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Abstract. The first fall degree assumption provides a complexity approximation of Gröbner basis algorithms
when the degree of regularity of a polynomial system cannot be precisely evaluated. Most importantly, this
assumption was recently used by Petit and Quisquater’s to conjecture that the elliptic curve discrete logarithm
problem can be solved in subexponential time for binary fields (binary ECDLP). The validity of the assumption
may however depend on the systems in play.
In this paper, we theoretically and experimentally study the first fall degree assumption for a class of polynomial
systems including those considered in Petit and Quisquater’s analysis. In some cases, we show that the first
fall degree assumption seems to hold and we deduce complexity improvements on previous binary ECDLP
algorithms. On the other hand, we also show that the assumption is unlikely to hold in other cases where it
would have very unexpected consequences.
Our results shed light on a Gröbner basis assumption with major consequences on several cryptanalysis prob-
lems, including binary ECDLP.
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Remark This paper has been developed between February 2013 and now, following a visit of the second
author to Kyushu University, and has appeared in the first author’s Ph.D thesis [28]. Very recently, we
have learned that three other teams had been developing partly similar ideas independently, including
[42,31,32]. Compared to their attacks, ours uses different vector spaces for each coordinate of the summa-
tion polynomial, resulting in an improved complexity. We also take a different point of view by focusing
on the first fall degree assumption.

1 Introduction

Solving polynomial systems of equations is a fundamental problem with many applications in engineering,
computer science and mathematics. Gröbner basis algorithms are one of the main tools to solve polynomial
systems. When the number of solutions is “small”, the runtime complexity of these algorithms can be
approximated by

(n+Dreg

Dreg

)ω
[5], where n is the number of variables andDreg is a characteristic of the system

called the degree of regularity. While the value of this degree for “generic” systems is well-understood,
evaluating the degree of regularity of systems with particular distributions is usually a very challenging
task.

In cryptanalysis applications, the degree of regularity has sometimes been approximated by another
parameter of the system called the first fall degree, which is usually easier to evaluate [20,26,14,13,37,27].
Most notably, the first fall degree assumption (approximating the degree of regularity of a system by
its first fall degree) was used by Petit and Quisquater to support a conjecture that the binary elliptic
curve discrete logarithm problem (ECDLP) can be solved in subexponential time using an index calculus
algorithm of Diem [37,11]. Follow-ups of this work [29,35,23,30] have used the same assumption. In [30],
the experiments even comes to n = 53.



The first fall degree assumptions is supported in most of these cases by experimental results as well as
by some intuition on the behaviour of Gröbner basis algorithms. On the other hand, it is also well-known
that the approximation may be very bad for specific systems.

The case of polynomial systems arising from a Weil descent is of particular interest as they are central
in Petit and Quisquater’s analysis. These systems are obtained by projecting a single polynomial f over
a finite field F2n onto the n components of a basis of F2n over F2 (see Section 2.3). The validity of the
first fall degree assumption in this case remains an open problem, even if a rigorous proof of its validity
when f is univariate has been provided in [36].

1.1 Contributions

In this paper, we study the theoretical implications and the experimental validity of the first fall degree
assumption for polynomial systems obtained by applying a Weil descent on a set of polynomials fi over
F2n instead of a single polynomial over F2n as in [21,37].

We first consider the case of polynomials over F2n that can be written as the resultant of two poly-
nomials with lower degrees. Our generalization of the first fall degree assumption to sets of polynomials
leads to a new, more efficient algorithm for this particular case. This directly impacts binary ECDLP
since the polynomial in play in this application is a resultant of several lower degree polynomials.

When the number of polynomials fi remains small, our experimental results provide some support
for this generalized first fall degree assumption. In particular, we obtain significant timing improvements
over previous works [37,29,30] for the computation of relations for binary ECDLP, and we could complete
the computation for some parameters that were previously intractable. Most importantly, the degrees of
regularity were consistently smaller with our methods than with previous methods.

When the number of polynomials fi increases, our experimental results suggest a moderate increase
in the degree of regularity as well, suggesting that the first fall degree assumption should be relaxed in
that case.

Finally when the number of polynomials fi is as large as n, we show that the first fall degree as-
sumptions implies some results that seem unlikely to be true. In particular, we describe algorithms for
binary ECDLP, two algorithms for DLP and ECSSP that all run in expected polynomial time under our
generalized first fall degree assumptions. Even more, we argue that 3SAT can also be seen as a particular
instance of our systems, which is even stronger evidence that the generalized first fall degree assumption
must be false in that case. Surprisingly, the experimental results on our binary ECDLP and DLP algo-
rithms do provide some support for our analysis, but the instances we could solve using our methods are
ridiculously small compared to what can be solved with other methods.

1.2 Outline

This paper is organized as follows. We provide preliminary background on Gröbner basis algorithms and
the recent index calculus developments for binary ECDLP in Section 2. We detail our idea for resultant
polynomials in Section 3 and we describe further applications of the generalized first fall degree assumption
to binary ECDLP, binary DLP, ECSSP and 3-SAT in Section 4. We provide our experimental results in
Section 5. We then conclude the paper in Section 6.

2 Preliminaries

2.1 Gröbner Basis Algorithms

Let K be a field, let R = K[x1, . . . , xN ] be a polynomial ring over K and let f1, . . . , fn ∈ R. By solving the
polynomial system F := {fi = 0}1≤i≤n, we mean finding one, several or all the tuples x̄ = (x1, . . . , xN ) ∈
KN such that fi(x̄) = 0 for all i. We will usually assume that the number of solutions is “small” in this
paper. When all polynomials fi have degree 1, this problem can be solved in time polynomial in n and N



using Gaussian elimination to derive a triangular system. In general however, polynomial system solving
is a daunting computational task.

Gröbner basis algorithms are one of the most efficient tools to solve polynomial systems of equations.
Given a monomial ordering on K, a Gröbner basis for an ideal I ∈ R is a set of polynomials {gi} ⊂ I such
that for any f ∈ I, there exists gi ∈ I such that LT (gi)|LT (f). A Gröbner basis for I allows for an efficient
resolution of the ideal membership problem (given f ∈ R, decide whether f ∈ I). For a lexicographic
ordering, a Gröbner basis will contain a “triangular” set of polynomials involving less and less variables,
allowing to solve the system “one variable at the time”.

In practice, computing a Gröbner basis seems easier for a graded ordering than for a lexicographic
ordering. Given a set of polynomials {fi}, the usual strategy is to first compute a Gröbner basis of their
ideal for the graded reverse lexicographic ordering using F4 or F5 [16,17], then to convert it into a Gröbner
basis for a lexicographic order using FGLM [18] or Gröbner walk [8], and finally to solve this “triangular”
system for one variable at the time. The complexity of the second step is negligible when the number of
solutions is small, so we will neglect it in this paper and focus on the first step.

When the system is defined over a “small” finite field of size q, adding the field equations xqi − xi = 0
to it before computing the graded reverse lexicographic ordering Gröbner basis will generally accelerate
the resolution.

