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Abstract. In this work, we define a new notion of weakly Random-Self-Reducibile cryptosys-
tems and show how it can be used to implement secure Oblivious Transfer. We also show that
two recent (Post-quantum) cryptosystems (based on Learning with errors and Approximate
Integer GCD) can be considered as weakly Random-Self-Reducible.

1 Introduction

An oblivious transfer is a protocol by which a sender transfers one of many pieces of information to
a receiver, but remains oblivious as to which piece has been transferred. The early implementations
of Oblivious Transfer of Rabin [1], and Even, Goldreich and Lempel [2] were very innovative but
did not offer very strong security. The very first OT protocols that may be considered secure were
introduced by Ficher, Micali and Rackoff [3], and Berger, Peralta and Tedrick [4].

Later, two methodologies where introduced. A first set of results by Brassard, Crépeau and
Robert [18] relied on Random-Self-Reducibility (RSR for short) of certain number theoretic as-
sumptions such as the Quadratic Residuosity assumption, the RSA assumption or the Discrete log
assumption. These results were not extended to very general computational assumptions because
the RSR property, which was at the heart of the construction, is not very common. In a second
set of results by Goldreich, Micali and Wigderson [19], secure Oblivious Transfer protocols were
constructed from the generic assumption that (enhanced)1 Trap-door One-Way permutations exist.

Unfortunately, all constructions that are used to implement secure OT under either of these
methodologies fall apart when faced with a quantum computer [5]: none of the so-called Post-
Quantum Cryptosystems can directly implement secure OT under these methodologies. Neverthe-
less, some small modifications to the GMW methodology have led to proposals for OT under the
Learning with error LWE assumption [6]. Similarily, Dowsley, van de Graaf, Müller-Quade and
Nascimento [7] as well as Kobara, Morozov and Overbeck [8] have proposed Oblivious Transfer
protocols based on assumptions related to the McEliece public-key cryptosystem [9]. Both of these
papers use generalization of the GMW methodology. However both of them also require an extra
computational assumption on top of McEliece’s to conclude security. Those were the first proposals
for OT protocols believed secure against a quantum computer2.

? Supported in part by Québec’s FQRNT, Canada’s NSERC, CIFAR, and QuantumWorks.
1 The enhanced property is not very restrictive, but some examples of candidates Trap-door One-Way

permutations seem to escape it [20].
2 Earlier results accomplished a similar security level using only a One-Way function and Quantum Com-

munication. The motivation of the papers cited above and of the current work is to avoid quantum
communication altogether [10].



More recently, a new methodology has been proposed by Peikert, Vaikuntanathan and Waters
[6] using the notion of dual-mode cryptosystems. Their approach can be instantiated using a couple
number theoretic assumptions, and LWE in the Post-Quantum case. However, this methodology
does not seems to extend to any other post-quantum assumptions such as Approximate Integer
GCD, for instance.

In this chapter, we first formalize the results by Brassard, Crépeau and Robert [18] which relied
on the RSR property of certain number theoretic assumptions (we now have five candidates) in
order to introduce a new notion of weakly random-self-reducible encryption scheme wRSR. We
then show how it is possible to construct a secure Oblivious Transfer under the sole assumption
that a secure wRSR encryption scheme exists. We show that encryption schemes from two (Post-
Quantum) computational assumptions, LWE [17] and AIGCD [13], have this weaker property. We
hope that in the future, our methodology may be used for various new computational assumptions
as well.

2 Previous work

Random Self-Reducible Encryption Scheme

Informally speaking an encryption scheme is Random-Self-Reducible (RSR) if an arbitrary cipher-
text c may be efficiently transformed to a uniformly distributed ciphertext c′ by a user who only
knows the public-key from that system. Moreover, upon learning the decryption m′ of c′, the user
is able to efficiently compute m, the decryption of c, from knowledge of the relation between c and c′.

