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Abstract

Since many cryptographic schemes are about performing computation on data, it is important to consider
a computation model which captures the prominent features of modern system architecture. Parallel random
access machine (PRAM) is such an abstraction which not only models multiprocessor platforms, but also
new frameworks supporting massive parallel computation such as MapReduce.

In this work, we explore the feasibility of designing cryptographic solutions for the PRAM model of
computation to achieve security while leveraging the power of parallelism and random data access. We
demonstrate asymptotically optimal solutions for a wide-range of cryptographic tasks based on indistin-
guishability obfuscation. In particular, we construct the first publicly verifiable delegation scheme with
privacy in the persistent database setting, which allows a client to privately delegate both computation and
data to a server with optimal efficiency. Specifically, the server can perform PRAM computation on private
data with parallel efficiency preserved (up to poly-logarithmic overhead). Our results also cover succinct
randomized encoding, searchable encryption, functional encryption, secure multiparty computation, and
indistinguishability obfuscation for PRAM.

We obtain our results in a modular way through a notion of computational-trace indistinguishability
obfuscation (CiO), which may be of independent interests.
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1 Introduction

1.1 The PRAM Model

The parallel random-access machine (PRAM) is an abstract computation or programming model of a canonical
structured parallel machine. It consists of a polynomial number of synchronous processors. Each of them is
similar to an individual (non-parallel) RAM with its central processing unit (CPU) performing computation
locally. In addition to the local memory, CPUs in PRAM have random access of a common array of memory
which is potentially unbounded. Parallel and distributed computing community suggested many algorithms
which are parallelizable in the PRAM model, resulting in an exponential gap between solving the same problem
in the RAM and PRAM models. Examples include parallel sorting or searching in a database, which have linear
size input but run in polylogarithmic time.

Being an abstract model, PRAM not only models multiprocessor platforms, but also new frameworks in
the big-data era such as MapReduce, GraphLab, Spark, etc. Running time is a critical factor, especially when
data is being generated in every second worldwide which are too big to be processed by traditional information
processing technique or by a single commodity computer. For individuals, or even enterprises without in-house
resource/expertise, there is an emerging demand for delegation of both data and computation to a third-party
server, often called “the cloud”, a distributed computing platform with a large amount of CPUs to perform
computations in parallel. We found PRAM a clean theoretical model to work with for these scenarios.

PRAM with Persistent Database With the high volume of data to process and the potentially high volume of
output data, it is natural to perform multiple computations over the “big data” that persists in the cloud storage.
Such functionality is supported by introducing the notion of persistent database on top of the PRAM model.
A motivating example is a special kind of delegation, known as searchable symmetric encryption (SSE), which
features parallel search and update algorithms.

1.2 Crypto for PRAM

Many cryptographic schemes are about performing computation on data. Traditionally, cryptographers worked
on the circuit model of computations; for example, the celebrated result of Yao’s garbled circuit for two-party
computation [Yao86]. Many cryptographic notions can be benefited by parallelism and persistent database.

Secure Multiparty Computation (SMC) Secure multiparty computation (SMC) generalizes two-party com-
putation. Consider using SMC on electronic health record (EHR) for collaborative research, EHR often involves
patients’ medical and genetic information which are often expensive to collect and should be kept confidential
as mandated by law. Such kind of large-scale SMC [BCP15] further motivates the benefits of PRAM.

Although (highly optimized) circuit-based SMC protocols and RAM-based solutions of SMC exist, they
have inherent drawbacks. Circuit-based solutions are not feasible for big data since circuit representations are
huge and the (worst case) runtime can be dependent on the input length. Consequently, it cannot represent
sublinear time algorithm. Existing RAM-based solutions cannot exploit parallelism even when the program
is parallelizable (which is often the case for processing big data). On the other hand, PRAM is an expressive
model to capture the requirements in this case.

Secure and Efficient Delegation Security concern manifests in various forms when we consider outsourcing.
For a concrete discussion, we consider the delegation problem, faced by an enterprise which is outsourcing
a newly-developed big data analytic algorithm for uncovering market trends from the customer preferences
collected. Data owners demand confidentiality. Secrecy of the algorithm is also desired, or competitors may
gather the same kind of business intelligence (from their own data). The output of data analytics is also sensitive,
both its confidentiality and authenticity (i.e., the correctness of the algorithm invocation) are crucial for the
success of any corresponding strategic plan. It is risky to place all these strong trust in different dimensions on
the cloud. Cloud client should safeguard the outsourcing process by resorting to cryptography.
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The next concern is about efficiency. The client would want both storage and computation required for
secure delegation to be significantly less than the actual data and computation. On the other hand, the server,
who is actually storing the data and performing the computation, would like to operate on the (private) data as
a PRAM program, and not to perform too much work when compared to computation on the plaintext data.
There exists verifiable delegation with privacy, but the solution is based on the circuit model, and is far from
suitable for outsourcing big data. Recent work provides heuristic solution for RAM delegation with persistent
database [GHRW14], but the solution is only a heuristic one based on a stronger variant of differing-inputs
obfuscation (diO), which is subject to implausibility result.

More formally, we consider secure delegation of PRAM program with persistent database, as follows.
A (very large) database x is firstly delegated from the client to the server. The client can make arbitrary
number of PRAM program queries to the server, who performs the computation to update the database, and
returns the answer with a proof. Ideally, we want the efficiency to match the “unsecured” solution. Namely,
delegating database takes O(|x|) cost, and for each PRAM program query, the client’s runtime depends only
on the description size of the PRAM program, the server’s parallel runtime is linear in the parallel runtime of
the program, and the client’s verification time is independent of the program complexity and the database size.

We pose ourselves this question: Can we outsource both data and computation, leveraging parallelism and
random data access, i.e., in the PRAM model?

Functional Encryption (FE) Another primitive in cloud cryptography which attracts much attention recently
is functional encryption (FE), a generalized notion of attribute-based encryption (ABE) originally proposed for
enforcing cryptographic access control. FE enables a user with the function key for f(·) to learn f(x) given an
encryption of x. Consider x to be the encrypted cloud storage and each user can only access part of the shared
storage space (for obvious security reason). FE for PRAM means that the function key can be associated to a
PRAM program taking the large x as an input. The access control policy can be very general. We can even
embed some sort of parallel logic into it for operating on the relevant parts of the cloud storage in parallel.

We remark that a very recent result achieved FE for Turing machines with unbounded input [AS16].

1.3 Our Goal

To summarize, current study of cryptography does not work in a model which fully leverages the important
features of modern architecture to handle the computation problem nowadays; namely, massive parallel com-
putation on big data. In this work, we address the following basic question:

“How to do Cryptography in the PRAM model — How to design cryptographic solutions that
achieve security and simultaneously leverage the power of parallelism and random data access?”