Most Gröbner basis algorithms can be seen as reducing the general problem to the simpler case of
linear polynomials, where it can be solved using Gaussian elimination [33]. The input polynomials fi are
multiplied by all monomials mj such that gij := mjfi ≤ d has degree smaller than some degree d. The
coefficients of the polynomials gij are encoded in a large Macaulay matrix, one row per polynomial and one
column per monomial term. Gaussian elimination on this matrix (elimination the largest monomial terms
first) will then produce new polynomials. When d is large enough, it can be proved that this strategy will
produce a set of polynomials whose linear combinations generate all polynomials of degree at most d in
the ideal: a Gröbner basis is then easily deduced.

Generic bounds are known for the minimal d to use in this strategy, but they tend to be very loose
for particular systems. In practice, Gröbner basis algorithms will start at the maximal degree d of the
equations in the system and perform a first Gaussian elimination step. If a Gröbner basis is found they
will stop. If new, lower degree equations are found, they will multiply these new equations by monomial
terms and add all resulting equations to the system, perform a new Gaussian elimination step and iterate.
If no new equations of lower degree are found they will increase the degree, add new equations accordingly,
perform a Gaussian elimination step, and iterate. This strategy takes maximal advantage of low degree
equations found during the computation, and in some cases may reduce the maximal degree d needed.
The most efficient Gröbner basis algorithms such as F4 or F5 [16,17] use block Gaussian elimination
algorithms and prevent trivial reductions to the zero polynomials to occur.

The overall cost of these algorithms is determined by the cost of Gaussian elimination. With N
variables at degree d, the number of monomials at degree d is

(
N+d
d

)
, which can be approximated by

Nd when d << N . The time and memory complexities of Gröbner basis algorithms can therefore be
approximated by NωDreg and N2Dreg where ω is the linear algebra constant and the degree of regularity
Dreg is the maximal degree occuring during the computation.

The degree of regularity can be precisely evaluated for random systems, but known bounds can be very
loose for specific families of polynomial systems, and deriving better bounds for these systems seems very
difficult. In several previous cryptanalysis works, the degree of regularity has therefore been approximated
by the first fall degree. We said that Dff is the first fall degree of the system {fij} if for each fij exists some
gij such that Dff = min{deg(gijfij)} where deg(

∑
gijfij) < deg(gijfij) and

∑
gijfij is not zero. [37].

The first fall degree assumptions says that the degree of regularity approximation obtained by this way
is reasonably good. This is intuitively justified as follows: when degree falls start to occur in a Gröbner
basis computation, they will produce new polynomials of lower degrees, which can in turn be multiplied
by all monomials to obtain new polynomials, which can contribute to even more degree falls later, etc.



The intuition seems even better when not only one, but many degree fall occurs at degree Dff , since all
these low degree polynomials are likely to contribute to even more degree falls later.

It is well-known that the first fall degree assumption can fail for some specific polynomial systems,
but this fact does not prevent it to hold with a large probability for randomly generated systems of
a particular type. It certainly holds for “random” systems (for which both degrees are expected to be∑

i(deg fi − 1) + 1) and there is some experimental evidence that it holds for polynomial systems arising
from a Weil descent on one polynomial (see Section 2.3 below). In this paper, we will consider the first
fall degree assumption on a larger class of polynomial systems arising from a Weil descent on a system of
polynomials.

2.2 Index Calculus

Let G be a finite cyclic group and let g be a generator of G. Let h be another element in G. The discrete
logarithm problem asks for an integer k such that h = [k]g. The hardness of this problem underlies the
security of many cryptographic schemes, including for example El Gamal cryptosystem and Diffie-Hellman
key exchange [15,12]. Although generic algorithms such as Pollard’s rho and BSGS algorithms [39,43] can
solve this problem in any group with a complexity O(

√
|G|), the difficulty of this problem highly depends

on the particular group used. The most popular groups in cryptography are multiplicative groups of finite
fields and cyclic subgroups of elliptic curves or hyperelliptic curves over finite fields.

Index calculus algorithms have been the most successful algorithms against the discrete logarithm
problems used in practice. These algorithms first define a factor basis F ⊂ G. In their simplest variants,
they then construct about |F| relations

[ai]g + [bi]h =
∑
fi∈F

[ei]fi.

Finally, Gaussian eliminination is performed on these relations to obtain a relation

[a]g + [b]h = 0,

from which the discrete logarithm is easily recovered. More elaborate index calculus algorithms may first
compute the discrete logarithms of all the elements in the factor basis, then use a dedicated descent
strategy to compute the discrete logarithm of a particular target element h.

Index calculus algorithms are particularly efficient for the multiplicative groups of finite fields. The
most efficient index calculus algorithms can now solve discrete logarithm problems in subexponential time

Lq(c, 1/3) = exp
(
c(log q)1/3(log log q)2/3

)
in any finite field Fq (for some constant c), and in quasi-polynomial time for finite fields with small to
medium characteristics [9,25,40,1,4]. Index calculus algorithms have also been proposed for hyperelliptic
curves; their complexity is subexponential for families of curves with increasing genus [2].

Index calculus algorithms differ from each other in the definition of the factor basis and in the algorithm
used to compute relations. For finite fields, the factor basis naturally consists of all the “small” elements
in some canonical representation, hence the relation search amounts to finding elements [ai]g+[bi]h whose
canonical representation is smooth. A similar definition can be taken for hyperelliptic curves. On the other
hand, elliptic curves elements do not have a “natural” definition of smoothness.

The first step in the design of index calculus algorithms for elliptic curves was obtained by Semaev
who introduced his summation polynomials [41].

Proposition 1. Let E be an elliptic curve defined over K. For any integer m, there exists a unique
summation polynomial Sm ∈ K[x1, . . . , xm] such that

Sm(x1, . . . , xm) = 0 ⇔ ∃yi ∈ K with (xi, yi) ∈ E and
∑
i

(xi, yi) = 0.



Semaev showed how to compute these polynomials recursively with resultants. Defining FV := {(x, y) ∈
E|x ∈ V } for some V ⊂ K, finding a relation involving the point (X,Y ) = [ai]g+[bi]h amounts to solving
the polynomial equation Sm+1(x1, . . . , xm, X) = 0 together with the constraints xj ∈ V .

When K := Fqm , Gaudry [24] and Diem [10] later proposed to use V := Fq. For any basis {θ1, . . . , θm}
of Fqm/Fq, we can write Sm+1(x1, . . . , xm, X) =

∑
` f`(x1, . . . , xm)θ` for some polynomials f` with coef-

ficients in Fq. The equation Sm+1(x1, . . . , xm, X) = 0 and the constraints xj ∈ Fq then lead to a system
of polynomial equations f`(x1, . . . , xm) = 0 over the subfield Fq. This transformation is usually called a
Weil descent or Weil restriction. This system can then be solved using resultants, Gröbner basis algo-
rithms, or any other technique. Gaudry and Diem obtained improvements over generic algorithms in this
way. Diem [11] also proposed to take V any vector subspace instead of a subfield. This turned out to be
particularly useful when no exploitable subfield is available, such as elliptic curves over binary fields F2n

with n prime.
In 2012, Faugère, Perret, Petit and Renault [21] and Petit and Quisquater [37] revisited Diem’s algo-

rithm for binary curves [11]. While Diem had previously analyzed his algorithm using generic bounds on
the complexity of solving polynomial systems, they showed that the systems arising from a Weil restric-
tion were in fact much easier to solve than generic systems. Petit and Quisquater even conjectured that
binary ECDLP can be solved in subexponential time

2ωT where T ≈ 2n2/3 log n.