RSR encryption schemes are generally implemented from a homomorphic encryption scheme.
Notice however that the RSR property is very strong in its uniformity requirement. Homomorphic
encryption schemes may fail to satisfy that extra constraint completely. It is worth mentioning that
a fully homomorphic circuit private encryption scheme (see [12–16]) is inherently a RSR encryption
scheme. However, to guarantee that the homomorphic property is used properly extra work would
be required, using Zero-knowledge proofs for instance. In the end, this approach also works but
the overhead is similar to ours, while the computational assumptions to obtain fully homomorphic
encryption schemes are significantly stronger than ours (see section 6.4).

OT from Random-Self-Reducible encryption schemes

Brassard, Crépeau and Robert [18] showed how zero-knowledge protocols may be combined with
Random-Self-Reducible assumptions such as Quadratic Residuosity or RSA to obtain a secure 1-
out-of-n OT. The latter has the following structure: a sender encrypts n secret messages using
its own public-key cryptosystem; the receiver, upon reception of these n encryptions, picks one of
them at its choosing and randomizes it using the RSR property of the cryptosystem; the sender
receives a ciphertext that could equally come from any of the original encryptions; its decryption is
obtained from the sender and returned to the receiver; the receiver obtains its chosen message from
the decrypted message and the randomness involved in its self-reduction. Zero-knowledge proofs
are used to make sure the receiver constructed the random ciphertext properly.
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OT from trap-door one-way permutations

In an effort to obtain OT from a more general assumption, an alternate approach was introduced
by Goldreich, Micali and Wigderson [19]. Suppose the sender knows the trap-door to a one-way
permutation. The receiver constructs two messages from the domain of the permutation, one using
the one-way algorithm, the other sampling directly from the image. Using the trap-door, the sender
will find the pre-image of both of these elements and use them to transmit two messages. The receiver
who knows only one pre-image, is able to recover only one of the two messages. Zero-knowledge
proofs are used to make sure the receiver does not know the pre-image of both.

It was realized many years after the fact that not all trap-door one-way permutations could be
used in the above protocol, because it is not always easy to sample from the image without knowing
a pre-image [20]. Thus, the notion of enhanced trap-door one-way permutation was introduced to
remedy to this difficulty. Worth noticing is the work of Haitner [21] who weakened the requirements
to implement OT using a collection of dense trapdoor permutations.

Bit Commitments and Zero-Knowledge protocols

Under the assumption that we have a One-Way Function, it is possible to get a statistically bind-
ing, computationally concealing Bit Commitment scheme by the general constructions of H̊astad,
Impegliazzo, Levin and Luby’s [22] and Naor [23]. These constructions and their proofs of security
are also valid when the adversary is a quantum computer.3 In this paper, ZK protocols will be used
to prove that certain values are constructed properly from a public-key. Invoking general techniques
developed in [24] and [25], we can prove any relation among committed bits in a computational
zero-knowledge fashion.

Both parties may publish a public-key using a similar computational assumption, use its own to
construct a Bit Commitment Scheme and prove arbitrary polynomially verifiable statements about
its commitments.

Compairasion with Homomorphic Cryptosystems

The notions of RSR and wRSR cryptosystems are in some sense similar to that of Homomorphic
Cryptosystems. Part of the wRSR properties are usually implemented using the Homomorphic
property of their related cryptosystem. However, contrary to general constructions such as Fully
Homomorphic Cryptosystems where two homomorphic operations are necessary, wRSR relies on a
single operation. Moreover, wRSR does not need the cryptosystem to tolerate application of several
successive homomorphic operations in a row, which is typical of constructions for Fully Homomor-
phic Encryptions. As a result, and although we use similar assumptions (LWE [17] and AIGCD
[13]) as constructions for Fully Homomorphic Encryptions, the versions of these assumptions we
need are actually weaker than theirs. In the end, it is more likely that our assumptions are hard.

3 Under the same assumption, it is also possible to get a computationally binding, statistically concealing,
Bit Commitment scheme by the general construction of Haitner, Nguyen, Ong, Reingold,and Vadhan
[26]. However their proof technique does not appear to extend to quantum adversaries.
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3 Background material

Notations

We denote a vector v by lower-case bold letters v and matrices by upper-case bold letters V. We
denote the Euclidean norm of a vector v by ‖v‖2, the largest entry (in absolute value) of a vector
or a matrix is denoted by ‖v‖∞ or ‖V‖∞ and bxe denote the nearest integer to x. We denote ε the
empty string.

