time
and output length m.

The theorem is somewhat the succinct analog of previous bootstrapping theorems [App14,
CLTV15] who show how (non-succinct) randomized encodings and pseudo-random functions in
NC1, together with obfuscation for NC1 circuits, imply obfuscation for P/poly. Here, through
succinct randomized encodings, we reduce iO for arbitrarily long computations to iO for circuits
of fixed polynomial size.

Application 2: Succinct Functional Encryption and Reusable Garbling. The recent leap
in the study of obfuscation has brought with it a corresponding leap in functional encryption
(FE). Today, (indistinguishability-based) functional encryption for all circuits can be constructed
from IO [GGH+13a, Wat14], or even from concrete (and efficiently falsifiable) assumptions on
composite order multilinear graded-encodings [GGHZ14]. For models of computation with succinct
representations, we may hope to have succinct FE, where a secret key skΠ, allowing to decryption
Π(x) from an encryption of x, can be computed faster than the running time of Π. However, here
the state-of-art was similar to succinct randomized encodings, or succinct iO, requiring essentially
the same strong (non-falsifiable) assumptions.

One can replace iO for circuits, in the above FE constructions, with the succinct iO from
Theorem 2, and obtain FE where computing skΠ is comparable to (succinctly) obfuscating Π.
This, however, will require the same sub-exponential hardness of iO for circuits. Based on existing
non-succinct functional encryption schemes, we show that succinct FE can be constructed without
relying on sub-exponentially hard primitives.

Theorem 3 (Informally Stated). Assume the existence of succinct randomized encodings for space-
bounded programs, one-way functions, and iO for P/poly. Then, for every polynomial s(·), there
exists a succinct FE where a functional key skΠ could be generated for any polynomial-time program
Π with space-complexity S(n) ≤ s(n), and can decrypt encryption of messages of apriori-bounded
length. The time to derive skΠ depends polynomially on the size of Π, the input and output lengths
(n,m), and space bound s(n), but only polylogarithmically on Π’s running-time.

The scheme is selectively-secure. Assuming also puncturable pseudo-random functions in NC1,
and the same assumptions on multi-linear maps made in [GGHZ14], results in full (adaptive)
security.

As observed in previous work [GHRW14b, CIJ+13, GKP+13b], FE (even indistinguishability
based) directly implies an enhanced version of randomized encodings known as reusable garbling.
Here reusability means that an encoding consists of two parts: The first part Π̂ is independent of any

3

specific input, and only depends on the machine Π. Π̂ can then be “reused” together with a second
part x̂ encoding any input x. We get succinct reusable garbling for space-bounded computations:
encoding Π depends on the space, but is done once, subsequent input-encodings depend only on
the input size n and not on space.

Application 3: Publicly Verifiable Delegation and succinct NIZKs. Succinct random-
ized encodings directly imply a one-round delegation scheme for polynomial-time computations
with bounded space complexity. A main feature of the scheme is public-verifiability, meaning that
given the verifier’s message σ anyone can verify the proof π from the prover, without requiring
any secret verification state. Previous publicly-verifiable schemes relied on strong knowledge as-
sumptions [GLR11, BCCT12, DFH12, BCCT13] or proven secure only in the random oracle model
[Mic00].4 Another prominent feature of the scheme is that it guarantees input privacy for the
verifier. (While this can generically be guaranteed with fully homomorphic encryption, the generic
solution requires the prover to convert the computation into a circuit, which could incur quadratic
blowup; in our solution, the complexity of the prover corresponds to decoding complexity, which
could be made quasi-linear. See further discussion below.)

The delegation scheme is based only on randomized encodings (and one-way functions), and
thus as explained above, can be based only on polynomial assumptions. Assuming also iO, we can
make the verifier’s message reusable; namely, the verifier can publish his message σ once and for
all, and then get non-interactive proofs for multiple computations.5

Theorem 4 (Informally Stated).

1. Assume the existence of succinct randomized encodings for space-bounded programs and one-
way functions. Then, there exists a publicly-verifiable 2-message delegation scheme with input
privacy where verifying a computation given by a program Π and input x, is polynomial in the
size of Π, input length and output lengths (n,m), and the space S required to compute Π(x),
but only polylogarithmic in Π’s running-time.

2. Assuming also iO for P/poly, the verifier message σ is made reusable for computations with
a-priori bounded space s(n). Furthermore, only the one-time generation of σ depends on s(n),
whereas subsequent verification depends only on the input size n (and the security parameter).

Plugging in our succinct iO into the perfect non-interactive zero-knowledge (NIZK) arguments
of Sahai-Waters [SW14a] directly yields a construction of perfect succinct NIZK for bounded-space
NP from iO for P/poly and one-way functions that are both sub-exponentially-secure. The NIZK
has a succinct common reference string whose size is independent of the time required to verify the
NP statement to be proven, and only depends on the space, and the size of the input and witness
(verification time depends only on the length of the statement as in [SW14a]).

iO for NC1 is enough: We note that in all three theorems above, the assumption of iO for P/poly

can replaced with assuming iO for NC1 and puncturable pseudo-random functions in NC1. Indeed,
in the above applications the obfuscated circuit is dominated by computing a succinct randomized
encoding and a puncturable PRF. Here we can rely on the observation that randomized encodings

4Notably, in the setting of private-verification Kalai, Raz, and Rothblum give a solution based on the subexpo-
nential learning with errors assumption [KRR14].

5Our transformation for reusing the verifier’s message is, in fact, a generic one that can be applied to any delegation
scheme, including privately-verifiable schemes (e.g., [KRR14]). For privately-verifiable schemes, the transformation
has an additional advantage: it removes what is known as the verifier rejection problem; specifically, in the transformed
scheme, soundness holds even against provers with a verification oracle.

4

can be composed [AIK06]. Concretely, we can consider an outer layer of a non-succinct shallow
randomized encoding (like Yao [Yao82]) that computes an inner succinct randomized encoding.

Other Applications. We reinspect additional previous applications of (non-succinct) randomized
encodings and note the resulting succinctness features.

One application, briefly mentioned above, is to multiparty computation [IK00, IK02a], where
we can reduce the communication overhead from depending on the circuit size required to compute
a multiparty function f(x1, . . . , xm) to depending on the space required to compute f , which can be
much smaller. When focusing merely on communication this problem has by now general one-round
solutions based on (multi-key) fully-homomorphic encryption [Gen09, AJL+12, LTV12, GGHR14].
Succinct randomized encodings allow in addition to shift the work load to one party (the decoder)
that obtains the output, without inducing extra rounds. (With one extra message, outputs to weak
parties can also be delivered, while guaranteeing their privacy and correctness.)

Another application is to amplification of key-dependent message security (KDM). In KDM
encryption schemes, semantic security needs to hold, even when the adversary obtains encryptions
of functions of the secret key taken from a certain class F . Applebaum [App11a] shows that any
scheme that is KDM-secure with respect to some class of functions F can be made resilient to a
bigger class F ′ ⊇ F , if functions in F ′ can be randomly encoded in F . Our succinct randomized
encodings will essentially imply that KDM-security for circuits of any fixed polynomial size s(·)
(such as the scheme of [BHHI10]) can be amplified to KDM-security for functions that can be
computed by programs with space S � s(n), but could potentially have larger running time.

Dependence on the output length. As stated above, the size of our basic randomized en-
codings grows with the output of the underlying computation. Such dependence can be easily
shown to be inherent as long as we require simulation-based security (using a standard incom-
pressibility argument). Nevertheless, this dependence can be removed if we settle for a weaker
indistinguishability-based guarantee saying that randomized encodings of two computations lead-
ing to the same output are indistinguishable. This guarantee, in fact, suffices, and allows removing
output-dependence, in all of the applications above, except for the multi-party application (which
requires simulation on its own).

Optimizing Decoding Time. While we have so far concentrated on how fast can a randomized
encoding be computed, one may also be interested in optimizing the time and space complexity of
decoding. Ideally the complexity of decoding should be as close as possible to that of the original
computation. In our basic scheme, decoding Π̂(x) of a T -time S-space computation Π(x), where
S is a-priori bounded by some polynomial s(n), requires roughly time T · poly(s(n)) and space
poly(s(n)), while encoding takes only time poly(s(n)) (up to polynomial factors in the security
parameter). This complexity is naturally inherited by all our applications of randomized encodings:
for instance, the time to obfuscate a program Π is roughly poly(s(n)), and the time to evaluate the
obfuscation (given by Theorem 2) on an input x is proportional to the decoding time for Π̂(x).

We show how to optimize our randomized encodings to improve decoding time to roughly
T + s(n). This optimization further reduces the encoding time from poly(s(n)) to Õ(s(n)).

Proposition 1 (Improved Efficiency, Informally Stated). Assume the existence of iO for P/poly
and one-way functions. Then, for every polynomial s(·), there exists a succinct randomized en-
coding (or garbling scheme) for all polynomial-time RAM Π with space-complexity S(n) ≤ s(n).
Specifically, the time to encode is quasi-linear in the size of Π, input length n, and the space bound
s(n). The time to decode Π̂(x) is polynomial in the size of Π, and quasi-linear in the space bound
s(n) and the time T for evaluating Π(x).

5

The improvement in encoding and decoding efficiency leads to improved efficiency for our appli-
cations of succinct randomized encoding. For instance, we obtain a succinct iO for bounded space
RAM that takes time roughly s(n) to obfuscate, and T + s(n) to evaluate. Other applications
such as FE, delegation, MPC directly inherit the improved decoding complexity (leading to better
decryption time, prover efficiency, and computational complexity respectively).

We note that the above efficiency optimizations are inspired by a concurrent work of Canetti,
Holmgren, Jain, and Vaikuntanathan [CHJV15], who constructed succinct iO for bounded space
RAM, where evaluation takes time roughly T + s(n). We investigated these optimizations after
being made aware that they achieve this feature.

1.2 Techniques

We next overview our construction of succinct randomized encodings for bounded space programs.
Beyond iO, the main tool on which we rely is existing non-succinct randomized encodings, or more
accurately their enhanced version of garbling schemes. As mentioned before, garbling schemes have
the extra feature that the input x can be encoded separately of the program Π given a shared
(short) string key [Yao82, BHR12b]. When considering (non-succinct) garbling, e.g. where Π is a
circuit, a salient advantage of this separation is that the time to compute the encoded x̂ depends on
the length of x, but not on the typically larger running time (or circuit size) of Π. In contrast, the
time to compute the encoded Π̂ may be as large as its running time. This feature of “independent
input encoding” is crucial for our construction.

We construct succinct randomized encodings, or in fact, succinct garbling schemes, in two
steps: we first construct a non-succinct garbling scheme for bounded-space computations, with
the property that the garbled program consists of many “small garbled pieces” that can be gener-
ated separately. In the second step, we use iO to “compress” the size of the garbled program, by
providing an obfuscated program that takes an index as input and generates the “garbled piece”
corresponding to that index. As a result, the final garbled program (namely the obfuscated pro-
gram) is small and can be efficiently computed. It is only at evaluation time that the underlying
non-succinct garbled program is unravelled, by running the obfuscated program on every index,
and decoded.

The Non-succinct Garbling Scheme. We outline the non succinct garbling scheme for bounded
computations, based on any one-way function. For concreteness, we shall focus on Turing machines.
(The solution extends to any model of bounded-space computation, e.g. RAM, as long as a com-
putation can be decomposed into a sequence of steps operating on one memory.)

A “trivial” approach towards such garbling is to simply transform any polynomial-time Turing
machine into a circuit and then garble the circuit. While our construction in essence relies on
this principle, it will in fact invoke garbling for “small” fixed-sized circuits. Concretely, we rely on
the existence of a circuit garbling scheme satisfying two additional properties. First, we require
that the shared string key, and thus also the input encoding, are generated independently of the
circuit to be garbled (e.g., key is sampled at random and given to both the input-encoding and
circuit-garbling procedures). Second, we require that encoded inputs can be simulated, given only
the input size, whereas the garbled program is simulated using the result Π(x) of the computation
(and the randomness used to simulate the encoded input). We refer to such schemes as garbling
schemes with independent input encoding and note that Yao’s basic scheme [Yao82] satisfies the
two properties.

Our non-succinct garbling scheme now proceeds as follows. Let Π be a Turing machine with
bounded space complexity s(·), running-time t(·), and inputs of length n. We construct a “chain”

6

of t(n) garbled circuits that evaluate Π step by step. More precisely, we first generate keys
key1, . . . ,keyt(n) for the t(n) garbled circuits. The jth garbled circuit (which is computed us-
ing key keyj) takes as input some state of Π and computes the next state (ie., the state after one
computation step); if the next state is a final state, it returns the output generated by Π, otherwise
it outputs an encoding of this new state using the next key keyj+1. (Note that after t(n) steps we
are guaranteed to get to a final state and thus this process is well-defined.)

To encode the input, we simply encode the initial state of Π, including the input x, using key1.
To evaluate the garbled program, we sequentially evaluate each garbled circuit, using the encodings
generated in the previous one as inputs to the next one, and so on until the output is generated.

Security of the Non-Succinct Scheme: an Overview. To show that this construction is a
secure (non-succinct) garbling scheme we need to exhibit a simulator that, given just the output
y = Π(x) of the program Π on input x and the number of steps t∗ taken by Π(x), can simulate the
encoded input and program. (The reason we provide the simulation with the number of steps t∗

is that we desire a garbling scheme with a “per-instance efficiency”—that is, the evaluation time
is polynomial in the actual running-time t∗ and not just the worst-case running-time. To achieve
such “per-instance efficiency” requires leaking the running-time, which is why the simulator gets
access to it.) Towards this, we start by simulating the t∗th garbled circuit with the output being

set to y; this simulation generates an encoded input c̃onft∗−1 and a garbled program Π̃t∗ .
We then iteratively in descending order simulate the jth garbled circuits Π̃j with the output

being set to c̃onfj+1 generated in the previously simulated garbled circuit. We finally simulate

the remaining j > t∗ garbled circuits Π̃j with the output being set to some arbitrary output in

the range of the circuit (e.g., the output y). The simulated encoded input is then c̃onf1 and the
simulated garbled program is (Π̃1, . . . Π̃t(n)).

6

To prove indistinguishability of the simulated garbling and the real garbling, we consider a
sequence of hybrid experiments H0, . . . ,Ht(n), where in Hj the first j garbled circuits are simu-
lated, and the remaining t(n)− j garbled circuits are honestly generated. To “stitch together” the
simulated circuits with the honestly generated ones, the jth garbled circuit is simulated using as
output an honest encoding ĉonfj of the actual configuration confj of the TM Π after j steps.

It follows from the security of the garbling scheme that hybrids Hj and Hj+1 are indistinguish-
able and thus also H0 (i.e., the real experiment) and Ht(n).

Let us finally note a useful property of the above-mentioned simulation. Due to the fact that
we rely on a garbling scheme with independent input encoding, each garbled circuit can in fact
be independently simulated—recall that the independent input encoding property guarantees that
encoded inputs can be simulated without knowledge of the circuit to be computed and thus all
simulated encoded inputs c̃onf1, . . . c̃onft(n) can be generated in an initial step. Next, the garbled
circuits can be simulated in any order.

The Succinct Garbling Scheme: an Overview. We now show how to make this garbling
scheme succinct. The idea is simple: instead of providing the actual garbled circuits in the clear,
we provide an obfuscation of the randomized program that generates these garbled circuits. More
precisely, we provide an iO of a program Πs,s′(·) where s and s′ are seeds for a PRF F: Πs,s′(j),
given a “time-step” j ∈ [t(n)], generates the jth garbled circuit in the non-succinct garbling of Π
using pseudo-random coins generated by the PRF with seed s and s′. Specifically, it uses F(s, j)
and F(s, j+ 1) as randomness to generate keyj and keyj+1 (recall that the functionality of the jth

circuit depends on keyj+1), and uses F(s′, j) as randomness for garbling the jth circuit.

6This “layered” simulation strategy resembles that of Applebaum, Ishai, and Kushilevitz in the context of arith-
metic garbling [AIK11].

7

Now, the new succinct garbled program is the obfuscated program Λ
$← iO(Πs,s′), and the

encoding x̂ of x remains the same as before, except that now it is generated using pseudo-random
coins F(s, 1). Given such a garbled pair Λ and x̂, one can compute the output by gradually
generating the non-succinct garbled program, one garbled circuit at a time, by computing Λ on
every time step j, and evaluating the produced garbled circuit with x̂ until the output is produced.
(This way, the evaluation still has “per-instance efficiency”.)

Security of the Succinct Scheme: an Overview. Given that the new succinct garbled program
Λ produces “pieces” of the non-succinct garbled program, the natural idea for simulating the
succinct garbled program is to obfuscate a program that produces “pieces” of the simulated non-
succinct garbled program. The above-mentioned “independent simulation” property of the non-
succinct garbling (following from independent input encoding) enables to fulfill this idea.

More precisely, given an output y and the running-time t∗ of Π(x), the simulator outputs the
obfuscation Λ̃ of a program Π̃y,t∗,s,s′ that, given input j, outputs a simulated jth garbled circuit,
using randomness F(s, j+ 1) to generate c̃onfj+1 as the output, and F(s, j) and F(s′, j) as the extra

randomness needed to simulate the input c̃onfj and the garbled Πj .
7 The encoded input x̃ is

simulated as in the non-succinct garbling scheme, but using pseudo-random coins F(s, 1).
It is not hard to see that this simulation works if the obfuscation is virtually black-box secure,

as (non-succinct) garbling security guarantees that the entire truth tables of the two programs Πs,s′

and Π̃y,t∗,s,s′ are indistinguishable given an encoding of x, when the hardwired PRF keys s, s′ are
chosen at random. Our goal, however, is to show that iO suffices. Towards this goal, we consider a
sequence of hybrid experiments H ′0, . . . ,H

′
t(n) with a corresponding sequence of obfuscated programs

Π̃s,s′

0 , . . . , Π̃s,s′

t(n) that “morph” gradually from the real Π to the fully simulated Π̃. Specifically, the

program Π̃s,s′

j obfuscated in H ′j produces a non-succinct hybrid garbled program as in hybrid Hj in
the proof of the non-succinct garbling scheme, except that pseudo-random coins are used instead of
truly random coins. That is, for the first j inputs, Π̃j produces simulated garbled circuits, and for
the rest of the inputs, it produces honestly generated garbled circuits, having hardwired the true
configuration confj+1.

To prove indistinguishability of any two consecutive hybrids H ′j and H ′j+1, we rely on the
punctured program technique of Sahai and Waters [SW14a] to replace pseudo-random coins F(s, j+
1), F(s′, j + 1) for generating the j + 1st simulated garbled circuit with truly random coins, and
then rely on the indistinguishability of the simulation of the j + 1st garbled circuit. A bit more
concretely, at each step we puncture the seeds s, s′ only on the (three) points corresponding to the

j + 1st step, and hardwire instead the corresponding outputs generated by Π̃s,s′

j ; next, relying on
the puncturing guarantee, we can sample these outputs using true independent randomness. At
his point, we can already replace the real hardwired garbling with a simulated one. Finally, we go
back to generating the hardwired value pseudorandomly as part of the circuit’s logic, now identical

to Π̃s,s′

j+1, and “unpuncture” the seeds s, s′. We note that each such step requires hardwiring a

new (real) intermediate configuration confj+1 (used to simulate the j + 1st garbling), but now the
previous hardwired configuration confj can be “forgotten” and blowup is avoided.

iO for a Simple Class of Circuits is Enough. The obfuscated circuits in the construction are
of a special kind—their input size is O(log t(n)). Canetti et al. [CLTV15] show that iO for NC1 can
be bootstrapped to obtain iO for all circuits, assuming puncturable PRFs in NC1 [BLMR13], and
incurring a security loss that is exponential in the size of the input. Accordingly, for polynomial

7Recall that simulating a garbled circuit requires both the output and the randomness for simulating the input
encoding.

8

t(n), it suffices to assume (polynomially-secure) iO for classes in NC1 with logarithmic-size inputs.

Generalizing and Optimizing. The solution described above does not apply uniquely to Turing
machines, but rather to any model of computation that can be divided into sequential steps using
one memory, for instance random access machines (RAMs). Thus it directly gives a succinct
garbling scheme for bounded space RAMs.

Also note that, in the described solution, we can in fact replace the underlying circuit garbling
scheme, with any garbling scheme, as long as it admits independent input encoding. For instance,
in the case the program Π is a RAM, we may use previous garbled RAM solutions [LO13, GHL+14,
GLOS15]. The benefit is that this allows optimizing the efficiency of our scheme. Indeed, in the
solution described above, each step of the machine is translated to a garbled circuit of size O(s(n))
(up to polynomial factors in the security parameter), which means that the complexity of encoding
is polyiO(s(n)), where polyiO(·) is the overhead due to obfuscation, and the complexity of decoding
for a T -time computation Π(x) is at least T · polyiO(s(n)), which may be significantly larger than
the original computation.

In contrast, known garbled RAM solutions provide a more efficient way of garbling RAMs
than converting them into circuits, taking into consideration the RAM structure, and guaranteeing
that encoding and decoding require essentially the same time and space as the original RAM
computation. Aiming to leverage this efficiency in our solution, instead of partitioning a RAM
computation into t(n) steps, each implemented by a circuit of size s(n), we can partition it to
t(n)/s(n) pieces, where each piece is an s(n)-step RAM. The encoding and decoding time for each
piece are essentially linear in its running time O(s(n)) (whereas a circuit implementing any such
piece might be of size Ω(s(n)2)).

This modification on its own may still be insufficient; indeed, obfuscating the circuit that
produces the garbled RAM may incur non-linear overhead polyiO(·), so that eventually decoding
may take time polyiO(s(n)) · t(n)/s(n) which may be again as large as t(n) · s(n).

To circumvent this blowup, and as a result of independent interest, we show how to bootstrap
any iO for circuits to one that has quasi-linear blowup. Overall, in the new solution, for a T -time
S-space computation computation Π(x) where S < s(n), encoding takes time Õ(s(n)) and decoding
Π̂(x) takes time O(T + s(n)).