Their conjecture is supported by assumption arguments and experimental results for small parameters.
They estimated that Diem’s algorithm could beat generic ones when n is larger than about 2000 [37].

2.3 Polynomial Systems Arising from a Weil Descent

The core of Petit and Quisquater’s analysis is a study of the following problem: given a polynomial f in
m variables over F2n and given a vector space V ⊂ F2n of dimension n′, find a tuple (x1, . . . , xm) such
that xi ∈ V and f(x1, . . . , xm) = 0. For simplicity they assume that f has degree bounded by 2t − 1 in
each variable, and they also assume mn′ ≈ n such that the expected number of solutions is small.

The standard way to find such a solution is to apply a Weil descent on the variables. We first define
small field variables xij such that xi =

∑n′

i=1 xijvj and we substitute the xi variables by these linear rela-
tions in f . For any basis {θ1, . . . , θn} of F2n/Fp, the equation f = 0 then leads to n polynomial equations
f`(xij) = 0 such that f(x1, . . . , xm) =

∑n
`=1 f`(xij , yij)θ`. We finally use Gröbner basis algorithms to solve

the polynomial system {
f`(xij , yij) = 0 ` = 1, . . . , n

x2ij − xij = 0 1 ≤ i ≤ m, 1 ≤ j ≤ n′ (1)

where the last equations are field equations. It is easy to see that the polynomials f` have degree bounded
by t in each block of variables (each block corresponding to one variable over F2n) and by mt in total.

It turns out that for this type of systems, many degree falls occur already at degree mt + 1. This
could be shown in [21,37] by considering the Weil descent of a polynomial mf (where m is an arbitrary
monomial of degree 1) and in [27] using different techniques. Under the first fall degree assumption, the
degree of regularity of the system is therefore close to mt + 1 as well, whereas generic systems with the
same degrees would be expected to have much larger degrees of regularity.

The first fall degree assumption implications on the degree of regularity were experimentally verified
in [37] both for “generic” polynomials f and for Semaev’s polynomials, but only for sufficiently small
parameters. Further evidence in favor of the first fall degree assumption for polynomial systems arising
from a Weil descent comes from various assumption arguments [20,26,14,13,6] and a proof [36] that it
holds in the case of a univariate polynomial f .

Petit and Quisquater then showed that the degree of regularity of the Weil descent systems arising in
Diem’s algorithm will be bounded by roughly m2 under the first fall degree assumption. The overall cost



of Diem’s algorithm can then be approximated by

2O(m2) +m!2n
′
nO(m2) + 2O(n′).

The first term in this formula comes from the computation of the (m+ 1)th summation polynomial, the
second term comes from the relation search and the last term comes from linear algebra. In the second
term, the nO(m2) factor comes from the Gröbner basis resolution of one system, the 2n

′
accounts for the

number of relation needed, and the m! factor comes from the probability that one random point leads
to a relation given the symmetry of summation polynomials [24,11]. Using n′ ≈ n2/3 and m ≈ n1/3, the

algorithm will run in time 2O(n2/3 log n) , a major progress compared to previous generic, exponential-time
algorithms.

Further experimental results supporting this analysis were presented in [44] and variants of the attack
were studied in [29,23,30]. An extension of the attack to hyperelliptic curves was also presented in [35].
All these results rely on some form of the first fall degree assumption.

3 Further Consequences of First Fall Degree Assumptions

In this section, we consider the theoretical implications of first fall degree assumptions when they are gen-
eralized even further by applying the resultant structure of Semaev polynomial. In our new approach, the
first fall degree decrease more than the previous work.[21,37,29,44,23,30]. We also show the experimental
evidence of the first fall degree assumptions in the later section.

3.1 Splitting up the Resultant

Let n be a positive integer and let p = 2. Let f (1), f (2) be two multivariate polynomials over the field
Fpn , respectively with m1+1 and m2+1 variables. To simplify the exposition of our idea, we will assume
that m1 = m2 = m and that the degrees of f (1) and f (2) are bounded by D with respect to all variables
individually. Let

f(x1, . . . , xm, y1, . . . , ym) := ReszX(f (1)(x1, . . . , xm, z), f (2)(y1, . . . , ym, z)).

The polynomial f has degree bounded by 2D with respect to all its variables.

Let n′ ≈ n/2m and let V = 〈v1, . . . , vn′〉 ⊂ Fpn be a vector space of dimension n′ over Fp, generated
by {v1, . . . , vn′}. For “random” polynomials f (1) and f (2) with the above characteristics, we expect the
equation f(x1, . . . , xm, y1, . . . , ym) = 0 to have about one solution such that xi ∈ V . As recalled in
Section 2.3, the standard way to find such a solution is to introduce small field variables to model the
vector space constraints and to apply a Weil descent on f .

To exploit the resultant structure of f , we suggest to introduce n additional small field variables zi
such that z =

∑n
i=1 ziθi, and to perform a Weil restriction on f (1) and f (2) separately instead of doing

the Weil restriction on their resultant. This leads to a polynomial system

f
(1)
` (xij , zj) = 0 ` = 1, . . . , n

f
(2)
` (yij , zj) = 0 ` = 1, . . . , n

xpij − xij = 0 1 ≤ i ≤ m, 1 ≤ j ≤ n′

ypij − yij = 0 1 ≤ i ≤ m, 1 ≤ j ≤ n′

zpj − zj = 0 1 ≤ j ≤ n.

(2)

Note that the polynomials fk
` have degree bounded by dlogp(D)e in each block of variables, and by

(m+ 1)dlogp(D)e in total.



3.2 Complexity Analysis

Following the reasoning of [21,37], it is easy to see that the first degree fall relations will appear at degree

1 + max(deg f
(1)
` , deg f

(2)
` ) for System (2). For the parameters chosen above, the first fall degree of our

new system is therefore bounded by 1 + (m+ 1)(p− 1)dlogp(D)e.
We summarize the main characteristics of both the FPPR method and our new method in Table 1.

For 2mn′ ∼ n and large m, the new method requires about twice as many variables, but on the other
hand the first fall degree is about twice as small.

Table 1: Comparing previous and new methods
Previous method New method

Number of small field variables 2mn′ 2mn′ + n
First fall degree 1 + 2mdlog2(2D)e 1 + (m+ 1)dlog2(D)e

A rigorous estimation of the degree of regularity of System (2) appears out of reach today since we
do not even have a good rigourous bound for the degree of regularity of System (1). We can nevertheless
prove the following partial result.

Lemma 1. The degree of regularity System (2) is at most as large as the degree of regularity of System (1).