Gaussian distribution and standard tail inequality

For any β ≥ 0 the Gaussian distribution with mean 0 is the distribution on R having density
function Dβ(x) = 1

β exp(−π(x/β)
2
), for all x ∈ R.

A random variable with normal distribution, lies within ± t·β√
2π

of its mean, except with proba-

bility at most 1
t · exp(−t2/2).

For any integer q ≥ 2, the discrete Gaussian distribution ψβ(q) over Zq with mean 0 and standard

deviation ± q·β√
2π

is obtained by drawing y ← Dβ and outputting bq · ye (mod q).

(2
1

)
-Oblivious Transfer

A One-out-of-Two Oblivious Transfer denoted as
(
2
1

)
-OT, is a protocol in which a sender inputs

two ordered bits b0, b1 and a receiver inputs a choice bit c. The protocol sends bc to the receiver,
without the sender learning c, while the receiver learns nothing other than bc. A full definition of
the security of oblivious transfer can be obtained from the work of [20].

4 Random Self-Reducible Encryption Scheme

In this section we formalize the definition of RSR encryption schemes. We further show that two
number theoretic schemes satisfy this property.

Definition 1 Let ξ = (KeyGen,Enc,Dec,M, C) be a public-key cryptosystem and λ be
the security parameter. The cryptosystem ξ is random-self-reducible if there exists a set
M̂, a pair of probabilistic polynomial-time algorithms (S,S ′) , together with a polynomial-

time algorithm D̂ec, such that for a key pair (sk, pk)← KeyGen(1λ) and uniformly picked

string R from M̂,

1. Spk : M̂ × C → C, S ′pk : M̂ × M̂ →M, and D̂ecsk : C → M̂,
2. Spk(R, c) is uniformly distributed over C, for all c ∈ C,
3. S ′pk(R, D̂ecsk(Spk(R, Encpk(m)))) = m, for all messages m ∈M.

Examples of RSRCryptosystem There are several cryptosystems that satisfy RSR property
for example the RSA [27], Micali-Goldwasser [28], Paillier cryptosystems [32], Elgamal [29], Elliptic
curve [30] are all random self-reducible. We give details of the first two:
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Goldwasser-Micali Cryptosystem Let (x, n) and (p, q) denote the public/private keys and
(Enc,Dec) denote the encryption/decryption algorithms.

1. M̂ = {0, 1}, D̂ec = Dec
2. Spk(R, Enc(b)) = Enc(R) · Enc(b) mod n = Enc(R⊕ b), where bit R is uniformly chosen.
3. S ′pk(R, b) = R⊕ b.

Semantically secure RSA Cryptosystem Let (e, n) and d denote the public/private keys and(
Enc :=

(
lsb−1(b)

)e
mod n,Dec := lsb(md mod n)

)
denote the encryption/decryption algorithms,

where lsb−1(b) is a random element r in Z∗n such that lsb(r) = b.

1. M̂ = Z∗n, D̂ec(m) = md mod n
2. Spk(R, Enc(b)) = Re · Enc(b) mod n =

(
R · lsb−1(b)

)e
mod n where R is uniformly chosen

from the message space M̂ .
3. S ′pk(R,m) = lsb

(
R−1 ·m mod n

)
.

5
(
2

1

)
-OT from a RSR Public-Key Cryptosystem

Let ξ = (KeyGen,Enc,Dec,M, C) be a RSR public-key cryptosystem and λ be the security
parameter. Let (sk, pk) ← KeyGen(1λ) be sender’s private and public-keys. The sender encodes
his bits so that Encpk(b0) and Encpk(b1) are semantically secure encryptions of b0, b1.

Protocol 1
(
2
1

)
-OT from RSR Cryptosystem.

1: The sender computes c0 ← Encpk(b0) and c1 ← Encpk(b1).
2: The sender sends the ordered pair (c0, c1) to the receiver.
3: The receiver picks a string R uniformly from C and computes c ← Spk(R, ci) for its choice bit i and

sends c to the sender.
4: The sender computes m̂← D̂ecsk(c) and sends m̂ to the receiver.
5: The receiver obtains the bit bi ← S ′

pk(R, m̂).