1.2.1 Main Ideas behind the Applications

We briefly sketch the main ideas behind our main applications of succinct randomized encodings.

Succinct iO. The construction of succinct iO from randomized encoding and exponential iO for
circuits is a natural instantiation of the bootstrapping approach suggested by Applebaum [App14].
There, the goal is to reduce obfuscation of general circuits to obfuscation of NC1 circuits; our goal
is to reduce obfuscation of programs with large running time (but bounded space) to obfuscation
of significantly smaller circuits. To obfuscate a succinct program Π with respect to inputs of size at
most n, we obfuscate a small circuit CΠ,K that has a hardwired seed K for a PRF, and given input
x, applies the PRF to x to derive randomness, and then computes a succinct randomized encoding
of Π̂(x). The obfuscated iO(Π), given input x computes the encoding, decodes it, and returns the
result.

The analysis in [App14] establishes security in case that the circuit obfuscator iO is virtually
black-box secure. We show that if iO has 2−λ

ε
-security for security parameter λ � nε, and the

PRF is puncturable that is also 2−λ
ε
-secure, then a similar result holds for iO (rather than virtual

black-box). The proof is based on a general probabilistic iO argument, an abstraction recently
made by Canetti et al. [CLTV15].

9

Succinct FE. The construction of succinct functional encryption follows rather directly by plugging
in our randomized encodings into previous constructions of non-succinct functional encryption.
Concretely, starting with the scheme of Gentry et al. [GHRW14b], we can replace the non-succinct
randomized encodings for RAM in their construction with our succinct randomized encodings, and
obtain selectively-secure FE.8 Alternatively, starting from the scheme of Garg et al. [GGHZ14], we
can replace randomized encodings for circuits in their construction with our succinct randomized
encodings, and get an adaptively secure succinct FE scheme. (Here we also need to rely on the
fact that succinct randomized encodings can be computed in low depth, which is required in their
construction.) We note that in both cases, our succinct randomized encodings already satisfy the
required security for their security proof to go through, and only the succinctness features change.

Publicly-Verifiable Delegation. Finally, we sketch the basic ideas behind the delegation scheme.
The delegation scheme is pretty simple and similar in spirit to previous delegation schemes (in a
weaker processing model) [AIK10, GGP10, PRV12, GKP+13b]. To delegate a computation, given

by Π and x, the verifier simply sends the prover a randomized encoding Π̂′(x, r), where Π′ is
a machine that returns r if and only if it accepts x, and r is a sufficiently long random string.
The security of the randomized encoding implies that the prover learns nothing of r, unless the
computation is accepting. The scheme can be easily made publicly verifiable by publishing f(r) for
some one-way function f . Furthermore, the scheme ensures input-privacy for the verifier.

We then propose a simple transformation that can be applied to any delegation scheme in order
to make the first verifier message reusable. The idea is natural: we let the verifier’s first message
be an obfuscation of a circuit CK that has a hardwired key K for a puncturable PRF, and given a
computation (Π, x), applies the PRF to derive randomness, and generates a first message for the
delegation scheme. Thus, for each new computation, a first message is effectively sampled afresh.
Relying on iO and the security of the puncturable PRF, we can show that (non-adaptive) soundness
is guaranteed. The transformation can also be applied to privately-verifiable delegation schemes,
such as the one of [KRR14] and maintains soundness, even if the prover has a verification oracle.

1.3 Concurrent and Subsequent Work

In concurrent work, Canetti, Holmgren, Jain, and Vaikuntanathan construct succinct iO for RAMs
assuming subexponentially secure iO for P/poly. The complexity of their succinct iO is also such
that obfuscation depends on an a-priori bound on space, but not on the running time. This, in
particular, implies a succinct randomized encoding with similar parameters.

The technique that they employ is quite different from ours, and requires stronger computa-
tional assumptions. Their main step is also the construction of a succinct garbling scheme for
RAMs; however, their succinct garbling scheme is very different. At a high-level, in our solution,
the obfuscation is only responsible for garbling (or encoding); the evaluation of the garbled compo-
nents (or decoding) is done “externally” by the evaluator; encoding and decoding themselves are
implemented using existing garbling schemes. In their solution, the obfuscation deals not only with
encoding, but also with decoding, getting as input at every step the encrypted and authenticated
current state of the computation. They implement this mechanism by designing a primitive that
they call Asymmetrically Constrained Encapsulation, in a careful combination with an oblivious
RAM scheme. (In our basic solution, oblivious RAMs are not needed as we rely on garbling for
circuits, which are already an oblivious model of computation, but an inefficient one that touches
all of the state in every step. In our optimizations, the use of oblivious RAM is abstracted by

8Formally, their construction is given in terms of garbling for RAM rather than randomized encodings, but these
are actually used as randomized encodings, without making special use of independent input encoding.

10

the underlying garbled RAMs, which are indeed implemented in [LO13, GHL+14, GLOS15] using
oblivious RAMs.)

A disadvantage of their approach is that the circuit deals with inputs of size proportional to
the security parameter (due to encryption and authentication of state bits), whereas in our case
the circuit just takes a logarithmic size index (representing a time point in the computation); as
discussed above, iO for logarithmic length input seems to be a weaker assumption (in particular, it
is falsifiable), and can be based on polynomial assumptions on multilinear maps. On the other hand,
performing the entire evaluation “inside the obfuscation” as in their approach would eventually lead
to a fully succinct solution in subsequent work (see below).

Full Succinctness. At first glance, our approach seems to suggest a natural way to achieve full
succinctness, without any dependence on space. Instead of garbling a sequence of transition circuits,
we can garble each gate in the circuit representation of the computation separately; indeed, the
circuit corresponding to the computation can be succinctly represented by a small circuit that can
output each gate and its corresponding neighbours. More accurately, as in the previous solution,
we will garbled an augmented gate that encodes the output under the keys corresponding to its
(constant number of) neighbours (towards the output gate). Again, garbling will be derandomized
using a pseudo-random function.

This approach will, in fact, give a fully succinct garbling scheme if we assume virtual black-box
security for the above “gate garbler”, as once again the truth tables of a real and a simulated
garbling will be computationally indistinguishable. However, assuming iO it is not clear how to
achieve any advantage over the previous solution. Intuitively, whenever we invoke iO we cannot
“forget” an intermediate value in the computation, before all the connected gates in the layer above
are simulated (inducing new values to remember). In the worst-case, we are forced to remember
an entire configuration.

In a beautiful subsequent work, Koppula, Lewko, and Waters [KLW15] construct fully-succinct
randomized encodings from iO. Their solution takes a similar route to that of Canetti et al.
[CHJV15] in that each step of the computation is done “under the obfuscation”. To overcome
the space barrier, they introduce a clever “selective enforcement mechanism” that allows avoiding
storage of the entire state, by storing a special purpose succinct commitment. In the analysis, this
commitment can be indistinguishably replaced with a commitment that statistically binds some
selected location in the memory corresponding to a given step of the computation, and is thus
“iO-friendly” in their terminology.

Organization In Section 2, we provide preliminaries, including: different models of computation
considered in the paper, definitions of garbling schemes and iO with different efficiency levels. In
Section 3, we construct succinct garbling schemes for bounded space Turing machines. We then
generalize this construction to any model of bounded space computation, in particular, RAM, and
optimize the decoding efficiency in Section 4. Finally, in Section 5, we present applications of
succinct randomized encodings to succint iO and delegation; we omit details for other applications
that are achieved by directly plugging in randomized encodings in previous works. In Appendix A,
we show how to bootstrap any circuit iO to one with quasi-linear blowup.

2 Preliminaries

Let N denote the set of positive integers, and [n] denote the set {1, 2, . . . , n}. We denote by PPT
probabilistic polynomial time Turing machines. The term negligible is used for denoting functions
that are (asymptotically) smaller than one over any polynomial. More precisely, a function ν(·)

11

from non-negative integers to reals is called negligible if for every constant c > 0 and all sufficiently
large n, it holds that ν(n) < n−c.

2.1 Models of Computation

In this work we will consider different models of computation. Below we define formally different
classes of algorithms; we will start by defining classes of deterministic algorithms of fixed polynomial
size, and then move to define classes of randomized algorithms and classes of algorithms of arbitrary
polynomial size.

Classes of deterministic algorithms of fixed polynomial size.

Polynomial-time Circuits. For every polynomial D, the class CIR[D] = {Cλ} of include all
deterministic circuits of size at most D(λ).

NC1 Circuits. For every constant c and polynomial D, the class NCc[D] = {Cλ} of polynomial-
sized circuits of depth c log λ include all deterministic circuits of size D(λ) and depth at most
c log λ.

Exponential-time Turing Machines. We consider a canonical representation of Turing ma-
chines M = (M ′, n,m, S, T) with |n| = |m| = |S| = |T | = λ and n,m ≤ S ≤ T ; M takes
input x of length n, and runs M ′(x) using S space for at most T steps, and finally out-
puts the first m bits of the output of M ′. (If M ′(x) does not halt in time T or requires
more than S space, M outputs ⊥.) In other words, given the description M of a Turing
machine in this representation, one can efficiently read off its bound parameters denoted as
(M.n,M.m,M.S,M.T).

Now we define the class of exponential time Turing machines. For every polynomial D, the
class TM[D] = {Mλ} includes all deterministic Turing machines ΠM containing the canonical
representation of a Turing machine M of size D(λ); ΠM (x, t) takes input x and t of length
M.n and λ respectively, and runs M(x) for t steps, and finally outputs what M returns.

Remark: Note that machine ΠM (x, t) on any input terminates in t < 2λ, and hence its
output is well-defined. Furthermore, for any two Turing machines M1 and M2, they have
the same functionality if and only if they produce identical outputs and run for the same
number of steps for every input x. This property is utilized when defining and constructing
indistinguishability obfuscation for Turing machines, as in previous work [BCP14].

Exponential-time RAM Machines. We consider a canonical representation of RAM machines
R = (R′, n,m, S, T) identical to the canonical representation of Turing machines above.

For every polynomial D, the class RAM[D] = {Rλ} of polynomial-sized RAM machines
include all deterministic RAM machines ΠR, defined as ΠM above for Turning machines,
except that the Turing machine M is replace with a RAM machine R.

Classes of randomized algorithms: The above defined classes contain only deterministic algo-
rithms. We define analogously these classes for their corresponding randomized algorithms. Let
X [D] be any class defined above, we denote by rX [D] the corresponding class of randomized algo-
rithms. For example rCIR[D] denote all randomized circuits of size D(λ), and rTM[D] denote all
randomized turning machine of size D(λ).

12

Classes of (arbitrary) polynomial-sized algorithms: The above defined classes consist of
algorithms of a fixed polynomial D description size. We define corresponding classes of arbitrary
polynomial size. Let X [D] be any class defined above, we simply denote by X = ∪polyDX [D] the
corresponding class of algorithms of arbitrary polynomial size. For instance, CIR and rCIR denotes
all deterministic and randomized polynomial-sized circuits, and TM denotes all polynomial-sized
Turing machines.

In the rest of the paper, when we write a family of algorithms {ALλ} ∈ X , we mean {ALλ} ∈
X [D] for some polynomial D. This means, the size of the family of algorithms is bounded by
some polynomial. Below, for convenience of notation, when X is a class of algorithms of arbitrary
polynomial size, we write AL ∈ Xλ as a short hand for {ALλ} ∈ {Xλ}.
Classes of well-formed algorithms: In the rest of the preliminary, we define various crypto-
graphic primitives. In order to avoid repeating the definitions for different classes of machines, we
provide definitions for general classes of algorithms {ALλ} that can be instantiated with specific
classes defined above. In particular, we will work with classes of algorithms that are well-formed,
satisfying the following properties:

1. For every AL ∈ ALλ, and input x, AL on input x terminates in 2λ steps. Note that this also
implies that AL has bounded input and output lengths.

2. the size of every ensemble of algorithms {ALλ} ∈ {ALλ} is bounded by some polynomial D
in λ, and

3. given the description of an algorithm AL ∈ ALλ, one can efficiently read off the bound
parameters AL.n,AL.m,AL.S,AL.T .

All above defined algorithm classes are well-formed. Below, we denote by TAL(x) the running time
of AL on input x, and TAL the worst case running time of AL. Note that well-formed algorithm
classes are not necessarily efficient; for instance the class of polynomial-sized Turing machines TM
contain Turing machines that run for exponential time. In order to define cryptographic primitives
for only polynomial-time algorithms, we will use the notation ALGT =

{
ALTλ

}
to denote the class

of algorithms in ALG = {ALλ} that run in time T (λ) (in particular, these with ALλ.T < T (λ)).
In the rest of the paper, all algorithm classes are well-formed.

2.2 Garbling Schemes

In this section, we define garbling schemes, following in most part the definitions in [BHR12b].
As explained in the introduction, the main difference between garbling schemes and randomized
encodings is that in garbling schemes the input is encoded separately from the program. These
extra properties will be utilized in our constructions of succinct randomized encodings (or more
generally succinct garbling schemes). Our applications will only require randomized encodings;
their definition is given in Section 5, and is a direct projection of the definition of garbling schemes.

Definition 1 (Garbling Scheme). A Garbling scheme GS for a class of (well-formed) determinis-
tic algorithms {ALλ}λ∈N consists of algorithms GS = (Garb,Encode,Eval) satisfying the following
properties:

Syntax: For every λ ∈ N, AL ∈ ALλ and input x,

• Garb is probabilistic and on input (1λ, AL) outputs a pair (ÂL,key).9

9Note that as the algorithm class is well-formed, Garb implicitly has all bound parameters of AL.

13

• Encode is deterministic and on input (key, x) outputs x̂.

• Eval is deterministic and on input (ÂL, x̂) produced by Garb,Encode outputs y.

Correctness: For every polynomial T and every family of algorithms {ALλ} ∈
{
ALTλ

}
and se-

quence of inputs {xλ}, There exists a negligible function µ, such that, for every λ ∈ N,
AL = ALλ, x = xλ,

Pr[(ÂL,key)
$← Garb(1λ, AL), x̂

$← Encode(key, x) : Eval(ÂL, x̂) 6= AL(x)] ≤ µ(λ)

Definition 2 (Security of a Garbling Scheme). We say that a Garbling scheme GS for a class of
deterministic algorithms {ALλ}λ∈N is secure if the following holds.

Security: There exists a uniform machine Sim, such that, for every non-uniform PPT distinguisher
D, every polynomial T ′, every sequence of algorithms {ALλ} ∈ {ALT

′
λ }, and sequence of inputs

{xλ} where xλ ∈ {0, 1}ALλ.n, there exists a negligible function µ, such that, for every λ ∈ N,
AL = ALλ, x = xλ the following holds:∣∣∣Pr[(ÂL,key)

$← Garb(1λ, AL), x̂
$← Encode(key, x) : D(ÂL, x̂) = 1]

− Pr[(ÃL, x̃)
$← Sim(1λ, |x|, |AL|, (n,m, S, T), TAL(x), AL(x)) : D(ÃL, x̃) = 1]

∣∣∣ ≤ µ(λ)

where (n,m, S, T) = (AL.n,AL.m,AL.S,AL.T) and Sim runs in time poly(λ, T). µ is called
the distinguishing gap.

Furthermore, we say that GS is δ-indistinguishable if the above security condition holds with a
distinguishing gap µ bounded by δ. Especially, GS is sub-exponentially indistinguishable if µ(λ)
is bounded by 2−λ

ε
for a constant ε.

We note that the sub-exponentially indistinguishability defined above is weaker than usual sub-
exponential hardness assumptions in that the distinguishing gap only need to be small for PPT
distinguisher, rather than sub-exponential time distinguishes.

We remark that in the above definition, simulator Sim receives many inputs, meaning that, a
garbled pair ÂL, x̂ reveals nothing but the following: The output AL(x), instance running time
TAL(x), input length |x| and machine size |AL|, together with various parameters (n,m, S, T) of
AL. We note that the leakage of the instance running time is necessary in order to achieve instance-
based efficiency (see efficiency guarantees below). The leakage of |AL| can be avoided by padding
machines if an upper bound on their size is known. The leakage of parameters (n,m, S, T) can be
avoided by setting them to 2λ; see Remark 1 for more details. In particular, when the algorithms
are circuits, inputs to the simulation algorithm can be simplified to (1λ, |x|, |C|, AL(x)), since all
bound parameters n,m, S, T can be set to 2λ.

Efficiency Guarantees. we proceed to describe the efficiency requirements for garbling schemes.
When considering only circuit classes, all algorithms Garb,Encode,Eval should be polynomial time
machines, that is, the complexity of Garb,Eval scales with the size of the circuit |C|, and that of
Encode with the input length |x|. However, when considering general algorithm classes, since the
description size |AL| could be much smaller than the running time AL.T , or even other parameters
AL.S,AL.n,AL.m, there could be different variants of efficiency guarantees, depending on what
parameters the complexity of the algorithms depends on. Below we define different variants.

14

Definition 3 (Different Levels of Efficiency of Garbling Schemes). We say that a garbling scheme
GS for a class of deterministic algorithms {ALλ}λ∈N has succinctness or I/O / space / time-
dependent complexity if the following holds.

Optimal efficiency: There exists universal polynomials pGarb, pEncode, pEval, such that, for every
λ ∈ N, AL ∈ ALλ and input x ∈ {0, 1}AL.n,

• (Â,key)
$← Garb(1λ, AL) runs in time pGarb(λ, |AL|, AL.m),10

• x̂ = Encode(key, x) runs in time pEncode(λ, |x|, AL.m), and

• y = Eval(ÂL, x̂) runs in time pEval(λ, |AL|, |x|, AL.m)×TAL(x), with overwhelming prob-
ability over the random coins of Garb. We note that Eval has instance-based efficiency.

I/O-dependent complexity: The above efficiency conditions hold with pGarb, pEncode, pEval taking
AL.n,AL.m as additional parameters.

Space-dependent complexity: The above efficiency conditions hold with pGarb, pEncode, pEval tak-
ing AL.S as an additional parameter.

Linear time-dependent complexity: The above efficiency conditions hold with pGarb, pEncode
taking AL.T as an additional parameter and depending (quasi-)linearly on AL.T , and the
running time of Eval is bounded by AL.T · pEval(λ, |AL|, |x|).

Furthermore, we say that the garbling scheme GS has succinct input encodings if the encoding
algorithm Encode(key, x) runs in time pEncode(1

λ, |x|).

We say that a garbling scheme is “succinct” if its complexity depends only poly-logarithmically
on the time bound. Thus a scheme with space-dependent complexity is succinct for a class of
algorithms whose space usage is bounded by a fixed polynomial.

On Output Dependence. Note that in the optimal efficiency defined above, the complexity of the
algorithms depends on the length of their respective inputs and the bound on their output lengths
AL.m. We argue that this is necessary as long as we require simulation-based security. This follows
from a standard incompressibility argument. Indeed, assume the existence of a pseudorandom
generator G, and consider the encoding of G and a random input seed s. We claim that the size of
the garbled function Ĝ and encoded input ŝ must be as large as the output |G(s)|. Otherwise, the
efficient simulator can “compress” random strings, as it cannot distinguish the actual output G(s)
from a truly uniform one.

The dependence on the output size could possibly be eliminated if we settle for indistinguishability-
based security, meaning that the garbling of two (equal-length) program-input pairs (ÂL0, x̂0), (ÂL1, x̂1)
are computationally indistinguishable, provided that AL0(x0) and AL1(x1) output the same result
after a similar number of steps. In Section 5.1, we show how this can be achieved assuming iO.

Static v.s. Adaptive Security Throughout this work, we consider statically secure garbling schemes;
that is, the privacy guarantees only hold when the entire computation (AL, x) to be garbled is chosen
statically. In the literature, stronger privacy guarantees have been considered [BHR12a, BHK13],

allowing the input x to be chosen maliciously and adaptively depending on the garbled ÂL.
We leave open the question of constructing succinct adaptively secure garbling schemes.

Garbling Schemes for Specific Algorithm Classes. Next we instantiate the above definition
of garbling scheme for general algorithm classed with concrete classes.

10Note that the running time of Garb and similarly other algorithms that takes AL as an input, implicitly depends
logarithmically on the time bound of AL, as its description contains the time bound AL.T .

15

Definition 4 (Garbling Scheme for Polynomial-sized Circuits). A triplet of algorithms GSCIR =
(GarbCIR,EncodeCIR,EvalCIR) is a garbling scheme (with linear-time-dependent complexity) for poly-
nomial sized circuits if it is a garbling scheme for class CIR (with linear-time-dependent complexity).

We note that in the case of circuits, succinctness means the complexity scales polynomially in
|C|, whereas linear-time-dependency means the complexity scales linearly with |C|.

Definition 5 (Garbling Schemes for Polynomial Time Turing Machines). A triplet GSTM =
(GarbTM,EncodeTM,EvalTM) of algorithms is a garbling scheme with optimal efficiency or I/O-
/ space- / linear-time-dependent complexity (and succinct input encodings) for Turing machines, if
it is a garbling scheme for class TM, with the same level of efficiency.

Different efficiency requirements impose qualitatively different restrictions. In this work, we
will construct a garbling scheme for Turing machines with space-dependent complexity assuming
indistinguishability obfuscation for circuits. The construction of garbling scheme from iO for Turing
machines, sketched in the introduction, has I/O-dependent complexity. On the other hand, we show
that a scheme with is impossible; in particular, the complexity of the scheme must scale with the
bound on the output length.

Definition 6 (Garbling Schemes for Polynomial Time RAM Machines). A triplet GSRAM =
(GarbRAM,EncodeRAM,EvalRAM) of algorithms is a garbling scheme for polynomial-time RAM ma-
chines with optimal efficiency or I/O- / space- / linear-time- dependent-complexity, (and succinct
input encodings), if it is a garbling scheme for class RAM, with the same level of efficiency.