Proof. Since f(x1, . . . , xm, y1, . . . , ym) := Resz(f
(1)(x1, . . . , xm, z), f (2)(y1, . . . , ym, z)), there exist polyno-

mials g(1), g(2) such that

f(x1, . . . , xm, y1, . . . , ym) = f (1)(x1, . . . , xm, z)g(1)(x1, . . . , xm, y1, . . . , ym, z)

+f (2)(y1, . . . , ym, z)g(2)(x1, . . . , xm, y1, . . . , ym, z).

Applying a Weil restriction on all components, we have

n∑
i=1

f`(x1, . . . , xm, y1, . . . , ym)θ` =

(
n∑

k=1

f
(1)
k (x1, . . . , xm, z)θk

)(
n∑

k=1

g
(1)
k (x1, . . . , xm, y1, . . . , ym, z)θk

)

+

(
n∑

k=1

f
(2)
k (y1, . . . , ym, z)θk

)(
n∑

k=1

g
(2)
k (x1, . . . , xm, y1, . . . , ym, z)θk

)
.

Multiplying and rearranging terms in the right-hand side, we deduce

f`(x1, . . . , xm, y1, . . . , ym) =
∑
k

h
(1)
k` (x1, . . . , xm, y1, . . . , ym, z)f

(1)
k (x1, . . . , xm, z)

+
∑
k

h
(2)
k` (x1, . . . , xm, y1, . . . , ym, z)f

(2)
k (y1, . . . , ym, z)

for some h
(1)
k` and h

(2)
k` , modulo the field equations. This shows that the polynomials of System (1) are

algebraic combinations of the equations of System (2) at degree max deg h
(i)
k` f

(i)
k .

This bound might not be tight. Assuming that the first fall degree is (also) a reasonable approximation
of the degree of regularity for systems of the form (2), the degree of regularity of the new system is also
roughly twice as small as the degree of regularity of the previous system. Since the complexity of Gröbner
basis algorithms depends polynomially on the number of variables but exponentially on the degree of
regularity, the new method will perform significantly better than the previous one when n is large enough.
Detailed experimental results are provided in Sections 5.4.



3.3 Application to ECDLP

For an elliptic curve with equation y2 + xy = x3 + a2x + a6 over F2n , the second and third summations
polynomials are defined by S2(x1, x2) = x1 + x2 and S3(x1, x2, x3) = x21x

2
2 + x21x

2
3 + x22x

2
3 + x1x2x3 + a6.

The next summation polynomials can be recursively defined by

Sr(x1, . . . , xr) = ResX(Sr−k(x1, . . . , xr−k−1, X), Sk+2(xr−k, . . . , xr, X))

for an arbitrary integer k ∈ [1, r − 3].
Although the asymptotic analysis in [37] suggests using m = n1/3 for optimal efficiency, the huge

memory requirements following from a (predicted) degree of regularity approximately equal to m2 have
so far limited m to either 3 or 4 in all experiments. In fact even when additional symmetries coming from
composite extension degrees are exploited, the maximal value of m reportedly used in experiments is 6,
and the largest summation polynomial computed is S8 [19]!

Splitting the resultant as above can potentially allow for much larger m values, without even needing
to computing the corresponding summation polynomial. To compute a relation in Diem’s algorithm with
m = 3, one can apply a Weil descent on both polynomials in the set {S3(x1, x2, w), S3(w, x3, X)} and
solve the resulting system using Gröbner basis algorithms. Assuming that the first fall degree assumptions
works in both cases, the degree of regularity of the last system will be approximately equal to its first fall
degree, which will be approximately equal to the degree of regularity of a Weil descent system obtained
from the single, smaller polynomial S3(x1, x2, w).

This reasoning can be extended to larger m values. Assuming that the first fall degree assumptions
works in all cases, splitting the (m+ 1)th summation polynomial into m− 1 summation polynomials S3

will keep the degree of regularity bounded by a constant D. The method will introduce m − 2 variables
wi that are unconstrained over F2n (corresponding to x-coordinates of partial sums of the first points
involved in the summation), so solving the (m+1)th summation polynomial in that way would then cost
roughly (mn)D, which is polynomial in n.

Assuming that the first fall degree assumptions works in all cases, it is tempting to increase m as
much as possible. This will decrease the size of the vector spaces, hence the cost of linear algebra in the
second phase of index calculus. The parameter m can however not be increased too much (say not up
to m ≈ n) since the factor m! arising from the symmetry of Semaev’s polynomials will then significantly
decrease the probability that one random point can be decompoed as a sum of factor basis elements.

In practice, we could solve (m+1)th summation polynomials with m up to 6 using this splitting strat-
egy. For smaller values of m, we could solve them for n values larger than in previous works. Although the
experiments are limited by their memory requirements, they do provide some support for the generalized
first fall degree assumption in that case. Detailed experimental results are provided in Sections 5.1 to 5.3.

4 New binary ECDLP Algorithms and Variants

In this section, we consider the theoretical implications of first fall degree assumptions when they are
generalized even further. Although some of them are partly backed by small experimental results, we
believe that the very surprising results we obtain are further evidence that first fall degree assumptions
must be taken with great care.

4.1 Binary ECDLP Algorithm

We first focus on binary ECDLP. Let n be a prime number, let K := F2n and let E be the elliptic curve
given by the equation y2 + xy = x3 + a2x

2 + a6 with a2, a6 ∈ K. The second and third summation
polynomials are given by S2(z1, z2) := z1 + z2 and S3(z1, z2, z3) := z21z

2
2 + z21z

2
3 + z22z

2
3 + z1z2z3 + a6. Let

P ∈ E and let Q ∈< P >. Let N be the order of P , and thus we can set N = O(2n) since the order of
the elliptic curve is in the interval [2n + 1− 2 ∗ 2(n/2), 2n + 1 + 2 ∗ 2(n/2)].



For any (R1, . . . , Rn) ∈ En, let xi be the x-coordinate of ±Ri and let wi be the x-coordinate of
Qi :=

∑i
j=1(−1)sjRj where sj ∈ {0, 1}. Our attack goes as follows

1. Let Ri = (xi, yi) = aiP for ai randomly generated in {0, . . . , N − 1}, i = 1, . . . , n.
2. Let R = (X,Y ) = aP + bQ for a, b randomly generated in {0, . . . , N − 1}
3. Build the system 

S3(x1, x2, w2) = 0

S3(w2, x3, w3) = 0

S3(w3, x4, w4) = 0

. . .

S3(wn−1, xn, X) = 0.

4. Apply a Weil descent on each equation of this system, “restricting” each wi in the whole field F2n .
Add the field equations to this system. This results in a system with n(n − 2) variables over F2

(corresponding to the variables w2, . . . , wn−1 over F2n) and 2n(n − 2) equations, each of them of
degree at most 2.

5. Solve this system with F4. If there is no solution, go back to Step 2.
6. Reconstruct the corresponding solutions wi over F2n .
7. After obtaining the solutions of the algebraic equation, we first recover sn and Qn−1 by checking

Qn−1 + (−1)snRn + R = O where sn ∈ 0, 1 and the x-coordinate of Qn−1 = wn−1. Next we go to
the next check with Qn−2 + (−1)sn−1Rn−1 + Qn−1 = O where sn−1 ∈ 0, 1 and the x-coordinate of
Qn−2 = wn−2. Such 2(n− 2) tests are required to obtain the correct point decomposition of one R.

