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MMBcloud-tree: Authenticated Index for Verifiable
Cloud Service Selection

Jingwei Li, Anna Squicciarini, Dan Lin, Smitha Sundareswaran, and Chunfu Jia

Abstract—Cloud brokers have been recently introduced as an additional computational layer to facilitate cloud selection and service
management tasks for cloud consumers. However, existing brokerage schemes on cloud service selection typically assume that
brokers are completely trusted, and do not provide any guarantee over the correctness of the service recommendations. It is then
possible for a compromised or dishonest broker to easily take advantage of the limited capabilities of the clients and provide incorrect
or incomplete responses. To address this problem, we propose an innovative Cloud Service Selection Verification (CSSV) scheme and
index structures (MMBcloud-tree) to enable cloud clients to detect misbehavior of the cloud brokers during the service selection
process. We demonstrate correctness and efficiency of our approaches both theoretically and empirically.
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1 INTRODUCTION

C LOUD services offer a scalable variety of storage space
and computing capabilities, which are widely em-

ployed by an increasing number of business owners. This
has resulted in a large number of cloud service providers
(CSPs), offering a wide range of resources. The availability
of various, possibly complex options, however, makes it dif-
ficult for potential cloud clients to weigh and decide which
options suit their requirements the best. The challenges are
twofold: 1) It is hard for cloud clients to gather information
about all the CSPs available for their selections; 2) It is also
computationally expensive to choose a suitable CSP from a
potentially large CSP pool.

In light of these difficulties, both industry and academia
(see [1] for a survey) suggested introducing an additional
computing layer (referred to as cloud brokerage systems) on
top of the base service provisioning to enable tasks such as
discovery, mediation and monitoring. In a cloud brokerage
system, one of the most fundamental tasks is to provide
high-quality selection services for clients. That is, a broker
provides clients with a list of recommended CSPs that meet
the clients’ needs. With the aid of cloud brokers, clients no
longer need to collect, search or compare CSPs’ services and
capabilities.

The underlying assumption in the existing cloud bro-
kerage schemes [2] [3] [4] [5] [6] [7] [8] is that brokers are
completely trusted and thus will always provide unbiased
best available options to clients [9]. Under this assumption,
none of the existing works provides guarantees over the
correctness or completeness of the service selection recom-
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mendations to the cloud clients. Without the ability to verify
the correctness of the service recommendation, cloud clients
could be easily cheated by malicious brokers. For instance,
malicious brokers could recommend their favorable CSPs as
much as possible and ignore other suitable CSPs, without
being caught by the clients. More seriously, due to the lack
of supervision and verification of brokers’ actions, malicious
brokers could even recommend malicious CSPs which col-
lect and sell clients’ private resources, monitor clients’ hosts
during cloud service provisioning, causing major financial
and confidentiality losses to the clients. Therefore, it is
important to equip the clients with verification capabilities
of the obtained recommendations. The clients may not need
to verify each recommendation result, but they certainly
need to have the ability to do so when they feel necessary.

In this work, we propose innovative authenticated index
structures and verification protocols to allow clients to ver-
ify the completeness and authenticity of brokers’ answers. This
problem is related to that of authentication of query results
for outsourced databases [10] [11] [12] [13] [14] [15] [16] [17]
[18] [19] [20]. However, the characteristics of cloud service
selection actually raises a new series of challenges. First,
cloud service selection typically allows cloud users to spec-
ify multiple service requirements (i.e., multi-dimensional
range queries), whereas many existing works on query
authentication only support range queries on one or two di-
mensions (e.g., verifying location-based query results [16]).
Second, it is always desirable to have efficient cloud service
selection and verification so that the cloud end users would
not feel delay of services, but existing few works [17] [18]
[19], although support authentication of multi-dimensional
query results, are time consuming, resulting that they could
not meet the demands of today’s real-time cloud service
recommendations.

In order to overcome the limitations of existing tech-
niques, both in terms of efficiency and supported function-
ality, we propose a new authenticated index structure, called
Multi-Merkle Bcloud-tree (MMBcloud-tree), which is a variant
of the Merkle B+-tree and is specifically tailored for cloud
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service selections. In particular, we first design the Merkle
Bcloud-tree (MBcloud-tree) which is an authenticated index
on the most common property (i.e., Price) of CSPs, and
propose the corresponding verification protocol. Then, we
extend the MBcloud-tree to the MMBcloud-tree by integrating
a multi-dimensional indexing method (i.e., iDistance [21])
with MBcloud-tree, to further improve the selection qual-
ity as well as reduce the verification burden at the client
side. Our approaches are proved to ensure authenticity,
satisfiability and completeness of the selected results. We
have also experimentally compared our approaches with the
most recent related work [18], and the results demonstrate
significant improvements over the state-of-the-art [18].

Our novel index structure is the core component of
our Cloud Service Selection Verification (CSSV) scheme, which
employs the idea of “separation of duties” to ensure strong
security guarantees. Precisely, we introduce a trusted collec-
tor in the cloud brokerage system that separates the task of
CSP information collection from the service selection. The
collector does not directly interact with the cloud clients
and is only in charge of gathering information from the
CSPs, and hence it can be more devoted into adopting
sophisticated defenses to filter out problematic data and
building an authenticated database of CSPs’ profiles. The
collector is allowed to make profit by selling the authen-
ticated database to one or more cloud brokers. With the
available authenticated databases, the cloud brokers focus
on handling probably a large number of real-time service
requests from clients.

The rest of the paper is organized as follows. Section 2
reviews the related work. Section 3 presents the problem
statement. Section 4 gives an overview of the proposed
CSSV system, followed by detailed verification schemes in
Section 5 and 6. Section 7 reports the experimental results.
Section 8 describes the practical consideration on saving
clients’ computing resources in several times of verification.
Finally, Section 9 concludes the paper.

2 RELATED WORKS

Since our work is related to both cloud service selections and
query authentication in databases, we review the works in
these two areas in the following subsections, respectively.

2.1 Cloud Service Selection

There have been several efforts on cloud service selection
in the literature. A general cloud service selection frame-
work was proposed by Goscinski and Brock [26], which
includes cloud service publication, discovery and selection.
Han et al. [27] described a recommendation system in cloud
computing suitable for design-time decisions as it statically
provided a ranking of available cloud providers. Li et al.
[2] developed systematic comparator CloudCmp to help
customers choose a cloud that meets their needs through
measuring and comparing the elastic computing, persistent
storage and networking services. Aiming at evaluating the
performance and capabilities of services offered by CSPs for
facilitating customers’ selections, Binnig et al. [3] designed
a new benchmark to fit the characteristics (e.g., scalability,
pay-per-use and fault-tolerance) of cloud computing. Lenk

et al. [4] further proposed a new performance measuring
method for Infrastructure-as-Service offerings, taking into
account the type of services running in a virtual machine.