Our work provides general feasibility and asymptotically optimal results for various important crypto-
graphic primitives based on indistinguishability obfuscation for circuits (iO).

1.4 Summary of Our Results

We develop techniques to obtain (asymptotically) optimal constructions for several cryptographic primitives
(i.e., multiparty computation, delegation, and functional encryption) in the PRAM model. We do so in modular
steps, and our results are presented below. Please also refer to Table 1 for the efficiency of our schemes.

Computation-Trace Indistinguishability Obfuscation First, we define a new primitive named computation-
trace indistinguishability obfuscation (CiO), which obfuscates a computation instance instead of a program. A
computation instance Π is defined by a program P and an input x. Evaluation of Π produces a computation
trace; namely, all CPU states, memory content, and memory access instructions throughout the computation.
A CiO obfuscator takes in a computation instance Π as an input, and outputs Π̃ as an obfuscated computation
instance that can be evaluated to correctly output P (x). We only require a very weak indistinguishability-based
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security for CiO, where two obfuscations CiO(Π) and CiO(Π′) are required to be indistinguishable only when
the evaluation of Π and Π′ produce identical computation trace (which implies their inputs are the same). While
the security is weak, we demand stringent efficiency that the obfuscator’s runtime depends only on the instance
description size, but not the evaluation runtime.

We construct CiO-RAM based on iO for circuits and one-way functions, by adopting techniques developed
in a very recent result due to Koppula, Lewko, and Waters [KLW15] (hereinafter referred as KLW). We then
(non-trivially, to be elaborated in the next section) extend it into CiO-PRAM. The main challenge is to avoid
linear overhead on the number of CPUs in both parallel runtime and obfuscation size — note that such overhead
would obliterate the gain of parallelism for a PRAM computation. To summarize, we have:

Theorem 1.1 (Informal). Assuming the existences of indistinguishability obfuscation (iO) and one-way func-
tions (OWF), there exists (fully succinct) computation-trace indistinguishability obfuscation for PRAM compu-
tation.

While the notion of CiO is weak, we immediately obtain optimal publicly-verifiable delegation of PRAM
computation. In particular, the program encoding has size independent of the output length.

Corollary 1.2 (Informal). Assuming the existences of iO and OWF, there exists a two-message publicly-
verifiable delegation scheme for PRAM computation, where the delegator’s runtime depends only on the pro-
gram description and input size, and the server’s complexity matches the PRAM complexity up to polynomial
factor of program description size.

Fully Succinct Randomized Encoding More importantly, we show how to use our (fully succinct) CiO-
PRAM to construct the first fully succinct randomized encoding (RE) for PRAM computation. The notion
of randomized encoding, proposed by Ishai and Kushilevitz [IK00], allows a “complex” function f on an in-
put x to be represented by a “simpler to compute” randomized encoding f̂(x; r) whose output distribution
encodes f(x), such that the encoding reveals nothing else regarding f and x, and one can decode by extract-
ing f(x) from f̂(x; r). The original measure of simplicity [IK00] considers the circuit depth (i.e., parallel
runtime) of the encoding. Very recently, Bitansky, Garg, Lin, Pass, and Telang [BGL+15] focus on encoding
time. Bitansky et al. consider f as represented by a RAM program P , and construct (space-dependent) suc-
cinct randomized encodings where the encoding time is independent of the time complexity of P (x) (as a RAM
program evaluation), but depends on the space complexity of P (x).1

We extend the RE notion further to the PRAM model. More precisely, given a PRAM computation in-
stance Π defined by a PRAM program P and an input x, an RE-PRAM generates a randomized encoding
Π̃ = RE .Encode(Π) that can be decoded/evaluated to obtain P (x), but reveals nothing else regarding both P
and x (except the size/time/space bound of P (x)). Full succinctness means the encoder’s runtime (and thus the
encoding size) depends on the description size of P , the input length of x, and the output length of P (x), but is
essentially independent of both time and space complexities of P (x). To the best of our knowledge, there was
no known fully succinct construction ofRE , even in the RAM model, before our result.

Theorem 1.3 (Informal). Assuming the existence of iO and OWF, there exists fully succinct randomized en-
coding for PRAM, where the encoding time depends only on the program description and input/output size, and
the server’s complexity matches the PRAM complexity of the computation up to polynomial factor of program
description size.

Remark 1.4. In the RE construction, the output is not private. Actually, when the output is private, we
can provide constructions with slightly better efficiency where the encoding time depends only on program
description and input size, but independent of the output size. See Table 1.

1Canetti et al. [CHJV15] achieved a similar result in the context of garbling.
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Scheme Encoding Time for
Each Program Pi

Encoding Time
for Database

Decoding Time Decoding
Space

PRAM unsecured delegation |Pi| |D| Ti · |Pi| Õ(m)+Si

CiO-PRAM / Delegation without privacy Õ(poly(|Pi|)+ `outi ) Õ(|D|) Õ(Ti · poly(|Pi|)) Õ(m+Si)

RE-PRAM / Delegation with program and
input privacy

Õ(poly(|Pi|)+ `outi ) Õ(|D|) Õ(Ti · poly(|Pi|)) Õ(m+Si)

Delegation with full privacy Õ(poly(|Pi|)) Õ(|D|) Õ(Ti · poly(|Pi|)) Õ(m+Si)

Table 1: Summarizing efficiency of our schemes in PRAM with persistent database, where the computation consists of L sessions
among m parallel CPUs and a shared database D: In each session i ∈ [L], program Fi is executed with input-size `ini , output-size `outi ,
using time Ti and space Si. We use Õ to ignore logarithmic factors. We remark that the efficiency for schemes in the single-session
setting can easily be derived from the table by dropping the subscript i, and by replacing |D| (the encoding time for database) with `in

(the encoding time for input). The efficiency for schemes in the RAM setting can also be derived by setting m = 1.

Building Cryptography for PRAM By plugging our RE-PRAM into various transformations in the litera-
ture [GHRW14, BGL+15, CHJV15], we obtain the first constructions of a wide range of cryptographic prim-
itives for PRAM (with the corresponding full succinctness), including non-interactive zero-knowledge, func-
tional encryption, garbling, secure multi-party computation, and indistinguishability obfuscation for PRAM,
and we have the following two corollaries.

Corollary 1.5 (Informal). Assuming the existences of iO and OWF, there exist (fully) succinct non-interactive
zero-knowledge, functional encryptions with succinct (PRAM) function keys, succinct reusable garbling, and
secure multi-party computation for PRAM with optimal communication.