Correctness

We first observe that this protocol correctly computes
(
2
1

)
-OT.

S ′pk(R, m̂) = S ′pk(R, D̂ecsk(c)) = S ′pk(R, D̂ecsk(Spk(R, ci)))

= S ′pk(R, D̂ecsk(Spk(R, Encpk(bi)))) = bi by definition 1.

Theorem 1 Protocol 1 is a secure oblivious transfer in the semi-honest model.

Proof. We will present a simulator for each party. These simulators are given the local input
(which also includes the security parameter λ) and the local output of the corresponding party.
The following schematic depiction of the information flow in protocol 1 may be useful towards the
constructions of the simulators.
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Sender Receiver

input
(
(b0, b1), 1λ

)
input

(
i, 1λ

)
(sk, pk)← KeyGen(1λ)

pk−−−−−−−−−−−−−−−−−−−−−−→
c0 := Encpk(b0), c1 := Encpk(b1)

(c0,c1)−−−−−−−−−−−−−−−−−−−−−−−−→
c←−−−−−−−−−−−−−−−−−−−−− c := Spk(R, ci)

m̂← D̂ecsk(c)
m̂−−−−−−−−−−−−−−−−−−−−−−→

output ε output bi := S ′pk(R, m̂)

Simulator for the sender’s view: We will first present a simulator for the sender’s view. On input(
(b0, b1), 1λ, ε

)
, this simulator uniformly picks c′ from C and outputs

(
(b0, b1), 1λ, c′

)
. Clearly this

output distribution is identical to the view of the sender in the real execution. This hold because
c′ is uniformly distributed over the ciphertext space C. Therefore, the receiver’s security is perfect.
Simulator for the receiver’s view: On input

(
i, bi, 1

λ
)
, this simulator generates (sk′, pk′) ←

KeyGen(1λ) as in protocol 1. It computes c′i ← Encpk′(bi) and c′1−i ← Encpk′(b) (for some b ∈M)
The simulator then picks a string R′ uniformly. It then computes c′ ← Spk′(R′, c′i) and m̂′ ←
D̂ecsk′(c

′). The simulator outputs
(
i, 1λ, pk′, c′0, c

′
1, m̂

′) . Note that except for c′1−i, this output
distribution is identical to the view of the receiver in the real execution. Moreover, since ξ is
a semantically secure encryption scheme, it is impossible to distinguish between the encryption
of b1−i and b for any probabilistic polynomial time adversary except with negligible probability.
Therefore, the sender’s security is computational.
Malicious adversaries: Of course we are not only interested in the semi-honest case but also to the
situation with malicious adversaries. To handle these cases, zero-knowledge proofs are used by the
sender to demonstrate that c0, c1 are well formed encryptions and by the receiver to demonstrate
that c is indeed constructed from a single ci and not a combination of both. We leave it as an
exercise to demonstrate the full result including zero-knowledge proofs [20]:

Theorem 2 Protocol 1 may be compiled to a secure oblivious transfer in the malicious model.

Proof (see [20, 24]).

6 weakly Random Self-Reducible Encryption

The current state of affairs is that we don’t know of any RSR cryptosystem believed to be resistant
to quantum attacks. The RSR property may be considered too strong in its uniformity requirement
of the output of S. One can weaken this property to statistical indistinguishability for some pair of
probabilistic polynomial distributions and can still obtain a secure OT protocol provided we have
cryptosystems satisfying this weaker property.

In this section we define the notion of weakly Random-Self-Reducibile public-key cryptosystem.
Informally speaking a public-key cryptosystem is weakly Random-Self-Reducible if it is possible
efficiently (using the public key) to re-encrypt a ciphertext ci in a way to make it unrecognizable,
regardless of the plaintext it carries. After obtaining decryption of the re-encrypted ciphertext ĉ,
it is possible to recover the plaintext hidden by the original encryption ci. We accept that the
unrecognizability property be statistical indistinguishability instead of perfect indistinguishability
as in RSR .
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Our definition is motivated by the fact that many post-quantum encryption schemes use random
errors in the process of encrypting the plaintext. Many of these schemes provide a fair amount of
flexibility in choosing the size of the error for a fixed pair of public and private keys. Due to
this flexibility, one can easily convert these cryptosystem into a wRSR scheme. The encryption
algorithm Enc involves relatively small errors, while the re-encryption process uses relatively large
errors that will hide the original error. The definition is formally stated below.