In order to consider the subjective aspects of CSPs,
Rehman et al. [5] presented a framework for monitoring
cloud performance based on customers’ feedback. Li and
Wang [6] in addition proposed a probability method to eval-
uate the subjective trustworthiness of the service component
as well as the whole composite service from a series of
ratings given by customers. Recently, Qu et al. [7] proposed
an approach for cloud service selection based on both the
user feedback and cloud performance. Modeling approach
has also been utilized for service selection. In [28] [29],
the cloud service selection is modeled as a multi-criteria
decision-making problem, and then solved by using an
analytic hierarchy process. Sundareswaran et al. [9] have
modeled the properties of cloud service providers in a
multi-dimensional space and utilized a K-nearest neighbor
search for service selection.

Unlike our work, to the best of our knowledge, existing
works on cloud service selection are focused only on how
to select the services that satisfy customers’ requirements.
None of them considers security issues involved in the ser-
vice selection, and none of them provides verifiable schemes
to prove the correctness and completeness of their service
selection results as addressed in our work. In addition, there
is one recent work proposed by Zhang et al. [30] which also
involves the notion of the “trusted collector”. However, the
purpose and the way how the collector is used are totally
different. They use the collector for securely generating
and sharing location-based information, whereas we use the
collector to achieve service verification in the cloud.

2.2 Database Query Authentication

Our proposed authenticated index structures are related
to those developed for query authentication in outsourced
databases which can be classified into two main categories:
Hash-based approaches and Signature-based approaches, as
shown in Table 1.

The hash-based approaches [17] [19] [10] [16] [22] [20]
employ the Merkle hash tree [31] or its variants to index
the search keys. During a query, the service provider (i.e.,
resembles the cloud broker in our scenario) traverses the
tree to identify the query results, and then send the results
and some associated hash values of necessary nodes as
proof messages to the client. Based on the received proof
information, the client reconstructs the path from the nodes
containing the query results to the root of the tree in order
to verify the correctness of the query results. Our work also
belongs to this category. Compared with existing works that
also have the Merkle B+-tree as the base structure, our work
is superior to them because they either do not support multi-
dimensional queries [10] [11] [12] [13] [14] [15] or do not
consider the efficiency in the design [19]. Specifically, [10]
[11] [12] [13] [14] [15] are for 1-dimensional queries, and
[16] are for two or three-dimensional queries in location-
based services. With respect to the (few) works for multi-
dimensional queries, we note some important limitations.
The range tree-based method proposed in [17] needs to
build and embed a Merkle hash tree for each node, and
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Categories Work Low-Dimensional Multi-Dimensional Comparison with Our ApproachesRange Query Range Query

Hash-based
Approaches

Our Approaches ! ! –
Devanbu et al. [17] ! ! produce large index affecting efficiency
Pang et al. [19] ! ! inefficient for queries on non-key attributes
Li et al. [10] ! # only support 1-dimensional query
Yang et al. [16] ! # only support low-dimensional query
Papadopoulos et al. [22] ! ! require an extra fully trusted entity
Yang et al. [20] ! ! require MapReduce framework
Zheng et al. [15] ! # only support 1-dimensional query

Signature-based
Approaches

Mykletun et al. [11] ! # only support 1-dimensional query
Mykletun et al. [23] ! # only support 1-dimensional query
Narasimha et al. [12] ! # only support 1-dimensional query
Pang et al. [13] ! # only support 1-dimensional query
Cheng et al. [18] ! ! require a large number of signatures
Pang et al. [14] ! # only support 1-dimensional query

Others Bajaj et al. [24] ! ! require trusted hardware
Papadopoulos et al. [25] ! ! require heavy cryptographic primitives

TABLE 1
Summary of Existing Works on Authenticating Range Queries in Outsourced Database

this process is also recursively invoked for the nodes of the
embedded Merkle hash tree, which makes index contruc-
tion, querying and verification extremely time consuming;
the VB-tree in [19] is not efficient for queries on non-key
properties because it will generate large size proof messages
to cover the nodes in-between the query ranges but do not
contain the query results.

Signature-based approaches [11] [12] [14] [13] [18] [23]
typically construct an authenticated and unforgeable chain
over the data objects in a specified order. At query execution,
the service provider picks the signatures of the data objects
falling in the query range to form the proof messages. Since
each data object is linked with its predecessor and succes-
sor in an unforgeable way, the client is able to verify the
completeness and correctness of query results by verifying
the validity of signatures. Among all the related works, [18]
is the most recent work related to ours since it verifies
multi-dimensional range queries under assumptions that
are similar to ours. Therefore, we choose it for comparison
in the experimental study.

In addition, it is worth noting that some recent works
[20] [24] [22] [25] also support authentication of multi-
dimensional queries. Compared with them [20] [24] [22]
[25], our approaches do not rely on server-hosted, tamper-
proof, trusted hardware, heavy cryptographic primitives
(e.g., bilinear pairings in [25]).

2.3 The Merkle Hash Tree

As our proposed data structure is developed based on the
Merkle hash tree, we provide more details of this structure
as follows. The Merkle hash tree [31] has a binary tree as
the base structure. The leaf nodes in the Merkle hash tree
contain the hash values of the original data items. Each
internal node contains the hash value of the concatenation
of the hash values of its two children nodes. The hash value
of the root of the tree is published for verification. If there
is any change to the original data values, one would not be

able to compute the same hash value of the root and hence
detect such data tampering.

Fig. 1 illustrates an example of the data verification using
the Merkle hash tree. A verifier has the published hash
value hroot of the root. He sends the request to the prover
for data item x2. The prover returns the requested data
item along with the auxiliary authentication information
h1, h3||4 and h56||78, where || is the symbol of concatenation
which will be used throughout this paper. Upon receiving
the data item and the additional authentication informa-
tion, the verifier performs the following computation to
check if the received x2 is authentic. First, the verifier
computes h2 = Hash(x2), h1||2 = Hash(h1||h2), h12||34 =
Hash(h1||2||h3||4), h1234||5678 = Hash(h12||34||h56||78), and
then he checks if the calculated root hash (i.e., h1234||5678) is
the same as the published one (i.e., hroot). If so, the verifier
will conclude that the data is authentic.

x1 x2 x3 x4 x5 x6 x7 x8

h1 h2 h3 h4 h5 h6 h7 h8

h1||2 h3||4 h5||6 h7||8

h12||34 h56||78

h1234||5678

Fig. 1. Merkle Hash Tree

Based on the similar idea of the Merkle hash tree, the
Merkle B+-tree [32] [10] [15] have been proposed to handle
multiple entries per node.
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3 PROBLEM STATEMENT

Broker-based cloud service systems generally include three
types of entities:

• Cloud Clients are end users who request certain
types of cloud services;

• Cloud Service Providers (CSPs) provide a variety of
cloud services;

• Cloud Broker is the middleman between the cloud
clients and CSPs. For example, we consider the case
when the broker provides service selection services
(given in Definition 1) to the cloud clients.