Notably, while CiO is syntactically weaker than iO, sub-exponential CiO-PRAM still implies iO for PRAM
with sub-exponential security by complexity leveraging (e.g., [BGL+15, CHJV15]).

Corollary 1.6 (Informal). Sub-exponentially secure CiO-PRAM implies sub-exponentially secure iO for PRAM.

Optimal Delegation with Persistent Database Finally, we generalize to the persistent database setting where
a computation consists of a database and multiple programs. The generalization is straightforward, and leads
to optimal delegation with persistent database.

Theorem 1.7 (Informal). Assuming the existence of iO and OWF, there exists fully succinct delegation
schemes for PRAM with persistent database, where the encoding time depends on the database size and the size
of each program description, and the server’s complexity matches the PRAM complexity of the computation up
to polynomial factor of program description size.

We remark that this immediately gives us the feasibility of optimal symmetric searchable encryption without
leakage.

1.5 Related Works

Independent and Concurrent Work Canetti and Holmgren [CH15] also proposed a fully succinct garbling
scheme for RAM programs, based on the same assumption of the existences of iO and OWF. However, our
motivation is different. Specifically, we aim for developing cryptographic solutions for PRAM model of com-
putation to capture the power of both parallelism and random data access. Achieving full succinctness in the
PRAM model is a major technical novelty of our result.

On the technical level, we note that both our construction and theirs can be viewed as a natural gener-
alization and modularization of the construction of KLW for succinct encoding for Turing machines. Both
works first construct a succinct encoding that satisfies a weak indistinguishability-based security (in our case,
the notion of CiO). With this encoding, both rely on encryption and oblivious RAM (ORAM) to hide the
memory content and access pattern of the RAM computation respectively. At the core of both security proofs
are approaches to “puncture” ORAM execution to switch the access pattern step by step. From here, Canetti
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and Holmgren [CH15] additionally introduce a novel dual-encryption mechanism with a security property of
tree-based ORAM constructions, which makes their security analysis more modular, at the cost of slightly in-
creasing the security loss in the hybrid. Their techniques can be generalized to provide a more modular proof
ofRE-PRAM from CiO-PRAM.2

Other Related Works and Open Problems As mentioned, Boyle et al. [BCP16, BCP15] constructed the
first oblivious PRAM (OPRAM) compiler and applied it to obtain secure MPC for PRAM. Recently, Chen,
Lin, and Tessaro [CLT16] showed a more efficient OPRAM compiler, as well as a generic transformation
taking any generic ORAM compiler to an OPRAM compiler. However, the compilers of [CLT16] only apply to
PRAM programs with a fixed number of CPUs. Boyle et al. [BCP16] also constructed the first (non-succinct)
garbling PRAM schemes based on identity-based encryptions. This is subsequently improved by a very recent
work of Lu and Ostrovsky [LO15], who proposed a black-box construction based on the minimal assumption
of OWF.

In succinct iO-based setting with persistent database, our construction achieves only selective security,
where the database and programs are chosen by the adversary in advance. Two independent subsequent
works [ACC+15, CCHR15] achieved stronger adaptive security, where the adversary can make adaptive queries
based on previous database and program encodings. Both works rely on additional assumptions than iO
and OWF.

Finally, while we demonstrated general feasibility results for several cryptographic primitives for PRAM,
our constructions are based on very strong and less well-understood assumptions of indistinguishability obfus-
cations. A natural and important research direction is to understand the landscape of cryptography for PRAM
without assuming iO. For example, can we construct attribute-based encryptions and functional encryptions
for PRAM based on the learning with errors (LWE) assumption?

1.6 Paper Outline

Sections 2 gives a very high level overview of the paper. Experienced readers can jump directly to Section 3
for a more detailed overview. For a more compact presentation, we move the preliminaries to Appendix A.

The formal description of our results starts from Section 4, where we define the new notion of Computation-
Trace Indistinguishability Obfuscation (CiO). The constructions of CiO in the RAM and PRAM models are
described in Section 5 and 6 respectively. Next, in Sections 7 and 8, we extend CiO to randomized encoding
(RE) in the RAM and PRAM model respectively. Various extensions of RE for different delegation scenarios
can be found in Section 9. Finally, all security proofs are consolidated in Appendix B.

2 Constructions Overview

Our starting point is the succinct primitives (message-hiding encodings and machine-hiding encodings) for
Turing machines constructed by Koppula, Lewko, and Waters (KLW) [KLW15]. Our constructions are natural
generalizations of their constructions to handle PRAM with persistent database, where the major challenge is to
develop new techniques to handle parallel processors and random access pattern. On the conceptual level, our
constructions are modular and simple. Therefore, in this section, we first focus on illustrating our constructions.
We will include a brief description of the application of the techniques by KLW in our context, and discuss our
new techniques in the next section. We start by describing the way we view (parallel) RAM model.

2.1 The (Parallel) RAM Model

In the RAM model, computation is done by the CPU with random access to the memory in time steps (CPU
cycles). At each time step t, the CPU (represented as a next-step circuit) receives the read memory content,

2We could include the modular proof; yet, we think it would be better to keep the two works separate for the readers.
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performs one step of computation to update its CPU state, and outputs a memory access (read or write) instruc-
tion for time step t + 1. The computation terminates when the CPU reaches a special halting state. A RAM
computation instance Π is defined by a CPU next-step program P , and an input x stored in the memory as
initial memory content (and a default initial CPU state). At the end of the computation, the output y is stored
in the CPU state (with the special halting symbol).

The PRAM model is similar to the RAM model, except that there are multiple CPUs executing in parallel
with random access to a shared memory (and reaching the halting state at the same time). The CPUs share the
same CPU program P , but have distinct CPU id’s. In this overview, we assume that there is no conflict writes
throughout the computation. We note that our construction can handle the general CRCW (concurrent read
concurrent write) model.

2.2 High Level Ideas

Let us motivate our work through the context of delegation, where a client delegates computation of a PRAM
instance Π = (P, x) to a server. Without security consideration, the client can simply send Π in the clear to the
server, who can evaluate the PRAM program and return y = P (x). Our goal is to achieve publicly verifiable
delegation with privacy and (asymptotically) the same client and server efficiencies. Specifically, the server
learns nothing except for the output y, whose correctness can be verified publicly.3

At a high level, we let the client send an obfuscated program P̃ and encoded input x̃ to the server with
the aim that the obfuscation and encoding hide P and x, yet allowing the server to perform PRAM evaluation
on P̃ (x̃). (Obfuscation preserves input/output behavior and thus allows PRAM evaluation). To protect the
privacy of P , we must restrict P̃ to evaluate only on input x, since P (x′) may leak additional information
about P beyond y = P (x). We need some authentication mechanism to authenticate the whole evaluation
of P on x but nothing else. Moreover, the evaluation of P on x produces a long computation trace in addition
to y. We need some hiding mechanism to hide the evaluation process. We discuss these two major ingredients
in turn. First, we show the design of an authentication mechanism which gives CiO for RAM and PRAM
from iO for circuits. Next, we show the design of a hiding mechanism which gives RE for RAM and PRAM
from CiO in the respective models.