Recently, the works by [LO13, GHL+14] give construction of a garbling scheme for RAM ma-
chines with linear-time-dependent complexity and succinct input encodings, assuming only one-way
functions.

Garbled Circuits with independent input encoding. In this work, we will make use of a
garbling scheme for circuits with a special structural property. In Definition 4, the key key for
garbling inputs is generated depending on the circuit (by Garb(1λ, C)); the special property of
a circuit garbling scheme is that the key can be generated depending only on the length of the
input 1|x| and the security parameter, which implies that the garbled inputs x̂ can also be generated
depending only on the plain input x and the security parameter λ, independently of the circuit—we
call this independent input encoding.

Definition 7 (Garbling Scheme for Circuits with Independent Input Encoding). A Garbling scheme
GS = (Garb,Encode,Eval) for a deterministic circuit class {Cλ}λ∈N has independent input encod-

ing if the following holds: For every λ ∈ N, and every C ∈ Cλ,

• The algorithm Garb on input (1λ, C) invokes first key
$← Gen(1λ, 1|x|) and then Ĉ

$← Gb(key, C),
where Gen and Gb are all PPT algorithms.

• The security condition holds w.r.t. a simulator Sim that on input (1λ, 1|x|, 1|C|, TC(x), C(x))

invokes first (x̃, st)
$← Sim.Gen(1λ, |x|) and then C̃

$← Sim.Gb((1λ, |x|, |C|, C(x), st), where
Sim.Gen and Sim.Gb runs in time poly(λ, |x|) and poly(λ, |C|) respectively.

It is easy to check that many known circuit garbling schemes, in particular the construction by
Yao [Yao82], has independent input encoding.

Proposition 2. Assume the existence of one-way functions that are hard to invert in Γ time. Then,
there exists a garbling scheme GSCIR for polynomial-sized circuits with independent input encoding
that is Γ−ε-indistinguishable for some constant ε ∈ (0, 1).

16

2.3 Indistinguishability Obfuscation

We recall the definition of indistinguishability obfuscation, adapting to arbitrary classes of algo-
rithms. As before, we first define the syntax, correctness and security of iO, and then discuss about
different efficiency guarantees.

Definition 8 (Indistinguishability Obfuscator (iO)). A uniform machine iO is a indistinguisha-
bility obfuscator for a class of deterministic algorithms {ALλ}λ∈N, if the following conditions are
satisfied:

Correctness: For all security parameters λ ∈ N, for all AL ∈ ALλ, for all input x, we have that

Pr[AL′ ← iO(1λ, AL) : AL′(x) = AL(x)] = 1

Security: For every polynomial T , every non-uniform PPT samplable distribution D over the sup-
port

{
ALTλ ×ALTλ × {0, 1}poly(λ)

}
, and adversary A, there is a negligible function µ, such

that, for sufficiently large λ ∈ N, if

Pr[(AL1, AL2, z)← D(1λ) : ∀x, AL1(x) = AL2(x), TAL′(x) = TAL(x),

(|AL|, AL.n,AL.m,AL.S,AL.T) = (|AL′|, AL′.n, AL′.m,AL′.S, AL′.T)] > 1− µ(λ)

Then, ∣∣∣Pr[(AL1, AL2, z)
$← D(1λ) : A(iO(1λ, AL1), z)]

−Pr[(AL1, AL2, z)
$← D(1λ) : A(iO(1λ, AL2), z)]

∣∣∣ ≤ µ(λ)

where µ is called the distinguishing gap for D and A.

Furthermore, we say that iO is δ-indistinguishable if the above security condition holds with a
distinguishing gap µ bounded by δ. Especially, iO is sub-exponentially indistinguishable if µ(λ)
is bounded by 2−λ

ε
for a constant ε.

Note that in the security guarantee above, the distribution D samples algorithms AL1, AL2 that
has the same functionality, and matching bound parameters. This means, an obfuscated machine
“reveals” the functionality (as desired) and these bound parameters. We remark that the leakage
of the latter is without loss of generality: In the case of circuits, all bound parameters are set to 2λ.
In the case of other algorithm classes, say Turing and RAM machines. If an iO scheme ensures that
one parameter, say AL.S, is not revealed, one can simply consider a representation that always
sets that parameter to 2λ; then security definition automatically ensures privacy of that parameter.
See Remark 1 for more details.

Definition 9 (Different Levels of Efficiency of IO). We say that an indistinguishability obfuscator
iO of a class of algorithms {ALλ} has optimal efficiency, if there is a universal polynomial p such
that for every λ ∈ N, and every AL ∈ ALλ, iO(1λ, AL) runs in time p(λ, |AL|).

Additionally, we say that iO has input- / space- / linear-time- dependent complexity, if
iO(1λ, AL) runs in time poly(λ, |AL|, AL.n) / poly(λ, |AL|, AL.S) / poly(λ, |AL|)AL.T .

We note that unlike the case of garbling schemes, the optimal efficiency of an iO scheme does
not need to depend on the length of the output. Loosely speaking, the stems from the fact that

17

indistinguishability-based security does not require “programming” outputs, which is the case in
simulation-based security for garbling.

iO for Specific Algorithm Classes. We recall the definition of iO for polynomial-sized circuits,
NC1 [BGI+01]; and give definitions of iO for polynomial time Turing machines [BCP14] and RAM
machines with different efficiency guarantees.

Definition 10 (Indistinguishability Obfuscator for Poly-sized Circuits and NC1). A uniform PPT
machine iOCIR(·, ·) is an indistinguishability obfuscator for polynomial-sized circuits if it is an in-
distinguishability obfuscator for CIR with optimal efficiency.

A uniform PPT machine iONC1(·, ·, ·) is an indistinguishability obfuscator for NC1 circuits if
for all constants c ∈ N , iONC1(c, ·, ·) is an indistinguishability obfuscator for NCc with optimal
efficiency.

Definition 11 (iO for Turing Machines). A uniform machine iOTM(·, ·) is a indistinguishability
obfuscator for polynomial-time Turing machines, with optimal efficiency or input- / space-dependent
complexity, if it is an indistinguishability obfuscator for the class TM with the same efficiency.

Recently, the works by [BCP14, ABG+13] give constructions of iO for Turing machines11

with input-dependent complexity assuming FHE, differing-input obfuscation for circuits, and P-
certificates [CLP13]; furthermore, the dependency on input lengths can be removed—leading to a
scheme with optimal efficiency—if assuming SNARK instead of P-certificates.

Definition 12 (iO for RAM Machines). A uniform machine iOTM(·, ·) is a indistinguishability
obfuscator for polynomial-time Turing machines, with optimal efficiency or linear-time-dependent
complexity, if it is an indistinguishability obfuscator for the class RAM with the same efficiency.

Remark 1 (Explicit v.s. Implicit Bound Parameters). In the above definitions of Garbling Scheme
and iO for general algorithms, we considered a canonical representation of algorithms AL that
gives information of various bound parameters of the algorithm, specifically, the size |AL|, bound
on input and output lengths AL.n,AL.m, space complexity AL.S, and time complexity AL.T . This
representation allows us to define, in a unified way, different garbling and iO schemes that depend
on different subsets of parameters. For instance,

• The Garbling and iO schemes for TM that we construct in Section 3 and 5.1 (from iO
and sub-exp iO for circuits respectively) has complexity poly(|AL|, AL.S, log(AL.T)). (In
particular, the size of the garbled TM and obfuscated TM is of this order.)

• The garbling scheme for TM constructed (from iO for TM) sketched in the introduction has
complexity poly(|AL|, AL.n,AL.m, log(AL.T)).

• The garbling scheme for RAM from one-way functions by [LO13, GHL+14] has complexity
scales polynomially in (|AL|, AL.n,AL.m) and quasi-linearly in AL.T . This construction
leads to an iO for RAM (from sub-exp iO for circuits) of the same complexity in 5.1.

By using the canonical representation, our general definition allows the garbling or iO scheme
to depend on any subset of parameters flexibly. Naturally, if a scheme depends on a subset of param-
eters, the resulting garbled or obfuscated machines may “leak” these parameters (in the above three

11Their works actually realize the stronger notion of differing-input, or extractability, obfuscation for Turing ma-
chines

18

examples above, the size of the garbled or obfuscated machines leaks the parameters they depend on);
thus, the security definitions must reflect this “leakage” correspondingly. The general security defi-
nitions 2 and 8 captures this by allowing leakage of all parameters |AL|, AL.n,AL.m,AL.S,AL.T .
However, this seems to “overshoot”, as if a specific scheme does not depend on a particular param-
eter (e.g. AL.S), then this parameter should be kept private. This can be easily achieved, by simply
considering an algorithm representation that always set that parameter to 2λ (e.g. AL.S = 2λ).

2.4 Puncturable Pseudo-Random Functions

We recall the definition of puncturable pseudo-random functions (PRF) from [SW14a]. Since in
this work, we only uses puncturing at one point, the definition below is restricted to puncturing
only at one point instead of at a polynomially many points.

Definition (Puncturable PRFs). A puncturable family of PRFs is given by a triple of uniform PPT
machines (PRF.Gen,PRF.Punc,F), and a pair of computable functions n(·) and m(·), satisfying the
following conditions:

Correctness. For all outputs K of PRF.Gen(1λ), all points i ∈ {0, 1}n(λ), and K(−i) = PRF.Punc(K, i),
we have that F(K(−i), x) = F(K,x) for all x 6= i.

Pseudorandom at punctured point. For every PPT adversary (A1,A2), there is a negligible
function µ, such that in an experiment where A1(1λ) outputs a point i ∈ {0, 1}n(λ) and a state

σ, K
$← PRF.Gen(1λ) and K(i) = PRF.Punc(K, i), the following holds∣∣Pr[A2(σ,K(i), i,F(K, i)) = 1]− Pr[A2(σ,K(i), i, Um(λ)) = 1]

∣∣ ≤ µ(λ)

where µ is called the distinguishing gap for (A1,A2).

Furthermore, we say that the puncturable PRF is δ-indistinguishable if the above pseudorandom
property holds with a distinguishing gap µ bounded by δ. Especially, the puncturable PRF is sub-

exponentially indistinguishable if µ(λ) is bounded by 2−λ
ε

for a constant ε.

As observed by [BW13, BGI14, KPTZ13], the GGM tree-based construction of PRFs [GGM86]
from pseudorandom generators (PRGs) yields puncturable PRFs. Furthermore, it is easy to see
that if the PRG underlying the GGM construction is sub-exponentially hard (and this can in turn be
built from sub-exponentially hard OWFs), then the resulting puncturable PRF is sub-exponentially
pseudo-random.

3 Succinct Garbling for Bounded-Space Turing Machines

In this section, we construct a garbling scheme for the class of Turing machines TM with space-
dependent complexity. Thus when the space complexity of the TM is bounded, it yields a succinct
scheme. We will see in the next section that our construction for Turing machines directly applies
to general bounded space computation.

Theorem 5. Assuming the existence of iO for circuits and one-way functions. There exists a
garbling scheme for TM with space-dependent complexity.

Towards this, we proceed in two steps: In the first step, we construct a non-succinct garbling
scheme for TM, which satisfies the correctness and security requirements of Definition 1 and 2,

19

except that the garbling and evaluation algorithms can run in time polynomial in both the time
and space complexity, M.T and M.S, of the garbled Turing machine M (as well as the simulation
algorithm); the produced garbled Turing machine is of size in the same order. In the second step,
we show how to reduce the complexity to depend only on the space complexity M.S, leading to a
garbling scheme with space-dependent complexity. Since in this section, only the space and time
bound parameters matter, we will simply write S and T as M.S and M.T , and we use the notion
D to represent the description size of M .

3.1 A Non-Succinct Garbling Scheme

Overview. The execution of a Turing machine M consists of a sequence of steps, where each step
t depends on the description of the machine M and its current configuration conft, and produces
the next configuration conft+1. In the Turing machine model, each step takes constant time,
independent of the size of the Turing machine and its configuration. However, each step can be
implemented using a circuit NextD,S that on input (M, conft) with |M | ≤ D, | conft | ≤ S, outputs
the next configuration conft+1—we call this circuit the “universal next-step circuit”. The size of
the circuit is a fixed polynomial pNext in the size of the machine and the configuration, that is,
pNext(D,S). The whole execution of M(x) can be carried out by performing at most T evaluations
of NextD,S(M, ·), producing a chain of configurations denoted by,

CONFIG(M,x) = (T ∗, conf1, · · · , confT , confT+1), where T ∗ = TM (x). conf1, · · · , confT ∗−1, confT ∗

are the sequence of configurations of M(x) until it halts (conft is the configuration before
the tth step starts). confT ∗ , · · · , confT+1 are set for simplicity to the output y = M(x).

We note that the initial configuration conf1 can be derived efficiently from x, confT ∗

is called the final configuration, which can be efficiently recognized and from which an
output y can be extracted efficiently.

When succinctness is not required, the natural idea to garble a T -step Turing machine compu-
tation of M(x) is to produce a chain of T garbled circuits (Ĉ1, · · · , ĈT), for evaluating the next
step circuit NextD,S(M, ·) for M . The tth circuit Ct is designated to compute from the tth configu-
ration conft (as input) to the next conft+1; if the produced conft+1 is a final configuration, then it
simply outputs the output y; otherwise, to enable the evaluation of the next garbled circuit Ĉt+1,
it translates conft+1 into the corresponding garbled inputs ĉonft+1 for Ĉt+1—we call Ct the tth

step-circuit. Then evaluation propagates and the intermediate configurations of the execution of
M on x is implicitly computed one by one, until it reaches the final configuration, in which case,
an output is produced explicitly (without translating into the garbled inputs of the next garbled
circuit). Since each computation step is garbled, and all intermediate configurations, except from
the final output y, are “encrypted” as garbled inputs, the entire chain of garbled circuits can be
simulated given only the output y.

Finally, we note that each step-circuit Ct evaluates NextD,S(M, ·) and has the capability of
garbling an input for the next garbled circuit Ĉt; this can only be achieved if the circuit garbling
scheme has independent input encoding, which ensures that the input garbling can be done inde-
pendently of the circuit garbling, and only takes time polynomial in the length of the input (rather
than, in the size of the circuit).

Our Non-Succinct Garbling Scheme. We now describe formally our non-succinct garbling
scheme GSns = (Garbns,Encodens,Evalns). We rely on a garbling scheme for polynomial-sized
circuits with independent input encoding.

20

• Let GSCIR = (GarbCIR,EncodeCIR,EvalCIR) be a garbling scheme for polynomial-sized circuits,
and SimCIR the simulation algorithm. We require GSCIR to have independent input encoding,
that is, GarbCIR = (GenCIR,GbCIR), and SimCIR = (Sim.GenCIR,Sim.GbCIR) as described in
Definition 7.

Let NextD,S be the universal next step circuit for machine of size at most D and space complexity
at most S; it has a fixed polynomial size pNext(D,S) and can be generated efficiently given D and
S. For every λ and M ∈ TMλ, our scheme proceeds as follows:

The garbling algorithm Garbns(1
λ,M):

Let S = M.S, T = M.T and D = |M |.
Sample 2T sufficiently long random strings α1, · · · , αt and β1, · · ·βt; produce a chain of T
garbled circuits using GarbCIR by running the following program for every t ∈ [T].

Program Pλ,S,M (t ; (αt, αt+1, βt)) :

1. Generate the key keyt+1 for the next garbled circuit:

If t < T , compute the key for the t + 1st garbled circuit keyt+1 = GenCIR(1λ, 1S ;αt+1)
using randomness αt+1. (Note that keyt is generated for inputs of length S.)

2. Prepare the step-circuit Ct:

Stept on a S-bit input conft (i) compute conft+1 = NextD,S(M, conft); (ii) if conft+1

is a final configuration, simply outputs the output y contained in it12; (iii) otherwise,
translate conft+1 to the garbled inputs of the t + 1st garbled circuit, by computing
ĉonft+1 = EncodeCIR(keyt+1, conft+1).

3. Garble the step-circuit Ct:

Compute the key using randomness αt, keyt = GenCIR(1λ, 1S ;αt), and garble Ct using
randomness βt, Ĉt = GbCIR(keyt,Ct;βt),

4. Output Ĉt.

Generate key as follows: Compute the key for the first garbled circuit using randomness α1,
key1 = GenCIR(1λ, 1S ;α1); set key = key1 ‖1S .

Finally, output M̂ = (Ĉ1, · · · , ĈT),key.

The encoding algorithm Encodens(key, x): Let conf1 ∈ {0, 1}S be the initial configuration of

M with input x; compute x̂ = ĉonf1 = EncodeCIR(key1, conf1).

The evaluation algorithm Evalns(M̂, x̂): Evaluate the chain of garbled circuits M̂ = (Ĉ1, · · · , ĈT)

in sequence in T iterations: In iteration t, compute z = EvalCIR(Ĉt, ĉonft); if z is the garbled

inputs ĉonft+1 for the next garbled circuit Ĉt+1, proceed to the next iteration; otherwise,
terminate and output y = z.

Next, we proceed to show that GSns is a non-succinct garbling scheme for TM.

Efficiency. We summarize the complexity of different algorithms of the non-succinct scheme. It
is easy to see that for any Turing machine M with D = |M |, S = M.S and T = M.T , the
garbling algorithm Garbns runs in time poly(λ,D, S)× T , and produces a garbling machine of size
in the same order. Thus the garbling scheme is non-succinct. On the other hand, the encoding

12Pad y with 0 if it is not long enough

21

and evaluation algorithms Encodens and Evalns are all deterministic polynomial time algorithms.
Finally, the simulation run in time poly(λ,D, S)× T as the garbling algorithm.

Correctness. We show that for every polynomial T ′, every sequence of algorithms {M = Mλ} ∈
{TMT ′

λ }, and sequence of inputs {x = xλ} where xλ ∈ {0, 1}M.n, there exists a negligible function
µ, such that,

Pr[(key, M̂)
$← Garbns(1

λ,M), x̂ = Encodens(key, x) : Evalns(M̂, x̂) 6= M(x)] ≤ µ(λ)

Let CONFIG(M,x) = (T ∗, conf1, · · · , confT , confT+1) be the sequence of configurations gener-
ated in the computation of M(x), where T ≤ T ′(λ). It follows from the correctness of the circuit
garbling scheme GarbCIR that with overwhelming probability (over the randomness of Garbns), the

following is true: (1) for every t < T ∗, the garbled circuit Ĉt, if given the garbled input ĉonft cor-

responding to conft, computes the correct garbled inputs ĉonft+1 corresponding to conft+1, and (2)

for t = T ∗, the garbled circuit ĈT ∗ , if given the garbled input ĉonfT ∗−1 corresponding to confT ∗−1,
produces the correct output y. (Note that the evaluation procedure terminates after T ∗ iterations
and circuits Ĉt for t > T ∗ are never evaluated). Then since the garbled input x̂ equals to the

garbled initial configuration ĉonf1, by conditions (1) and (2), the evaluation procedure produces
the correct output with overwhelming probability.

Security. Fix any polynomial T ′, any sequence of algorithms {M = Mλ} ∈ {TMT ′
λ }, and any

sequence of inputs {x = xλ} where xλ ∈ {0, 1}M.n. Towards showing the security of GSns, we
construct a simulation algorithm Simns, and show that the following two ensembles are indistin-
guishable: For convenience of notation, we suppress the appearance of M.n and M.m as input to
Sim. {

realns(1
λ,M, x)

}
=

{
(M̂,key)

$← Garbns(1
λ,M), x̂ = Encodens(key, x) : (M̂, x̂)

}
λ

(1){
simuns(1

λ,M, x)
}

=
{

(M̃, x̃)
$← Simns(1

λ, 1|x|, 1|M |, S, T, TM (x),M(x)) : (M̃, x̃)
}
λ

(2)

Below we describe the simulation algorithm. Observe that the garbled machine M̂ consists of T
garbled circuits (Ĉ1, · · · , ĈT) and the garbled input x̂ is simply the garbled input of the initial con-
figuration conf0 (corresponding to x) for the first garbled circuit Ĉ1. Naturally, to simulate them,
the algorithm Simns needs to utilize the simulation algorithm SimCIR = (Sim.GenCIR,Sim.GbCIR) of
the circuit garbling scheme, which requires knowing the output of each garbled circuit. In a real
evaluation with M̂, x̂, the output of the (T ∗)th garbled circuit is y = M(x), the output of the

garbled circuits t < T ∗ is the garbled input ĉonft+1 for next garbled circuit t+ 1, and the garbled
circuits t > T ∗ are not evaluated, but for which y is a valid output. Thus, in the simulation, garbled
circuits t = T ∗, · · · , T can be simulated using output y; whereas garbled circuits t = 1, · · · , T ∗ − 1
will be simulated using the simulated garbled inputs for circuit t+ 1. More precisely,

The simulation algorithm Simns(1
λ, 1|x|, 1|M |, S, T, T ∗ = TM (x), y = M(x)):

Sample 2T sufficiently long random strings α1, · · · , αT , β1, · · · , βT . Simulate the chain of
garbled circuits by running the following program for every t ∈ [T].

Program Qλ,S,|M |,T ∗,y(t ; (αt, αt+1, βt)) :

1. Prepare the output outt for the tth simulated circuit C̃t:

If t ≥ T ∗, outt = y. Otherwise, if t < T ∗, set the output as the garbled input for
the next garbled circuits, that is, outt = c̃onft+1 computed from (c̃onft+1, stt+1) =
Sim.GenCIR(1λ, S ; αt+1) using randomness αt+1.

22

2. Simulate the tth step-circuit C̃t:

Given the output outt, simulate the tth garbled circuit C̃t by computing first (c̃onft, stt) =
Sim.GenCIR(1λ, S ; αt) and then C̃t = Sim.GbCIR(1λ, S, q, outt, stt ; βt), using randomness
αt, βt where q = q(λ, S) is the size of the circuit Ct.

3. Output C̃t.

Simulate the garbled input x̃ by computing again (c̃onf1, st1) = Sim.GenCIR(1λ, S ; α1) using

randomness α1, and setting x̃ = c̃onf1.