In these settings, our main problem is how to ensure that
cloud brokers recommend authentic and complete services
available to clients, according to the clients’ specific requests
(namely service selection queries).

To specify CSPs’ services which the clients can request
to brokers, we consider ten common properties of CSPs [9].
A brief description of these properties is given in Table 21.
Accordingly, let us denote with U = {SType, QoS, Security,
ISize, OP, Price, Sub} the property universe for CSPs. Each
property Ui ∈ U has a domain Di = {vi,1, vi,2, . . . , vi,ni

}
consisting of all the possible values of Ui, where ni is the
number of the possible values for property Ui. A service
selection query over such properties is formally specified as
follows.
Definition 1 (Service Selection Query). A cloud service

selection query is specified according to the following
form: Q = {(U1, q1), (U2, q2), ..., (Uk, qk)} (1 ≤ k ≤ 7),
where Ui ∈ U and qi (1 ≤ i ≤ k) is a query range within
the domain of the CSP property Ui.

Example 1. Suppose that there are four CSPs’ profiles stored at
the cloud broker. For simplicity, we assume that these CSPs all
provide storage services and we consider only three properties
of each CSP as follows:

• CSP1: Price=24; Security=high; OP=Windows.
• CSP2: Price=29; Security=medium; OP=Windows.
• CSP3: Price=18; Security=medium; OP=Unix.
• CSP4: Price=15; Security=low; OP=Windows.

If a client wants to find the CSPs which offer the storage service at
the price no greater than 25 with at least medium level security
guarantee (i.e., the security property has the value “medium”),
the client can send the service selection query Q = {(Price,
[0, 25]), (Security, [medium, high])} to the cloud broker.

Our problem, i.e. verification of cloud brokers recom-
mendations, is compounded by the lack of trustworthiness
assumptions against the broker. For instance, a broker may
be Lazy or Cheating. The Lazy broker aims to save its comput-
ing resources, and hence returns random results to clients
instead of actually processing service selection queries. The
Cheating broker attempts to recommend its “bribery” CSPs
as much as possible by intentionally dropping other better
options for the cloud clients. Therefore, our original problem

1. The actual cost of a cloud service is determined by Pricing
and three other properties: Measurement Units,Pricing Units, and
Pricing Sensitivity. We conduct a preprocessing to recompute the value
of the Pricing property by integrating the other three properties. After
the preprocessing, the Price property will be under the same unit and
measurement.

is mapped into that of designing an approach that enables
clients to verify the correctness of the query results.
Definition 2 (Correctness of Query Results). Let Q =

{(U1, q1), (U2, q2), ..., (Uk, qk)} be a service selection
query, and let R denote the set of CSP profiles in the
query results returned by the cloud broker. We say R is
correct with respect to Q if and only if R achieves all the
following three guarantees:

• Authenticity: For any CSP’s profile in R, the profile
must be authentic without any adversarial tampering
by the broker.

• Satisfiability: We say R achieves satisfiability with
respect to Q, if any CSP Ci = {u1,i1 , u2,i2 ..., u7,i7} in
R satisfies the query Q, i.e., uj,ij ∈ qj holds for all
the queried properties Uj in Q.

• Completeness: We say R achieves completeness if
there is no CSP Cl = {u1,1l , u2,2l ..., u7,7l} which is
not in R but satisfies the query Q.

Example 2. Reconsider Example 1. The correct query results
that satisfy authenticity, satisfiability and completeness should
be R = {CSP1, CSP3}. If the cloud broker returns
R = {CSP1}, the response is not complete, since another
qualifying CSP3 is missing. If the cloud broker returns
R = {CSP1, CSP2, CSP3}, it violates satisfiability prop-
erty, as CSP2 does not satisfy the query.

4 AN OVERVIEW OF THE CSSV SCHEME

As aforementioned, correct service selection results should
guarantee authenticity, satisfiability and completeness. To
verify authenticity of a CSP’s profile, a naive solution is to
require the CSP to sign its profile and then let the client
verify the signature. Satisfiability is also easy to verify since
the client just needs to check if the profiles of the candidate
CSPs in the query results actually satisfy the query. How-
ever, there is not a trivial way for the client to know if the
query results returned by the broker contain all qualifying
CSPs. In other words, the verification of completeness is
the most challenging issue. To address this, we propose the
Cloud Service Selection Verification (CSSV) scheme which is
a comprehensive solution that is capable of guaranteeing all
the three security requirements (i.e., authenticity, satisfiabil-
ity and completeness).

In the CSSV scheme, we introduce one more entity, the
collector, besides CSPs, cloud clients and cloud brokers. The
collector acts like a certificate authority and is assumed
fully trusted, which is inline with the recent work [30]. The
collector is associated with a pair of public and private keys,
and its public key is made available to CSPs, cloud brokers
and cloud clients. Specifically, the CSSV scheme (as shown
in Fig. 2) includes the following three phases:

1) Database Construction by the collector: The col-
lector is responsible for collecting the profiles (in-
cluding the properties discussed in Section 3 and
some other information such as user ratings, etc) of
CSPs, and constructing an authenticated CSP profile
database that ensures the integrity of the CSPs’
information. The collector sells the authenticated
CSP profile database to multiple cloud brokers.
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Property Description

Service Type (STtype) type of CSP
Security level of security
Quality of Service (QoS) quality of service determined by user ratings
Measurement Units unit for charge
Pricing Units how long a service is reserved for
Instance Size (ISize) amount of resources used at a given instance
Operating System (OP) operating system used
Pricing actual price for the usage of CSP
Pricing Sensitivity whether the price varies by region
Subcontractors (Sub) whether subcontractors are presented

TABLE 2
Properties of Cloud Service Providers

Fig. 2. Architecture for CSSV System

2) Service Selection by the broker: Each cloud broker
handles a potentially large amount of online clients
requests. For a service selection request from a con-
sumer, the cloud broker will query the authenticated
CSP profile database provided by the collector and
recommend CSPs to the clients.