Definition 2 A public-key cryptosystem ξ = (KeyGen,Enc,Dec,M, C) is weakly

random-self-reducible if there exist sets M̂, Ĉ, a pair of probabilistic polynomial-time
algorithms (S,S ′) , together with a probabilistic polynomial-time algorithm D̂ec, and a

probabilistic-polynomial time distribution χ on Ĉ such that for all c1, c2 ∈ C, key pair

(sk, pk)← KeyGen
(
1λ
)

and R
χ←−− Ĉ:

1. Spk : Ĉ × C → Ĉ, S ′pk : Ĉ × M̂ →M and D̂ecsk : Ĉ → M̂,
2. Spk(R, c1) and Spk(R, c2) are statistically indistinguishable,

3. S ′pk
(
R, D̂ecsk (Spk(R, Encpk (m)))

)
= m, for all messages m ∈M.

Note that RSR is the sub-case of wRSR where M̂ = C, χ is the uniform distribution over Ĉ and
Spk(R, c) is uniformly distributed over C. In section 6.1 we show that one can construct a weakly
Random-Self-Reducible encryption schemes based on the Approximate Integer GCD assumption
[17] or the Learning with Errors assumption [13].

6.1 Instantiation of wRSR public-key Cryptosystems

In this section we provide concrete instantiations of wRSR schemes from two different post-
quantum assumptions.

1. Approximate Integer GCD problem (AIGP)[13].
2. Learning with Errors (LWE)[34].

More precisely we show that one can easily construct a wRSR from the cryptosystems presented
in [13, 17]. Please note that for these encryption schemes, operation (a mod n) means mapping
integer a into the interval [−bn/2c, bn/2c], (where n is an odd positive integer).

6.2 Approximate Integer GCD problem

Let p be a large η-bit odd integer and xi’s are defined as follows

xi = qip+ ri, 0 ≤ i ≤ τ

where xi is a γ-bit number which is much larger than p and ri is a ρ-bit error-term which is
much smaller than p in absolute value. W.l.o.g. assume that x0 is the largest of them, and that x0
is odd. Under the Approximate Integer GCD assumption the function

fx(s, z, b) =

(
2z + b+ 2

τ∑
i=1

xisi

)
mod x0
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is one-way for anyone who does not know p, where b ∈ {0, 1}, s ∈ {0, 1}τ is a random binary vector
and z is a random error term of appropriate size (see below).

6.3 public-key Cryptosystem from AIGCD Problem

Van Dijk, Gentry, Halevi and Vaikuntanathan constructed a fully homomorphic encryption scheme
based on the problem of finding an approximate integer gcd [13]. The construction below has many
parameters, controlling things like the number of integers in the public-key and the bit-length of
the various components. Specifically, we use the following five parameters (all polynomial in the
security parameter λ):

– η is the bit-length of the secret key p.

– γ is the bit-length of the integers xi in the public-key.

– ρ is the bit-length of the noise ri.

– ρ′ is the bit-length of the random error z.

– τ is the number of integers in the public-key, (contrary to the other parameters, this is not a
bit-size.)

These parameters must be set under the following constraints:

– ρ ∈ ω(log λ), to protect against brute-force attacks on the noise.

– ρ′ = Ω(ρ+ log τ) (τ is a polynomial is λ, e.g τ = λ).

– η ≥ ρ ·Θ(λ log2 λ) and should satisfy 2η−2 > 2ρ
′
+ τ · 2ρ, to avoid sums of errors passing p/2.

– γ ∈ ω(η2 log λ), to thwart various lattice-based attacks on the underlying approximate-gcd
problem.

– τ ≥ γ + ω(log λ), in order to use the leftover hash lemma in the reduction to approximate gcd.