Finally, output (M̃ = (C̃1, · · · , C̃T), x̃).

Towards showing the indistinguishability between honestly generated garbling (M̂, x̂) and the
simulation (M̃, x̃), we will consider a sequence of hybrids hyb0

ns, · · · , hybTns, where hyb0
ns samples

(M̂, x̂) honestly, while hybTns generates the simulated garbling (M̃, x̃). In every intermediate hybrid
hybγns, a hybrid simulator HSimγ

ns is invoked, producing a pair (M̃γ , x̃γ) . At a high-level, the γth

hybrid simulator on input (1λ,M, x) simulate the first γ − 1 garbled circuits using the program
Q, generates the last T − γ garbled circuits honestly using the program P, and simulates the γth

garbled circuits using the program R described below, which “stitches” together the first γ − 1
simulated circuits with the last T − γ honest circuits into a chain that evaluates to the correct
output. More precisely, we will denote by

COMBINE[(P1, S1), ·, (P`, S`)] a merged circuit that on input x in the domain X, com-
putes Pj(x) if x ∈ Sj , where S1, · · · , S` is a partition of the domain X.

The hybrid simulation algorithm HSimγ
ns(1

λ,M, x) for γ = 0, · · · , T :

Compute T ∗ = TM (x) and y = M(x), and the intermediate configuration confγ+1 as defined
by CONFIG(M,x).

Sample 2T sufficiently long random strings {αt, βt}t∈[T]. Simulate the chain of garbled circuits
by running the following program for every t ∈ [T], which combines programs P, Q and R
as below.

Program Mγ = COMBINE [(Q, [γ − 1]), (R, {γ}), (P, [γ + 1, T])] (t ; (αt, αt+1, βt)) :

• If t ≤ γ − 1, compute C̃t = Qλ,S,|M |,T ∗,y(t ; (αt, αt+1, βt)); output C̃t.

• If t ≥ γ + 1, compute Ĉt = Pλ,S,M (t ; (αt, αt+1, βt)); output Ĉt.

• If t = γ, compute C̃t = Rλ,S,confγ+1(γ ; (αγ , αγ+1, βγ)) define as follow:

1. Prepare the output outγ of the simulated γth circuit C̃t:
Set the output outγ to y if confγ+1 is a final configuration. Otherwise, the out-
put should be the garbled input corresponding to confγ+1 for the next garbled

circuit; since the γ + 1st circuit is generated honestly, we compute outγ = ĉonfγ+1

by first computing keyγ+1 = GenCIR(1λ, 1S ; αγ+1), and then encoding ĉonfγ+1 =
EncodeCIR(keyγ+1, confγ+1).
(Note that the difference between program Q and R is that the former prepares the

output outγ using simulated garbled input c̃onft+1, whereas the latter using honestly

generated garbled input ĉonfγ+1.)

2. Simulate the γth circuit C̃t:
Given the output outγ , simulate the γth garbled circuit C̃γ by computing (c̃onfγ , stγ) =

Sim.GenCIR(1λ, S ; αγ) and C̃t = Sim.GbCIR(1λ, S, q, outγ , stγ ; βγ), where q =
q(λ, S) is the size of the circuit Ct.

23

If γ > 0, simulate the garbled input x̃γ as Simns does. Otherwise, if γ = 0, generate the
garbled input x̃0 honestly as in Garbns and Encodens.

Finally, output (M̃γ = (C̃1, · · · , C̃γ , Ĉγ+1ĈT), x̃γ).

We overload notation hybγns(1
λ,M, x) as the output distribution of the hybrid simulator HSimγ

ns.
By construction, in HSimγ

ns, when γ = 0, M0 = P and the garbled input x̃0 is generated honestly;
thus, {hyb0

ns(1
λ,M, x)} = {realns(1λ,M, x)} (where realns is the distribution of honestly generated

garbling; see equation (1)); furthermore, when γ = T , M0 = Q and the garbled input x̃γ is simu-
lated; thus

{
hybγns(1

λ,M, x)
}

=
{
simuns(1

λ,M, x)
}

(where simuns is the distribution of simulated
garbling; see equation (2)). Thus to show the indistinguishability between {realns(1λ,M, x)} and
{simuns(1

λ,M, x)}, it suffices to show the following claim:

Claim 1. For every γ ∈ N, the following holds{
hybγ−1

ns (1λ,M, x)
}
λ
≈
{
hybγns(1

λ,M, x)
}
λ

Proof. Fix a γ ∈ N, a sufficiently large λ ∈ N, an M = Mλ and a x = xλ. The only difference
between the garbling (M̃γ−1, x̃γ−1) sampled by hybγ−1

ns (1λ,M, x) and the garbling (M̃γ , x̃γ) sampled
by hybγns(1

λ,M, x) is the following: Let confγ be the intermediate configuration at the beginning
of step γ.

• In hybγ−1
ns , the γth garbled circuit Ĉγ is generated honestly using program P. The circuit

Cγ (as described in algorithm Garbns) is the composition of the circuit Nextλ,S(M, ·) and the
encoding algorithm EncodeCIR(keyγ+1, ·), where keyγ+1 = GenCIR(1λ, 1S ;αγ+1) is generated
honestly.

Furthermore, the first γ− 1 garbled circuits are simulated using R and Q. The simulation of
the first γ−1 circuits as well as the generation of the garbled input x̃γ depends potentially on

the garbled input ĉonfγ corresponding to confγ for Ĉγ (when confγ is not a final configuration;
see Step 1 in R).

In other words, the output of hybγ−1
ns can be generated by the following alternative sampling

algorithm:

– Generate garbled circuits γ+1, · · · , T honestly using program P; prepare the γth circuit
Cγ using keyγ+1.

– Receive externally honest garbling (Ĉγ , ĉonfγ) of (Cγ , confγ).

– Simulate the first γ − 1 circuits using R and Q, with ĉonfγ hardwired in R.

• In hybγns, the γth garbled circuit C̃γ is simulated using program R; the output outγ used for
simulation is set to either y (if confγ+1 is a final configuration) or the honestly generated

gabled input ĉonfγ+1. In other words, outγ = Cγ(confγ), where Cγ is prepared in the same
way as above.

Furthermore, the previous γ − 1 garbled circuits are also simulated using program Q. Their
simulation as well as the generation of the garbled input x̃γ+1 depends potentially on the

corresponding simulated garbled input c̃onfγ of C̃γ .

In other words, the output of hybγns can be generated by the same alternative sampling
algorithm above, except that the second step is modified to:

24

– Receive externally simulated garbling (C̃γ , c̃onfγ) generated using output Cγ(confγ).

Then it follows from the security of the circuit garbling scheme GSCIR that the distributions of
(Ĉγ , ĉonfγ) and (C̃γ , c̃onfγ) received externally by the alternative sampling algorithm above are
computationally indistinguishable, and thus the distributions of outputs of hybγ−1

ns and hybγns, which
can be efficiently constructed from them, are also indistinguishable

Finally, by the above claim, it follows from a hybrid argument over γ, that {realns(1λ,M, x)}
and {simuns(1

λ,M, x)} are indistinguishable; Hence, GSns is a secure garbling scheme for TM.

3.2 A Garbling Scheme for TM with Space-dependent Complexity

In this section, we construct a garbling scheme GS = (Garb,Encode,Eval) for TM with space-
dependent complexity. This scheme will rely on the non-succinct garbling scheme GSns = (Garbns,
Encodens,Evalns) in a non-black-box, but largely modular, way.

Overview. The garbling scheme GSns described in the previous section is non-succinct because its
garbling algorithm Garbns runs in time proportional to the time-bound T (and generates a garbling
of size proportional to T .) Our first observation is that the “bulk” of the computation of Garbns is
evaluating the same randomized program P(·) for T times with coordinated random coins, to create
a chain of garbled circuits:

M̂ = (Ĉ1, · · · , ĈT), Ĉt = P(t;αt, αt+1, βt)

The complexity of each garbled circuit depends only on the size of M and its space complexity
S, that is, poly(D,S) (independent of T). Our main idea towards constructing a garbling scheme
GS with space-dependent complexity is to defer the T executions of P, from garbling time (that
is, in Garb), to evaluation time (that is, in Eval), by using an indistinguishability obfuscator iO
for circuits. More specifically, instead of computing the chain of garbled circuits M̂ directly, the
new garbling algorithm Garb generates an obfuscation of the program P, that is P = iO(P), and
use that as the new garbled machine; (since P has size poly(D,S), the obfuscation is “succinct”
and so is the new garbling algorithm). The procedure for creating garbled inputs x̂ remains the
same as in the non-succinct scheme GSns. Then, on input (P, x̂), the new evaluation algorithm
Eval first generates the chain of garbled circuits M̂ = (Ĉ1, · · · , ĈT) by evaluating P on inputs from
1, · · ·T ; once the chain M̂ of garbled circuits is generated, the output can be computed by evaluating
Evalns(M̂, x̂) as in the non-succinct scheme GSns. (Note that to make sure that evaluation algorithm
has instance-based efficiency, the algorithm Eval actually generates and evaluates Ĉt’s one by one,
and terminates as soon as an output is produced.)

To make the above high-level idea go through, a few details need to be taken care of. First,
the program P is randomized, whereas indistinguishability obfuscators only handles deterministic
circuits. This issue is resolved by obfuscating, instead, a wrapper program P(t) that runs P(t) with
pseudo-random coins generated using a PRF on input t. In fact, the use of pseudo-random coins
also allows coordinating the random coins used in different invocations of P on different inputs,
so that they will produce coherent garbled circuits that can be run together. The second question

is how to simulate the new garbled machine P $← iO(P). In the non-succinct scheme the chain
M̂ of garbled circuits is simulated by running the program Q for T times (again with coordinated
random coins),

M̃ = (C̃1, · · · , C̃T) Ĉt = Q(t;αt, αt+1, βt)

25

Naturally, in the succinct scheme, the simulation creates Q $← iO(Q) (where Q is the de-randomized
version for Q, as P is for P). By the pseudo-randomness of PRF and the security of garbled
circuits, we have that the truth tables M̂ and M̃ of P and Q are indistinguishable; but this does
not directly imply that their obfuscations are indistinguishable. We bridge the gap by considering
the obfuscation of a sequence of hybrid programs (as in the security proof of the non-succinct
garbling scheme).

∀γ ∈ [0, T + 1], Mγ = COMBINE [(Q, [γ − 1]), (R, {γ}), (P, [γ + 1, T])] , Mγ $← iO(Mγ)

The sequence of hybrid programs “morphs” gradually from program P = M0 to program Q =
MT+1; since every pair of subsequent programs Mγ−1,Mγ differs only at two inputs (γ − 1 and γ)
with indistinguishable outputs, we can use standard techniques such as puncturing and program-
ming to show that their obfuscations are indistinguishable, and hence so are P and Q.

Our Succinct Garbling Scheme. We now describe the formal construction, which relies on the
following building blocks.

• A garbling scheme for polynomial-sized circuits, with independent input encoding: GSCIR =
(GarbCIR,EncodeCIR,EvalCIR), where GarbCIR = (GenCIR,GbCIR) and its the simulation algo-
rithm is SimCIR = (Sim.GenCIR,Sim.GbCIR).

• An indistinguishability obfuscator iOCIR(·, ·) for polynomial-sized circuits.

• A puncturable PRF (PRF.Gen,PRF.Punc,F) with input length n(λ) and output length m(λ),
where n(λ) can be set to any super-logarithmic function n(λ) = ω(log λ), and m is a suffi-
ciently large polynomial in λ.

For every λ and M ∈ TMλ, the garbling scheme GS proceeds as follows:

Circuit P = Pλ,S,M,Kα,Kβ : On input t ∈ [T], does:

Generates pseudo-random strings αt = F(Kα, t), αt+1 = F(Kα, t+ 1) and βt = F(Kβ , t);

Compute Ĉt = Pλ,S,M (t ; (αt, αt+1, βt)) and output Ĉt.

Circuit Q = Qλ,S,|M |,T∗,y,Kα,Kβ : On input t ∈ [T], does:

Generate pseudo-random strings αt = F(Kα, t), αt+1 = F(Kα, t+ 1) and βt = F(Kβ , t);

Compute C̃t = Qλ,S,|M |,T∗,y(t ; (αt, αt+1, βt)) and output C̃t.

The circuits in Figure 1, 2 and 3 are padded to their maximum size.

Figure 1: Circuits used in the construction and simulation of GS

The garbling algorithm Garb(1λ,M):

1. Sample PRF keys: Kα
$← PRF.Gen(1λ) and Kβ

$← PRF.Gen(1λ).

2. Obfuscate the circuit P:

Obfuscate the circuit P(t) = Pλ,S,M,Kα,Kβ (t) as described in Figure 1, which is essentially
a wrapper program that evaluates P on t using pseudo-random coins generated using

Kα and Kβ as described above. Obtain P $← iO(1λ,P).

26

3. Generate the key for garbling input:

Compute key in the same way as the garbling scheme Garbns does, but using pseudo-
random coins generated using Kα. That is, Compute the key for the first garbled circuit
using randomness α1 = F(Kα, 1), key1 = GenCIR(1λ, 1S ;α1); set key = key1 ‖1S .

4. Finally, output (P,key).

The encoding algorithm Encode(key, x): Compute x̂ = Encodens(key, x).

The evaluation algorithm Eval(P, x̂): Generate and evaluate the garbled circuits in the non-
succinct garbling M̂ one by one; terminate as soon as an output is produced. More precisely,
evaluation proceeds in T iterations as follows:

At the beginning of iteration t ∈ [T], previous t− 1 garbled circuits has been generated and

evaluated, producing garbled input ĉonft (ĉonf1 = x̂). Then, compute Ĉt = P(t); evaluate

z = EvalCIR(Ĉt, ĉonft); if z is a valid output, terminate and output y = z; otherwise, proceed

to the next iteration t+ 1 with ĉonft+1 = z.

Next, we proceed to show that GS is a garbling scheme for TM with space-dependent complexity.

Correctness. Fix any machine M ∈ TM and input x. Recall that the garbling algorithm Garb
generates a pair (P,key); the latter is later used by the encoding algorithm Encode to obtain
garbled input x̂, while the former is later used by the evaluation algorithm Eval to create the non-
succinct garbling M̂ = {Ĉt = P(t)}t∈[T]; the non-succinct garbling M̂ is then evaluated with x̂ using
algorithm Evalns. The distribution of the garbled input and the non-succinct garbling recovered by
Eval is as follows:

D1 =
{

(P,key)
$← Garb(1λ,M) :

(
x̂ = Encode(key, x), M̂ =

{
Ĉt = P(t)

}
t∈[T]

)}
It follows from the construction of Garb,Encode and the correctness of the indistinguishability
obfuscator that the above distribution D1 is identical to the distribution D2 of a garbled pair
(M̂ ′, x̂′) generated by the algorithms Garbns,Encodens of the non-succinct scheme, using pseudo-
random coins, formalized below.

D2 =
{
Kα,Kβ

$← PRF.Gen(1λ), ∀t ∈ [T], αt = F(Kα, t), βt = F(Kβ, t) :(
x̂′ = Encodens(key′ = GenCIR(1λ, 1S ;α1), x), M̂ ′ =

{
Ĉt = P(t;αt, αt+1, βt)

}
t∈[T]

)}
By the pseudo-randomness of PRF, distribution D2 is computationally indistinguishable from the
garbled pair generated by Garbns,Encodens, using truly random coins.

D3 =
{

(M̂ ′′,key′′)
$← Garbns(1

λ,M) :
(
x̂′′ = Encodens(key′′, x), M̂ ′′

)}
The correctness of the non-succinct garbling scheme GSns guarantees that with overwhelming
probability, evaluating M̂ ′′ with x̂′′ produces the correct output y = M(x); furthermore, the correct
output y is produced after evaluating only the first T ∗ = TM (x) garbled circuits. Thus, it follows
from the indistinguishability between D1 and D3 that, when evaluating a garbled pair (M̂, x̂)
sampled from D1, the correct output y is also produced after evaluating the first T ∗ garbled circuits.
Given that D1 is exactly the distribution of the non-succinct garbled pairs generated in Eval, we
have that correctness holds.

Efficiency. We show that the garbling scheme GS has space-dependent complexity.

27

• The garbling algorithm Garb(1λ,M) runs in time poly(λ, |M |, S). This is because Garb pro-
duces an obfuscation of the program P (a de-randomized version of P) which garbles cir-
cuits Ct using pseudo-random coins for every input t ∈ [T]. Since the program Ct has size
q = poly(λ, |M |, S) as analyzed in the non-succinct garbling scheme, so does P and P (note
that the input range T of these two programs are contained as part of the description of
M , and hence |M | > log T). Therefore, Garb takes time poly(λ, |M |, S) to produced the
obfuscation of P. Additionally, notice that Garb generates the key as the algorithm Garbns
does, which in turn runs GarbCIR(1λ, 1S) and takes time poly(λ, S). Overall, Garb runs in time
poly(λ, |M |, S) as claimed.

• Encode run in time the same as the Encodens algorithm which is poly(λ, |M |, S).

• The evaluation algorithm Eval on input (P, x̂) produced by (P,key)
$← Garb(1λ, 1S) and

x̂ = Encode(key, x) runs in time poly(λ, |M |, S) × T ∗, T ∗ = TM (x), with overwhelming
probability.

It follows from the analysis of correctness of GS that with overwhelming probability over the
coins of Garb, the non-succinct garbling M̂ defined by P satisfies that when evaluated with
x̂, the correct output is produced after T ∗ iterations. Since Eval does not compute the entire
non-succinct garbling M̂ in one shot, but rather, generates and evaluates the garbled circuits
in M̂ one by one. Thus it terminates after producing and evaluating T ∗ garbled circuits.
Since the generation and evaluation of each garbled circuit takes poly(λ, |M |, S) time, overall
Eval runs in time TM (x)× poly(λ, |M |, S) as claimed.

Security. Fix any polynomial T ′, any sequence of algorithms {M = Mλ} ∈ {TMT ′
λ }, and any

sequence of inputs {x = xλ} where xλ ∈ {0, 1}M.n. Towards showing the security of GS, we
construct a simulator Sim, satisfying that the following two ensembles are indistinguishable in λ:{

real(1λ,M, x)
}

=
{

(P,key)
$← Garb(1λ,M), x̂ = Encode(key, x) : (P, x̂)

}
λ

(3){
simu(1λ,M, x)

}
=

{
(Q, x̃)

$← Sim(1λ, |x|, |M |, S, T, TM (x),M(x)) : (Q, x̃)
}
λ

(4)

As discussed in the overview, the simulation will obfuscate the program Q used for simulating
the non-succinct garbled machine M̃ = (C̃1, · · · , C̃T). More precisely,

The simulation algorithm Sim(1λ, |x|, |M |, S, T, T ∗ = TM (x), y = M(x)):

1. Sample PRF keys: Kα
$← PRF.Gen(1λ) and Kβ

$← PRF.Gen(1λ).

2. Obfuscate the circuit Q:

Obfuscate the circuit Q(t) = Qλ,S,|M |,T ∗,y,Kα,Kβ (t) as described in Figure 1, which is
essentially a wrapper program that evaluates Q on t, using pseudo-random coins {αt, βt}
generated by evaluating F on keys Kα and Kβ and inputs t ∈ [T]. Obtain Q $← iO(1λ,Q).

3. Simulate the garbled input:

Simulate the garbled input x̃ in the same way as simulator Simns does, but using pseudo-
random coins. That is, compute (c̃onf1, st1) = Sim.GenCIR(1λ, S ; α1), where α1 =

F(Kα, 1); set x̃ = c̃onf1.

4. Finally, output (Q, x̃).

28

The simulator Sim(1λ, |x|, |M |, S, T, T ∗, y = M(x)) runs in time poly(λ, |M |, S). This follows be-
cause the simulator simulates the garbled Turing machine by obfuscating the program Q. As the
program Q simply runs Q using pseudo-random coins, its size is poly(λ, |M |, S); thus obfuscation
takes time in the same order. On the other hand, Sim simulates the garbled input x̃ as the simulator
Simns does, which simply invokes SimCIR(1λ, S) of the circuit garbling scheme, which takes time
poly(λ, S). Therefore, overall the simulation takes time poly(λ, |M |, S) as claimed.

Towards showing the indistinguishability between honestly generated garbling (P, x̂)
$← real(1λ,M, x)

and the simulation (Q, x̃)
$← simu(1λ,M, x) (see equation (3) and (4) for formal definition of real

and simu), we will consider a sequence of hybrids hyb0, · · · , hybT , where the output distribution of
hyb0 is identical to real, while that of hybT is identical to simu. In every intermediate hybrid hybγ , a
hybrid simulator HSimγ is invoked, producing a pair (Mγ

, x̃γ), where Mγ
is the obfuscation of (the

de-randomized wrapper of) a merged program Mγ that produces a hybrid chain of garbled circuit
as in the security proof of the non-succinct garbling scheme, where the first γ garbled circuits are
simulated and the rest are generated honestly. More precisely,

The hybrid simulation algorithm HSimγ(1λ,M, x) for γ = 0, · · · , T :

Compute T ∗ = TM (x) and y = M(x), and the intermediate configuration confγ+1 as defined
by CONFIG(M,x).

1. Sample PRF keys: Kα
$← PRF.Gen(1λ) and Kβ

$← PRF.Gen(1λ).

2. Obfuscate the circuit Mγ:

Obfuscate the circuit Mγ(t) = (Mγ)λ,S,M,T ∗,y,confγ+1,Kα,Kβ (t) as described in Figure 1,
which is essentially a wrapper program that evaluates the combined program

Mγ = COMBINE [(Q, [γ − 1]), (R, {γ}), (P, [γ + 1, T])] (t ; (αt, αt+1, βt)),

using pseudo-random coins {αt, βt} generated usingKα andKβ. Obtain Mγ $← iO(1λ,Mγ).

