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Abstract

Due to the rapid growth of the next generation networking and system technologies, computer net-
works require new design and management. In this context, security, and more specifically, access
structures have been one of the major concerns. As such, in this article, sequential secret sharing
(SQS), as an application of dynamic threshold schemes, is introduced. In this new cryptographic
primitive, different (but related) secrets with increasing thresholds are shared among a set of players
who have different levels of authority. Subsequently, each subset of the players can only recover the
secret in their own level. Finally, the master secret will be revealed if all the secrets in the higher
levels are first recovered. We briefly review the existing threshold modification techniques. We then
present our construction and compare it with other hierarchical secret sharing schemes such as dis-
junctive and conjunctive multilevel secret sharing protocols.

Keywords: Secret Sharing, Access Structure, Dynamic Scheme, Threshold Changeability.

1 Introduction

In a (t,n)-threshold secret sharing [10, 2], a dealer first divides a secret into n shares to be distributed
among n players. Subsequently, at least t players can collaborate to recover the secret. For instance,
in Shamir secret sharing [10], the dealer initially selects a random polynomial f (x) ∈ Zq[x] of degree
t − 1 such that f (0) is the secret. He then distributes shares f (i) among players Pi for 1 ≤ i ≤ n. As
a result, any set of t or more players can recover the secret using Lagrange interpolation whereas any
set of size less than t cannot gain any information about the secret. Mainly, two adversarial settings
are considered in secret sharing schemes. Passive adversary model where the players follow protocols
correctly but they may attempt to learn the secret, also known as honest-but-curious adversary. Active
adversary model where the players may deviate from protocols while at the same time trying to learn the
secret. For further technical discussions, a formal definition of an access structure is first provided.

Definition.1: An access structure Γ is a set of authorized subsets of players that satisfies two conditions:
(a) if A ∈ Γ and A ⊆ B ⊆P where P is the finite set of the players, then B ∈ Γ, and (b) if A ∈ Γ then
|A| > 0. In a threshold access structure, authorized subsets are all sets of players A such that |A| ≥ t
where t is the threshold of the scheme.
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†Stinson’s research is supported by NSERC discovery grant 203114-11.
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In a dynamic secret sharing scheme, the threshold and/or the access structure are changed frequently.
The main motivation for construction of such schemes is the fact that the “sensitivity of the secret” and
also the “number of players” may fluctuate due to different reasons. For instance, mutual trust may
vary or the structure of the players’ organization might be changed (i.e., some parties may leave or new
players may join the organization). To the best of our knowledge, the existing dynamic constructions
only update the threshold/access structure without changing the secret.

Indeed, the objective of threshold changeability is to transform a (t,n)-secret sharing scheme into a
(t ′,n)-secret sharing scheme whether t < t ′ or t ′ < t. Note that when the threshold is increased while the
secret remains unchanged, at least n− t +1 players must erase their old shares, otherwise, the secret can
be recovered by a set of old shares. This issue has been previously stated as an inevitable assumption of
proactive secret sharing [9, 4] as well as threshold changeable schemes with constant secrets [5].

To change the threshold and the secret in our multi-level access structure, secure addition and multi-
plication operations are used. Let α and β be two secrets shared by f (x) and g(x) of degree t. If each par-
ticipant locally multiplies both shares together, the resulting value is a new share on h(x) = f (x)×g(x),
where h(0) = αβ is the new secret. There exist two issues with this secure multiplication operation. First
of all, the degree of h(x) is 2t instead of t. Second, h(x) is reducible as a product of two polynomials.
To overcome these problems, [1] applies a degree reduction method in which h(x) is truncated in the
middle to have a degree of t, subsequently, it uses a simple procedure to randomize the coefficients of
h(x) except its constant term; this protocol is later simplified in [3]. The addition operation is also done
locally, however, it does not require any degree reduction or randomization.