The public-key is the vector x = (x0, x1, . . . , xτ ) and the private key is the η bit integer p. To
encrypt a bit b ∈ {0, 1} under the public-key x.

– Encx(b)

1. Pick uniformly a random bit string s1, · · · , sτ and pick uniformly a ρ-bit error-term z.

2. Output the ciphertext c←

(
2z + b+ 2

τ∑
i=1

xisi

)
mod x0.

– Decp(c)

1. c′ ← c mod p.

2. Output bit b← c′ mod 2.

The decryption works, provided the overall distance to the nearest multiple of p does not exceed

p/2, that is 2(z +

τ∑
i=1

risi) is less than p/2 in absolute value. For the above choice of parameters

this will always be the case. We rely on the work of [13] to assess that the resulting cryptosystem
is a semantically secure encryption scheme.
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6.4 weakly RSR based on Approximate Integer GCD

The cryptosystem based on AIGCD can easily be converted to a wRSR encryption scheme.
Keeping the same notations as above we set

• ρ = 2
√
λ (is the size of ri

′s in the public key), ρ = ρ/2 (size of the error term z in Enc).
• ρ′ = 2ρ (size of the error term Z in Spk)
• η = Θ(λ) (size of the private key). This parameter is smaller than suggested in [13].
• γ ∈ ω(η2 log λ). This parameter is smaller than suggested in [13].
• τ = γ + ρ (number of xi

′s in public-key x).

• I =
{

[−2ρ
′
,−2ρ

′−1] ∪ [2ρ
′−1, 2ρ

′
]
}
∩ Z.

• R′ =

{
2Z + 2

τ∑
i=1

xiwi mod x0 : Z ∈ I, wi ∈ {0, 1}

}
.

• M̂ = {0, 1} and Ĉ = C × M̂.

• The distribution χ is induced by picking r
uniform←−−−−−− R′, e uniform←−−−−−− M̂ and outputting

R = (r, e).
• Spk(R, c) := (r + e+ c) mod x0.

• D̂ecsk := Decsk.
• S ′pk(R, b̂) := (e+ b̂) mod 2.

wRSR Encryption Scheme from AIGCD

wRSR Properties(Semi-Honest Case). The scheme clearly satisfies the first and the third
properties for the above choice of parameters. For the second property let

Spk(R, c) =

(
2Z + e+ 2

τ∑
i=1

xiwi

)
+ c mod x0

Spk(R, c′) =

(
2Z + e′ + 2

τ∑
i=1

xiwi

)
+ c′ mod x0.

Since c, c′ ∈ C, there exist ρ bit integers z, z′, vectors s, s′ ∈ {0, 1}τ and bits b, b′ ∈ {0, 1} such that

c =

(
2z + b+ 2

τ∑
i=1

xisi

)
mod x0 & c′ =

(
2z′ + b′ + 2

τ∑
i=1

xis
′
i

)
mod x0

Note that Spk(R, c) and Spk(R, c′) are perfectly indistinguishable if r + b+ e and r + b′+ e lie in the

interval I. Also note that both r + b+ e and r + b′ + e can at most be 2ρ
′+1 + 2ρ+1 + τ · 2ρ+2 + 2

in the absolute value and are guaranteed to lie in I as far as Z or Z ′ do not lie in

Z ∩
{

[−2ρ
′
, (2ρ+1 + τ2ρ+2 + 2)− 2ρ

′
] ∪ [2ρ

′ − (2ρ+1 + τ2ρ+2 + 2), 2ρ
′
]
}
.

Note that ρ is ρ/2 bits, ρ = 2
√
λ and τ = Õ(λ2). The probability of Z or Z ′ lie in this interval is

2×
(

2ρ+1+τ ·2ρ+1+2
22ρ−1

)
=
(

2
√
λ+1+τ ·22

√
λ+1+2

24
√
λ−3

)
< 2−

√
λ · τ

which is negligible in the security parameter λ. Hence, Spk(R, c) and Spk(R, c′) are statistically
indistinguishable.
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6.5 Learning with Errors (LWE)

Let n, q ≥ 2 be positive integers and χ be a distribution on Zq. For a uniformly chosen vector s ∈ Znq
we obtained a distribution As,χ on Znq × Zq by choosing a vector a ∈ Znq uniformly at random and

a noise x← χ and outputting
(
a,aT s + x

)
.