3. Simulate the garbled input:

If γ > 0, simulate the garbled input x̃γ in the same way as in Sim. Otherwise, if γ = 0,
generate x̃0 honestly, using Garb and Encode.

4. Finally, output (Mγ
, x̃γ).

Circuit Mγ = (Mγ)λ,S,M,T∗,y,confγ+1,Kα,Kβ : On input t ∈ [T], does:

Generate pseudo-random strings αt = F(Kα, t), αt+1 = F(Kα, t+ 1) and βt = F(Kβ , t);

Compute C̃t = Mγ(t ; (αt, αt+1, βt)) and output C̃t, where Mγ is:

(Mγ)λ,S,M,T∗,y,confγ+1 = COMBINE [(Q, [γ − 1]), (R, {γ}), (P, [γ + 1, T])] (t ; (αt, αt+1, βt))

The circuits in Figure 1, 2 and 3 are padded to their maximum size.

Figure 2: Circuits used in the security analysis of GS

We overload the notation hybγ(1λ,M, x) as the output distribution of the γth hybrid. By
construction, when γ = 0, M0 = P and the garbled input x̃0 is generated honestly; thus,

29

We describe circuits Mγ
1 to Mγ

6 . They all have parameters λ, S,M, T ∗, y, confγ+1 hardwired in;
for simplicity, we suppress these parameters in the superscript.

Circuit Mγ
1 = (Mγ

1)Kα(γ+1),Kβ(γ+1),αγ+1,βγ+1 : On input t ∈ [T], does:

If t 6= γ, generate pseudo-random string αt+1 = F(Kα(γ + 1), t+ 1).

If t 6= γ + 1, generate pseudo-random strings αt+1 = F(Kα(γ + 1), t) and βt =
F(Kβ(γ + 1), t).

Proceed as Mγ does using random coins αt, αt+1, βt.

Circuit Mγ
2 = (Mγ

2)Kα(γ+1),Kβ(γ+1),α′γ+1,β
′
γ+1 :

Identical to (Mγ
1)Kα(γ+1),Kβ(γ+1),α′γ+1,β

′
γ+1 , with α′γ+1, β

′
γ+1 sampled at random.

Circuit Mγ
3 = (Mγ

3)Kα(γ+1),Kβ(γ+1),Ĉγ+1,ĉonfγ+1 : On input t ∈ [T], does:

If t = γ + 1, output Ĉγ+1.

If t = γ, set outγ using ĉonfγ+1 as in Step 1 of program R; simulate and output C̃γ as in
Step 2 of R.

Otherwise, compute as Mγ
2 does using the punctured keys Kα(γ + 1),Kβ(γ + 1).

Circuit Mγ
4 = (Mγ

4)Kα(γ+1),Kβ(γ+1),C̃γ+1,c̃onfγ+1 :

Identical to (Mγ
3)Kα(γ+1),Kβ(γ+1),C̃γ+1,c̃onfγ+1 , with simulated garbling pair C̃γ+1, c̃onfγ+1.

Circuit Mγ
5 = (Mγ

5)Kα(γ+1),Kβ(γ+1),α′γ+1,β
′
γ+1 : On input t ∈ [T], does:

If t = γ + 1, compute C̃γ+1 using program R with randomness α′γ+1, αγ+2, β
′
γ+1.

If t = γ, compute C̃γ using program Q, which internally computes c̃onfγ+1 for setting the
output outγ using randomness α′γ+1.

Otherwise, compute as Mγ
4 does using the punctured keys Kα(γ + 1),Kβ(γ + 1).

Circuit Mγ
6 = (Mγ

6)Kα(γ+1),Kβ(γ+1),αγ+1,βγ+1 :

Identical to (Mγ
5)Kα(γ+1),Kβ(γ+1),αγ+1,βγ+1 , with αγ+1 = F(Kα, γ+ 1), βγ+1 = F(Kβ , γ+ 1)

The circuits in Figure 1, 2 and 3 are padded to their maximum size.

Figure 3: Circuits used in the security analysis of GS, continued

{hyb0(1λ,M, x)} = {real(1λ,M, x)}; furthermore, when γ = T , MT = Q and the garbled in-
put x̃T is simulated; thus

{
hybT (1λ,M, x)

}
=
{
simu(1λ,M, x)

}
. Therefore, to show the security of

GS, it boils down to proving the following claim:

Claim 2. For every γ ≥ 0, the following holds{
hybγ(1λ,M, x)

}
λ
≈
{
hybγ+1(1λ,M, x)

}
λ

Proof. Fix a γ ∈ N, a sufficiently large λ ∈ N, an M = Mλ and a x = xλ. Note that the only

difference between (Mγ
, x̃γ)

$← hybγ and (Mγ+1
, x̃γ+1)

$← hybγ+1 is the following:

• For every γ, the underlying obfuscated programs Mγ ,Mγ+1 differ on their implementation for
at most two inputs, namely γ, γ + 1, and,

• when γ = 0, the garbled input x̃0 is generated honestly in hyb0, whereas x̃1 is simulated in
hyb1.

30

To show the indistinguishability of the two hybrids, we consider a sequence of sub-hybrids from
Hγ0 = hybγ to Hγ7 = hybγ+1. Below we describe these hybrids Hγ0 , · · ·H

γ
7 , and argue that the

output distributions of any two subsequent hybrids are indistinguishable. We denote by (Mγ
i , x̃

γ
i)

the garbled pair produced in hybrid Hγi for i = 0, · · · , 7. For convenience, below we suppress the
superscript γ, and simply use notations Hi = Hγi , Mi = Mγ

i , Mi = Mγ
i and x̃i = x̃γi .

Hybrid H1: Generate a garbled pair (M1, x̃1) by running a simulation procedure that proceeds
identically to HSimγ , except from the following modifications:

• In the first step, puncture the two PRF keysKα,Kβ at input γ + 1, and obtainKα(γ + 1) =
PRF.Punc(Kα, γ + 1) and Kβ(γ + 1) = PRF.Punc(Kβ, γ + 1). Furthermore, compute
αγ+1 = F(Kα, γ + 1) and βγ+1 = F(Kβ, γ + 1).

• In the second step, obfuscate a circuit M1 slightly modified from Mγ : Instead of having
the full PRF keys Kα,Kβ hardwired in, M1 has the punctured keys Kα(γ + 1),Kβ(γ + 1)
and the PRF values αγ+1, βγ+1 hardwired in; M1 proceeds identically to M1, except that
it uses the punctured PRF keys to generate pseudo-random coins corresponding to input
t 6= γ + 1 and directly use αγ+1, βγ+1 as the coins for input t = γ + 1. See Figure 1 for
a description of M1 = Mγ

1 .

By construction, H1 only differs from hybγ at which underlying program is obfuscated, and
program M1 has the same functionality as Mγ . Thus it follows from the security of indistin-
guishability obfuscator iO that, the obfuscated programs Mγ

and M1 are indistinguishable.
(Furthermore, the garbled inputs x̃γ and x̃1 in these two hybrids are generated in the same
way.) Thus, we have that the output (M1, x̃1) of H1 is indistinguishable from the output
(Mγ

, x̃γ) of hybγ . That is,{
hybγ(1λ,M, x)

}
λ
≈
{
H0(1λ,M, x)

}
λ

Hybrid H2: Generate a garbled pair (M2, x̃2) by running the same simulation procedure as in
H1 except from the following modifications: Instead of using pseudo-random coins αγ+1 and

βγ+1, hybrid H2 samples two sufficiently long truly random string α′γ+1, β
′
γ+1

$← {0, 1}poly(λ)

and replace αγ+1, βγ+1 with these truly random strings. More specifically, H2 obfuscates a
program M2 that is identical to M1, but with (Kα(γ + 1),Kβ(γ + 1), α′γ+1, β

′
γ+1) hardwired

in; furthermore, if γ = 0, α′1 (as opposed to α1) is used to generate the garbled input x̃2. Since
only the punctured keys Kα(γ + 1),Kβ(γ + 1) are used in the whole simulation procedure, it
follows from the pseudo-randomness of the punctured PRF that the output (M2, x̃2) of H2 is
indistinguishable from that (M1x̃1) of hyb1. That is,{

H1(1λ,M, x)
}
λ
≈
{
H2(1λ,M, x)

}
λ

Hybrid H3: Generate a garbled pair (M3, x̃3) by running the same simulation procedure as in H2

with the following modifications:

• Observe that in program M2, α′γ+1, β
′
γ+1 are used in the evaluation of at most two inputs,

γ and γ + 1:

For input γ + 1, program P is invoked with input γ+1 and randomness α′γ+1, αγ+2, β
′
γ+1,

in which a circuit Cγ+1 is prepared depending on αγ+2, and then obfuscated by com-
puting

keyγ+1 = GenCIR(1λ, 1S ;α′γ+1) Ĉγ+1 = GbCIR(keyγ+1,Cγ+1;β′γ+1)

31

If γ > 0, for input γ , program R is invoked with input γ and randomness αγ , α
′
γ+1, βγ , in

which a garbled circuit C̃γ is simulated; the output outγ used for the simulation depends
potentially on an honest garbling of confγ+1, that is,

ĉonfγ+1 = EncodeCIR

(
GenCIR(1λ, 1S ;α′γ+1), confγ+1

)
Using outγ , C̃γ is simulating using randomness αγ , βγ .

First modification: Hybrid H3 receives externally the above pair Ĉγ+1, ĉonfγ+1. In-

stead of obfuscating M2 (which computes Ĉγ+1, ĉonfγ+1 internally), H3 obfuscates M3

that has Ĉγ+1, ĉonfγ+1 directly hardwired in (as well as Kα(γ + 1),Kβ(γ + 1)). M3 on

input γ + 1, directly outputs ĉonfγ+1; on input γ, it uses ĉonfγ+1 to compute C̃γ ; on all
other inputs, it proceeds identically as M2. (See Figure 1 for a description of M3.) It is

easy to see that when the correct values Ĉγ+1, ĉonfγ+1 are hardwired, the program M3

has the same functionality as M2.

• In H2, if γ = 0, α′1 is used for garbling the input,

key1 = GenCIR(1λ, 1S ;α′1) ĉonf1 = EncodeCIR(key1, conf1)

where conf1 is the initial state corresponding to x.

Second modification: Instead, if γ = 0, hybrid H3 receives ĉonf1 externally, and
directly outputs it as the garbled inputs x̂3 = ĉonf1.

When H3 receives the correct values of (ĉonfγ+1, Ĉγ+1) externally, it follows from the security
of iO that the output distribution of H3 is indistinguishable from that of H2. That is,{

H2(1λ,M, x)
}
λ
≈
{
H3(1λ,M, x)

}
λ

Hybrid H4: Generate a garbled pair (M4, x̃4) by running the same procedure as in H3, except that

H4 receives externally a simulated pair (c̃onfγ+1, C̃γ+1) produced as follows:

(c̃onfγ+1, stγ+1) = Sim.GenCIR(1λ, S;α′γ+1) (5)

C̃γ+1 = Sim.GbCIR

(
1λ, S, 1q, outγ+1, stγ+1;β′γ+1

)
(6)

where outγ+1 is set to be the output of circuit Cγ+1 on input confγ+1. Thus, it follows from

the security of the circuit garbling scheme GSCIR that the simulated pair (c̃onfγ+1, C̃γ+1) that

hybrid H4 receives externally is indistinguishable to the honest pair (ĉonfγ+1, Ĉγ+1) that H3

receives externally. Since these two hybrids only differ in which pair they receive externally,
it follows that: {

H3(1λ,M, x)
}
λ
≈
{
H4(1λ,M, x)

}
λ

Hybrid H5: Generate a garbled pair (M5, x̃5) by running the same procedure as in H4, except

that instead of receiving (c̃onfγ+1, C̃γ+1) externally, it computes them internally using truly
random coins α′γ+1, β

′
γ+1. More precisely,

32

• It obfuscate a program M5 that have Kα(γ + 1),Kβ(γ + 1), α′γ+1, β
′
γ+1 hardwired in:

On input γ+1, it computes C̃γ+1 using the program R with randomness α′γ+1, αγ+2, β
′
γ+1

(which computes C̃γ+1 as described in equations (5) and (6)).

On input γ, it computes C̃γ using the program Q with randomness αγ , α
′
γ+2, βγ (which

computes internally c̃onfγ+1 as described in equation (5)).

On other inputs t 6= γ, γ + 1, it computes as M4 does.

• If γ = 0, α′1 is used for computing c̃onf1 as described in equation (5), and then output

x̃4 = c̃onf1.

It follows from the fact that M5 computes (c̃onfγ+1, C̃γ+1) correctly internally, it has the
same functionality as M4; thus, the obfuscation of these two programs are indistinguishable.
Combined with the fact that the distribution of the garbled inputs x̃4 is identical to x̃3, we
have that {

H4(1λ,M, x)
}
λ
≈
{
H5(1λ,M, x)

}
λ

Hybrid H6: Generate a garbled pair (M6, x̃6) by running the same procedure as in H5, except that
instead of using truly random coins α′γ+1, β

′
γ+1, use pseudo-random coins αγ+1 = F(Kα, γ + 1)

and βγ+1 = F(Kβ, γ + 1). In particular, H6 obfuscates a program M6 that is identical to M5

except that Kα(γ + 1),Kβ(γ + 1), αγ+1, βγ+1 are hardwired in, and if γ = 0, α1 is used to
generate the garbled input x̃6. It follows from the pseudo-randomness of the punctured PRF
that: {

H6(1λ,M, x)
}
λ
≈
{
H5(1λ,M, x)

}
λ

Hybrid H7: Generate a garbled pair (M7, x̃7) by running the hybrid simulator HSimγ+1. Note
that the only difference between HSimγ+1 and the simulation procedure in H6 is that instead
of obfuscating M6 that has tuple (Kα(γ + 1),Kβ(γ + 1), αγ+1, βγ+1) hardwired in, HSimγ+1

obfuscates Mγ+1 that has the full PRF keys Kα,Kβ hardwired in and evaluates αγ+1, βγ+1

internally.

Since Mγ+1 and Mγ
6 has the same functionality, it follows from the security of iO that{

H6(1λ,M, x)
}
λ
≈
{
H5(1λ,M, x)

}
λ

Finally, by a hybrid argument, we conclude the claim.

Given the above claim, by a hybrid argument over γ, we have that {real(1λ,M, x)} and {simu(1λ,M, x)}
are indistinguishable; Hence, GS is a secure garbling scheme for TM.

4 Succinct Garbling in Other Models of Computation

In the section, we observe that our approach for constructing a succinct garbling scheme for bounded
space TM in the previous two sections applies generally to any bounded space computation (e.g.,
bounded-space RAM). This immediately yields a garbling scheme for any model of computation
with space-dependent complexity.

33

Theorem 6. Assuming the existence of iO for circuits and one-way functions. There exists a
garbling scheme for any abstract model of sequential computation, such as TM and RAM, with
space-dependent complexity.

A Garbing Scheme for Any Bounded Space Computation: Given an underlying circuit
garbling scheme GS = (Garb,Encode,Eval) with independent input encoding, to construct a garbling
scheme GSA for {ALλ}, proceed in the following two steps:

Step 1: Construct a non-succinct garbling scheme: Observe that the computation of a ma-
chine AL of AL.T steps can be divided into AL.T 1-step “blocks” that transforms the current
configuration to the next; therefore, to garble AL, it suffices to produce a sequence of “gar-
bled blocks”, one for each 1-step block. The actual programs being garbled is an “augmented
block”, whose execution consists of a 1-step block followed by the encoding algorithm of GS
that encodes the output configuration for the next garbled block (when an output is produced,
it is output directly without encoding). The final garbling then consists of a sequence of T
garbled blocks.

Step 2: Compress the size using IO: As before, we then use iO to “compress” the size of the
non-succinct garbling constructed in the first step, by giving the obfuscation of the algorithm
that on input t, runs Garb to garble the tth augmented block, producing the tth garbled block.
The obfuscated program is the succinct garbled program.

The efficiency and security analysis remains the same as before. This concludes Theorem 6.

4.1 Improved Construction and Analysis

Notice that our construction of GSA uses the underlying circuit garbling scheme GS in a black-box
way. In fact, the scheme does not even require the underlying garbling scheme to be for circuits—
any garbling scheme for any class of algorithms that is “complete”, in particular can be used to
implement the augmented blocks suffices. Below we show that by plugging in the one-time garbled
RAM of [LO13, GHL+14], and modifying the construction of Theorem 6 slightly, we can improve
the efficiency of GSA when the algorithm class is RAM. More precisely, we show the following
theorem.

Theorem 7. Assuming the existence of iO for circuits and one-way functions. There exists a
garbling scheme GSRAM for RAM with linear-space-dependent complexity. Furthermore, for any
RAM R and input x, evaluation of a garbled pair (R̂, x̂) produced by GSRAM takes time poly(λ, |R|)×
(TR(x) + S).

Towards the theorem, we rely on a basic RAM garbling scheme with two properties, independent
input encoding and linear complexity. For completeness, we describe the two properties in details
below and note that they are satisfied by the construction of garbled RAM of [LO13, GHL+14].

The Basic RAM Garbling Scheme GS ′: Theorem 7 relies on a basic garbling scheme GS ′ =
(Garb′, Encode′, Eval′) with the following properties. Let R be a RAM machine with parameters
n,m, S, T .

Independent input encoding. GS ′ has independent input encoding as defined in Definition 7
with a slight strengthening. We repeat the definition and highlight the strengthening.

34

• The garbling algorithm Garb′ consists of:

(key, R̂)
$← Garb′(1λ, R) : key

$← Gen′(1λ), R̂
$← Gb′(key, R)

Strengthening: Different from Definition 7, the PPT key generation algorithm Gen′ de-
pends only on the security parameter 1λ and not on the length of the input 1|x|. As a
result, the length of key produced is bounded by poly(λ).

• The simulation procedure Sim′ consists of13:

(R̃, x̃)
$← Sim′(1λ, (|x|, |R|, n,m, S, T), R(x)) :

(x̃, st)
$← Sim.Gen′(1λ, |x|), R̃

$← Sim.Gb′(1λ, (|x|, |R|, n,m, S, T), R(x), st)

Linear complexity. The complexity of algorithms in the garbling scheme is:

• The garbling algorithm Gb′(1λ, R) and evaluation algorithm Eval′(R̂, x̂) run in time
poly(λ, |R|) × T . Note that unlike previous efficiency requirements, this complexity
bound here does not explicitly depend on the lengths of input and output.

• The input encoding algorithm x̂
$← Encode′(key, x) runs in time linear in the length of

the input poly(λ)|x|.

Instantiation of the Basic Garbling Scheme. We observe that the construction of [LO13,
GHL+14] satisfies the above three properties, with some small modifications.

• independent input encoding: The construction of [LO13, GHL+14] is based on Yao’s garbled
circuits. The latter has independent input encoding Gen that depends on the length of the
input. The construction of [LO13, GHL+14] inherits this property. To remove the dependence
on the length of the input, one can modify the scheme as follows: Let the new key generation
algorithm Gen′ sample a PRF seed as the key key = k (which depends only on the security
parameter), and then augment the garbing and encoding algorithms to first generate the
actual key using Gen with pseudo-random coins produced with k and then proceed as before.

After the modification, the run-time of the garbling and encoding algorithms increase by
poly(λ)TGen(λ, |x|), where TGen(λ, |x|) is the time used by the original key generation algo-
rithm.

• Linear Complexity: The complexity of the garbling, evaluation and encoding algorithms of
the construction of [LO13, GHL+14] is exactly as required above, namely poly(λ, |R|) × T
for the first two and poly(λ)|x| for the last one.14 Furthermore, its key generation algorithm
runs in time linear in the input length poly(λ)|x|.
After applying the modification above, we remove the dependency of the key generation
algorithm on the input length (and reduce its run-time to poly(λ)), while the complexity of
garbling, evaluation and encoding remain at the same order as desired.

13Note that the simulation procedure described here does not receive the instance running time TR(x). This is
because, as seen shortly, the complexity of the basic RAM garbling scheme is linear in the time complexity of the
RAM machine being garbled, and thus does not have instance based efficiency.

14In [LO13, GHL+14], the overhead of garbling is poly(λ)× |R| × poly log(n), where n is the size of the persistent
memory data. Since here we do not consider RAM machine with persistent memory data, we ignore this term.

35

More Efficient Garbling Scheme for Bounds Space RAM: Let GS ′ = (Garb′ = (Gen′,Gb′),
Encode′,Eval′) be a basic garbling scheme as described above, with simulation procedure Sim′ =
(Sim.Gen′,Sim.Gb′). we now construct a garbling scheme GS for bounded space RAM with improved
efficiency. In particular, it has (1) linear-space dependent complexity and (2) produces garbled
RAM with poly(λ, |R|) overhead (that is, evaluation of R̂, x̂ takes poly(λ, |R|)TR(x) steps). In
comparison, the previous general construction has polynomial space dependent complexity and
poly(λ, |R|, S) overhead. Towards this, we plug in GS ′ and Sim′ into our general construction, and
make the following modifications.

Modification to Step 1: As before, the first step is constructing a non-succinct garbling scheme,
by dividing a RAM computation into small blocks and garbling all of them using GS ′.
The only, and key, difference is, instead of dividing a T step RAM computation into T 1-step
“blocks”, dividing it into dT/Se S-step “blocks”. As before, each block is then augmented
with the encoding algorithm Encode′(key, ·) for garbling the output configuration; and each
augmented block is garbled using Garb′, producing garbled blocks.

Efficiency. We now analyze various efficiency parameters.

• Each augmented block, say the tth, is a RAM consisting of S steps of computation of
R followed by Encode′(keyt+1, ·)15—denote the augmented block as B(t, R,keyt+1, ·).
Since keyt+1 has size poly(λ), we have,

Ψ = |B| = |R|+ poly(λ), TB = poly(λ)S

The latter follows since encoding of an intermediate configuration of R of size S takes
poly(λ)S steps.