3) Results Verification by the clients: The clients
execute result verification algorithms to verify the
correctness of the query results returned by the
broker.

In the next two sections, we will present our proposed
authenticated indexes, the MBcloud-tree and the MMBcloud-
tree, to be employed in the CSSV schemes. It is worth noting
that, the novelty of our approaches not only lies in a new
set of verification algorithms specific to the cloud service
selection, but also gives efficient solutions (compared with
the state-of-the-art) to the problem of authenticating multi-
dimensional queries.

5 BASIC SCHEME USING MBcloud-TREE

Our basic scheme follows the three phases of the CSSV
system: the database construction, service selection and
results verification. It is developed based on a variant of
the Merkle hash tree [31].

5.1 Phase 1: Database Construction
In order to efficiently manage and retrieve CSPs’ profiles
while guaranteeing data integrity, we propose a MBcloud-
tree to index CSPs’ profiles on the Price property of the
CSPs. The MBcloud-tree is a variant of the authenticated

index structure, the Merkle B+-tree [32] [10] [15]. The reason
to choose Price as the indexing field is two-fold. First, given
that most cloud providers employ a pay-per-use business
model, Price is one of the most commonly occurred criteria
in cloud service selection queries. Second, since there are
many possible values of Price among CSPs, Price is a very
selective property which makes queries more efficient.

Fig. 3 illustrates the structure of the MBcloud-tree, which
is developed based on the B+-tree by adding one additional
field to each entry to store a hash value for the subsequent
authenticity check. The information stored in each tree com-
ponent is described as follows:

• Each CSP is represented by a data structure C con-
sisted of its unique identity (ID), a list of property
values (L) and a hash of its profile (Hash(prof)),
computed using a secure collusion free hash func-
tion.

• Each entry ei in the leaf node stores the informa-
tion of CSPs offering the same price in the form
of ⟨keyi, hi, pti⟩, where keyi is the index key and
contains the value of the price, pti points to a list
of CSPs whose price equals to keyi, and hi is a
concatenation of all the hash values of CSPs in the
list. Suppose that CSP1, CSP2, ..., CSPk fall into
the same entry and hash values of their represen-
tation structures are Hash(C1),Hash(C2) . . .Hash(Ck),
respectively. Then, the hash value of this entry will be
hi = Hash(Hash(C1)||Hash(C2)|| . . . ||Hash(Ck)). The
leaf nodes are chained with sibling leaf nodes via
pointers.

• Each internal node contains m index key values and
m + 1 pointers to the child nodes which are defined
in the same way as that in the B+-tree. Additionally,
each pointer in the internal node is associated with
one hash value that is computed by concatenating
the hash values of entries in its child node. More
specifically, let hi,1, ... hi,m denote the hash values
in a child node pointed by pti, the hash value hi is
computed as hi = Hash(hi,1||hi,2, ..., ||hi,m). Notice
that here we abuse notation by using the same sym-
bol pti as the pointer in internal node pointing to a
child node, and hi as hash value associated with pti.

To construct the MBcloud-tree, the information of each
CSP is inserted in the same way as that in the B+-tree. A
hash value of the CSP is computed, and the hash value is
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hkeyi, hi, ptii... ...

ei

Cj

hptl, hli... ...

... ...

hIDj ,Lj ,Hash(profj)i
. . . . . .

. . . . . . . . . . . .. . . . . .

Fig. 3. Structure of Merkle Bcloud-tree

then used to compute the hash values of its ancestor nodes
all the way up to the root.

After the construction, the collector signs the hash value
of the root node using its private key, and publishes the ob-
tained signature σ. Finally, the collector sends the MBcloud-
tree along with the profile database to the cloud brokers.

5.2 Phase 2: Service Selection

The cloud broker takes requests from clients and executes
the service selection queries on the Merkle Bcloud-tree ob-
tained from the collector. The service selection query al-
gorithm consists of two main steps: 1) filtering and 2)
refinement.
• Step 1 (Filtering): The cloud broker identifies candidate
CSPs and the hash values to be returned for verification.
Specifically, upon receiving a query Q = {(U1, q1), (U2, q2)
, ..., (Uk, qk)}, the broker first checks if Q includes Price. If
so, the broker will run a range query on the MBcloud-tree
using the query range (denoted as qprice) of Price. The range
query algorithm is the same as that in the B+-tree, which
starts from the root and traverses down the tree following
the pointers that point to the key values within the query
range. Let elow and ehigh denote the leaf node entries which
contain the minimum and maximum prices of CSPs that
are within the query range, respectively. In order for the
client to check completeness later, the broker also records the
left neighbor entry elow−1 of elow, and right neighbor entry
ehigh+1 of ehigh (if elow or ehigh is the leftmost or rightmost
entry of MBcloud-tree, then elow−1 or ehigh+1 would be set
empty). These four entries together define the boundary of
the query results. Note that if none of CSPs in the broker’s
database satisfies the query, elow−1 and ehigh+1 will be the
rightmost and leftmost entries in the tree, and elow and ehigh
would be empty.

Given the above four boundary entries, the cloud bro-
ker constructs a proof message (PF ) for verification as
illustrated in Fig. 4. For each entry ei between elow−1 and
ehigh+1 (including elow−1 and ehigh+1), the broker includes
the representation structures of the CSPs stored in ei in the
proof. Here, elow−1 and ehigh+1 will be later used by the
client to verify the completeness of the query results. Next,
for each parent node of ei, the broker includes the hash
values of non-parent entries (the shaded boxes in Fig. 4)
in the proof to facilitate the client to reconstruct the hash
value of the parent node at the verification phase. The same
process is applied to all the ancestor nodes of ei all the way

e
low�1 e

low

ehigh. . .. . . ehigh+1 . . .. . .. . .

hj. . . . . . hj. . . . . .. . .. . .

candidate CSPs

. . .

. . .

PF PF

PF PF

PF PF

Fig. 4. Proof Message in Merkle Bcloud-tree

up to the root. In summary, the proof message PF contains
representation structures of candidate CSPs, boundary CSPs
(i.e., elow−1 and ehigh+1), and a set of hash values of non-
ancestor entries in the ancestor nodes.
• Step 2 (Refinement): The broker further exams the proper-
ties of candidate CSPs to put those CSP profiles that satisfy
all the requirements of the query in a query result set R.
Then, the broker returns R and the proof message PF to
the client.