1.1 Motivation and Contribution

We introduce a new hierarchical secret sharing protocol as a new application of dynamic threshold
schemes, named sequential secret sharing SQS. In this cryptographic primitive, players with various
levels of authority progressively construct a sequence of secret sharing schemes with different (but re-
lated) secrets and thresholds in the absence of the dealer. In the subsequent reconstruction phase, each
subset of the players can only recover the secret in their own level. As a result, the master secret will be
revealed if all the secrets in the higher levels are first recovered.

In the existing hierarchical secret sharing schemes [11, 12], a single secret is shared among the
players who are in different authority levels (players in the initial levels have more authority for secret
recovery compared to the other parties). Moreover, the secret can be reconstructed without the contribu-
tion of players from all levels, i.e., players from certain levels can recover the secret and the contribution
of all players may not be required.

However, in our sequential secret sharing, multiple secrets are first generated using a master secret.
These secrets are then shared among the players who are in various authority levels. Furthermore, in our
scheme, although the players in the initial level have the required authority to recover the master secret,
they cannot do that without the sequential cooperation of the players from all levels, i.e., to recover the
master secret, all the secrets must be recovered sequentially. For a realization of our access structure,
assume the president and vice president, ministers and senators are in three different authority levels.
The president and vice president can recover the master secret (to trigger a secret action) only if they
have the confirmations of ministers and senators. On the other hand, even by having those confirmations,
the final decision is made by the president and vice president. This access structure cannot be modeled
by the existing hierarchical schemes.

Our proposed sequential secret sharing is unconditionally secure so that it does not rely on any
computational assumptions such as discrete logarithm. Furthermore, in this scheme, players do not
require to store extra shares beforehand to generate the subsequent secrets or to change the threshold to
different values. Note that each secret is produced based on the linear combination of previous secrets.
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2 Threshold Modification Techniques

Before presenting our sequential secret sharing scheme, the existing threshold modification techniques
are briefly reviewed. We only demonstrate these protocols in the passive adversary model. For the active
adversary setting, see [7, 6].

The first protocol, as shown in Figure 1, illustrates how re-sharing method (also known as 2-level
sharing) can be used to decrease/increase the threshold to any arbitrary values. However, this method
only works in the “passive” adversary model and it fails to increase the threshold in an active adversary
setting. Note that the re-sharing technique can be implemented either by Lagrange method or by a
Vandermonde matrix. Suppose the dealer randomly generates f (x) ∈ Zq[x] of degree at most t−1 where
f (0) = α is the secret. He then sends share f (i) to Pi for 1 ≤ i ≤ n. For threshold modification, each
player re-shares his share using a new random polynomial of degree at most t ′−1, as shown in Figure 1.

Threshold Modification: from t to t ′ where t ′ > t or t ′ < t

1. Each player Pi selects a random polynomial gi(x) of degree at most t ′−1 such that gi(0) =
f (i). He then gives gi( j) to Pj for 1≤ j≤ n, i.e., re-sharing the original shares by auxiliary
shares. The share-exchange matrix En×n, where each player generates a row and receives
a column, is as follows:

En×n =


g1(1) g1(2) . . . g1(n)
g2(1) g2(2) . . . g2(n)

...
...

. . .
...

gn(1) gn(2) . . . gn(n)

 where gi(0) = f (i).

2. At this step, a set ∆ is determined such that it consists of the identifiers of at least t elected
players. Then, the following public constants are computed:

γ
∆
i = ∏

j∈∆, j 6=i

j
j− i

where 1≤ i, j ≤ n represent players’ ids.

3. Each player Pj erases his old shares, and then combines the auxiliary shares he has re-
ceived from other players to compute his new share as follows:

ϕ j = ∑
i∈∆

(
γ

∆
i ×gi( j)

)
.

Figure 1: Threshold Modification by Lagrange Method in the Passive Adversary Model

Second protocol shows how public evaluation can be used for threshold reduction in either “passive”
or “active” adversary model. In this scheme, players collaborate to reveal an extra share on the secret
sharing polynomial using the enrollment protocol of [8]. They then combine this share with their existing
shares so that the threshold is decreased but the secret remains unchanged. Let f (x) ∈ Zq[x] be the
original polynomial, see Figure 2.