Definition (LWE). For an integer q = q(n) and a distribution χ on Zq, the goal of the (average
case) LWE problem is defined as follows : given m independent samples from As,χ (for some uni-
formly chosen fixed vector s ∈ Znq ) output s with non-negligible probability. The Decision version
LWE problem denoted as distLWEn,m,q,χ is to distinguish (with non-negligible advantage) from
the m samples chosen according to As,χ, from m samples chosen uniformly from Znq × Zq.

In [34] Regev proved that the search version LWE is at least as hard quantumly approximating
certain lattice problems in the worst case. Formally Regev proved the following theorem.

Theorem 3 Let n, q be integers and α ∈ (0, 1) be such that q > 2
√
n. If there exists an efficient

algorithm that solves LWE then there exists an efficient quantum algorithm that approximates the
decision version of the shortest vector problem (GAPSVPγ) and the shortest independent vectors

problem (SIVP) to within Õ(n/α) in the worst case.

6.6 A Simple BGN-Type Cryptosystem

The BGN-Type cryptosystem is a semantically secure public-key cryptosystem, whose security is
equivalent to the hardness of the LWE problem [17].

– n is the security parameter and c = c(n) > 0 be any function of n.
– q > 220(c+ 4)3n3c+4 log5 n is a prime modulus.
– The message space is the set M = {B ∈ Zm×m2 : m = b8n log qc}.
– β = 1

27n1+(3c/2)√qm logn log q
specify a discrete normal distribution ψβ(q) over Zq.

The public-key is a matrix A ∈ Zm×nq and the private key is a matrix T ∈ Zm×mq , such that

– A is statistically close to uniform distribution over Zm×nq .
– T ·A mod q = 0 and T is invertible over Z.
– The Euclidean norm of all the rows in T is bounded by O(n log q).

To encrypt a binary m×m matrix B under the public-key A:

– Encpk(B)
1. Pick a matrix S ∈ Zn×mq uniformly and an error matrix X ∈ Zm×mq with each entry in X

is chosen independently according to the distribution ψβ(q).
2. Output the ciphertext C← AS + 2X + B (mod q) ∈ Zm×mq .

– Decsk(C)
1. Set D← TCTt mod q = T(2X + B)Tt mod q.
2. Output the plaintext B← T−1D (Tt)−1 (mod 2) ∈ Zm×m2 .

To see that the decryption works, recall that T·A mod q = 0, therefore TCTt ≡ T(2X + B)Tt

mod q. Moreover, for the above choice of parameters each entry in T(2X + B)Tt will be much
smaller than q/2 in the absolute value with overwhelming probability [17]. Hence, we have T(2X + B)Tt

mod q = T(2X + B)Tt over the integers.
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6.7 weakly Random-Self-Reducible from LWE

Due to space limitation the wRSR encryption scheme from LWE is describe in appendix A.

7 Conclusion and open problem

In this work we introduced a new notion of a weakly Random Self-Reducible public key cryp-
tosystem and a general methodology to obtain secure oblivious transfer under this assumption. We
also show that wRSR schemes can be constructed from post-quantum assumptions presented in
[13, 17]. We conclude with two open problems related to our work.

McEliece Assumption: Construct a weakly Random-Self-Reducible encryption from McEliece
assumption [9].
NTRU Assumption: Construct a weakly Random-Self-Reducible encryption from NTRU as-
sumption [36].
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A weakly Random-Self-Reducible from LWE

The encryption scheme is very similar to the BGN-Type cryptosystem (section 6.6). The main
constraints on the parameters are given by the correctness requirement and hardness requirements
(β should be large enough such that we can invoke above theorem).

• q ∈
(

24(logn)
2−1, 24(logn)

2
)

is a prime modulus.

• Entries of the error matrix X in Encpk are chosen independently according to ψβ(q), where

β =
2−2(logn)

2

20m · (log2 n− 1) · (20n log2 q)
2
.

• I =
{

[−23(logn)
2

,−23(logn)
2−1] ∪ [23(logn)

2−1, 23(logn)
2

)]
}
∩ Z.