5.3 Phase 3: Results Verification

Upon receiving the results R and the proof message PF ,
the client will verify the correctness of the results in terms
of satisfiability, authenticity, and completeness. It is worth
noting that this step can be optional. The client does not
need to verify the results every time but, it could choose
to check the correctness of R at random time. The cloud
brokers would not know when the results will be checked
and hence still need to follow the approach faithfully to
protect their reputation.

To verify satisfiability of the result, the client simply
double checks if the properties of CSPs in R meet his/her
needs. Next, the client verifies the authenticity and com-
pleteness simultaneously by computing the hash value of
the root using the information in the proof message. Specif-
ically, starting from the leaf level, for entries with provided
representation structures, the client computes their hash
values. Then, the client concatenates both computed hash
values and hash values included in PF to generate the hash
values of parent entries. As illustrated with red dash arrows
in Fig. 4, this process is repeated until the hash value of
the root (denoted as hroot) is computed. Then, the client
verifies if the published signature σ is a valid signature
on hroot. If so, the results are authentic. Further, to ensure
the completeness, the client will check the properties of
boundary entries elow−1 and ehigh+1 to see if they are real
boundaries, i.e., located outside the query range.

Finally, we prove that our approach allows the clients
to verify the correctness of the results. That is, the client
will detect the broker’s misbehavior of any modification and
deletion of qualifying results.

Theorem 1. For any query Q ={(U1, q1), (U2, q2), ...,
(Uk, qk)}, let R denote the query results returned by
the approach described above. The correctness of R (in
Definition 2) can be verified by the client.
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Proof 1. We prove the theorem by contradiction. First, if there
exists a CSPwrong ∈ R whose properties do not satisfy
Q, CSPwrong will be detected by the client during the
satisfiability verification of Phase 3.
Second, suppose that there exists a CSPi ∈ R whose prop-
erties have been modified by the broker and are no longer au-
thentic. Consequently, the hash value of CSPi with modified
properties will not match its original hash value, and hence
resulting in a different hash value (denoted as hashwroot) of
the root of the Merkle Bcloud-tree. By verifying the validity
of published signature σ on hashwroot, the client will de-
tect such misbehavior. Similarly, if the broker intentionally
changed any information in the proof message, the change will
lead to incorrect hash value of the root and hence be detected.
Third, suppose that the broker did not include one or more
qualifying CSPs in the query results. This involves two cases.
One is that the broker dropped several entries in the leaf node
and still returned the other qualifying entries in the same
node. In this case, the hash value computed from the remaining
qualifying entries in R will not lead to correct hash value of
the corresponding entry in parent node. The second case is
that the broker dropped the whole leaf node with qualifying
entries. The broker may or may not eventually return the hash
value of the dropped leaf node in the missing leaf. In either
case, the client will detect the broker’s misbehavior since the
client will not be able to compute the correct hash value of
the root. This is because the hash value of the parent node is
a concatenation of the hash values of entries in an ascending
order of their prices. In other words, the hash values of entries
in the query results are placed next to each other when the
client concatenates them. The missing leaf node results in a
missing hash value in the middle of the concatenation, which
in turn affects the correctness of the hash value of the root.

6 ADVANCED SCHEME USING MMBcloud-TREE

The basic approach using MBcloud-tree indexes only the
Price property, and therefore has limited ability to deal with
queries that do not include Price as one of the selection
criteria, or with queries that have many other selection
criteria besides Price. In either case, the basic approach may
return many CSPs which satisfy only the Price criterion but
not the whole query in the proof message for verification.
Note that, the final query results are not affected since a
refinement step is included to identify the actual qualify-
ing CSPs. In order to balance the verification burden (i.e.,
reduce the number of false positives in filtering step), we
propose an advanced scheme indexing multiple properties.
The advanced scheme integrates the MBcloud-tree idea with
a multi-dimensional index (i.e., iDistance [33] [21]) to build
a novel authenticated index, MMBcloud-tree, on all the prop-
erties of the CSPs. Therefore, it is effective and efficient for
queries that contain requirements on any property. In what
follows, we first briefly review the iDistance index and then
present the detailed algorithms of the advanced scheme.

6.1 iDistance

The iDistance [21] [33] is an indexing and query processing
technique for K-nearest neighbor (KNN) queries on data
point in multi-dimensional spaces. The key idea of iDistance

is to map multi-dimensional points to a one-dimensional
key value so that they can be indexed using the B+-tree that
is commonly available in commercial database systems. The
iDistance index is built in two main steps:

1) Cluster the data points and select the cluster centers
as reference points.

2) Compute the distance between a data point and its
closest reference point, and use this distance plus
a scaling value to form an index key for this data
point. Then, index all the data points using the B+-
tree.

Compared with iDistance, our proposed MMBcloud-tree
handles range queries instead of KNN queries and supports
authentication of the query results.

6.2 MMBcloud-tree-based Scheme
The advanced scheme also follows the three phases of the
CSSV system introduced in Section 4.

6.2.1 Phase 1: Database Construction
By leveraging MBcloud-tree and iDistance, we propose a
Multi-Merkle Bcloud-tree (MMBcloud-tree for short) which
treats each CSP as a multi-dimensional data point with each
property being one dimension.

As a preprocessing step, we first encode each property
of a CSP to a numerical value. Recall that each CSP is
associated with 7 properties as described in Section 3. Let
CSP = {(SType, v1), ..., (Price, v5), ...}, where vi is the
value of a property. For those numerical properties like Price
and ISize, we normalize them to a value between 0 and 1 as
follows:

v′i =
vi −min(Di)

max(Di)−min(Di)

where max(Di) and min(Di) are the maximum and min-
imum values in the domain of this property, respectively.
For the remaining non-numerical properties like SType and
Security, we map each non-numerical value to a numerical
value and then normalize them in the same way as the
numerical properties. An example is given below.
Example 3. Reconsider the CSPs in Example 1. Their non-

numerical properties are transformed as follows (the value af-
ter the hyphen denotes the numerical value after the mapping):

• Security: high-2, medium-1, low-0
• OP: Windows-1, Unix-0

Then, a CSP can be represented as a 3-dimensional point (corre-
sponding to three properties in the example):

CSP1 : {26− 15

29− 15
,
2

3
,
1

2
}; CSP2 : {29− 15

29− 15
,
1

3
,
1

2
}

CSP3 : {18− 15

29− 15
,
1

3
,
0

2
}; CSP4 : {15− 15

29− 15
,
0

3
,
1

2
}

Next, we propose a two-level clustering for the CSPs.
First, CSPs of the same service type are grouped together.
This is because most of time a service selection query targets
a single type of service. Even if a query contains multiple
service types, the query can be easily re-written to multiple
queries with one service type per query. This first level
clustering helps restrict the subsequent service selection to
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CSP1

CSP3

CSP2

Oi

...... ... ...

leaf nodes of B

+
-tree

Pi

Fig. 5. An Example of Index Key Generation in 2-Dimension Space

the CSPs of the same service type and avoid checking the
CSPs of non-matching service types.