Third protocol, as shown in Figure 3, demonstrates how the threshold can be increased by zero
addition in either “passive” or “active” adversary model. In this scheme, players first generate a random
polynomial of higher-degree with zero constant term. They then add shares of this polynomial to their
original shares. As a result, the threshold is increased but the secret stays the same.
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Threshold Decrease: from t to t−1

1. Players select an id j such that j /∈P . Subsequently, t players Pi are selected (1≤ i≤ t).
They compute Lagrange constants γi = ∏1≤k≤t,i6=k

j−k
i−k , where i, j and k are players’ ids.

2. Each Pi multiplies his share f (i) by his Lagrange constant. He then randomly splits the
result into t portions, i.e., f (i)× γi = ∂1i +∂2i + · · ·+∂ti for 1≤ i≤ t.

3. Players exchange ∂ki’s through pairwise channels. As a result, each player Pk holds t
values. He adds them together and reveals σk = ∑

t
i=1 ∂ki to everyone.

4. All the players add these values σk for 1 ≤ k ≤ t together to compute the public share
f ( j) = ∑

t
k=1 σk.

5. Each Pi combines his private share f (i) with the public share f ( j) as follows:

f̂ (i) = f ( j)− j
(

f (i)− f ( j)
i− j

)
.

6. Shares f̂ (i) are on a new polynomial f̂ (x) ∈ Zq[x] of degree at most t− 2 where f̂ (0) =
f (0). Therefore, t−1 players are now sufficient to recover the secret.

Figure 2: Threshold Decrease by Public Evaluation in the Passive Adversary Model

Threshold Increase: from t to t ′ where t ′ > t

1. Players use polynomial production to generate shares of an unknown secret δ on a poly-
nomial g(x) of degree t ′−2.

2. Each player Pi multiplies his share g(i) by i. Now, each Pi has a share of 0 on the polyno-
mial ĝ(x) = xg(x) of degree t ′−1.

3. Each player adds his share f (i) of secret α to his share ig(i) of 0. As a result, each player
has a share of α , where the new threshold is t ′ > t.

Polynomial Production

1. First, t players Pi are selected at random in order to act as independent dealers.

2. Each of the t chosen players Pi shares a secret, say δi, among all the players using a Shamir
scheme, where the degree of the secret sharing polynomial is t−1. Then, all players have
shares of every secret δi.

3. Every player adds his shares of the δi-s together. As a result, each player has a share on a
polynomial g(x) of degree t−1 with a constant term δ = ∑δi.

Figure 3: Threshold Increase by Zero Addition in the Passive Adversary Model

3 Sequential Secret Sharing (SQS)

We now propose a new hierarchical scheme, named sequential secret sharing, where the threshold and
the secret are changed based on the linear combination of the previous unknown secrets. In this protocol,
players progressively construct a sequence of secret sharing schemes with different thresholds and secrets
in the absence of the dealer, that is, they will modify the threshold while generating multiple secrets. For
the sake of simplicity, we just use the addition operation in order to change the secret, however, the
multiplication operation can also be used. All computations are performed in finite field Zq. Let’s first
start with an example to make this protocol clear.
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Example.1: Suppose the goal is to create a three-level sequential secret sharing scheme among a set of
thirteen players. Consider the following subsets of players:

P = {P1, . . . ,P13}, P1 = {P1,P2,P3},
P ′ = {P4, . . . ,P13}, P2 = {P4,P5,P6,P7},

P3 = {P8,P9,P10,P11,P12,P13}.

Sharing Phase

1. The dealer first shares a master secret α1 with the players in P using a (2,13)-threshold scheme.
We denote this sharing by the following notation:

α1 : P = {P1, . . . ,P13}t0=2.

2. (a) The players Pi ∈P use polynomial production to create shares of an unknown secret β1
having a threshold t1 = 3.