• By the efficiency of Gb′, each garbled block has size

Φ = poly(λ, |B|)TB = poly(λ, |R|)S

• Overall, there are dT/Se blocks, resulting in a non-succinct garbled RAM R̂ of size

|R̂| = dT/Se × Φ = poly(λ, |R|)T

• We note that for any input x of instance complexity T ∗, the output R(x) is produced
after evaluating dT ∗/Se garbled blocks, taking poly(λ, |R|)(T ∗ + S) steps.

Modification to Step 2: As before, the second step is using obfuscation to “compress” the size of
the non-succinct garbling scheme constructed in Step 1. However, if using any obfuscator to
obfuscate the program that generates each of dT/Se garbled blocks, it leads to an obfuscated
program of size at least poly(λ,Φ) = poly(λ, |R|, S). In this case, the complexity of the new
garbling scheme is not linear in S, and the overhead of the produced garbled RAM is at least
poly(λ, |R|, S).

Better efficiency: To avoid the polynomial overhead due to obfuscation, we instead use an
iO for circuits with quasi-linear complexity |C|poly(λ, n), where |C| is the size of the circuit
obfuscated and n is the length of the input. As shown in Appendix A, such an scheme
can be constructed generically from any iO (for circuits), puncturable PRF, and randomized

15It also has the additional logic for deciding whether the output configuration is a final configuration, and returns
the output if so.

36

encoding that is local (as defined in Appendix A and satisfied, for instance, by Yao’s garbled
circuits), all with 2−(n+ω(log λ))-security.

Efficiency. Since the obfuscated programs Pi, Qi and Ri take input a time index t of length
O(log T), and outputs a garbled block computated in time poly(λ, |R|)S (roughly the same
as Φ). Therefore, the size of the new garbled RAM (and the complexity for generating it) is,

size of garbled RAM = poly(λ, |R|)S × poly(λ, log T) = poly(λ, |R|)× S ,

which is linear in the space complexity of R.

Moreover, evaluation of an input x of instance complexity T ∗ requires generating and evalu-
ating dT ∗/Se garbled blocks, which takes time

run-time of garbled RAM = dT ∗/Se × poly(λ, |R|)× S = poly(λ, |R|)× (S + T ∗) .

This concludes Theorem 7.

Remark 2 (RAM Garbling Scheme with Complexity Linear in the Program Size). The RAM gar-
bling scheme of Theorem 7 produces garbled RAM of size poly(λ, |R|)×S and run-time poly(λ, |R|)T ∗
(for an input of instance complexity T ∗); both depending polynomially in the description size of the
underlying RAM |R|. We show that the complexity can be improved to depending linearly on |R|,
that is, the garbled RAM has size poly(λ)× (|R|+ S) and run-time poly(λ)× (|R|+ S + T ∗).

To achieve this, we need to rely on a basic RAM garbling scheme that satisfies the properties,
independent input encoding and linear complexity, described above, and the following strengthening:
The complexity of the garbling algorithm Gb′ depends linearly on |R|, that is, poly(λ)(|R|+ T) (as
opposed to poly(λ, |R|)T). To obtain such a basic RAM garbling scheme, we observe that there is
a universal RAM M , such that, any RAM computation R(x) can be transformed into computing
MR(x, |R|), where the description of R is provided as a part of the initial memory. The universal
machine M has constant size and MR(x, |R|) takes at most cTR(x) steps for some constant c (since
each step of R depends on at most a constant number of bits of the description of R). Then applying
the construction of [LO13, GHL+14] to M with a persistent database R yields a garbled RAM of
size poly(λ)(T + |R|) (where poly(λ)T corresponds to the size of garbling of M and poly(λ)|R|
corresponds to the garbling of the persistent database R).

Now, instantiate the construction of Theorem 7 with such a basic RAM garbling scheme, and
an additional modification: In Step 1, instead of dividing a T step RAM computation into dT/Se
S-step blocks, divide it into dT/(S+ |R|)e (S+ |R|)-step blocks; the rest of the construction follows
identically. We now argue that this construction indeed has complexity linear in |R|. Each aug-
mented block has the same size as before poly(λ) + |R|, but a longer run-time of poly(λ)(S + |R|).
By the complexity of the (new) basic RAM garbling scheme, each of the garbled block has size
poly(λ)(S + |R|). Therefore, when obfuscating using a iO with quasi-linear complexity, the pro-
gram that produces the garbled blocks, it leads to a new garbled RAM of size poly(λ)(S + |R|).
The evaluation of such a garbled RAM with an input x of instance complexity T ∗ takes time
dT ∗/(S + |R|)e × poly(λ)(S + |R|) = poly(λ)(S + |R| + T ∗). Since the construction and analy-
sis is essentially the same as in Theorem 7, we omit the details here.

5 Applications

In this section, we address two of our main applications of succinct garbling schemes: succinct
iO and publicly-verifiable delegation and SNARGs. (The rest of the applications outlined in the

37

introduction, follow directly by plugging-in our succinct garbling into previous work.) In fact,
all of our applications can be instantiated with succinct randomized encodings; namely, they do
not required separate input encoding. We first recall the syntax and properties of randomized
encodings.

Randomized Encodings: A randomized encoding scheme RE = (REnc,Dec) for {ALλ} consists
of a randomized encoding algorithm REnc and a decoding algorithm Dec. REnc(1λ, AL, x), given

any function AL ∈ ALλ and input x returns the encoded computation ÂL(x). Given such an
encoding, Dec can decode the result AL(x). Any garbling scheme GS = (Garb,Encode,Eval) for
{ALλ} can be projected to a corresponding randomized encoding where REnc = Garb ◦ Encode is
given by

(ÂL, x̂)
$← REnc(1λ, AL, x), where (ÂL,key)

$← Garb(1λ, AL, x), x̂ = Encode(key, x)

and the evaluation algorithm Eval is the decoding algorithm Dec.
In accordance, the correctness, security, and efficiency properties are all defined similarly to

garbling schemes, as defined in Section 2.2 (in particular, it will be convenient to consider random-
ized encodings that like garbling schemes also guarantee the privacy of the program and not just
the input). When projecting a garbling scheme to a randomized encoding scheme as above, the
randomized encoding inherits the corresponding efficiency properties of the garbling scheme.

5.1 From Randomized Encodings to iO

We present a generic transformation from a garbling scheme for an algorithm class {ALλ} to an
indistinguishability obfuscator for {ALλ}, assuming sub-exponentially indistinguishability obfusca-
tors for circuits. We require that the algorithm class to have the property that for any λ < λ′ ∈ N,
it holds that every algorithm AL ∈ ALλ is also contained in ALλ′—we say that such a class is
“monotonically increasing”. For instance, the class of Turing machines TM and RAM machines
RAM are all monotonically increasing.

Proposition 3. Let {ALλ} be any monotonically increasing class of deterministic algorithms. It
holds that if there are

• i) a sub-exponentially indistinguishable iO, iOC , for circuits, and

ii) a sub-exponentially indistinguishable randomized encoding RE for {ALλ}.

• then, there is an indistinguishability obfuscator iOA for {ALλ}.

Furthermore, the following efficiency preservation holds.

• if RE has optimal efficiency or I/O-dependent complexity, iOA has I/O-dependent complexity.

• If RE has space-dependent complexity, so does iOA.

• If RE and iOC have linear-time-dependent complexity, so does iOA.

Before moving to the proof of the proposition, we first note that combining Proposition 3 with
constructions of garbling schemes for TM and RAM in Section 3 and 4, we directly obtain iO for
TM and RAM with space-dependent complexity.

Theorem 8. Assume a sub-exponentially indistinguishable iO for circuits and sub-exponentially
secure OWF. There is an indistinguishability obfuscator for TM and RAM with space-dependent
complexity.

38

Proof of Proposition 3. This result relies on the following natural way of obfuscating probabilistic
circuits, abstracted in [CLTV15].

Probabilistic iO. Let iO and F be 2λ
ε
-indistinguishable iO and puncturable PRF. Given a proba-

bilistic circuit C, obfuscate it in the following way: Consider another circuit ΠC,k that on input
x, computes C using pseudo-random coins F(k, x) generated with a hard-wired PRF key k, that
is, ΠC,k(x) = C(x;F(k, x)). The obfuscation of C, denoted as piO(1λ, C), is an iO obfuscation of
ΠC,k for a randomly sampled key C, that is,

Ĉ
$← piO(1λ, C), where k

$← PRF.Gen(1λ
′
); Ĉ

$← iO(1λ
′
,ΠC,k)

where λ′ = (λ + n)1/ε for n = C.n, so that iO and F are negl(λ)2n-indistinguishable. The work
of [CLTV15] showed that the above obfuscations are indistinguishable for circuits whose output
distributions are strongly indistinguishable for every input. More specifically, circuits C1 and
C2 with the same input length n are strongly indistinguishable (w.r.t. auxiliary input z) if for
every input x ∈ {0, 1}n, the outputs C1(x) and C2(x) are negl(λ)2−n indistinguishable (given z).
Summarizing,

Lemma 1 (piO for Circuits [CLTV15]). Assume sub-exponentially indistinguishable iO for circuits
iOC , and sub-exponentially indistinguishable OWF. Then, for every class {Cλ} of polynomial-size
circuits, and every non-uniform PPT samplable distribution D over the support of

{
Cλ × Cλ × {0, 1}poly(λ)

}
,

if it holds that for every non-uniform PPT adversary R, and input x,∣∣Pr[(C1, C2, z)
$← Dλ, y

$← C1(x) : R(C1, C2, x, y, z) = 1]

− Pr[(C1, C2, z)
$← Dλ, y

$← C2(x) : R(C1, C2, x, y, z) = 1]
∣∣ ≤ negl(λ) · 2−n

the following ensembles are computationally indistinguishable:{
C1, C2, piO(1λ, C1), z

}
λ
≈
{
C1, C2, piO(1λ, C2), z

}
λ

For completeness, we include a proof sketch of the lemma.

Proof Sketch of Lemma 1. The lemma essentially follows from complexity leveling. To see the
proof, first consider a simpler case, where the two circuits C1 and C2 have identical implementation
on all but one input x∗, and the outputs on x∗, C1(x∗) and C2(x∗), are indistinguishable. In

this case, it follows directly from the security iO that obfuscation of Cb, Ĉb
$← piO(1λ, C1) is

indistinguishable to the obfuscation of C ′b
$← iO(C ′b) where C ′b has a punctured key k(x∗) and

Cb(x
∗;F(k, x∗)) hardwired in; then, it follows from the pseudo-randomness of puncturable PRF

and the indistinguishability of C1(x∗) and C2(x∗) that iO(C ′0) and iO(C ′1) are indistinguishable.
Therefore, overall obfuscation of C1 and C2 are indistinguishable.

Now consider the case where C1 and C2 are sampled from D(1λ), and their output distributions
for every input are negl(λ)2−n-indistinguishable. To show that their pIO obfuscation are indistin-
guishable, consider an exponential, 2n, number of hybrids, where in each hybrid, a circuit Ci is
obfuscated, which outputs C2(x) for every input x ≤ i and outputs C1(x) for every input x > i.
Since in every two neighboring hybrids, Ci and Ci+1 are the same except on one input x∗ = i+ 1.
By the argument above, neighboring hybrids have a distinguishing gap O(negl(λ)2−n). Thus, by a
hybrid argument, obfuscations of C1 and C2 are indistinguishable. This concludes the lemma.

39

Construction of iO for General Algorithms. Using Lemma 1, we now prove Proposition 3.

Given 2−λ
ε
-indistinguishable iO iOC and 2−λ

ε
-indistinguishable randomized encoding RE , let

piO be the obfuscator for probabilistic circuits constructed from iOC (and a sub-exponentially se-
cure puncturable PRF implies by sub-exponentially secure RE). Our iO for the a general algorithm
class {ALλ} is defined as follows,

ÂL(·) $← iOA(1λ, AL) where ÂL(·) $← piO(λ,REnc(1λ
′
, AL, ·))

where the security parameter λ′ = (λ+n)1/ε for n = AL.n so that REnc is negl(λ)2n-indistinguishable.
(Note that the reason that we can use the security parameter λ′ > λ is because the algorithm class
is monotonically increasing and thus AL ∈ ALλ also belongs to ALλ′ .) The correctness of iOA
follows from the correctness of RE and iOC underlying piO. Next, we show the security of iOA.

Security. Fix a polynomial T , a non-uniform PPT samplable distribution D over the support{
ALTλ ×ALTλ × {0, 1}poly(λ)

}
, such that, with overwhelming probability, (AL1, AL2, z) ← D(1λ)

satisfies that AL1 and AL2 are functionally equivalent and has matching parameters. We want to
show that the following distributions are indistinguishable.{

(AL1, AL2, z)
$← D(1λ) : (iOA(1λ, AL1), z)

}
λ{

(AL1, AL2, z)
$← D(1λ) : (iOA(1λ, AL2), z)

}
λ

By construction of iOA, this is equivalent to showing{
(AL1, AL2, z)

$← D(1λ) : (piO(1λ, REnc(1λ
′
, AL1, ·)), z)

}
λ{

(AL1, AL2, z)
$← D(1λ) : (piO(1λ, REnc(1λ

′
, AL2, ·)), z)

}
λ

Consider the sampler D′(1λ) that outputs C ′1, C
′
2, z, by sampling (AL1, AL2, z)

$← D(1λ) and setting
C ′b = REnc(1λ

′
, ALb, ·). It follows from the security of RE that for every non-uniform adversary

R, and every input x, the output distributions of C ′1(x) and C ′2(x) are negl(λ)2n-indistinguishable,
given x, z, C ′1, C

′
2. Thus, it follows from Lemma 1 that the above two ensembles are indistinguish-

able, as well as the obfuscations of AL1 and AL2.

Efficiency. Finally, we analyze the efficiency of iOA. It is easy to see that piO(1λ, C) runs in time
TpIO(λ,C.n, |C|), where TpIO is a polynomial depending on the running time of the underlying iO
and PRF as well as the parameters of their sub-exponential security; moreover, if the underlying
iO has linear-time-dependent complexity, ppIO also depends linearly in |C| (still polynomially in
λ and C.n). Let TREnc(λ

′, |AL|, n,m, S, T) be the running time of REnc(1λ
′
, AL, x). Overall, the

running time of iOA(1λ, AL) is,

TpIO(λ, n, TREnc(λ
′, |AL|, n,m, S, T)) where λ′ = poly(λ, n)

Therefore,

• If RE has optimal efficiency (that is, TREnc depends only on m) or I/O-dependent complexity
(that is, TREnc does not depend on S, T), iOA has I/O-dependent complexity.

• If RE has space-dependent complexity (that is, TREnc does not depend on T), so does iOA.

40

• If RE and the underlying iO has linear-time-dependent complexity (that is, TREnc depends
linearly on T and TpIO depends linearly on |C|), so does iOA.

This concludes the proof of Proposition 3.

A corollary: output-independence. The size of the randomized encodings (or garbling schemes)
described in previous sections depends (linearly) on the output of the encoded computation, ac-
cordingly so does the succinct iO construction described in this section. We start by noting that
in the succinct iO construction this dependence can be easily removed. Concretely, rather than
considering the machine AL(x) that for any input x might have am m-bit output y, we can consider
a new single-bit machine AL′(x, i) that given additional input i ∈ {0, 1}logm, outputs yi. Observe
that if AL0 and AL1 compute the same function then clearly so do their single-bit versions AL′0
and AL′1. The overhead is only polylogarithmic in the output-size m. Thus, we directly obtain
succinct iO that is output-independent. We note that this does not involve making any addi-
tional computational assumptions. (Note that we only increase the input size logarithmically, and
thus the exponential loss in the input incurred by the transformation given by Theorem 3 is only
polynomial.)

Next, we observe that this directly implies indistinguishability-based succinct randomized en-
codings that are output-independent. The encoding of AL, x simply consists of an (output-
independent) obfuscation of a machine that has no input and output AL(x). (Note that this
only requires polynomial iO, since the exponential blowup in the input size of the transformation
given by Theorem 3 is completely avoided.)

More Efficient Construction. Evaluating the iO for TM and RAM obtained in Theorem 8
on input x, involves evaluating the obfuscated program on x once to obtain a randomized encod-
ing ÂL(x), and then decode it. When relying on an arbitrary randomized encoding with space-
dependent complexity, the overall evaluation takes time TAL(x)×poly(λ, |AL|, S). When the space
is large, the overhead on run-time is large.

We now improve the evaluation efficiency by combining Proposition 3 with the specific RAM
garbling scheme of Theorem 7.

Theorem 9. Assume a sub-exponentially indistinguishable iO for circuits and sub-exponentially
secure OWFs. There is an indistinguishability obfuscator for TM and RAM with, where obfuscation
of a machine R takes time linear in the space complexity poly(λ, n, |R|)× S, and evaluation of the
obfuscated program on input x takes time poly(λ, n, |R|)× (TR(x)+S), with n = R.n and S = R.S.

Towards the above theorem, consider instantiating the Proposition 3 using the RAM gar-
bling scheme of Theorem 7 and a sub-exponentially secure iO scheme with quasi-linear complex-
ity (implied by sub-exponentially secure iO and OWF as shown in Appendix A). Recall that
the RAM garbling scheme of Theorem 7 has linear-space-dependent complexity poly(λ, |R|) × S
and evaluation time poly(λ, |R|) × (T ∗ + S) with T ∗ = TR(x); such a garbling scheme leads to
a randomized encoding algorithm REnc with the same encoding and decoding complexity. By
the same efficiency analysis as in Proposition 3, this instantiation yields an iO for RAM with
linear-space-dependent complexity, namely poly(λ, |R|, n)S. Therefore, its evaluation time is now
poly(λ, |R|, n)× S + poly(λ, |R|)× (T ∗ + S), which is poly(λ, |R|, n)× (S + T ∗).

Remark 3 (Indistinguishability Obfuscation with Complexity Linear in the Program Size). In
remark 2, we showed that the efficiency of our RAM garbling scheme can be improved to depend
only linearly in program description size |R|, namely, it has garbling complexity of poly(λ)(|R|+S)
and evaluation complexity of poly(λ)(|R|+ S + T ∗). When using such a RAM garbling scheme as

41

the underlying scheme in our construction of IO scheme for RAM, we obtain an iO scheme with
complexity poly(λ, n)(|R|+ S) and evaluation time poly(λ, n)(|R|+ S + T ∗).

5.2 Publicly-Verifiable Delegation, SNARGs for P, and Succinct NIZKs for NP

We now present the publicly-verifiable delegation scheme for bounded-space computations, follow-
ing from our succinct randomized encodings, as well as a general transformation from delegation
schemes to succinct non-interactive arguments. We also note the implications to succinct NIZKs
as a corollary of our succinct iO and the work of [SW14b].

5.2.1 P-delegation

A delegation system for P is a 2-message protocol between a verifier and a prover. The verifier
consists of two algorithms (G,V), given a (well-formed) algorithm, input, and security parameter
z = (AL, x, λ), G generates a message σ. The prover, given (z, σ), produces a proof π attesting that
AL accepts x within AL.T steps. V then verifies the proof. In a privately-verifiable system, the G
produces, in addition to the (public) message σ, a secret verification state τ , and verification by V
requires (z, σ, τ, π). In a publicly-verifiable scheme, τ can be published (together with σ), without
compromising soundness.

We shall require that the running time of (G,V) will be significantly smaller than AL.T , and
that the time to prove is polynomially related to AL.T .

Definition (P-Delegation). A prover and verifier (P, (G,V)) constitute a delegation scheme for P
if it satisfies:

1. Completeness: for any z = (AL, x, λ), such that AL accepts x within AL.T steps:

Pr

[
V (z, σ, τ, π) = 1

∣∣∣∣ (σ, τ)← G(z)
π ← P (z, σ)

]
= 1 .

2. Soundness: for any poly-size prover P∗, polynomial T (·), there exists a negligible α(·) such
that for any z = (AL, x, λ), such that AL.T ≤ T (λ), and AL does not accept x within AL.T
steps:

Pr

[
V(z, σ, τ, π) = 1

∣∣∣∣ (σ, τ)← G(z)
π ← P∗(z, σ)

]
≤ α(λ) .

3. Optimal verification and instance-based prover efficiency: There exists a (universal)
polynomial p such that for every z = (AL, x, λ):

• the verifier algorithms (G,V) run in time p(λ, |AL|, |x|, logAL.T);

• the prover P runs in time p(λ, |AL|, |x|)TAL(x).

3’. Space-dependent verification complexity: The scheme has space-dependent verification
complexity if the running time of the (G,V) may also depend on space; concretely: there exists
a (universal) polynomial p such that for every z = (AL, x, λ):

• the verifier algorithms (G,V) run in time p(λ, |AL|, logAL.T,AL.S).

The system is said to be publicly-verifiable if soundness is maintained when the malicious prover
P∗ is also given the verification state τ .

42

Remark 4 (Input Privacy). Our construction achieves an additional property of input privacy
which states that the first message of the delegation scheme σ leaks no information about the input
x on which the computation of AL is being delegated, beyond the output AL(x). This ensures that,
in the outsourcing computation application, the server performing the computation learns no more
than is necessary about the input to the computation.

We next present a publicly-verifiable delegation with fast verification based on any succinct
randomized encoding, and one-way functions.

The scheme. Let f be a one-way function and (REnc,Dec) be a randomized encoding scheme.
We describe (P, (G,V)) as follows. Let z = (AL, x, λ) be a tuple consisting of an algorithm, input,
and security parameter.

Generator G(z):
For r ← {0, 1}λ, let AL′(x, r) be the machine that returns r if AL(x) = 1 and ⊥ otherwise. G

generates and outputs σ ← REnc(1λ,Π′, (x, r)) and τ = f(r).

Prover P(z, σ):
P simply runs π ← Dec(σ) and outputs π.

Verifier V(z, σ, τ, π):
V outputs 1 if and only if f(π) = τ .

We prove that (P, (G,V)) is a P-delegation scheme as follows.