Within each group of CSPs of the same service type,
we further conduct a K-means clustering [34] using the
Euclidean distance (defined in Equation 1) between each
pair of CSPs for clustering. Note that v′il, v

′
jl (l = 1, 2, . . . , 7)

are the normalized property values.

dist(CSPi, CSPj) =
√

(v′i1 − v′j1)
2 + . . .+ (v′i7 − v′j7)

2 (1)

After the clustering, we obtain n × t clusters (or parti-
tions), where n is the total number of service types and t
is the tunable clustering parameter. Let O1, O2, . . ., On×t

denote the cluster centers of each partition. Then, for a
CSPj , we first identify the nearest Oi of CSPj and then
compute its index key using the following formula:

Key(CSPj) = S1 · (i− 1) + S2 · dist(Oi, CSPj) (2)

where S1 is a scale factor that reserves a range of values
for each partition and ensures that the index keys of data
points in different partitions will not overlap; S2 is another
scale factor that reserves a range of values for data points at
a similar distance to its reference point. These index keys are
then used to insert the CSPs to the B+-tree. It is worthwhile
noting that if two data points in an identical partition have
the same distance from the reference point in this partition,
they would have the same index key. We treat this case, by
linking both points and appending them to the same entry
in leaf node, in the same way as that for resolving CSPs
having identical Price in the basic scheme.

For illustration purposes, we use 2-dimensional data
points to show how the index keys are mapped to the
leaf nodes in the B+-tree. As shown in Fig. 5, the CSPs in
partition Pi are stored in multiple continuous leaf nodes in
a B+-tree, where the dashed lines indicate the starting and
ending entries of this partition in the tree. More specifically,
the value S1 · (i− 1) determines the position of the starting
entry in the tree. The reference point is the starting entry as
its dist(Oi, Oi) is 0. As for other CSPs in this partition, the
closer they are to the reference point, the closer they will be
stored to the reference point. For CSPs at the same distance
to the reference point such as CSP2 and CSP3, their index
keys are the same, and would be linked together and stored
in the same entry in leaf node.

After building the n× t MBcloud-trees (one per partition)
over the index key defined in Equation (2), the collector
adds one more level on top of these trees by having a single
global root node h = Hash(h1|| . . . ||hn×t) concatenating the
hash values of the roots of the n × t MBcloud-trees, where
hi for i = 1, . . . , n × t are the root hashes of MBcloud trees.
Then, the collector signs and publishes the root signature
and the parameters of the MMBcloud-tree including the list
of reference points, the scale factors S1 and S2, and the index
key value of the rightmost entry of each partition. After that,
the collector sends the MMBcloud-tree and the CSP profile
database to the cloud brokers.

6.2.2 Phase 2: Service Selection
Consider a query Q ={(U1, q1), (U2, q2), ..., (Uk, qk)}. At
the filtering step, the cloud broker first selects the partitions
of the same service type as specified in Q. Then, the broker
runs the range query containing the properties other than
the service type in each selected partition. The range query
consists of three main steps:
• Step 1 (Query Normalization): A query may include
just a subset of properties. In order to unify the follow-up
process, the query normalization adds the domains of other
non-query properties to the query. After normalization, the
query Q will be re-written in the form:

Q′ = {(U1, [qlow1 , qup1 ]), . . . , (Uk−1, [qlowk−1
, qupk−1

]),

(Uk+1, [min(Dk+1),max(Dk+1)], . . . ,

(U7, [min(D7),max(D7)])} (3)

where Dk+1 to D7 are the domains of non-query properties.
Note that Q′ contains total 6 properties excluding the service
type (i.e., Uk) in Q that has already been considered during
the partition selection.
• Step 2 (Query Transformation): Convert the multi-
dimensional query Q′ into a one-dimensional query in-
terval. More precisely, given the reference point Oi =
[(U1, v1), ..., (U7, v7)] of the partition, the one-dimensional
query interval is formed by the closest point (Qc) and the
farthest point (Qf ) in the query range to the reference point.
Qc and Qf are computed as follows.

For each property Ui in Q′, compare qlowi and qupi with
the reference point’s property vi. If qlowi is farther from the
reference point, i.e., |qlowi − vi| > |qupi − vi|, we include
qlowi in the farthest point’s property list. If the reference
point’s property is in the query range, we use it for the
closest point. If not, we use qupi for the closest point. In the
opposite case when |qlowi − vi| ≤ |qupi − vi|, we select qupi

to be the farthest point’s property. If the reference point’s
property is in the query range, we use it as for the closest
point’s property; otherwise we include qlowi in the closest
point. Finally, we compute the index keys of the closest and
farthest points using Equation (2), and obtain the query in-
terval [KeyQc ,KeyQf

]. Fig. 6 visualizes different scenarios
of how a range query maps to the interval query. For better
understanding, let us step through the query normalization
and transformation process using the following example.
Example 4. For simplicity of illustration, we consider only

four properties in this example, which are SType, Price,
Security and OP. Suppose that a client’s query is
Q = {(Price, [0, 30]), (Security, [0, 2]), (SType, 1)}. After
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Fig. 6. Positional Relations between Partitions and Query Regions

selecting the partitions of SType = 1, the normalized
query would look like Q′ = {(Price, [0, 30]), (Security,
[0, 2]), (OP, [0, 1])} (Notice that since OP is the non-query
property, its domain needs to be included in the normalized
query). Then, consider a reference point

O = [(Price, 40), (Security, 0), (OP, 1), (SType, 1)]

The farthest point of Q′ regarding to O would be

Of = [(Price, 0), (Security, 2), (OP, 0), (SType, 1)]

and the closest point would be

Oc = [(Price, 30), (Security, 0), (OP, 1), (SType, 1)]

We now discuss the reason for choosing the Price property
in the farthest and closest points. It is clear that the qlowPrice

which is 0 in Q is farther from the reference point than qupPrice
.

Thus, the value at Price of Of is set as 0, equaling to qlowPrice
.