(b) They add their shares locally to obtain the shares of α2 = α1 +β1 which has a threshold of
t1 = 3. All the players erase the shares of α1.

(c) Players {P1, . . . ,P3} only keep the shares of β1, and players {P4, . . . ,P13} only keep the shares
of α2. Using the notation defined above, the result is denoted by:

β1 : P1 = {P1,P2,P3}t1=3 and α2 : P ′ = {P4, . . . ,P13}t1=3.

3. (a) The players Pi ∈P ′ use polynomial production to create shares of an unknown secret β2
having a threshold t2 = 4.

(b) They add their shares locally to obtain the shares of α3 = α2 +β2 which has a threshold of
t2 = 4. The players Pi ∈P ′ erase the shares of α2.

(c) Players {P4, . . . ,P7} only keep the shares of β2. Also, {P8, . . . ,P13} increase the threshold
from t2 = 4 to t3 = 6 and keep the shares of α3. We denote this by:

β2 : P2 = {P4, . . . ,P7}t2=4 and α3 : P3 = {P8, . . . ,P13}t3=6.

Recovery Phase

1. In the first step, six players P3 = {P8, . . . ,P13} recover the secret α3. These players are in the
highest level.

2. Subsequently, P2 = {P4, . . . ,P7} recover the secret β2. As a result, α2 is uniquely revealed since
α3 = α2 +β2.

3. Finally, P1 = {P1, . . . ,P3} recover the secret β1. As a result, the master secret α1 is revealed since
α2 = α1 +β1.

Note that the above example has `= 3 levels and thresholds t0 = 2, t1 = 3, t2 = 4 and t3 = 6. Again,
we emphasize that the above protocol can be also implemented by the multiplication operation if it is
required to do so, i.e., using αi+1 = αiβi rather than αi+1 = αi +βi. In this case, a threshold reduction
mechanism must be used after each multiplication, as shown in Figure 2 or its alternative version that
is secure under the active adversary model [7, 6]. We now provide the definition of sequential secret
sharing and then we demonstrate our protocol in Figure 4.
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Definition.2: Sequential secret sharing is a hierarchical secret sharing scheme where a master secret
α1 along with `− 1 secrets α2, . . . , α` are shared among the players with monotonically increasing
thresholds t0 < t1 < · · ·< t`. Let P be a set of n players and assume P is composed of ` disjoint levels

P =
⋃̀
i=1

Pi, where Pi∩P j = /0 for all 1≤ i < j ≤ ` and |Pi| ≥ ti for all i.

Secret αk (at level k) can be then recovered only if players in Rk =
⋃`

i=k Pi cooperate and recover their
secrets sequentially, i.e., from the highest level ` down to level k, meaning that the master secret α1 can
be only recovered by players P1 only if the players in all levels sequentially reconstruct their secrets.

Sharing Phase

1. A dealer uses a Shamir scheme to distribute shares of an initial secret α1 with threshold
t0 among players P = {P1, . . . ,Pn} and then he leaves the scheme.

2. Subsequently, players repeat the following steps for 1 ≤ i ≤ `−1 to construct an `-level
sequential secret sharing scheme:

(a) The players in P use polynomial production protocol, presented in Figure 3, to
generate shares of a random secret βi with threshold ti, where ti−1 < ti.

(b) They compute shares of αi+1 = αi+βi mod q; the threshold of αi+1 is ti. Then they
erase their shares of αi.

(c) A subset of players, say Pi ⊂P where |Pi| ≥ ti, only keep shares of βi and the
rest of the players, i.e., P−Pi, only keep shares of αi+1.

(d) If i = `− 1 (i.e., the last step of the protocol is being executed), they increase the
threshold from t`−1 to t`. Otherwise (if i < `−1), they set P ←P\Pi.

Recovery Phase

1. Appropriate subsets of the players first collaborate to recover α` as well as β`−1, . . . ,β1.
Note that the players may only recover these secrets down to a specific level i if it is
intended to do so.