Theorem 10. If (REnc,Dec) is a randomized encoding scheme with optimal complexity (resp.
space dependent complexity), then (P, (G,V)) as described above is a publicly verifiable P-delegation
scheme with optimal verification (resp. space-dependent verification).

Proof. The completeness of (P, (G,V)) follows directly from the correctness of (REnc,Dec). Also,
note that the running time of the verifier algorithms (G,V) is related to the running time of REnc.
Therefore, it also follows directly that if (REnc,Dec) has optimal complexity (resp. space dependent
complexity) then (G,V) satisfies the property of optimal verification (resp. space-dependent ver-
ification), and the instance-based prover efficiency follows from the fact the randomized encoding
has instance-efficiency. It remains to show the soundness of (P, (G,V)).

To show soundness, we will rely on the security of (REnc,Dec) and the one-wayness of f . Assume
for contradiction there exists poly-size prover P∗ and polynomial p(·) such that for infinitely many
z = (AL, x, λ) where AL does not accept x and AL.T ≤ p(λ), we have that

Pr

[
V(z, σ, τ, π) = 1

∣∣∣∣ (σ, τ)← G(z)
π ← P∗(z, σ, τ)

]
≥ 1

p(λ)
.

Let Z be the sequence of such z = (AL, x, λ) and consider any z ∈ Z. Recall that G(z) samples
r ← {0, 1}λ and outputs σ ← REnc(1λ, AL′, (x, r)) and τ ← f(r). Since AL does not accept x, we
have that AL′(x, r) outputs ⊥. By the security of (REnc,Dec), there exists a PPT simulator Sim
such that the ensembles {REnc(1λ, AL′, (x, r)}r∈{0,1}λ,z∈Z and {Sim(1λ,⊥, AL′, 1|x|+|r|)}r∈{0,1}λ,z∈Z
are indistinguishable. Therefore, given a simulated σ ← Sim(1λ,⊥, AL′, 1|x|+|r|) we have that P∗
still convinces V with some noticeable probability. More formally, for infinitely many z ∈ Z, we

43

have that

Pr

V(z, σ, τ, π) = 1

∣∣∣∣∣∣∣∣
r ← {0, 1}λ

σ ← Sim(1λ,⊥, AL′, 1|x|+|r|)
τ ← f(r)

π ← P∗(z, σ, τ)

 ≥ 1

p(λ)
− α(λ) .

for some negligible function α(·).
Recall that V outputs 1 if and only if f(π) = τ . Therefore V(z, σ, τ, π) = 1 implies that P∗

when given τ = f(r) outputs π which is in the pre-image of f(r). Hence P∗ can be used to break
the one-wayness of f and we have a contradiction. This completes the proof of the theorem.

5.2.2 SNARGs for P

A succinct non-interactive argument system (SNARG) for P is a delegation system where the first
message σ is reusable, it is independent of any specific computation, and can be used to verify
an unbounded number of computations. In a privately-verifiable SNARG, soundness might not
be guaranteed if the prover learns the result of verification on different inputs, which can be seen
as certain leakage on the private state τ (this is sometimes referred to as the verifier rejection
problem). Accordingly, in this case, we shall also address a strong soundness requirement, which
says that soundness holds, even in the presence of a verification oracle.

Definition (SNARG). A SNARG (P, (G,V)) is defined as a delegation scheme, with the following
change to the syntax of G: the generator G now gets as input a security parameter, time bound,
and input bound λ, T, n ∈ N, and does not get AL, x as before. We require that

1. Completeness: for any z = (AL, x, λ), such that AL.T ≤ T and |AL, x| ≤ n, and AL
accepts x:

Pr

[
V (z, σ, τ, π) = 1

∣∣∣∣ (σ, τ)← G(λ, T, n)
π ← P (z, σ)

]
= 1 .

2. Soundness: for any poly-size prover P∗, polynomials T (·), n(·), there exists a negligible α(·)
such that for any z = (AL, x, λ), where AL.T ≤ T (λ), |AL, x| ≤ n(λ), and AL does not
accept x:

Pr

[
V(z, σ, τ, π) = 1

∣∣∣∣ (σ, τ)← G(λ, T (λ), n(λ))
π ← P∗(z, σ)

]
≤ α(λ) .

2∗. Strong soundness: for any poly-size oracle-aided prover P∗, polynomials T (·), n(·), there
exists a negligible α(·) such that for any z = (AL, x, λ), where AL.T ≤ T (λ), |AL, x| ≤ n(λ),
and AL does not accept x:

Pr

[
V(z, σ, τ, π) = 1

∣∣∣∣ (σ, τ)← G(λ, T (λ), n(λ))

π ← P∗V(·,σ,τ,·)(z, σ)

]
≤ α(λ) .

3. Optimal verification and instance-based prover efficiency: There exists a (universal)
polynomial p such that for every z = (AL, x, λ):

• the verifier algorithms (G,V) run in time p(λ, n(λ), logAL.T);

44

• the prover P runs in time p(λ, |AL|, |x|)TAL(x)).

As before, the system is said to be publicly-verifiable if soundness is maintained when the
malicious prover is also given the verification state τ . (In this case, strong soundness follows from
standard soundness.) Also, we can naturally extend the definition for the case of semi-succinctness,
in which case, G will also get a space bound S, and the running time of algorithms (G,V) may also
depend on S

Remark 5 (Non-adaptive soundness). Note that in the definition above and in our construction, we
will consider only non-adaptive soundness, as opposed to adaptive soundness where the malicious
prover P∗ can pick the statement z after seeing the first message σ.

We now show a simple transformation, based on IO, that takes any 2-message delegation scheme
(e.g., the one constructed above), and turns it into a SNARG for P. The transformation works in
either the public or private verification setting. Furthermore, it always results in a SNARG with
strong soundness, even the delegation we start with does not have strong soundness (such as the
scheme of [KRR14]).

The scheme. Let (Pd, (Gd,Vd)) be a P-delegation scheme, (PRF.Gen,PRF.Punc,F) be a punc-
turable PRF scheme, and iO be an indistinguishability obfuscator. We describe a SNARG
(P, (G,V))) as follows.

Let z = (AL, x, λ) be a tuple consisting of an algorithm, input and security parameter such that
|AL, x| ≤ n and AL.T ≤ T . For notational convenience, we decompose Gd into (Gσd ,Gτd) where
Gσd(z) only outputs the message σd and Gτd(z) only outputs the secret verification state τd.

Generator G(λ, T, n):

1. G samples a puncturable PRF key K ← PRF.Gen(1λ).

2. Let Cσ[K] be a circuit that on input z, runs r ← F(K, z) and outputs σd ← Gσd(z; r). That
is, Cσ runs Gσd to generate a first message of the delegation scheme, using randomness from
the PRF key K. Similarly, Cτ [K] on input z runs r ← F(K, z) and outputs τd ← Gτd(z; r). G
generates the circuits Cσ[K] and Cτ [K], and pads them to be of size `σ and `τ respectively
which will be specified exactly later in the analysis. For now, we mention that if we use a
delegation scheme with optimal verification then `σ, `τ ≤ poly(λ, n, log T). We subsequently
assume the circuits Cσ and Cτ are padded.

3. G runs σ ← iO(1λ, Cσ[K]), τ ← iO(1λ, Cτ [K]) and outputs (σ, τ).

Prover P(z, σ):
P runs σ on input z to get σd ← σ(z). Note that σd is a first message of the underlying

delegation scheme (Pd, (Gd,Vd)). Next, P generates the corresponding proof of the delegation
scheme π ← Pd(z, σd) and outputs π.

Verifier V(z, σ, τ, π):
V runs σd ← σ(z), τd ← τ(z), and outputs the result of Vd(z, σd, τd, π).

Theorem 11. If (Pd, (Gd,Vd)) is a privately verifiable (resp. publicly verifiable) P-delegation
scheme, then (P, (G,V))) as described above is a privately verifiable (resp. publicly verifiable)
SNARG with strong soundness. Moreover, if the delegation scheme has optimal or space-dependent
verification and relative prover efficiency, then so does the SNARG.

45

Proof. The completeness of (P, (G,V)) follows directly from that of (Pd, (Gd,Vd)) and the correct-
ness of iO. The running time of G(λ, T, n) is polynomial in λ and the maximum running time of Gd
on inputs z = (AL, x, λ) where |AL, x| ≤ n and AL.T ≤ T . Similarly, the running times of P and
V are polynomial in λ and the running times of Pd and Vd respectively. Therefore, the optimal (or
space-dependent) verification and prover efficiency of (Pd, (Gd,Vd)) implies that the same properties
hold for (P, (G,V)).

To show strong soundness of (P, (G,V)), we will rely on the soundness of (Pd, (Gd,Vd)), and
the security of iO and the punctured PRF (PRF.Gen,PRF.Punc,F). We will first consider the
privately verifiable setting. Assume for contradiction there exists poly-size oracle-aided prover
P∗, polynomials T (·),n(·),p(·) such that for infinitely many z = (AL, x, λ), where AL.T ≤ T (λ),
|AL, x| ≤ n(λ), and AL does not accept x:

Pr

[
V(z, σ, τ, π) = 1

∣∣∣∣ (σ, τ)← G(λ, T (λ), n(λ))

π ← P∗V(·,σ,τ,·)(z, σ)

]
≥ 1

p(λ)
.

We will refer to the above probability as the advantage A(z,P∗). We will now construct a malicious
prover P∗d to break the soundness of the delegation scheme. P∗d gets as input z and σd which is some
first message of the delegation scheme. P∗ runs a subroutine D described in the following paragraph,
on input (z, σd), to obtain a “fake” SNARG message and verification state (σ, τ) which it will then
use to run P∗ and answer its queries. That is, P∗d runs (σ, τ)← D(z, σd), π ← P∗V(·,σ,τ,·)(z, σ) and
outputs π. The subroutine D is defined as follows:

Subroutine D(z, σd):

1. D samples a puncturable PRF key K ← PRF.Gen(1λ) and punctures it at the input z to
obtain a punctured key Kz ← PRF.Punc(K, z).

2. Let C∗σ[Kz, σd] be a circuit that on input z∗ behaves as follows: if z∗ = z then C∗σ simply
outputs the hardwired value σd. Otherwise, C∗σ runs r ← F(Kz, z

∗) and outputs the result of
Gσd(z∗; r).

3. Similarly, let C∗τ [Kz] be a circuit that on input z∗ behaves as follows: if z∗ = z then C∗τ simply
outputs ⊥. Otherwise, C∗τ runs r ← F(Kz, z

∗) and outputs the result of Gτd(z∗; r).

4. D generates the circuits C∗σ[Kz∗ , σd] and C∗τ [Kz∗] and pads them to sizes `σ and `τ respectively,
where `σ is the maximum size of the circuits C∗σ[Kz∗ , σ

∗
d] and Cσ[K] and `τ is the maximum

size of the circuits C∗τ [Kz∗] and Cτ [K]. We subsequently assume the circuits C∗σ and C∗τ are
padded.

5. D generates σ ← iO(1λ, C∗σ[Kz, σd]), τ ← iO(1λ, C∗τ [Kz]) and outputs (σ, τ).

Note that when P∗d uses τ , as generated by D above, to answer P∗’s verification oracle queries
on the input z then, unlike a “real” verification state, τ simply outputs ⊥. In this case, P∗d answers
the query with the bit 0 (rejecting the proof submitted in the query).

We now analyze the success probability of P∗d . We want to show there exists a polynomial p′

such that for infinitely many z = (AL, x, λ) where AL does not accept x the following holds:

Ad(z,P∗d) = Pr

[
Vd(z, σd, τd, π) = 1

∣∣∣∣ (σd, τd)← Gd(z)
π ← P∗d(z, σd)

]
≥ 1

p′(λ)
.

46

Let Z be the sequence of such z = (AL, x, λ).

To show P∗d succeeds with noticeable probability, we will consider a hybrid malicious prover PHyb
d

that is very similar to P∗d except that it also gets the secret verification state τd as input and uses it in

a different subroutine DHyb. We will first show that for every z ∈ Z, Ad(z,P∗d) = Ad(z,PHyb
d). Next,

we show that relying on the security of the indistinguishability obfuscator and the puncturable PRF,
Ad(z,PHyb

d) is negligibly close to A(z,P∗) for all z ∈ Z. By assumption, A(z,P∗), is noticeable
and hence we have that Ad(z,P∗d) is noticeable, contradicting the soundness of the P-delegation
scheme.

We now describe the hybrid malicious prover PHyb
d . PHyb

d gets as input z and both σd and τd.
It uses the hybrid subroutine DHyb on input (z, σd, τd) to generate a hybrid “fake” (σ, τ) to run P∗
and answer its queries. However, unlike P∗d , it uses τ to answer all of P∗’s queries (including those
on input z). DHyb is defined as follows.

Subroutine DHyb(z, σd, τd):

1. DHyb samples Kz and generates σ exactly as in D. The only difference is in the generation of
τ .

2. Let C∗τ [Kz, τd] be a circuit that on input z∗ behaves as follows: if z∗ = z then C∗τ simply
outputs the hardwired value τd. Otherwise, C∗τ runs r ← F(Kz, z

∗) and outputs the result of
Gτd(z∗; r).

3. DHyb generates C∗τ [Kz, τd], pads it to the maximum size of C∗τ [Kz, τd] and Cτ [K] and generates
τ ← iO(1λ, C∗τ [Kz, τd]). DHyb outputs (σ, τ).

We now observe that for every z ∈ Z, Ad(z,P∗d) = Ad(z,PHyb
d). The only difference in the two

experiments is in the view of P∗: when run by P∗d then its oracle responses are answered using τ as

generated by D and when run by PHyb
d , its oracle responses are answered using τ as generated by

DHyb. However, we claim that the responses are distributed identically in both cases. They could
only potentially differ on queries on the input z, but since z is a “false” input, i.e. AL does not
accept x, in both cases, the verification oracle response on such queries is 0 (reject).

Next we show that there is a negligible function α(·) such that for every z ∈ Z,

|Ad(z,PHyb
d)−A(z,P∗)| ≤ α(λ)

. We first observe that in the experiment corresponding toAd(z,PHyb
d), the event Vd(z, σd, τd, π) = 1

is equivalent to the event V(z, σ, τ, π) = 1 where (σ, τ)← DHyb(z, σd, τd). This follows directly from
the construction of V and the fact that σ and τ are hardwired to output σd and τd on input z.
Hence we have that

Ad(z,PHyb
d) = Pr

V(z, σ, τ, π) = 1

∣∣∣∣∣∣
(σd, τd)← Gd(z)

(σ, τ)← DHyb(z, σd, τd)

π ← P∗V(·,σ,τ,·)(z, σ)

 .

Now viewed this way, we can observe that the only difference between the above experiment
and that of A(z,P∗) is in how (σ, τ) are generated. In the above experiment, (σ, τ) comes from
DHyb and Gd whereas in the experiment for A(z,P∗), (σ, τ) comes from G. It suffices to show the
following claim:

47

Claim. The following ensembles are computationally indistinguishable.

{(σ, τ) : (σ, τ, π)← DHyb(z, σd, τd), (σd, τd)← Gd(z)}z∈Z (7)

≈c{(σ, τ) : (σ, τ)← G(λ, T (λ), n(λ))}z∈Z (8)

Proof. Recall that in ensemble (7), σ ← iO(C∗σ[Kz, σd]) where Kz is a PRF key punctured at input
z and C∗σ on all input z outputs σd and on all other inputs z∗ outputs Gd(z∗;F(Kz, z

∗)). However,
in ensemble (8), σ ← iO(Cσ[K]) where C on input z∗ outputs Gd(z∗;F(K, z∗)). The difference
between τ in ensembles (7) and (8) is the same. Indistinguishability follows from the security of
iO and that of (PRF.Gen,PRF.Punc,F) in the standard way. We provide a brief overview.

Consider a hybrid ensemble that is identical to ensemble (7) except that instead of uniform
randomness Gd uses randomness from F(K, z) where K is a PRF key. K is then punctured at input
z and given to DHyb to use as Kz. By the security of the punctured PRF, this hybrid ensemble is
indistinguishable from ensemble (7). Furthermore, the circuits obfuscated as σ and τ in this hybrid
ensemble and in ensemble (8) are functionally equivalent. Hence, by the security of iO, ensemble
(8) is indistinguishable from the hybrid ensemble. A hybrid argument completes the proof of the
claim.

This completes the proof of strong soundness in the privately-verifiable setting. Proving strong
soundness in the publicly-verifiable setting is very similar . The malicious prover for the SNARG
P∗ now also requires τ as input to generate the convincing proof π. On the other hand the prover
we want to construct for the delegation scheme P∗d gets τd as input from the challenger. P∗d uses

the same strategy as PHyb
d to generate τ and simply gives it to P∗. Using the same proof as above,

we have that if P∗ succeeds with noticeable probability then so does P∗d .

5.2.3 Succinct Perfect NIZK for NP

In this section we briefly note that using the succinct indistinguishability obfuscator from Section 5.1
in the construction of [SW14a] we can obtain a NIZK argument scheme for any NP language RL
that is perfect zero-knowledge and additionally succinct in the following sense: Let ΠR be a uniform
programs that computes the NP relation R(x,w), and let τ(n) and s(n) be respectively bounds
on the length of witness and space needed by ΠR for n-bit statements. The length of the CRS
of the scheme for proving n-bit statements grows polynomially with n, τ(n), and s(n), (and is
essentially independent of the verification time of the language). Below We provide a brief overview
of the [SW14a] construction and how it can be made succinct using succinct indistinguishability
obfuscation.

In [SW14a], the NIZK scheme relies on indistinguishability obfuscation for circuits as follows:
the CRS contains an obfuscation of two circuits that contain the same PRF key. The first obfus-
cation is used by the Prover to generate proofs: the circuit takes as input a statement and witness
(x,w) of lengthes n and τ(n), and outputs the image of the input under the PRF as the proof if
the witness is valid, that is, ΠR(x,w) = 1. The second obfuscation is used by the Verifier to check
if this proof is valid. [SW14a] show how to use this idea relying on indistinguishability obfuscation
and puncturable PRFs. In their construction, the length of the proof is succinct: it depends only
on the security parameter. However, the length of the CRS is related to the size of the circuits
obfuscated in the CRS, which is related to the verification time. We note that by obfuscating
the pair of Turing machines that perform the above functionality, and using our succinct indistin-
guishability obfuscator instead, the length of the CRS can be made to depend on the statement

48

and witness lengthes, as well as the space complexity of the verification program, independent of
the verification time.

Note that this succinct construction relies on our succinct indistinguishability obfuscator which
in turn relies on sub-exponentially secure iO for circuits (as opposed to standard IO for circuits
which the [SW14a] construction is based on).

Theorem 12. (Follows from [SW14a]) Assuming sub-exponentially secure iO for circuits and
sub-exponentially secure OWFs, there exists a NIZK argument scheme for every NP language de-
termined by a uniform polynomial-time program ΠR with the following properties:

1. The scheme is perfectly zero knowledge.

2. The scheme has adaptive soundness16.

3. There are universal polynomials p, p′ and p′′, such that the length of the CRS of the scheme
for verifying statements x of length n is p(λ, n, τ(n), s(n)), where λ is the security parameter,
τ(n) is a bound on the length of witness, and s(n) is the space complexity of ΠR for verifying
n-bit statements. The length of the proof is p′(λ). The run-time of the prover for statement
and witness (x,w) is p′′(λ, n, τ(n), s(n))T , where T is the run-time of ΠR(x,w).

Remark 6 (Improved Efficiency of Delegation and SNARGs). When plugging in the more effi-
cient garbling scheme of Remark 2, we directly obtain a publicly verifiable delegation scheme that
the verification complexity is poly(λ)(|AL| + AL.S + |x|) and the prover complexity for a T -time
computation AL(x) is poly(λ)(|AL|+ AL.S + T). Furthermore, combining this delegation scheme
with Theorem 11, while applying the trick of “obfuscating in a piecemeal fashion” as in Section 4.1
and 5.1, we obtain a SNARG for P with the same verification and prover efficiency.

Finally, using the more efficiency succinct iO of Remark 3 in Theorem 12, the size of the
CRS can be improved to poly(λ, n, τ(n)) · s(n), and the prover efficiency can be improved to
poly(λ, n, τ(n))(s(n) + T).

Acknowledgements

We thank Boaz Barak and Guy Rothblum for their input regarding the plausibility of interactive
proofs with fast verification (relevant to the plausibility of perfectly-private succinct randomized
encodings). We thank Daniel Wichs for discussing several aspects of [GHRW14b]. We thank
Stefano Tessaro for many delightful discussions at the early stage of the project. Finally we thank
the anonymous reviewers of STOC for their valuable comments.

References

[ABG+13] Prabhanjan Ananth, Dan Boneh, Sanjam Garg, Amit Sahai, and Mark Zhandry.
Differing-inputs obfuscation and applications. Cryptology ePrint Archive, Report
2013/689, 2013.

[AIK04] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography in NC0. In 45th
Annual Symposium on Foundations of Computer Science, pages 166–175, Rome, Italy,
October 17–19, 2004. IEEE Computer Society Press.

16The perfect NIZK construction of [SW14a] only satisfies non-adaptive soundness. But by a standard complexity
leveraging trick, it can be made to satisfy adaptive soundness. Since we anyway assume sub-exponential security of
the iO this comes at no cost for us.

49

[AIK06] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Computationally private ran-
domizing polynomials and their applications. Computational Complexity, 15(2):115–
162, 2006.

[AIK10] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. From secrecy to soundness:
Efficient verification via secure computation. In Samson Abramsky, Cyril Gavoille,
Claude Kirchner, Friedhelm Meyer auf der Heide, and Paul G. Spirakis, editors,
ICALP 2010: 37th International Colloquium on Automata, Languages and Program-
ming, Part I, volume 6198 of Lecture Notes in Computer Science, pages 152–163,
Bordeaux, France, July 6–10, 2010. Springer, Berlin, Germany.