8. Deduce the discrete logarithm Q = b−1 (−a+
∑n

i=1(−1)siai)P

By heuristic probabilistic arguments, each random choice of a and b is expected to produce one relation
on average. (This is because we expect the function ϕ : {0, 1}n → ZN : s →

∑
(−1)siai mod N to be

close to a bijective function, since N = O(2n).) Note that we saved the factor m! (m = n here) present
in other attacks by constraining each xi in a distinct “factor basis” {±Pi}, similarly to Galbraith and
Gebregiyorgis’s [23].

If the first fall degree assumption holds for the system generated in Step 4, then the degree of regularity
of this system should remain very small even for large n. This implies that the runtime complexity of the
attack is roughly (

n2ωDreg
)
.

Previous experiments with the third summation polynomial suggest that Dreg might be equal to the
constant 4 [38,29,30], in which case this attack runs in expected polynomial time. Detailed experimental
results are provided in Sections 5.5.

4.2 Reduction to binary ECSSP

A subset sum problem (SSP) is a classical hard problem related to decoding theorem. An elliptic curve
subset sum problem (ECSSP) is the specific problem on the elliptic curve. In the paper of Cheng [7], it
is stated that the ECSSP is NP-complete and the ECDLP is not harder than ECSSP. We are going to
reduce our algorithm to solve ECSSP in this section.

First, we define the elliptic curve subset sum problem. Let E be a curve and R1, R2, ..., Rn, R ∈ E.
The elliptic curve subset sum problem is to find out that if R =

∑
1≤i≤n eiRi, where ei ∈ {0, 1}.

Then we modified the binary ECDLP method as followed:

1. At Step 2 in the binary ECDLP method, leet R = (X,Y ) = (
∑

1≤i≤n ai+a)P for a randomly generated
in {0, . . . , N − 1}

2. At Step 8 in the binary ECDLP method, by modifying Step 2, finally we deduce the subset sum
aP =

∑
1≤i≤n ei(2aiP ).



By this reduction, we can solve the problem whether aP is a subset sum of {2aiP} as well as the
solution in Step 2. Now we claim that the binary ECDLP is also a solution of ECSSP, which is an
NP-complete problem. A similar attack has been developed independently in [22,7] If the first fall degree
assumptions works, then we will have a polynomial time algorithm to solve an NP-complete problem.

4.3 Binary DLP Algorithm, First Variant

We now consider the discrete logarithm problam over the multiplicative group of a finite field of charac-
teristic 2. Let K := F2n , let g a generator of K∗ and let h = gk. We suggest the following algorithm to
compute k:

1. Let ai be randomly chosen elements in F∗
2n , i = 1, . . . , n.

2. Let F := {g, h} ∪ {e+ ai, e ∈ F2, i = 1, . . . , n}.
3. Let R := ∅
4. Relation search: until #R > 2n+ 1 do

(a) Let r = gahb for a, b randomly generated in {0, . . . , 2n − 2}
(b) Build the system 

w2 = (x2 + a2)(x1 + a1)

w3 = (x3 + a3)w2

. . .

wn−1 = (xn−1 + an−1)wn−2

r = (xn + an)wn−1

(c) Apply a Weil descent on each equation of this system, restricting xi in F2 and wi in the whole
field F2n . Add the field equations to this system. This results in a system with n(n− 1) variables
over F2 (corresponding to the variables w2, . . . , wn−1 over F2n and the variables xi over F2) and
2n(n− 1) equations, each of them of degree at most 2.

(d) Solve this system with F4. If there is no solution, go back to Step 4a.

(e) Add the relation gahb =
∏
(xi + ai) in R.

5. Do linear algebra on the relations to recover one relation gahb = 1, and deduce the discrete logarithm.

The algorithm uses a very small factor basis F . Unlike in the previous algorithm, the discrete loga-
rithms of the factor basis elements are not known a priori, so 2n + 1 relations are needed and a (very
small) linear algebra step is performed at the end.

The runtime complexity of the algorithm can be estimated as

n2ωDreg+1

where Dreg is the degree of regularity of the above system. Under a generalization of the first fall degree
assumption to this system, we expect Dreg to remain small even for large values of n. In fact it is easy to
see that the first fall degree is equal to 3 for this system, so we expect the algorithm to run in polynomial
time under an appropriate generalized first fall degree assumption.

In the next subsection, we provide another DLP algorithm which is closer in spirit to the algorithm
of Section 4.3, also running in expected polynomial time under an appropriate generalization of the first
fall degree assumption. Note that a similar generalization to hyperelliptic curves is straightforward given
previous works such as [34]. Detailed experimental results are provided in Sections 5.6.



4.4 Binary DLP Algorithm, Second Variant

Semaev’s polynomials project the addition law on point elements into an addition law constraint on their
x-coordinate. The projection from one point to its x-coordinate is mostly 2-to-1 since the x-coordinates
of P and −P are identical.

To extend the algorithm of the previous section to finite fields, we suggest to project any field element
x onto the element z := x+ x−1, which ensures that every element and its inverse have the same image.
The second and third summation polynomials then naturally become

S2(z1, z2) := z1 + z2, S3(z1, z2, z3) := z21 + z22 + z23 + z1z2z3.

Indeed, we will have such properties,

Lemma 1 Properties for the DLP summation polynomials:

i). S2(z1, z2) := z1 + z2 = 0 if and only if ∃e1, e2 ∈ {−1, 1}, xe11 xe22 = 1,

ii). S3(z1, z2, z3) := z21 + z22 + z23 + z1z2z3 = 0 if and only if ∃e1, e2, e3 ∈ {−1, 1}, xe11 xe22 xe33 = 1,

the remaining summation polynomials are then defined inductively using resultants.

In order to fit the requirement here, we modified the binary ECDLP method in Section 4.1 as followed:

For any (r1, . . . , rn) ∈ K∗, let zi = ri + r−1
i and let wi = qi + q−1

i where qi =
∏i

j=1 r
ej
j where

ej ∈ {1,−1}.

1. Let ri = gai for ai randomly generated in {1, . . . , |K∗|}, i = 1, . . . , n.
2. Let r = gahb for a, b randomly generated in {1, . . . , |K∗|}.
3. Build the system 

S3(z1, z2, w2) = 0

S3(w2, z3, w3) = 0

S3(w3, z4, w4) = 0

. . .

S3(wn−1, zn, X) = 0.

4. Doing the same procedures in the binary ECDLP method in Section 4.1.
5. Reconstruct the corresponding solutions wi over K

∗.
6. Reconstruct the ei.
7. Deduce the discrete logarithm k = b−1 (−a+

∑n
i=1 eiai).

It is also clear that it has expected polynomial complexity O
(
n2ωDreg

)
under an appropriate general-

ization of the first fall degree assumption. Detailed experimental results are provided in Sections 5.6.