2. They then solve the following system of linear congruences: αi+1 ≡ αi +βi mod q for
i = `−1 down to i = 1. (It is clear that each congruence has a unique solution for αi given
αi+1 and βi.) Therefore, α`, . . . ,α1 are recovered.

Figure 4: Sequential Secret Sharing Protocol

The security proof of our proposed sequential secret sharing is pretty much similar to Shamir’s secret
sharing scheme [10]. In Step-1, the dealer uses this scheme to share the master secret α1 among all the
players. In Step-2.a, players use the polynomial production protocol, shown in Figure 3, to generate
shares of random numbers βi. In this protocol, players simply act as independent dealers and use the
Shamir’s secret sharing scheme to generate these random numbers. In Step-2.b, players locally add their
shares together to compute shares of the secret αi+βi. They also erase shares of the secret αi (in the first
round, α1 is the master secret). That way shares of the secrets αi for 1≤ i≤ `−1 are erased in the scheme
and they cannot be recovered directly, i.e., they can only be reconstructed using α` and β`−1, . . . ,β1.

In Step-2.c, players are divided into two disjoint subsets where one set only keeps shares of βi and the
other subset only keeps shares of αi+1. This means the players in each subset erase the shares associated
to the other subset’s secret. Note that in the next iteration, shares of the previous secret αi+1 is also
erased. Finally, in Step-2.d, players increase the threshold from t`−1 to t` using a Shamir-based threshold
increase protocol, see Figure 3.
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It is worth mentioning that the master secret α1 can be recovered correctly because secrets α` and
β`−1, . . . ,β1 can be sequentially reconstructed by the Lagrange interpolation method. Furthermore, as we
stated earlier, each congruence equation αi+1 ≡ αi +βi mod q for i = `−1 down to i = 1 has a unique
solution for αi given αi+1 and βi.

4 Comparison with the Existing Hierarchical Schemes

The first hierarchical secret sharing scheme is proposed by Simmons [11] , named disjunctive multilevel
secret sharing. Subsequently, this construction is changed into conjunctive multilevel secret sharing by
Tassa [12]. In both constructions, only a single secret is shared among the players who are in various au-
thority levels whereas we generate different (but related) secrets with increasing thresholds in our access
structure. We briefly illustrate these two constructions and provide an example for further clarification.

Definition.3: In a hierarchical secret sharing scheme, a secret α is shared among the players with
monotonically increasing thresholds t1 < t2 < · · · < t`. Let P be a set of n players and assume P
is composed of ` disjoint levels:

P =
⋃̀
i=1

Pi, where Pi∩P j = /0 for all 1≤ i < j ≤ ` and |Pi| ≥ ti for all i.

In disjunctive model, secret α can be recovered by a set of players A, i.e., an authorized subset, only if

|A∩ (
j⋃

i=1

Pi)| ≥ t j for at least one j where 1≤ j ≤ `,

i.e., at least one threshold must be satisfied at level 1 to j. In conjunctive model, secret α can be recovered
by a set of players A only if

|A∩ (
j⋃

i=1

Pi)| ≥ t j for all j where 1≤ j ≤ `.

Example.2: Suppose there exist four levels with t1 = 2, t2 = 3, t3 = 4 and t4 = 6 thresholds. An authorized
subset A is shown in Table 1. It’s clear that, in both schemes, the players in the initial levels have more
authority compared to the other players. For instance, two players from the first level are enough to
recover the secret in the disjunctive model. Also, six players from the first level are enough to reconstruct
the secret in the conjunctive model; note that six players from level 2,3 or 4 won’t be able recover the
secret in this model.