[AIK11] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. How to garble arithmetic
circuits. In Rafail Ostrovsky, editor, 52nd Annual Symposium on Foundations of
Computer Science, pages 120–129, Palm Springs, California, USA, October 22–25,
2011. IEEE Computer Society Press.

[AJL+12] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod Vaikun-
tanathan, and Daniel Wichs. Multiparty computation with low communication, com-
putation and interaction via threshold FHE. In David Pointcheval and Thomas Jo-
hansson, editors, Advances in Cryptology – EUROCRYPT 2012, volume 7237 of Lec-
ture Notes in Computer Science, pages 483–501, Cambridge, UK, April 15–19, 2012.
Springer, Berlin, Germany.

[App11a] Benny Applebaum. Key-dependent message security: Generic amplification and
completeness. In Kenneth G. Paterson, editor, Advances in Cryptology – EURO-
CRYPT 2011, volume 6632 of Lecture Notes in Computer Science, pages 527–546,
Tallinn, Estonia, May 15–19, 2011. Springer, Berlin, Germany.

[App11b] Benny Applebaum. Randomly encoding functions: A new cryptographic paradigm
- (invited talk). In Information Theoretic Security - 5th International Conference,
ICITS 2011, Amsterdam, The Netherlands, May 21-24, 2011. Proceedings, pages 25–
31, 2011.

[App14] Benny Applebaum. Bootstrapping obfuscators via fast pseudorandom functions. In
Advances in Cryptology - ASIACRYPT 2014 - 20th International Conference on the
Theory and Application of Cryptology and Information Security, Kaoshiung, Taiwan,
R.O.C., December 7-11, 2014, Proceedings, Part II, pages 162–172, 2014.

[BCCT12] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From extractable
collision resistance to succinct non-interactive arguments of knowledge, and back
again. In Shafi Goldwasser, editor, ITCS 2012: 3rd Innovations in Theoretical Com-
puter Science, pages 326–349, Cambridge, Massachusetts, USA, January 8–10, 2012.
Association for Computing Machinery.

[BCCT13] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive com-
position and bootstrapping for SNARKS and proof-carrying data. In Dan Boneh,
Tim Roughgarden, and Joan Feigenbaum, editors, 45th Annual ACM Symposium on
Theory of Computing, pages 111–120, Palo Alto, CA, USA, June 1–4, 2013. ACM
Press.

50

[BCP14] Elette Boyle, Kai-Min Chung, and Rafael Pass. On extractability obfuscation. In
Yehuda Lindell, editor, TCC 2014: 11th Theory of Cryptography Conference, vol-
ume 8349 of Lecture Notes in Computer Science, pages 52–73, San Diego, CA, USA,
February 24–26, 2014. Springer, Berlin, Germany.

[BCPR14] Nir Bitansky, Ran Canetti, Omer Paneth, and Alon Rosen. On the existence of ex-
tractable one-way functions. In David B. Shmoys, editor, 46th Annual ACM Sympo-
sium on Theory of Computing, pages 505–514, New York, NY, USA, May 31 – June 3,
2014. ACM Press.

[BGI+01] Boaz Barak, Oded Goldreich, Rusell Impagliazzo, Steven Rudich, Amit Sahai, Salil
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In Advances
in Cryptology CRYPTO 2001, pages 1–18. Springer, 2001.

[BGI14] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudo-
random functions. In PKC, pages 501–519, 2014.

[BGT14] Nir Bitansky, Sanjam Garg, and Sidharth Telang. Succinct randomized encodings and
their applications. IACR Cryptology ePrint Archive, 2014:771, 2014.

[BHHI10] Boaz Barak, Iftach Haitner, Dennis Hofheinz, and Yuval Ishai. Bounded key-
dependent message security. In Henri Gilbert, editor, Advances in Cryptology – EU-
ROCRYPT 2010, volume 6110 of Lecture Notes in Computer Science, pages 423–444,
French Riviera, May 30 – June 3, 2010. Springer, Berlin, Germany.

[BHK13] Mihir Bellare, Viet Tung Hoang, and Sriram Keelveedhi. Instantiating random oracles
via UCEs. In Ran Canetti and Juan A. Garay, editors, Advances in Cryptology –
CRYPTO 2013, Part II, volume 8043 of Lecture Notes in Computer Science, pages
398–415, Santa Barbara, CA, USA, August 18–22, 2013. Springer, Berlin, Germany.

[BHR12a] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Adaptively secure garbling
with applications to one-time programs and secure outsourcing. In Xiaoyun Wang
and Kazue Sako, editors, Advances in Cryptology – ASIACRYPT 2012, volume 7658
of Lecture Notes in Computer Science, pages 134–153, Beijing, China, December 2–6,
2012. Springer, Berlin, Germany.

[BHR12b] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled cir-
cuits. In the ACM Conference on Computer and Communications Security, CCS’12,
Raleigh, NC, USA, October 16-18, 2012, pages 784–796, 2012.

[BLMR13] Dan Boneh, Kevin Lewi, Hart William Montgomery, and Ananth Raghunathan. Key
homomorphic PRFs and their applications. In Ran Canetti and Juan A. Garay,
editors, Advances in Cryptology – CRYPTO 2013, Part I, volume 8042 of Lecture
Notes in Computer Science, pages 410–428, Santa Barbara, CA, USA, August 18–22,
2013. Springer, Berlin, Germany.

[BP13] Elette Boyle and Rafael Pass. Limits of extractability assumptions with distributional
auxiliary input. Cryptology ePrint Archive, Report 2013/703, 2013.

[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their appli-
cations. In ASIACRYPT (2), pages 280–300, 2013.

51

[CHJV15] Ran Canetti, Justin Holmgren, Abhishek Jain, and Vinod Vaikuntanathan. Succinct
garbling and indistinguishability obfuscation for ram programs. In 47th Annual ACM
Symposium on Theory of Computing. ACM Press, 2015.

[CIJ+13] Angelo De Caro, Vincenzo Iovino, Abhishek Jain, Adam O’Neill, Omer Paneth, and
Giuseppe Persiano. On the achievability of simulation-based security for functional
encryption. In Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology
Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part II, pages
519–535, 2013.

[CLP13] Kai-Min Chung, Huijia Lin, and Rafael Pass. Constant-round concurrent zero knowl-
edge from p-certificates. In 54th Annual IEEE Symposium on Foundations of Com-
puter Science, FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA, pages 50–59,
2013.

[CLTV15] Ran Canetti, Huijia Lin, Stefano Tessaro, and Vinod Vaikuntanathan. Obfuscation
of probabilistic circuits and applications. In Theory of Cryptography - 12th Theory of
Cryptography Conference, TCC 2015, Warsaw, Poland, March 23-25, 2015, Proceed-
ings, Part II, pages 468–497, 2015.

[DFH12] Ivan Damg̊ard, Sebastian Faust, and Carmit Hazay. Secure two-party computation
with low communication. In Ronald Cramer, editor, TCC 2012: 9th Theory of Cryp-
tography Conference, volume 7194 of Lecture Notes in Computer Science, pages 54–74,
Taormina, Sicily, Italy, March 19–21, 2012. Springer, Berlin, Germany.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael Mitzen-
macher, editor, 41st Annual ACM Symposium on Theory of Computing, pages 169–
178, Bethesda, Maryland, USA, May 31 – June 2, 2009. ACM Press.

[GGH+13a] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all
circuits. In 54th Annual Symposium on Foundations of Computer Science, pages
40–49, Berkeley, CA, USA, October 26–29, 2013. IEEE Computer Society Press.

[GGH+13b] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all
circuits. Proc. of FOCS 2013, 2013.

[GGHR14] Sanjam Garg, Craig Gentry, Shai Halevi, and Mariana Raykova. Two-round secure
MPC from indistinguishability obfuscation. In Yehuda Lindell, editor, TCC 2014:
11th Theory of Cryptography Conference, volume 8349 of Lecture Notes in Computer
Science, pages 74–94, San Diego, CA, USA, February 24–26, 2014. Springer, Berlin,
Germany.

[GGHW14] Sanjam Garg, Craig Gentry, Shai Halevi, and Daniel Wichs. On the implausibil-
ity of differing-inputs obfuscation and extractable witness encryption with auxiliary
input. In Juan A. Garay and Rosario Gennaro, editors, Advances in Cryptology –
CRYPTO 2014, Part I, volume 8616 of Lecture Notes in Computer Science, pages
518–535, Santa Barbara, CA, USA, August 17–21, 2014. Springer, Berlin, Germany.

52

[GGHZ14] Sanjam Garg, Craig Gentry, Shai Halevi, and Mark Zhandry. Fully secure functional
encryption without obfuscation. Cryptology ePrint Archive, Report 2014/666, 2014.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random func-
tions. J. ACM, 33(4):792–807, 1986.

[GGP10] Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive verifiable comput-
ing: Outsourcing computation to untrusted workers. In Tal Rabin, editor, Advances
in Cryptology – CRYPTO 2010, volume 6223 of Lecture Notes in Computer Science,
pages 465–482, Santa Barbara, CA, USA, August 15–19, 2010. Springer, Berlin, Ger-
many.

[GHL+14] Craig Gentry, Shai Halevi, Steve Lu, Rafail Ostrovsky, Mariana Raykova, and Daniel
Wichs. Garbled RAM revisited. In Advances in Cryptology - EUROCRYPT 2014
- 33rd Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Copenhagen, Denmark, May 11-15, 2014. Proceedings, pages
405–422, 2014.

[GHRW14a] Gentry, Halevi, Raykova, and Wichs. Outsourcing private ram computation. Proc. of
FOCS 2014, 2014.

[GHRW14b] Craig Gentry, Shai Halevi, Mariana Raykova, and Daniel Wichs. Outsourcing private
ram computation. In 55th Annual Symposium on Foundations of Computer Science,
2014.

[GKP+13a] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and
Nickolai Zeldovich. How to run turing machines on encrypted data. In CRYPTO (2),
pages 536–553, 2013.

[GKP+13b] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and
Nickolai Zeldovich. Reusable garbled circuits and succinct functional encryption. In
Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, 45th Annual ACM
Symposium on Theory of Computing, pages 555–564, Palo Alto, CA, USA, June 1–4,
2013. ACM Press.

[GLOS15] Sanjam Garg, Steve Lu, Rafail Ostrovsky, and Alessandra Scafuro. Garbled RAM
from one-way functions. In 47th Annual ACM Symposium on Theory of Computing.
ACM Press, 2015.

[GLR11] Shafi Goldwasser, Huijia Lin, and Aviad Rubinstein. Delegation of computation with-
out rejection problem from designated verifier CS-Proofs. Cryptology ePrint Archive,
Report 2011/456, 2011.

[GLSW14] Craig Gentry, Allison Lewko, Amit Sahai, and Brent Waters. Indistinguishability
obfuscation from the multilinear subgroup elimination assumption. Cryptology ePrint
Archive, Report 2014/309, 2014.

[IK00] Yuval Ishai and Eyal Kushilevitz. Randomizing polynomials: A new representation
with applications to round-efficient secure computation. In 41st Annual Symposium on
Foundations of Computer Science, pages 294–304, Redondo Beach, California, USA,
November 12–14, 2000. IEEE Computer Society Press.

53

[IK02a] Yuval Ishai and Eyal Kushilevitz. Perfect constant-round secure computation via
perfect randomizing polynomials. In Automata, Languages and Programming, 29th
International Colloquium, ICALP 2002, Malaga, Spain, July 8-13, 2002, Proceedings,
pages 244–256, 2002.

[IK02b] Yuval Ishai and Eyal Kushilevitz. Perfect constant-round secure computation via
perfect randomizing polynomials. In ICALP, pages 244–256, 2002.

[IPS15] Yuval Ishai, Omkant Pandey, and Amit Sahai. Public-coin differing-inputs obfusca-
tion and its applications. In Theory of Cryptography - 12th Theory of Cryptography
Conference, TCC 2015, Warsaw, Poland, March 23-25, 2015, Proceedings, Part II,
pages 668–697, 2015.

[KLW15] Venkata Koppula, Allison Bishop Lewko, and Brent Waters. Indistinguishability ob-
fuscation for turing machines with unbounded memory. In 47th Annual ACM Sym-
posium on Theory of Computing. ACM Press, 2015.

[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias.
Delegatable pseudorandom functions and applications. In CCS, pages 669–684, 2013.

[KRR14] Yael Tauman Kalai, Ran Raz, and Ron D. Rothblum. How to delegate computations:
the power of no-signaling proofs. In David B. Shmoys, editor, 46th Annual ACM
Symposium on Theory of Computing, pages 485–494, New York, NY, USA, May 31 –
June 3, 2014. ACM Press.

[Kv99] Adam Klivans and Dieter van Melkebeek. Graph nonisomorphism has subexponential
size proofs unless the polynomial-time hierarchy collapses. In 31st Annual ACM Sym-
posium on Theory of Computing, pages 659–667, Atlanta, Georgia, USA, May 1–4,
1999. ACM Press.

[LO13] Steve Lu and Rafail Ostrovsky. How to garble RAM programs. In Advances in
Cryptology - EUROCRYPT 2013, 32nd Annual International Conference on the The-
ory and Applications of Cryptographic Techniques, Athens, Greece, May 26-30, 2013.
Proceedings, pages 719–734, 2013.

[LP14] Huijia Lin and Rafael Pass. Succinct garbling schemes and applications. IACR Cryp-
tology ePrint Archive, 2014:766, 2014.

[LTV12] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-fly multiparty
computation on the cloud via multikey fully homomorphic encryption. In Howard J.
Karloff and Toniann Pitassi, editors, 44th Annual ACM Symposium on Theory of
Computing, pages 1219–1234, New York, NY, USA, May 19–22, 2012. ACM Press.

[Mic00] Silvio Micali. Computationally sound proofs. SIAM J. Comput., 30(4):1253–1298,
2000.

[MV99] Peter Bro Miltersen and N. V. Vinodchandran. Derandomizing Arthur-Merlin games
using hitting sets. In 40th Annual Symposium on Foundations of Computer Science,
pages 71–80, New York, New York, USA, October 17–19, 1999. IEEE Computer
Society Press.

54

[Nao03] Moni Naor. On cryptographic assumptions and challenges (invited talk). In Dan
Boneh, editor, Advances in Cryptology – CRYPTO 2003, volume 2729 of Lecture
Notes in Computer Science, pages 96–109, Santa Barbara, CA, USA, August 17–21,
2003. Springer, Berlin, Germany.

[PRV12] Bryan Parno, Mariana Raykova, and Vinod Vaikuntanathan. How to delegate and
verify in public: Verifiable computation from attribute-based encryption. In Ronald
Cramer, editor, TCC 2012: 9th Theory of Cryptography Conference, volume 7194 of
Lecture Notes in Computer Science, pages 422–439, Taormina, Sicily, Italy, March 19–
21, 2012. Springer, Berlin, Germany.

[SW14a] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: Deniable
encryption, and more. Proc. of STOC 2014, 2014.

[SW14b] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable
encryption, and more. In David B. Shmoys, editor, 46th Annual ACM Symposium on
Theory of Computing, pages 475–484, New York, NY, USA, May 31 – June 3, 2014.
ACM Press.

[Wat14] Brent Waters. A punctured programming approach to adaptively secure functional
encryption. Cryptology ePrint Archive, Report 2014/588, 2014.

[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In 23rd
Annual Symposium on Foundations of Computer Science, pages 160–164, Chicago,
Illinois, November 3–5, 1982. IEEE Computer Society Press.

A Obfuscating Circuits with Quasi-Linear Blowup

In general, when considering iO for circuits, the size of an obfuscation |iO(C)| (or more generally
the time to required to obfuscate) is allowed to be an arbitrary polynomial in the original circuit-size
|C|. In known candidate constructions (e.g., [GGH+13b]) the blow-up is quadratic (see discussion
in [GHRW14a]). In this section, we show how to construct from iO and one-way functions, iO for
circuits where the blowup is quasi-linear.

The high-level idea. The transformation relies on similar ideas to those used in Section 5.1 to
construct succinct iO from succinct randomized encodings, which in turn go back to the boot-
strapping technique of Applebaum [App14]. Concretely, we rely on plain randomized encodings
[IK02b, AIK06] for circuits are known to have the following basic locality property: given a circuit
C with s gates and n-bit input x, computing a randomized encoding Ĉ(x;R) can be decomposed
into s computations Ĉ1(x;R), . . . , Ĉs(x;R), each of fixed size ` independent of the circuit size |C|.
In particular, each such computation Ĉi(x;R) involves at most ` bits of the shared randomness R.

Similarly to the transformation in Section 5.1, the transformation here is based on the basic idea
of obfuscating the circuit that computes the randomized encoding Ĉ(x; r) for any input x, while
deriving the randomness R, by applying a puncturable PRF to the input x. The only difference
is that, rather than obfuscating this circuit as a whole, we separately obfuscate s smaller circuits
computing the corresponding Ĉi(x;R). To make sure that deriving the randomness is also local,
we associate r = |R| PRF keys K1, . . . ,Kr with each of the bits of the shared randomness R. Each
one of the s obfuscated circuits only includes the PRF keys required for its local computation. The
corresponding bits of randomness are again derived by applying the corresponding PRFs to the
input x.

55

The gain is that the size of the resulting obfuscated circuit is thus s ·poly(λ, n) as required. The
proof of security relies on a variant of the probabilistic iO argument invoked in Section 5.1, with
the difference that puncturing is performed simultaneously across all r PRF keys. Accordingly, it
incurs a 2n security loss in the input length n (which is polynomial when considering circuits with
logarithmic-size inputs, as is often the case in this work).

We next describe the transformation in more detail, and sketch the proof of security. We start by
defining the required notion of locality for the randomized encoding.

Definition (Locality of Randomized Encodings). A randomized encoding RE = (REnc,Dec) for
circuits is said to be local if

REnc(1λ, C, x;R) = Ĉ1(x;R|S1), . . . , Ĉs(x;R|Ss) ,

where s = Θ(|C|), Si ⊆ {1, . . . , |R|}, R|Si is the restriction of R to Si, and the following properties
are satisfied:

• Ĉi is a circuit of fixed size `(λ, |x|) = poly(λ, |x|), independent of |C|.

• The circuits
{
Ĉi

}
and sets {Si} can be computed from C in time |C| · poly(λ, |x|).

• Decoding can be done in time |C| · poly(λ, |x|).

Such randomized encodings can be constructed based on any one-way function [Yao82, AIK06].

A qausi-linear obfuscator iO∗. we now describe the new obfuscator. The obfuscator relies on
the following building blocks:

• A randomized encodingRE = (REnc,Dec) for circuits that is local and which used randomness
of length at most r = r(|C|, λ).

• An indistinguishability obfuscator iO for circuits (with arbitrary polynomial blowup).

• A puncturable PRF (PRF.Gen,PRF.Punc,F).

All building blocks are assumed to be 2−n+ω(log λ)-secure.

The obfuscator iO∗(1λ, C) proceeds as follows:

1. Compute the circuits Ĉ1(·; ·), . . . , Ĉs(·; ·) and sets S1, . . . , Ss.

2. Sample PRF keys K1, . . . ,Kr ← PRF.Gen(1λ).

3. For each i ∈ [s], obfuscate using iO the circuit Ci that has hardwired {Kj : j ∈ Si} and given
x operates as follows:

• Derive randomness R|Si by invoking FKj (x) for j ∈ Si.

• Output Ĉi(x,R|Si).

The circuit is further padded to be of total size is `(λ, x), where ` is determined in the analysis.

4. Output the obfuscations iO(C1), . . . , iO(Cs).

56

To evaluate iO∗(1λ, C) on input x, first evaluate each iO(Ci) on x, obtain the randomized encoding

Ĉ(x) = Ĉ1(x;R|S1), . . . , Ĉs(x;R|Ss) ,

end decode to obtain the result C(x).

Proposition. iO∗ is a circuit obfuscator with qausi-linear blowup.

Proof sketch. The functionality of iO∗ follows directly from the functionality of the underlying iO
and the correctness of decoding. The fact that the size |iO∗(1λ, C)| obfuscated circuit is |C| ·
poly(λ, |x|), follows from the locality of the randomized encoding. We next sketch the security.

We use a probabilistic iO argument similar to the one used in Section 5.1. Concretely, given
two circuits C,C ′ of the same size and functionality, we consider 2n+1 hybrids that transition from
iO∗(1λ, C) to iO∗(1λ, C ′). In the jth hybrid, the s obfuscations are with respect to hybrid circuits

Cj1, . . . ,C
j
s where Cji uses Ĉi for all inputs x < j and Ĉ ′i for all inputs x ≥ j. Each two consecutive

hybrids only differ on a single point j. Similarly to Section 5.1, we puncture the underlying PRFs at
this point j, and hardwire the values Ĉ1(x;R|S1), . . . , Ĉs(x;R|Ss) (or Ĉ ′1(x;R|S1), . . . , Ĉ ′s(x;R|Ss),
respectively), using true randomness instead of pseudo-randomness. Then we can rely on the
security of the randomized encodings to switch between the two.

The padding parameter `(λ, |x|) is chosen to account for the above hybrids (and only induces
quasi-linear blowup).

57

	Introduction
	Contributions
	Techniques
	Main Ideas behind the Applications

	Concurrent and Subsequent Work

	Preliminaries
	Models of Computation
	Garbling Schemes
	Indistinguishability Obfuscation
	Puncturable Pseudo-Random Functions

	Succinct Garbling for Bounded-Space Turing Machines
	A Non-Succinct Garbling Scheme
	A Garbling Scheme for TM with Space-dependent Complexity

	Succinct Garbling in Other Models of Computation
	Improved Construction and Analysis

	Applications
	From Randomized Encodings to iO
	Publicly-Verifiable Delegation, SNARG s for ¶, and Succinct NIZKs for NP
	P-delegation
	SNARGs for P
	Succinct Perfect NIZK for NP

	Obfuscating Circuits with Quasi-Linear Blowup