4.5 Circuit Satisfiability

It is well-known that any NP-complete can be converted into a 3-SAT problem, which in turn can be
modeled as a set of polynomials 

f1(xi1 , xj1 , xk1) = 0

. . .

fm(xim , xjm , xkm) = 0



where xi` , xj` , xk` ∈ {x` : ` = 1, . . . , N} are the binary variables. Looking at these polynomials and
variables over F2n with the constraints x` ∈ F2, we do get a (very special) instance of a polynomial system
arising from a Weil descent, where all components of the Weil descent but one are identically zero for all
equations. When it has a small number of solutions, this system can be solved in time roughly NωDreg

using Gröebner basis algorithms. The first fall degree of the above system is bounded by 4, so the problem
would be solvable in polynomial time under a generalization of the first fall degree assumption.

5 Experimental Results

In order to investigate the validity of our generalized first fall degree assumptions, we first performed
experiments on Weil descent systems coming from splitting strategies of Semaev’s polynomials. We then
also studied the Weil descent of “generic resultant polynomials”. Finally, we implemented the Algorithms
of Sections 4.1. All algorithms were implemented in Magma, and we used the GroebnerBasis function of
Magma to compute Gröbner bases.

The experiments of Sections 5.1 to 5.4 were conducted on a CPU with four 16-cores AMD Opteron
Processor 6276, running at 2.3GHz with a L3 cache of 16MB. The Operating System was Linux Mint
14 Nadia with kernel version GNU/Linux 3.5.0-17-generic x86 64 and 512GB memory. The programming
platform was Magma V2.18-9 in its 64-bit version. We usually provide average results on at least 10
experiments, except when an experiment takes more than 1000 seconds, in which case we provide average
numbers on at least 2 experiments. The time unit is the second, and the memory unit is a MB.

The experiments of Sections 5.5 to 5.6 were conducted on a CPU with four 4-cores Intel Xeon Processor
5550, running at 2.67GHz with 8MB cache. The Operating System was Linux Ubuntu 12.04.5 LTS with
kernel version GNU/Linux 3.5.0-17-generic x86 64 and 24GB memory. The programming platform was
Magma V2.18-5 in its 64-bit version. The time unit is the second, and the memory unit is a MB.

5.1 Splitting up Semaev 4

We first applied our splitting strategy to compute relations in Diem’s algorithm when m = 3. We chose
a random curve, a random point (X,Y ) on the curve and a random vector space V of appropriate
size, and we solved S4(x1, x2, x3, X) = 0 by applying a Weil descent to two polynomials S3(x1, x2, w)
and S3(w, x3, X) where we left the variable w unconstrained. Table 2 compares the experimental results
obtained using this approach with previous works denoted as FPPR [21] and HPST [29].

The table suggests that the degree of regularity remains at 4 in our splitting method, independently
of the value of n: this is consistent with the generalized first fall degree assumption in this case. The new
method is also faster than both FPPR and HPST by an order of magnitude, and it requires less memory
in most cases. Empty lines in the table occur when we could not finish the computation: we observe that
our splitting strategy allows for larger parameters.

5.2 Splitting up Semaev 5

We then applied our splitting strategy to compute relations in Diem’s algorithm when m = 4. We repeated
the same steps as the previous section, and we split s5(x1, x2, x3, x4, X) into three parts {s3(x1, x2, w1),
s3(w1, X,w2), s3(w2, x3, x4)}, where the new variables w1 and w2 were left unconstrained. We remark
that it is better to split the polynomial in this way than as {s3(x1, x2, w1), s3(w1, x3, w2), s3(w2, x4, X)}
to obtain a better balance of variables in the three equations.

Table 3 summarizes the experimental results obtained using this approach. Note that we could not
finish the computation using previous methods (neither FPPR [21] nor HPST [29]), so we only show the
experiments results for the new method here. The table shows that Dreg remains at 4 in this case, which
is still consistent with the generalized first fall degree assumption.



n n’
sol: yes sol: no

Dreg ttrans tgroe mem Dreg ttrans tgroe mem

ImpFPPR 17 4 7 15.47 6.81 58.16 7 16.53 1.2 55.37
ImpHPST 17 4 3 1.31 3.91 31.52 3 1.33 2.23 24.88
ThisWork 17 4 4 0.66 4.96 37.38 4 0.65 3.16 39.63

ImpFPPR 17 5 7 46.53 218.87 723.08 7 48.06 59.82 725.07
ImpHPST 17 5 4 2.21 485.1 596.46 4 2.16 136.93 492.88
ThisWork 17 5 4 0.84 10.32 68.55 4 0.85 9.19 61.67

ImpFPPR 19 5 7 50.5 91.61 401.17 7 54.03 41.8 348.01
ImpHPST 19 5 4 1.97 516.67 619.63 4 2.67 182.92 492.82
ThisWork 19 5 4 1.19 18.6 91.91 4 1.11 16.19 86.61

ImpFPPR 19 6
ImpHPST 19 6
ThisWork 19 6 4 1.46 135.17 400.89 4 1.44 68.60 380.98

ImpFPPR 23 5 7 64.67 70.46 475.55 7 65.07 55.75 381.39
ImpHPST 23 5 4 3.01 157.86 323.6 4 3.07 17.83 253.16
ThisWork 23 5 4 1.37 49.14 136.1 4 1.41 34.61 108.24

ImpFPPR 23 6 7 163.45 3888.7 6656.13 7 156.11 3309.43 5025.06
ImpHPST 23 6 4 4.36 5150.12 4791.31 4 4.42 3082.15 4428.07
This Work 23 6 4 1.77 168.12 794.3 4 1.69 146.35 767.47

ImpFPPR 23 7
ImpHPST 23 7
ThisWork 23 7 4 2.07 538.77 1981.37 4 2.09 476.41 1936.13

ImpFPPR 29 6 7 198.99 4511.74 6685.01 7 204.07 1681.27 6528.03
ImpHPST 29 6 4 5.67 2848.46 3368.01 4 5.76 932.65 2681.2
ThisWork 29 6 4 2.53 636.97 2195.45 4 2.44 489.95 2201.95

ImpFPPR 29 7
ImpHPST 29 7
ThisWork 29 7 4 3.02 1907.13 5555.25 4 2.83 1519.04 5545.99

ImpFPPR 29 8
ImpHPST 29 8
ThisWork 29 8 4 3.45 5450.35 12297.73 4 3.36 4868.43 11449.37

ImpFPPR 31 6 7 209.98 4664.25 7336.11 7 206.29 1205.29 7276.85
ImpHPST 31 6 4 5.82 2811.99 3257.82 4 6.09 1049.14 2616.21
ThisWork 31 6 4 2.79 1088.8 2984.91 4 2.61 827.2 2988.82

Table 2: Comparison FPPR [21], HPST [29] and our method when m = 3

5.3 Splitting up Semaev 6 and 7

We then considered larger summation polynomials. We followed the same steps as in the previous two
sections, and we solved sm+1(x1, x2, ..., xm, X) = 0 by applying a Weil descent to split polynomials
s3(x1, x2, w1), s3(w1, x3, w2), ..., and s3(wm−2, xm, X) where we left the variables w1, w2, ..., wm−2 uncon-
strained. The results are shown in Table 4.