2.3 CiO Construction

Our construction of CiO for (parallel) RAM computation is based on iO for circuits and the novel iO-friendly
authentication techniques developed originally to build iO for Turing machines (TM) [KLW15]. Let Π be a
computation instance for (parallel) RAM computation defined by (P, x), where P is represented as a next-step
circuit for the CPU program and x is the input.4 The goal is to allow P̃ to evaluate on x but nothing else. At a
high level, our CiO construction outputs iO of a compiled version of P and a compiled input. We proceed to
discuss the intuition of our construction.

Recall that if two computation instances Π and Π′, defined by (P, x) and (P ′, x′) respectively, have identical
computation trace (which implies x = x′), the security of CiO requires that their CiO-ed computation instances
should be computationally indistinguishable, i.e., CiO(Π) ≈ CiO(Π′). The two programsP andP ′ may behave
differently on other inputs x′′ 6= x. So, to ensure CiO(Π) ≈ CiO(Π′), we must restrict the obfuscation to only
evaluate the program on the specific input x, but not other inputs. A natural approach is to use authentication.
Note that computation involves updating CPU states and memory, where the latter may be large in size. We can
authenticate CPU states by signatures and memory by signing on a Merkle-tree-like data structure.

More precisely, consider a compiled program Pauth, which at each time step expects a signed CPU state
from the previous time step, and signs the output state for the next time step. To authenticate the memory, a
Merkle tree root is stored in the CPU state, and each memory read/write is authenticated via authentication
path (i.e., the path from the root to the memory location with siblings in the Merkle tree). In other words, Pauth

expects from the evaluator signed CPU states and the authentication path for the read memory content before
3We consider other settings as well, but focus on this particular setting here.
4For uniform programs, the circuit size is polylogarithmic.
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evaluating P (otherwise, Pauth outputs Reject). In this way, the input x can simply be authenticated by
signing the initial CPU state with Merkle tree root of x stored. Intuitively (i.e., assuming security of all used
primitives “works”), the evaluator can evaluate Pauth only on x.

Finally, we consider a CiO obfuscator which outputs Π̃auth defined by (iO(Pauth), xauth), where xauth is
an authenticated input. The hope is that the authentication mechanism, together with iO security, can ensure
that an adversary receiving Π̃auth can only generate the honest computation trace of Π, and further imply CiO
security. Authentication alone implies publicly verifiable delegation without privacy, by using a special signing
key to sign the output y and publishing the corresponding verification key for public verification.

We further discuss how this can be done in finer details. We first focus on the simpler case of RAM
computation, which can be viewed as an abstraction of the existing techniques for TM. To handle the full-
fledged PRAM computation, we introduce several techniques to tackle the challenges in the parallel setting. In
particular, we avoid the dependency on the number of CPUs to achieve full succinctness.

2.3.1 CiO-RAM Construction

The following is essentially the intuition behind the construction of message-hiding encoding (MHE) [KLW15].
Our CiO-RAM construction is heavily inspired by their work, and can be viewed as an abstraction of what is
achieved by their techniques. As a result, CiO is closely related to MHE, and the former can be used to
construct the latter readily.

For convenience, we assume that P only writes to the memory cell it reads in the previous time step.5 We
also assume that the CPU state stores the time step t.

As mentioned, to authenticate the whole memory, we build a Merkle tree with each memory cell being a
leaf node, and store the tree root as the digest in the CPU state. Our CiO construction outputs Π̃ defined by
(iO(Pauth), xauth), where the compiled program Pauth expects as input a signed CPU state, the read memory
cell `, and its authentication path. If the authentication path and the signature pass verification, Pauth outputs a
signed next CPU state and memory access instruction. Additionally, if the memory access is a write to the cell `,
it also updates the digest stored in the CPU state using the authentication path. The authenticated input xauth

consists of the initial memory content x, and a signed initial CPU state that contains the Merkle tree digest of x.
Let Π and Π′ be two computation instances defined by (P, x) and (P ′, x) respectively with identical com-

putation trace. To prove security, we consider a sequence of hybrids starting from Π̃ that switches the program
from P to P ′ time step by time step. However, to switch based on iO security, the programs in the hybrids need
to be functionally equivalent, while P to P ′ only behave identically during honest execution. Note that normal
signatures and Merkle tree cannot guarantee functional equivalence as forgeries exist information-theoretically.
Instead, we rely on the powerful iO-friendly authentication primitives, which are splittable signatures and ac-
cumulators [KLW15], respectively. At a very high level, they allow us to switch to a hybrid program that, at
a particular time step t (i.e., input with time step t stored in the CPU state), only accepts the honest input but
rejects all other inputs (and outputs Reject), which enables us to switch from P to P ′ at time step t using iO
security. Additionally, a primitive called iterators is introduced [KLW15] to facilitate the argument about the
above hybrids. Details can be found in [KLW15] and Section 3.1.1.

2.3.2 CiO-PRAM Construction

We then extend the above approach to the PRAM model with some care of the efficiency issues in the parallel
setting.

Recall that a PRAM computation instance Π is also specified by a next-step circuit P for the CPU program
and an input x stored in the memory. However, instead of a single CPU, there are m CPUs, specified by
the same program P but with different CPU id’s, performing the computation in parallel with shared random
access to the memory. We assume that there are no conflict writes throughout the computation, all CPUs have
synchronized read/write memory access, and all terminate at the same time step.6

5This convention can be imposed without loss of generality.
6We note that the latter two conventions can be imposed with O(logm) blow up in the parallel run-time.
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A Naı̈ve Attempt We can view the m copies of next-step circuit as a single giant next-step circuit Pm that
accessesmmemory locations at each CPU time step. We can then compile Pm to Pmauth and output Π̃ defined by
(iO(Pmauth), xauth) in a similar way as before. This approach indeed works in terms of security and correctness.
However, as Pm has description size Ω(m) (since it operates on Ω(m)-size input), the obfuscated computation
will have description size poly(m), which incurs poly(m) overhead in the evaluation time.7

Avoiding the Dependency on the Number of CPUs We thus observe that, to preserve the parallel run-time,
we can only iO a single (compiled) CPU program Pauth, and run m copies of iO(Pauth) in the evaluation of
obfuscated instance with different CPU id’s (as in evaluating the original Π).