Disjunctive Conjunctive

A
ut

ho
ri

ze
d

Se
t

at least 2 players from level 1 at least 2 players from level 1
or and

at least 3 players from levels 1 or 2 at least 3 players from levels 1 or 2
or and

at least 4 players from levels 1, 2 or 3 at least 4 players from levels 1, 2 or 3
or and

at least 6 players from levels 1, 2, 3 or 4 at least 6 players from levels 1, 2, 3 or 4

Table 1: Example of Disjunctive and Conjunctive Threshold Secret Sharing
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As shown, in our sequential secret sharing, a master secret along with `−1 related secrets are shared
among the players whereas, in disjunctive/conjunctive secret sharing, only one secret is shared. Further-
more, in our scheme, although the players in the initial level have the required authority to recover the
master secret, they cannot do that without the sequential cooperation of the players from all levels. On
the other hand, in disjunctive/conjunctive secret sharing, cooperation of the players from all levels may
not be required. As a realization of our hierarchical access structure, we could imagine the president
and vice president as the set P1, ministers as the set P2, and senators as the set P3 accordingly. The
president and vice president can recover the master secret (to trigger a secret action) only if they have the
confirmations of ministers and senators. On the other hand, even by having those confirmations, the final
decision (recovering the master secret α1 to trigger the intended action) is made by the president and vice
president, i.e., distribution of the authority all over the hierarchical access structure. As we stated earlier,
this access structure cannot be modeled by the existing hierarchical secret sharing schemes [11, 12].

5 Concluding Remarks

In this article, we proposed a new hierarchical secret sharing scheme in which multiple secrets are shared
among subsets of players with different levels of authority. In this protocol, reconstruction of the master
key by the highest ranked players is subject to the cooperation of the players in the lower levels. On the
other hand, even by having the secrets of the lower levels, the master key can only be recovered by the
highest ranked players. We believe that SQS can be utilized in various cryptographic constructions.

References
[1] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-cryptographic fault-tolerant

distributed computation. In 20th ACM Symposium on Theory of Computing STOC, pages 1–10, 1988.
[2] G. R. Blakley. Safeguarding cryptographic keys. In National Computer Conference NCC, pages 313–317.

AFIPS Press, 1979.
[3] R. Gennaro, M. O. Rabin, and T. Rabin. Simplified VSS and fast-track multiparty computations with appli-

cations to threshold cryptography. In 17th ACM Symp on Principles of Distributed Computing PODC, pages
101–111, 1998.

[4] A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung. Proactive secret sharing or: How to cope with perpetual
leakage. In 15th Int Cryptology Conference CRYPTO, volume 963 of LNCS, pages 339–352. Springer, 1995.

[5] K. M. Martin, J. Pieprzyk, R. Safavi-Naini, and H. Wang. Changing thresholds in the absence of secure
channels. In 4th Australasian Conf. on Info Security and Privacy ACISP, volume 1587 of LNCS, pages
177–191. Springer, 1999.

[6] M. Nojoumian. Novel Secret Sharing and Commitment Schemes for Cryptographic Applications. PhD thesis,
Department of Computer Science, University of Waterloo, Canada, 2012.

[7] M. Nojoumian and D. R. Stinson. On dealer-free dynamic threshold schemes. Advances in Mathematics of
Communications, 7(1):39–56, 2013.

[8] M. Nojoumian, D. R. Stinson, and M. Grainger. Unconditionally secure social secret sharing scheme. IET
Information Security, SI on Multi-Agent and Distributed Information Security, 4(4):202–211, 2010.

[9] R. Ostrovsky and M. Yung. How to withstand mobile virus attacks. In 10th ACM Symp on Principles of
Distributed Computing PODC, pages 51–59, 1991.

[10] A. Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, 1979.
[11] G. J. Simmons. How to (really) share a secret. In 8th Annual International Cryptology Conference CRYPTO,

volume 403 of LNCS, pages 390–448. Springer, 1988.
[12] T. Tassa. Hierarchical threshold secret sharing. In 1st Theory of Cryptography Conference TCC, volume

2951 of LNCS, pages 473–490. Springer, 2004.

8


	Introduction
	Motivation and Contribution

	Threshold Modification Techniques
	Sequential Secret Sharing (SQS)
	Comparison with the Existing Hierarchical Schemes
	Concluding Remarks