Furthermore, since the reference point’s Price property (i.e.,
40) is not in the query range (i.e., [0, 30]), qupPrice

= 30
is then included in the closest point Oc. Similarly, since
qlowSecurity

= 0 is closer from reference point, the upper bound
qupSecurity

should be included in Of . Further, the reference
point’s Security property (i.e. 0) just falls in the query range
(i.e., [0, 2]), and thus it (i.e., the Security property of reference
point) is included in the closest point Oc. For OP property,
since qlowOP

is farther than qupOP
from reference point and the

OP property of reference point is in query range, qlowOP
and

reference point’s OP property are respectively included in Of

and Oc.

• Step 3 (Querying the Tree): After the query
transformation, we execute the one-dimensional query

[KeyQc ,KeyQf
], where KeyQc and KeyQf

are respectively
computed from Qc and Qf according to equation (2), on the
MBcloud-tree of the corresponding partition in the exact the
same way as described in the Phase 2 of the basic scheme.
This also includes the same refinement step.

At the end, the broker sends the query results of the
selected partitions and the associated proof messages to the
client.

6.2.3 Phase 3: Results Verification
The process of results verification is the same as that in
the basic approach in terms of satisfiability and authenticity
check. The only difference is the verification of boundary
entries during the completeness check. In the basic ap-
proach, the boundary entries elow−1 and ehigh+1 can be
easily verified by comparing their price values directly with
the query range to see if they are outside the query range.
In this advanced approach, the verification of elow−1 and
ehigh+1 is not straightforward since their associated one-
dimensional index keys in the MMBcloud-tree are not com-
parable with the multi-dimensional query ranges. Therefore,
the client needs to first convert his/her multi-dimensional
query to the one-dimensional query ([KeyQc ,KeyQf

]) using
the same algorithm in the Phase 2 of this approach. Note
that, the client has sufficient information for the query
transformation as they are published by the collector.

After the transformation, the client performs the bound-
ary verification for each data partition. Two possible cases
may arise. The first case is when the query result set is not
empty. In this case, the client checks if elow−1 is smaller than
KeyQc , and if ehigh+1 is greater than KeyQf

. If so, they are
real boundary entries. The second case is when no query



10

result has been returned from this data partition. Then, the
client needs to check if ehigh+1 equals to the published index
key of the leftmost entry of that partition. If so, the boundary
is correct. After verifying that all the pairs of the received
boundary entries are correct, the client can conclude that
the obtained query results are complete.

Similar to the basic approach, the advanced approach
also has the ability to detect any misbehavior of the cloud
broker, as demonstrated in the following theorem.
Theorem 2. For any query Q ={(U1, q1), (U2, q2),...,

(Uk, qk)}, let R denote the query results returned by the
MMBcloud-tree-based approach. The correctness of R (in
Definition 2) can be verified by the client.

We omit the detailed proof here since it is similar to that of
the basic approach.

In addition, it is worth noting that our approaches can
be easily extended to answer service selection queries that
contain multiple query ranges. For example, suppose that
the non-numerical property OP of CSPs have three values:
Mac OS, Windows and Linux, which are mapped to numeral
values 2, 1, and 0, respectively. Given a service selection
query that specifies the operating system as Linux or Mac
OS, i.e., our system can answer this query by treating it as
two separate queries: OP=[2] and OP=[0].

7 PERFORMANCE STUDY

In this section, we compare the performance of our pro-
posed two schemes with the state-of-the-art VR-tree schema
[18] in terms of database construction, service selection
and results verification. Performance is measured in terms
of the CPU time. In what follows, we first provide the
experimental settings and then report the results.

7.1 Experimental Settings
We implemented our approaches using the Polarssl crypto-
graphic library [35]: the hash used in algorithms used MD5,
and the collector’s signature was realized using RSA signing
algorithm (rsa_pkcs1_sign in Polarssl in particular). The
parameters S1 and S2 in MMBcloud-tree were set as 1000
and 100, respectively. The VR-tree is simulated using the R-
tree library [36]; the signature in the VR-tree is simulated
according to Boneh’s scheme in [37] and a pairing-based
cryptographic library PBC [38]. All the tests were conducted
on a Mac OS X machine with processor of 1.7 GHz Intel Core
i7 and memory of 8 GB 1600 MHz DDR3.

To generate the CSP dataset, we first analyze the avail-
able manifests of top ten CSPs in 2013 including Sales-
force, Amazon, Microsoft, Oracle, Google, SAP, SoftLayer,
Terremark, Rackspace and NetSuite, and extract a set of
information based on the property universe illustrated in
Table 2. Next, we identify the acceptable numeric values
for each of the properties, according to the maximum and
minimum service levels offered for a given property by any
of the CSPs. This gives us a starting set of CSP points which
will shape the experimental CSP dataset. Specifically, we
then use a pseudo random number generator to generate
a subset of the total possible combinations, filter out the
outliers and use 5000 of them representing synthetic CSPs
for our experiments.

7.2 Experimental Results

7.2.1 Effect of the Number of CSPs

In the first set of experiments, we randomly generate the
service selection queries including four properties, Price,
SType, Security and QoS in particular, whereby Price is
randomly selected from [1, 100], and SType, Security and
QoS are selected from [1, 3]. We set the number of partitions
to be clustered in MMBcloud-tree as 6, and compare the
performance of three schemes by varying the total number
of service providers from 500 to 5000.

As shown in Fig. 7(a), the database construction time of
three schemes increases with the number of CSPs. The rea-
son is straightforward. The more CSPs, the more insertion
operations need to be conducted to build the authenticated
indices. Moreover, both our methods outperform the VR-
tree by one or two orders, because the VR-tree involves a
large number of signatures for the CSPs as well as parti-
tions in total construction, while our methods only need
lightweight hash operations. In addition, we also observe
that the MMBcloud-tree-based approach takes longer time to
construct the authenticated CSP database. This is because,
1) MMBcloud-tree requires an additional step to cluster
the CSPs; 2) MMBcloud-tree has one more layer than the
MBcloud-tree, resulting that it needs to compute more hash
values during the tree construction. However, it is worth
noting that the data construction just needs to be conducted
once and can be executed offline, which will not affect the
performance of service selection and results verification.

Regarding the performance of service selection (Fig.
7(b)), the selection time of three schemes also grows with
the increase of the CSPs. The MMBcloud-tree is significantly
faster than both the MBcloud-tree and the VR-tree. This
is because the MMBcloud-tree considers all the properties
to be indexed. Specifically, the MMBcloud-tree used in the
advanced approach reduces the number of candidate CSPs
to be refined and makes the refinement phase in service
selection much more efficient. Especially when the number
of CSPs is large and not fully satisfying CSPs fall into the
Price query range, the benefits of the MMBcloud-tree become
more significant. In contrast, the VR-tree needs to execute a
number of modular multiplications to aggregate the selected
CSP signatures and all the partition signatures which is time
consuming.