We use accumulator to authenticate the (shared) memory. That is a Merkle-tree-like structure with the tree
root as the (shared) accumulator value w stored in the CPU state, which needs to be updated when the memory
content is changed. Specifically, consider a time step where m CPUs perform parallel write to distinct memory
cells. The CPUs need to update the shared accumulator value w to reflect the m writes in some way. We cannot
let a single CPU perform the update in one time step, because it involves processing Ω(m)-size data, which
makes the size of the next-step circuit dependent on Ω(m) again. Also, we cannot afford to update sequentially
(i.e., each CPU takes turns to update the digest), since this blows up the parallel run-time of the evaluation
algorithm by m and obliterates the gains of parallelism. So, we design an O(poly logm)-round distributed
algorithm to update the digest as follows.

First, we allow the instances of the (compiled) CPU program Pauth to communicate with each other.
Namely, each CPU can send a message to other CPUs at each time step. Such CPU-to-CPU communications
can be emulated readily by storing the messages in the memory for the evaluator of the obfuscation. Recall
that Pauth needs to authenticate the computation, so the program needs to authenticate the communication as
well. Fortunately, this can be done using splittable signatures in a natural way. We can now formulate the
problem of updating the accumulator value as a distributed computing problem as follows:

There are m CPUs, each holding an accumulator value w, memory cell index `i, write value vali, and an
authentication path api for `i (received from the evaluation algorithm) as its inputs. Their common goal is to
compute the updated accumulator valuew′ with respect to the write instructions {(`i, vali)}i∈[m]. Our task is to
design a distributed algorithm for this problem with oblivious communication pattern8, in poly log(m) rounds,
and with per-CPU space complexity poly log(m). If this is achieved, the blow-up in both the parallel run-time
and obfuscation size can be reduced from Ω(m) to poly log(m).

We construct such oblivious update protocol with desired complexity based on two oblivious protocols
by Boyle et al. [BCP16]: an aggregation protocol that allows m CPUs to aggregate information they need in
parallel, and a multi-casting protocol that allowsmCPUs to receive messages from other CPUs in parallel. Both
protocols have run-time poly-logarithmic inm. Roughly, our oblivious update protocol updates the Merkle tree
layer-by-layer from leaves to root. For each layer, the CPUs engage in the oblivious aggregation protocol to
aggregate information for updating their local branches of the tree. They then distribute their results using the
oblivious multi-casting protocol.

Back to our CiO construction, we output Π̃ defined by (iO(Pauth), xauth), where Pauth is a compiled CPU
program that can communicate with other CPUs and authenticate the communication by splittable signatures.
The evaluation of Π̃ runs m copies of iO(Pauth) and emulates the communication by routing the messages.
After each memory-write time step, Pauth maintains the accumulator value by invoking the oblivious update
protocol. Finally, for the authenticated input xauth, it consists of the initial memory content x, and the accu-
mulator value of x stored in signed CPU states as before. However, it cannot contain initial CPU states with m
different signatures, as otherwise the obfuscation has size dependent on m. This can be solved by a simple
trick: we let xauth only consists of a single signed “seed” CPU state stseed, and when Pauth takes stseed and a
CPU id i as input, Pauth outputs a signed initial state of CPU i.

7While Pm has low depth (independent of m), its obfuscated version may not, as the security of iO needs to hide the circuit depth.
Thus, the parallel run-time is not preserved.

8We mention that the oblivious communication pattern property may not be essential, but a useful feature to make the construction
simple, since the CPUs do not need to decide who to send/receive messages.
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We stress that there is a more subtle and challenging issue arises when we try to generalize the security proof
for TM/RAM model to handle PRAM while preserving parallel run-time. In short, a naı̈ve generalization of the
security proof would require hardwiring the m CPU sates at some time steps, which results in Ω(m) amount
of hardwired information, and causes unacceptable poly(m) overhead in size of the obfuscated program. We
address this by developing a “branch-and-combine” technique to emulate PRAM computation, which enables
us to reduce the amount of hardwired information in the hybrids to O(logm), in Section 3.1.

2.4 RE Construction

The next goal is to hide information through the evaluation process of P̃ on x̃. A natural approach is to use
encryption schemes to hide the CPU states and the memory content. Namely, P̃ always outputs encrypted CPU
states and memory, and on (authenticated) input of ciphtertexts, performs decryption before the actual computa-
tion. Note, however, that the memory access pattern cannot be encrypted (otherwise the server cannot evaluate),
which may also leak information. A natural approach is to use oblivious (parallel) RAM (OPRAM/ORAM) to
hide the access pattern. Namely, we use OPRAM compiler to compile the program (and add an “encryption
layer”) before obfuscating it. Again, intuitively (i.e., assuming all primitives “works”), the server cannot learn
information from the evaluation process.

We note that the construction of machine-hiding encoding for Turing machine [KLW15] uses public-key
encryption to hide the memory content of TM evaluation, and hides the TM access pattern by oblivious Turing
machine compiler [PF79], which is deterministic. In our case, hiding random memory access pattern for
(parallel) RAM (which is necessary to capture sublinear time computation) requires new techniques, since
OPRAM/ORAM compilers are probabilistic, and we cannot use OPRAM/ORAM security in a black-box way.
We deal with this issue by developing “puncturing” technique for specific OPRAM construction.

At a high level, constructing fully succinct randomized encoding (RE) from CiO-RAM requires hiding both
the memory content and the access pattern of the computation. We first consider the simpler case where the
computation has oblivious access pattern (so we only need to hide the memory content), which we can rely on
techniques of using public-key encryption [KLW15]. In fact, if the access pattern is not required to be hidden,
the construction of machine-hiding encoding for TM [KLW15] can be modified in a straightforward way to
yield RE-RAM. Our construction can be viewed as a modularization and simplification of their construction
through our CiO notion in a black-box way (which in a sense captures security achieved by authentication).

We next discuss how to hide access pattern, which is the major challenge for the construction of fully suc-
cinct RE-RAM. We follow a natural approach to use ORAM compiler to hide it. However, the main difficulty
is that ORAM only hides the access pattern when the CPU state and the memory contents are hidden from the
adversary, which is hard to argue for unless the obfuscation is virtual-black-box (VBB) secure [BGI+12], while
CiO (just like iO) does not hide anything explicitly. We develop a puncturable ORAM technique to tackle
this issue. We rely on a simple ORAM construction [CP13] (referred to as CP-ORAM) and show that it can
be “punctured” at time step i so that the access pattern at the i-th time step of P (x) can be simulated even
given the punctured program. Armed with this technique, we can simulate the access pattern at time step i by
puncturing the ORAM compiled program at step i (through hybrids), replacing the access pattern at this step,
and then unpuncturing the program. Yet, the computation traces of a punctured program can differ from the
original ones in many steps. Therefore, arguing the indistinguishability of a hybrid using a punctured program
is non-trivial. We do so by defining a sequence of “partially punctured” hybrids that gradually modifies the
program step by step.