The table shows that we could solve Semaev’s polynomials up to m = 6 (s7) using our splitting
method. The degree of regularity remains reasonably small, but unlike for smaller m values it does seem
slightly larger than 4 when m = 5 and m = 6, so the first fall degree assumption must probably be relaxed
in these cases. We point out that the experiments here were only repeated twice, so the average results
may still be affected by variability effects such as the number of solutions.

5.4 Generic resultant polynomials

We then studied the case of “generic resultant polynomials”. To this aim, we generated two random
polynomials f (1) and f (2) with m+1 variables over the base field F2n , with degree 2t−1 in each variables,
such that f1 and f2 share exactly one variable. We applied a Weil descent on both f and the set {f (1), f (2)},



n m n’
sol: yes sol: no

Dreg ttrans tgroe mem Dreg ttrans tgroe mem

13 4 3 4 1.05 246.38 803.26 4 0.99 178.89 514.82

17 4 3 4 1.77 427.45 2538.02 4 1.47 545.94 2258.43
17 4 4 4 1.90 4252.28 10987.02 4 1.72 2460.63 10483.68

23 4 3 4 3.49 3132.48 14068.59 4 4.46 2061.40 11451.40
23 4 4 4 3.94 27501.20 57511.55 4 4.56 18092.68 57493.99
23 4 5 4 3.73 24890.21 57657.05 4 5.36 16672.26 57553.95

29 4 3 4 7.38 17053.36 57943.28 4 8.05 11804.60 44238.16
29 4 4 4 8.74 122559.83 220688.44 4 7.00 431414.36 671703.84

Table 3: Experiment results for the splitting strategy when m = 4

n m n’
sol: yes sol: no

Dreg ttrans tgroe mem Dreg ttrans tgroe mem

13 5 (s6) 2 4.00 1.55 42.39 395.97 4.00 1.45 31.80 276.18
13 5 (s6) 3 4.33 1.87 686.53 2784.53 4.00 1.74 668.06 3711.62
13 6 (s7) 2 5.00 2.08 213.70 887.97 4.00 2.00 238.17 932.53

17 5 (s6) 3 4.33 2.53 4378.38 12444.42 4.00 2.64 572.30 4518.55
17 6 (s7) 2 4.50 3.15 1295.83 3618.48 4.00 4.00 305.57 2164.90
17 6 (s7) 3 5.00 3.70 25543.69 25533.75 4.00 3.79 14361.97 15185.44

23 5 (s6) 3 4.67 4.84 8780.20 28556.62 4.00 5.66 3602.93 23407.68
23 6 (s7) 3 5.00 6.27 88161.21 43730.85 4.00 5.97 4666.71 16058.17

29 5 (s6) 3 4.33 10.39 48122.94 102263.43 4.00 9.63 16588.69 81579.91

Table 4: Experiment results for the splitting strategy when m > 4

we solve both systems F (res) and F (1+2) using Gröbner basis algorithms, and we compare the timings
and the degree of regularity obtained. The experiment results with t = 1, 2, 3, m = 1, 2 and 7 ≤ n ≤ 29
are shown in Fig. 1, Fig. 2, Fig. 3 and Fig. 4.

For the largest parameters t and m we tested, solving the system was actually faster than generating
it. We believe this is because we did not optimize the Weil descent process (to focus on its resolution) but
we did not investigate this further. As an example in the case (t = 2,m = 1), it takes more than 20,000
seconds to setup the system and seconds to solve it. We also noted that the computation sometimes ran
out of memory or took too much time to solve F (res) system in the step Gröbner walk no matter how
small t and m were, while it worked well in solving F (1+2). The numbers we report are average values on
the cases that could be completed.

The results obtained for generic polynomials are not as spectacular as for Semaev polynomials. On
the one hand, we consistently observe smaller degrees of regularity with our splitting method, on the
other hand these smaller degrees of regularity do not compensate for the larger number of variables at
the parameters we could test, and for most parameters the splitting method was actually slower than
solving the Weil descent of the resultant polynomial. We point our that this does not contradict the first
fall degree assumption, which predicts that the new method becomes better for sufficiently large n values.

Another important remark is that for (t = 1,m = 1), the resultant polynomial has actually the same
degrees as both f (1) and f (2), so it definitely makes sense that F (res) can be solved faster than F (1+2)

in this case. In fact for larger parameters such as (t = 3,m = 2) shown in Fig 4, we observed that the
splitting method became more efficient.

Interestingly, the splitting strategy performs much better for s4 than for generic resultant polynomials
with (t = 2,m = 2) (arguably the closest case to s4). We believe this is because of the sparsity and the
symmetric structure of the Semaev’s polynomial system. The sparsity of a system is quite important in
solving the system, as it affects the matrix size occurring in F4 calculation, hence the run time.



n
F (1+2) F (res)

Dreg time Dreg time

7 3.00 0.00 3.00 0.00
8 3.60 0.01 3.00 0.00
9 3.00 0.01 3.00 0.00
10 3.20 0.02 3.00 0.00
11 3.00 0.07 3.00 0.01
12 3.60 0.03 3.00 0.00
13 3.20 0.20 3.00 0.00
14 3.00 0.21 3.00 0.00
15 3.00 0.38 3.00 0.01
16 3.20 0.44 3.00 0.01
17 3.60 0.68 3.00 0.02
18 4.00 0.85 3.00 0.01
19 3.20 1.07 3.20 0.03
20 3.20 1.31 3.00 0.02
21 3.60 1.82 3.00 0.11
22 3.20 2.15 3.00 0.03
23 3.80 3.09 3.00 0.17
24 3.60 3.08 3.00 0.16
25 4.00 3.78 3.00 0.27
26 3.20 4.79 3.00 0.24
27 3.20 33.85 3.00 0.39
28 3.50 7.14 3.25 0.34
29 4.00 58.44 3.20 0.60

Fig. 1: Experiments for the splitting strategy with generic resultant polynomial (t = 1,m = 1).

5.5 New Binary ECDLP Algorithm

We implemented the binary ECDLP algorithm of Section 4.1. We observed the timings and degrees of
regularity obtained and we compared them with previous methods (see [29]). The results are provided in
Table 5. Perhaps surprisingly, the degree of regularity remained below 4 in all experiments we did, but
we point out that the parameters we could test remained quite small. Table 5 also reports the number of
times Step 2 of the algorithm was executed.

n
binary ECDLP in 4.1 FPPR HPST

Dreg loop time mem time time

7 4 3 0.180 11.030 1.57 0.86
8 3 3 0.210 11.190
9 4 2 0.360 13.380
10 4 2 1.180 35.030
11 4 1 1.120 24.160 8.63 6.70
12 4 1 4.440 48.500
13 4 1 19.010 88.410 49.70 31.06
14 4 2 213.350 231.380
15 4 1 597.570 364.380
17 2454.47 1364.74

Table 5: Comparison of ECDLP algorithms

5.6 New Binary DLP Algorithms

We finally implemented the binary DLP algorithms of Sections 4.3 and 4.4, for which we report results in
Table 6. As for ECDLP algorithm, the degree of regularity surprisingly remained below 4 in all experiments



n
F (1+2) F (res)