Next, Fig. 7(c) shows the results verification time of the
three schemes, with respect to the same queries resolved
in selection in Fig. 7(b). As expected, the MMBcloud-tree
achieves the best performance among all. This is again at-
tributed to the efficient MMBcloud-tree which returns much
fewer number of candidate CSPs for verification. The VR-
tree is almost two orders of magnitude slower than either
one of our schemes. This is because the results verification of
VR-tree needs at least two bilinear pairing operations and a
number of modular multiplications (depending on the num-
ber of signatures returned), which are much slower than
computing hash values in MBcloud-tree and MMBcloud-tree.
In addition, it is worthwhile noting that the MMBcloud-tree
approach is not always better than MBcloud-tree approach,
and we will further illustrate this point in our next set of
experiments.
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7.2.2 Effect of the Queried Price Range

In this set of experiments, we generate a 4-dimensional
(SType, Price, Security and QoS) CSP database. We vary the
price range size in queries and evaluate the effect of the
query range of Price in 4-properties. The total number of
CSPs in this test is 2500.

Since the database construction time is not affected by
the query range, we omit the figure of database construction
here. Fig. 8(a) shows the performance of the service selec-
tion. We can observe that the service selection time taken
by MBcloud-tree increases with the price range, while that
of the MMBcloud-tree and the VR-tree is less affected by the
variation of queried price range. This is because, with the in-
crease of price range, more candidate CSPs fall into the price
query range in the MBcloud-tree adopted by basic approach
and hence more time is needed to filter the results. In the
worst case, when the price range size is 100, the MBcloud-

tree scheme needs to refine all the total 2500 CSPs. On the
contrary, the VR-tree and MMBcloud-tree index all properties
of CSPs and hence achieve a balanced performance when
varying the different parameters of queries. In addition,
we observe that, in the case of 10-ranged queries, MBcloud-
tree is better than MMBcloud-tree. The reason is that, in the
small sized price range, the Price is more selective, and
thus MBcloud-tree is able to select similar (or even fewer)
number of candidate CSPs for refinement. As for the results
verification (Fig. 8(b)), three schemes demonstrate similar
performance trends as that in service selection (Fig. 8(a))
due to the same reason.

7.2.3 Effect of the Number of Properties

In the third set of experiments, we fix the number of CSPs as
2500, and vary the number of CSP properties from 2 to 7, fol-
lowing the order Price, SType, Security,QoS, ISize,OP, Sub.
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Notice that, except Price ranging from 1 to 100, ISize ranging
from 1 to 6 and Sub ranging from 1 to 2, the rest of properties
all range from 1 to 3.

Regarding the database construction shown in Fig. 9(a),
the MBcloud-tree and the VR-tree has constant performance
while the MMBcloud-tree takes slightly more time to con-
struct the indexes when the number of CSPs’ properties
increase. The reason is that, the dominated computation
in database construction in MMBcloud-tree is the clustering
step. Time cost in this step essentially grows with the
dimensions of data to be clustered.

As for the service selection (Fig. 9(b)), the MMBcloud-
tree approach still performs best in most cases. The perfor-
mance of the MBcloud-tree decreases with the increase of the
number of properties due to the decreased selectivity of the
indexed Price property. The VR-tree is very time consuming
due to the need to compute and aggregate multiple signa-
tures. The verification performance of the three scheme (as
shown in Fig. 9(b)) is similar to the service selection.

In summary, our proposed MBcloud-tree and MMBcloud-
tree-based methods significantly outperform the state-of-
the-art VR-tree in all the tested cases. The MMBcloud-tree
performs consistently well for various types of queries.
Only in few specific cases, such as the case of queries with
fewer properties or a small size price range, the MBcloud-tree
achieves better performance than the MMBcloud-tree.

8 PRACTICAL CONSIDERATION

Recall our proposed both schemes work by building au-
thenticated index (i.e., the MBcloud-tree and MMBcloud-tree)
for results verification. For each time of verification, our
schemes guarantee 100% probability of catching the dis-
honest action of cloud broker. In spite of this, our methods
still demand a verification cost on millisecond level (in each
time), which might impose computational on client side for
a large number of verifications. In this section, we establish a
probabilistic model and analyze the number of verifications
needed for guaranteeing a threshold confidence (say T ) of
catching the dishonesty.

Assume the cloud service selection is executed for sev-
eral times, and the broker cheats for probability p in each
time of query. Denote Ak,n the probability of catching
cheating with n queries, of which only the k are verified.
We have Ak,n = (1− p)k−1p. This is because, 1) The clients
in our both schemes can perfectly verify the correctness of
query results; 2) The cloud broker should make cheating and
be caught in the last query (i.e., the nth query); 3) The first
k − 1 queries verified by clients should be honest to avoid
being caught in verification. It is clear that the probability
Ak,n is independent of n.

Based on the probabilistic formula of Ak,n, we can
further compute the probability of catching cheating with
at most k times for verification is

∑k
i=1 Ai,n =

∑k
i=1(1 −

p)i−1p = 1 − (1 − p)k. It is clear that if we want to let the
cheating be caught not less than a threshold probability T
(i.e., 1 − (1 − p)k ≥ T ), the client should verify at least
log1−p(1− T ) times.

In Fig. 10, we provide some numerical examples about
confidence of detecting dishonest action proportional to the
number of times to be verified. In this numerical example,
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suppose the cloud service selection has been queried 100
times. We present three cases wherein we assume there are
respectively 0.15, 0.2 and 0.25 queries cheated by cloud
broker, and show the confidence of detecting this cheating.
It is clear from Fig. 10 that, in order to achieve a detection
confidence of 0.9, we only need to check a small set of
queries. Precisely, the clients will need to check 8, 11 and
15 queries in the 15%, 20% and 25% case for ensuring 0.9
confidence. Only a subset of the query results are to be
verified for high confidence results, and we can check only
part of the query results to save computing resources.

9 CONCLUSION

In this paper, we presented an innovative Cloud Service
Selection Verification (CSSV) system to achieve cheating-free
cloud service selection under a cloud brokerage architecture.
The core of our system is an efficient authenticated index
structure to ensure the authenticity, the satisfiability and the
completeness of the service selection results. Our theoretical
and experimental results demonstrate the effectiveness and
efficiency of our schemes compared with the state-of-the-art.
As part of our future work, we plan to consider a verifiable
scheme for best service selection query whereby the broker
returns only the best CSP instead of all candidate CSPs with
respect to a client’s request.
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