Finally, we extend the above construction to handle PRAM computation, where we simply replace the
ORAM compiler by the oblivious PRAM compiler [BCP16]. The security proof also generalizes in a natural
way, except that we need to take care of some issues aroused in the parallel setting. The main issue is to
generalize the puncturing argument to puncture OPRAM in a way that avoids dependency on the number of
CPU m to maintain full succinctness. This can be done by puncturing the OPRAM CPU by CPU.
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2.4.1 RE-ORAM Construction

We first focus on the simpler case of RE for oblivious RAM computation where the given RAM computation
instance Π = (P, x) has oblivious access pattern. Namely, we assume that there is a public function ap(t) that
predicts the memory access at each time step t, to be given to the simulator.

For this simpler case, we do not need to use ORAM to hide the access pattern. We can modify existing
machine-hiding encoding for TM [KLW15] which hides the CPU state and the memory content using PKE in
a straightforward way to yield RE for oblivious RAM computation. Our construction presented below can be
viewed as a modularization and simplification of their construction through our CiO notion.

Consider an encoding algorithmRE .Encode(Π) which outputs CiO(PPKE , xPKE), where PPKE is a com-
piled version of P , and xPKE is an encrypted version of x. At a high level, PPKE emulates P step by step.
Instead of outputting the CPU state and the memory content in the clear, PPKE outputs encrypted versions of
them. PPKE also expects encrypted CPU states and memory contents as input, and emulates P by first de-
crypting them. A key idea here (following [KLW15]) is to encrypt each message (a CPU state or a memory
cell) using a different key, and generate these keys (as well as encryption randomness) using puncturable PRF
(PPRF), which allows us to use a standard puncturing argument in the security proof (extended to work with
CiO instead of iO) to move to a hybrid where semantic security holds for a specific message so that we can
“erase” it.

To make sure that each key is used to encrypt a single message, at time step t, PPKE encrypts the output
state and memory content using the “t-th” keys, which are generated by PPRF with input t (and some additional
information to distinguish between state and memory). Likewise xPKE contains the encryption of the initial
memory x with different keys for each memory cell. To decrypt the input memory, PPKE needs to know which
secret key to use. This can be addressed by simply storing the time tag t with the encrypted memory (as a
single memory cell). Namely, each memory cell for PPKE contains a ciphertext ctmem and a time tag t. As
authentication is taken care of by CiO as a black box, no additional authentication mechanisms are needed.

At a high level, we prove the security of the above construction by defining a sequence of hybrids that
“erase” the computation backward in time, which leads to a simulated encoding CiO(PSim, xSim) where all
ciphertexts generated by PSim, as well as those in xSim, are replaced by some encrypted special dummy symbols.
More precisely, PSim simulates the access pattern using the public access function ap. For each time step t < t∗,
PSim simply ignores the input and outputs encrypted dummy symbols (for both CPU state and memory content),
and outputs y at time step t = t∗.9

By erasing the computation backward in time, we consider the intermediate hybrids Hybi where the com-
putations of the first i time steps are real, and those of the remaining time steps are simulated. Namely, Hybi
is a hybrid encoding CiO(PHybi

, xPKE), where PHybi
acts as PPKE in the first i time steps, and acts as PSim in

the remaining time steps. To argue for the indistinguishability between Hybi and Hybi−1, which corresponds
to erasing the computation at the i-th time step, the key observation is that the i-th decryption key is not used
in the honest evaluation, which allows us to replace the output of the i-th time step by an encryption of dummy
through a puncturing argument. We can then further remove the computation at the i-th time step readily by
CiO security.

In more details, to move from Hybi to Hybi−1, we further consider an intermediate hybrid Hyb′i where the
output of the i-th time step is replaced by an encryption of dummy, but the real computation is still performed.
Namely, at the i-th time step, PHyb′i in Hyb′i still decrypts the input and emulates P , but replaces the output by
an encryption of dummy. Note that indistinguishability between Hyb′i and Hybi−1 follows immediately from
CiO security by observing that (PHyb′i , xPKE) and (PHybi−1

, xPKE) have identical computation trace. To argue
for the indistinguishability between Hybi and Hyb′i, we note that the i-th decryption key is not used in the
honest evaluation, since the computation after time step i is erased. Thus, we can puncture the randomness and
erase the decryption key from the program (which uses CiO security as well), and reach a hybrid (from Hybi)
where semantic security holds for the output ciphertext at time step i. We can then replace the ciphertext by an
encryption of dummy and undo the puncturing to reach Hyb′i.

9Here we only consider honest evaluation of PSim on xSim. Any “dishonest” evaluation is disallowed by CiO security.
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There remain some details to complete the proof. First, the real encoding CiO(PPKE , xPKE) and Hybt∗−1

have identical computation trace, so indistinguishability follows by CiO security. Second, moving from Hyb0

to the simulated encoding CiO(PSim, xSim) requires replacing xPKE by xSim, which can be done by a similar
puncturing argument.

2.4.2 RE-RAM Construction

We now deal with the main challenge of hiding access pattern by using ORAM. Recall that an ORAM com-
piler compiles a RAM program by replacing each memory access by a probabilistic procedure OACCESS that
implements memory access in a way that hides the access pattern.10

Given a computation instance Π = (P, x), we first compile P using an ORAM compiler, with randomness
supplied by puncturable PRF for succinctness, and initiate the ORAM memory by inserting the input x. Let
(PORAM, xORAM) be the compiled program and the resulting memory. It is then compiled in the same way as in
Section 2.4.1 with PKE . Namely, we use PPRF to generate multiple keys, and use each key to encrypt a single
message, including the initial memory xORAM. Let the resulting instance be (Phide, xhide). Our randomized
encoding of Π is CiO(Phide, xhide). However, as we discussed earlier, it is unlikely that we can use the security
of ORAM in a black-box way, since ORAM security only holds when the adversary does not learn any content
of the computation. Indeed, recall in the previous section, we can only use puncturing argument to argue that
semantic security holds locally for some encryption at a time.