• R′ = {AW + 2X mod q : X ∈ Im×m,W ∈ Zn×mq }.

These parameters yield an approximation factor of Õ(n/α) = Õ(nO(logn)), for lattice problems
such as (GAPSVPγ). The best known algorithms for (GAPSVPγ) for γ = Õ(nO(logn)), runs in

2Ω̃(n).

• M̂ =M, Ĉ = C × M̂.

• The distribution χ on Ĉ is induced by picking r
uniform←−−−−−− R′, B′

uniform←−−−−−− M̂ and
outputting R = (r,B′).
• Spk(R,C) := (r + B′ + C) mod q.

• D̂ecsk := Decsk.

• S ′pk
(
R, B̂

)
:=
(
B′ + B̂

)
mod 2.

wRSR Encryption Scheme from LWE

Theorem 4 Let n > 339 be any integer, q ∈
(

24(logn)
2−1, 24(logn)

2
)

be any prime and β =

2−2(logn)2

20m·(log2 n−1)·(20n log2 q)
2 . Then D̂ecsk correctly decrypts with overwhelming probability. Furthermore

the above LWE construction is a wRSR encryption scheme.

Proof D̂ecsk(Spk(R,C)) will decrypt to (B + B′) mod 2, as long as

‖T(2(X + X′) + (B + B′))Tt‖∞ < q/2.

With overwhelming probability every entry of T(X) and T(B + B′) is at most 40βq(log2 n −
1)n log2 q and 40n log2 q. Therefore with overwhelming probability

‖T(2(X + X′) + (B′ + B))Tt‖∞ < m(40n log2 q)
2 ·
(
βq(log2 n) + 23(logn)

2
)
.

from tail inequality βq(log2 n) < 22(logn)
2

, with overwhelming probability and m = b8n log qc and
log q = 4(log n)2, therefore
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‖T(2(X + X′) + (B′ + B))Tt‖∞ < n3(16 log n)6 ·
(

22(logn)
2

+ 23(logn)
2
)
.

But (40n)6 log2 n ·
(

22(logn)
2

+ 23(logn)
2
)
< q/2 for all n > 339, hence

‖T(2(X + X′) + (B′ + B))Tt‖∞ < 2n−1 < q
2 .

wRSR Properties (Semi-Honest Case). The scheme clearly satisfies the first property. The

scheme also satisfies the third property whenever D̂ecsk is correct, which will be the case with
overwhelming probability for above choice of parameters. To prove the construction satisfies the
second property let Spk(R,C) = AW+E+2Z+C mod q, and Spk(R′,C′) = AW′+E′+2Z′+C′

mod q. Since, C and C′ are in the ciphertext space, there exist matrices S,S′ ∈ Zn×mq , B,B′ ∈
Zm×m2 and X,X′ ∈ Zm×mq , such that

C = AS + B + 2X mod q and C′ = AS′ + B′ + 2X′ mod q

note that as far as each entry in 2(Z + X) + (E + B) and 2(Z′ + X′) + (E′ + B′) lie in the interval
I, Spk(R,C) and Spk(R′,C′) remain perfectly indistinguishable. The probability that each entry

in 2(Z + X) + (E + B) and 2(Z′+ X′) + (E′+ B′) does not lies in I = {[−23(logn)
2

,−23(logn)
2−1]∪

[23(logn)
2−1, 23(logn)

2

)]} ∩ Z is(
23(logn)2−(23(logn)2+‖X‖∞+2)

23(logn)2−1
+ 23(logn)2−(23(logn)2+‖X′‖∞+2)

23(logn)2−1

)
= ‖X‖∞+‖X′‖∞+4

23(logn)2−1
.

Furthermore with overwhelming probability ‖X‖∞ and ‖X′‖∞ are at most 22(logn)
2

, therefore with
overwhelming probability

‖X‖∞+‖X′‖∞+4

23(logn)2−1
= 22(logn)2+1+4

23(logn)2−1
< 2−(logn)

2+1

which is negligible in n. Therefore Spk(R,C) and Spk(R′,C′) are statistically indistinguishable.
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