Dreg time Dreg time

7 4.20 0.02 4.80 0.00
8 4.20 0.03 4.00 0.01
9 4.20 0.06 4.00 0.00
10 4.80 0.75 5.00 0.05
11 4.40 1.00 5.00 0.04
12 4.20 1.38 5.00 0.06
13 4.20 1.60 5.00 0.10
14 4.80 30.47 5.00 1.36
15 4.60 22.38 5.00 1.62
16 4.00 30.95 5.00 2.23
17 4.20 41.86 5.00 2.64
18 5.00 2599.71 5.00 53.18
19 5.00 3419.45 5.00 47.66
20 5.00 4666.46 5.20 46.81

Fig. 2: Experiments for the splitting strategy with generic resultant polynomial (t = 1,m = 2).

n
F (1+2) F (res)

Dreg time Dreg time

7 5 0.10 7 0.01
8 5 0.13 7 0.01
9 5 0.84 7 0.09
10 5 1.34 7 0.09
11 5 4.38 7 0.39
12 5 6.91 7 0.54
13 5 221.04 7 4.87
14 5 327.19 7 5.60
15 5 1620.49 7 37.19

Fig. 3: Experiments for the splitting strategy with generic resultant polynomial (t = 2,m = 1).

we did, but again the parameters we could test were quite small, particularly with respect to the latest
DLP records. For the second variant, we also report the second step of the algorithm was executed.

6 Conclusion

The first fall degree assumption approximates the degree of regularity of a polynomial system by its first
fall degree. In this paper, we studied the validity of this assumption for polynomial systems arising from
a Weil descent on a set of polynomials over F2n . These systems generalize those studied in [21,37], where
the set contained a single polynomial.

In the case of a single polynomial, Petit and Quisquater’s experimental results [37] suggest that the
assumption might hold and they lead to the conjecture that binary ECDLP can be solved in subexponential
time. The validity of the assumption remains an open problem even in this case, except for univariate
polynomial where it is known to hold [36].

When the set contains a small number of polynomials, our experimental results suggest that the as-
sumption might still hold. We showed that this would allow for a more efficient resolution of resultant
polynomials, in particular Semaev’s summation polynomials involved in ECDLP index calculus algo-
rithms. We obtained significant timing improvements over previous works [37,29,30] for the computation



t m n
F (1+2) F (res)

Dreg time Dreg time

2 2 7 7 0.119 8 0.01
2 2 13 5 10.612 9 3.406

3 1 7 5 0.115 7 0.113
3 1 13 5 219.813 7 13.534

3 2 13 7 39.359 12 625.939

Fig. 4: Experiments for the splitting strategy with generic resultant polynomial for larger t and m.

n
binary DLP 1st variant binary DLP 2nd variant
Dreg time mem Dreg loop time mem

7 3 0.14 11.03 4 1 0.15 11.03
8 4 0.18 13.25 3 1 0.17 11.50
9 4 0.47 15.81 4 1 0.35 14.72
10 3 0.71 17.28 3 2 1.69 22.06
11 3 1.53 35.84 4 3 13.60 242.66
12 4 23.62 94.75 4 1 96.19 864.59
13 4 126.53 235.62 4 4 1150.25 3330.28
14 4 503.40 1713.34 4 1 1105.41 5308.00
15 4 2286.90 6486.28 4 1 2647.24 8130.47
16 4 5550.42 2901.28
17 4 22589.91 12900.94
18 3 15497.95 15763.69

Table 6: Comparison of the DLP variants

of relations for binary ECDLP, and could complete the computation for some parameters that were
previously intractable.

For an intermediate number of polynomials in the set, our experiments suggest a moderate increase
in the degree of regularity at constant first fall degree. This suggests that some practical gain can be
obtained in binary ECDLP algorithms, even though a precise estimation of these gains is impossible at
this stage.

Finally when the number of polynomials is as large as the field extension degree, we describe a number
of consequences of the first fall degree heuristic that strongly suggest that it must be false: new polynomial
time algorithms for binary ECDLP and binary DLP, and a polynomial time resolution of ECSSP and
3-SAT with Gröbner basis algorithms.

Our results provide a synthetic picture of the validity of first fall degree assumptions for these systems,
from cases where they are proven to hold to cases where they now seem very unlikely.
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33. Daniel Lazard. Gröbner-bases, Gaussian elimination and resolution of systems of algebraic equations. In Proceedings of
the European Computer Algebra Conference on Computer Algebra, volume 162 of Lecture Notes in Computer Science,
Berlin, Heidelberg, New York, 1983. Springer Verlag.

http://www.math.uni-leipzig.de/~diem/preprints/dlp-ell-curves-II.pdf
http://www.math.uni-leipzig.de/~diem/preprints/dlp-ell-curves-II.pdf
https://ellipticnews.wordpress.com/2011/08/04/hard-problems-of-algebraic-geometry-codes-by-qi-cheng/
https://ellipticnews.wordpress.com/2011/08/04/hard-problems-of-algebraic-geometry-codes-by-qi-cheng/
http://eprint.iacr.org/
http://arxiv.org/pdf/1503.08001v1.pdf
http://arxiv.org/pdf/1503.08001v1.pdf


34. Koh-ichi Nagao. Decomposition formula of the Jacobian group of plane curve. Cryptology ePrint Archive, Report
2013/548, 2013. http://eprint.iacr.org/.

35. Koh-ichi Nagao. Equations system coming from Weil descent and subexponential attack for algebraic curve. Cryptology
ePrint Archive, Report 2013/549, 2013. http://eprint.iacr.org/.

36. Christophe Petit. Bounding HFE with SRA. http://perso.uclouvain.be/christophe.petit/files/SRA_GB.pdf, 2014.
37. Christophe Petit and Jean-Jacques Quisquater. On polynomial systems arising from a Weil descent. In Xiaoyun Wang

and Kazue Sako, editors, Asiacrypt, volume 7658 of Lecture Notes in Computer Science, pages 451–466. Springer, 2012.
38. Christophe Petit and Jean-Jacques Quisquater. On polynomial systems arising from a Weil descent. Preprint., 2012.
39. John M. Pollard. Monte Carlo methods for index computation (mod p). Mathematics of Computation, 32, 1978.
40. Oliver Schirokauer. Discrete logarithms and local units. Philos. Trans. Roy. Soc. London Ser. A, vol 345 (1676), pp

40900F1423, 1993., 1993.
41. Igor Semaev. Summation polynomials and the discrete logarithm problem on elliptic curves. Available at http://www.

isg.rhul.ac.uk/~ppai034/_pub/papers/Semaev%20%28Feb%29.pdf, 2004.
42. Igor Semaev. New algorithm for the discrete logarithm problem on elliptic curves. Cryptology ePrint Archive, Report

2015/310, 2015. http://eprint.iacr.org/.
43. Daniel Shanks. Class number, a theory of factorization, and genera. In 1969 Number Theory Institute (Proc. Sympos.

Pure Math., Vol. XX, State Univ. New York, Stony Brook, N.Y., 1969), pages 415–440. Amer. Math. Soc., Providence,
R.I., 1971.

44. Michael Shantz and Edlyn Teske. Solving the elliptic curve discrete logarithm problem using Semaev polynomials, Weil
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