We remark that the work of Canetti et al. [CHJV15] encountered a similar technical problem in their con-
struction of one-time RAM garbling scheme. Their construction has similar high level structure as ours, but
based on a quite different machinery called asymmetrically constrained encapsulation (ACE) they built from
iO for circuits. Canetti et al. provided a novel solution to this problem, but their garbling incurs dependency on
the space complexity of the RAM program, and thus is not fully succinct. In more details, their security proof
established the indistinguishability of hybrids forwards in time: At a certain hybrid Hybi, they information-
theoretically erase computation before time step i, simulate the memory access pattern, and hardwire the con-
figuration of the (i + 1)-th step into the program, so as to faithfully perform the correct computation in the
later steps. Moving to the (i+ 1)-th hybrid relies on their new strong ORAM simulatability (which is satisfied
by a specific ORAM construction [CP13] they use), which enables them to replace the actual memory access
at time step (i + 1) by a simulated one. However, the ORAM security relies on the fact that the first i steps
of computation are information-theoretically hidden, and thus the hybrids need to hardwire in an intermediate
configuration of size proportion to the space complexity of the program. Such memory content hardwiring
forces their garbling scheme to be padded to a size depending on the space complexity of the program, making
the scheme non-succinct in space.

A natural approach to avoid such dependency in our construction is to establish indistinguishability of hy-
brids backwards in time, as in the previous section. Namely, we consider intermediate hybrids Hybi where the
computations of the first i time steps are real, and those of the remaining time steps are simulated (appropri-
ately). Yet, since the computation trace of the first (i− 1) time steps is real, it contains enough information to
carry out the rest of the (deterministic) computation. In particular, the access pattern at time step i is determined
by the first (i− 1) time steps, that means we cannot replace it by a simulated access pattern.

To solve this problem, we develop a puncturing ORAM technique to reason about the simulation specifically
for CP-ORAM [CP13]11. At a very high level, to move from Hybi to Hybi−1 (i.e., erase the computation at
the i-th time step), we “puncture” ORAM at time step i (i.e., the i-th memory access), which enables us to
replace the access pattern by a simulated one at this time step. We can then move (from Hybi) to Hybi−1 by
erasing the memory content and computation, and undoing the “puncturing.”

Roughly speaking, “puncturing” CP-ORAM at i-th time step can be viewed as injecting a piece of “punc-
turing” code in OACCESS to erase the information randi about access pattern at time step i information-

10In contrast, for Turing machines (TM), one can make the access pattern oblivious by a deterministic oblivious TM compiler. This
is why [KLW15] does not need to address the issue of hiding access pattern for TM computation.

11We believe that our puncturing technique works for any tree-based ORAM constructions, but we work with CP-ORAM for con-
creteness.
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theoretically: randi is generated at the latest time step t′ that accesses the same memory location as time
step i. The puncturing code simply removes the generation of randi at time step t′.

However, the last access time t′ can be much smaller than i, so the puncturing may cause global changes
in the computation. Thus, moving to the punctured mode requires defining a sequence of hybrids that modifies
the computation step by step. We do so by further introducing an auxiliary “partially puncturing” code that
punctures randi from certain threshold time step j ≥ t′. The sequence of hybrids to move to the punctured
code corresponds to moving the threshold j ≤ i backwards from i to t′.

2.4.3 RE-PRAM Construction

Our construction of RE-PRAM replaces the CP-ORAM compiler of our construction of RE-RAM by the
OPRAM compiler of Boyle et al. [BCP16] (referred to as BCP OPRAM hereafter), a generalization of tree-
based ORAM to the parallel setting. Namely, given a PRAM computation instance Π defined by (P, x), we
first compile P into POPRAM using the BCP OPRAM compiler with randomness supplied by puncturable PRF.
We also initiate the OPRAM memory by inserting the input x. Let xOPRAM be the resulting memory. We then
compile (POPRAM, xOPRAM) using PKE in the same way as in Section 2.4.1. A small difference here is that
we also need to include CPU id as PPRF input to ensure single usage of each key. Denote the resulting instance
by (Phide, xhide). Our randomized encoding of Π is CiO(Phide, xhide).

The security proof also follows identical steps, where we prove the security by a sequence of hybrids that
erases the computation backward in time, and simulate access patterns by generalizing the puncturing ORAM
argument to puncturing BCP OPRAM. At a high level, the arguments generalize naturally with the following
two differences: First, as the OPACCESS algorithm of BCP OPRAM is more complicated, we need to be
slightly more careful in defining the simulated encoding CiO(PSim, xSim). Second, to avoid dependency on the
number m of CPUs, we need to handle a single CPU at a time in the hybrids to puncture OPRAM.

2.5 Extension for Persistent Database

Finally, we note that our construction can be generalized readily to handle delegation with persistent database.
In this setting, the client additionally delegates his or her database to the server at beginning, and then delegates
multiple computation to evaluate and update the database in a verifiable and private way. Recall that we
authenticate every step of computation by signatures. We can “connect” two programs by letting Pi to sign its
halting state using a special “termination” signing key, and letting the next program Pi+1, upon receiving this
signed state, initiate itself by signing its initial state, and inheriting the Merkle tree root of the database from Pi
(stored in the halting CPU state).

3 Technical Highlights

Here we highlight the technical difficulties on handling multiple parallel CPUs and random memory access in
PRAM computations, and our new techniques to resolve them.

3.1 Handling Parallel Processors

Algorithmic Issue To preserve the gain of parallelism, we need to run m (obfuscated) CPU programs in
parallel, each of which has small poly log(n)-sized state. When there is a parallel write to the memory, these m
CPUs need to update the digest of the large memory in parallel efficiently. Note that no CPU can have global
update information (since each only has poly log(n)-sized state), so they need to do it in a distributed fashion
without incurring Ω(m) efficiency overhead. We handle this issue based on the techniques in the OPRAM
construction of Boyle, Chung, and Pass [BCP16]. At a high level, we allow the CPUs to communicate with
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each other, and design an O(poly logm)-round distributed algorithm for updating the digest with oblivious
communication pattern12.

Security Proof Issue This is a more subtle and challenging issue arises when we try to generalize the security
proof for TM/RAM model to handle PRAM. At a very high level, the security proof consists of a (long)
sequence of hybrids in time steps, where in the intermediate hybrids, we need to hardwire the CPU state at
some time steps to the obfuscated program. Generalizing the idea to PRAM in a naı̈ve way would require us to
hardwire the m CPU sates at some time steps, which results in Ω(m) amount of hardwired information. This
in turn requires us to pad the program to size Ω(m) and causes poly(m) overhead in size of the obfuscated
program. To see why, and to pave the way for discussing our idea for resolving it, we must take a closer look at
the technique of KLW.

3.1.1 Proof Techniques of KLW

We now provide a very high level overview of the security proof of our CiO-RAM based on the machinery of
KLW. The techniques serve as a basis for the discussion of our construction of CiO-PRAM. Recall that our
construction can be viewed as CiO(Π) = (iO(Pauth), xauth), where (Pauth, xauth) is just (P, x) augmented
with iO-friendly authentication mechanism of KLW. Let Π = (P, x) and Π′ = (P ′, x) be two computation
instances with identical computation trace.13 Our goal is to show Π̃ ← CiO(Π) and Π̃′ ← CiO(Π′) are
computationally indistinguishable. To prove security, we consider a sequence of hybrids starting from Π̃ that
switches the program from P to P ′ time step by time step. Very roughly, those iO-friendly authentication
mechanisms allow us to switch from P to P ′ at time step t using iO security. It can be viewed as introducing
“check-points” to hybrid programs as follows (which is implicit in [KLW15])14:

• We can place a check-point at the initial step of computation, and move it from a time step t to time step
(t+ 1) through hybrids.

• Check-point is a piece of code that at a time step t, checks if the input (or output) is the same as that in the
honest computation, and forces the program to output Reject if it is different. This is an information-
theoretic guarantee which enables us to switch the program at time step t based on iO security.

We can then move the check-point from the beginning to the end of the computation, and along the way switch
the program from P to P ′. This check-point technique is essential to illustrate our issue on PRAM model.

3.1.2 Proof Issue Illustrated as a “Pebble Game”

The Pebble Game for RAM We now discuss the issue of hardwiring Ω(m) amount of information in inter-
mediate hybrids when we generalize the KLW techniques to handle PRAM with m CPUs. To illustrate, we
cast the security proof as a “pebble game” over a graph defined by the computation, and the required amount
of hardwire information in the hybrids can be captured by the “pebble complexity” of the game.

We first illustrate this pebble game abstraction for the case of RAM. Recall that the security proof relies
on a check-point technique that allows us to place a check-point on the initial time step, and move it from a
time step t to its next time step (t + 1). Placing a check-point at a time step requires hardwiring information
proportional to the input (or output) size of the CPU program. The goal is to travel all time steps (to switch the
programs on all time steps). In this example, the RAM computation can be viewed as a line graph with each
time step being a node. A check-point is a pebble that can be placed on the first node, and can be moved from
node t to node (t+ 1). The winning condition of the pebble game is to “cover” the graph, namely, to ever place

12The CPU to CPU communication could be done through memory access (e.g., CPU i writes to a specific memory address and CPU
j reads it). However, we cannot do so in our context of OPRAM since communication through memory requires updating the digest,
which leads to a circularity.

13Recall that it means both the CPU states and memory content are identical throughout the computation.
14The description here over-simplifies many details.
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a pebble on each node. The pebble complexity is the maximum number of pebbles needed to cover the graph,
which is 2 for the case of RAM (since technically we need to place a pebble at (t + 1) before removing the
pebble at t).

The Pebble Game for PRAM Next, we attempt to generalize the pebble game to the PRAM setting so as to
capture the direct generalization of the previous security argument (including generalization of both accumula-
tors and iterators).

The graph is a layered (directed acyclic) graph with each layer corresponds to m CPUs’ at a certain time
step. Namely, each node is indexed by (t, i) where t is the time step and i is the CPU id. It also consists of a
node 0 corresponding to the seed state. Node 0 has an outgoing edge to node (t = 1, i) for every i ∈ [m]. Each
node (t, i) has an outgoing edge to (t+1, i) indicating the (trivial) dependency of i-th CPU between time step t
and t + 1. Recall that the CPUs have communication (to jointly update the digest of the memory). If CPU i
sends a message to CPU j at time step t, we also put an outgoing edge from (t, i) to (t + 1, j) to indicate the
dependency.15

The pebbling rule is defined as follows: First, we can place a pebble on node 0. To place a pebble on a
node v, all nodes of v’s incoming edges need to have a pebble on it. To remove a pebble on a node v, we
need to “cover” all v’s outgoing nodes, i.e., ever place a pebble on each outgoing node. These capture the
conditions for placing and removing a check-point to a computation step respectively, for our generalization of
the iO-friendly authentication techniques of KLW to the parallel setting.

As before, the goal is to cover the whole graph (i.e., ever places a pebble on every node) using a min-
imal number of pebbles. The pebble complexity of the game is the maximum number of pebbles we need
to simultaneously use to cover the graph. Covering the graph corresponds to switching the programs for ev-
ery computation step, and the pebble complexity captures the amount of hardwire information required in the
intermediate hybrids.

Recall that our Pauth invokes a distributed protocol to update the digest of the memory for every (synchro-
nized) memory-writes. To play the pebble game induced by multiple invocations of this distributed protocol,
a trivial solution with 2m pebbles is to place pebbles on two neighboring layers. Unfortunately, it is unclear
how to play this pebble game with o(m) pebble complexity, and it seems likely that the pebble complexity is
indeed Ω(m). Therefore, it may seem that hardwiring Ω(m) amount of information in intermediate hybrids is
required. As a result, Pauth needs to be padded to size Ω(m), and thus |Π̃| has poly(m) overhead.

3.1.3 Reducing Information Hardwiring

To reduce information to be hardwired, we introduce a “branch-and-combine” approach to emulate a PRAM
computation, which transforms the computation graph to one with poly log(m) pebble complexity, and pre-
serves the parallel run-time and obfuscation size with a poly log(m) overhead.

At a high level, after one parallel computation step, we combine m CPU states into one “digest” state,
then branch out from the digest state for another parallel computation step, which results in m CPU states to
be combined again. The PRAM computation is emulated by alternating the branch and combine steps. The
combine step involves logm rounds where we combine two states into one in parallel (which forms a complete
binary tree). The branch step is done in one shot which branches out m CPUs in one step in parallel. Thus, the
branch-and-combine emulation only incurs O(logm) overhead in parallel run-time. Note that this transforms
the computation graph into a sequence of complete binary trees where each time step of the original PRAM
computation corresponds to a tree, and the root of a time step connects to all leaf nodes of the next time step.

Now, we observe that only O(logm) pebbles are used to traverse the computation graph of the branch-
and-combine PRAM emulation. This is because whenever we put two pebbles at a pair of sibling nodes in the
complete binary tree of the combine step, we can merge them into a single one at their parent node. This means
that only one pebble is necessary for each height level of the tree. More precisely, we can move pebbles from
one root to the next one by simply putting pebbles at its branched out nodes one by one in order, and merging

15In general, the memory accesses may create dependency. We ignore it here as the pebble complexity is already high.
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the pebbles greedily whenever it is possible. Very roughly, the combine step corresponds to constructing an
accumulator tree for CPU states, and the branch step verifies an input CPU state using the accumulator and
performs one computation step.

3.2 Handling Memory Access

We next discuss the difficulties in hiding memory access pattern. Recall that our construction to achieve privacy
is very natural: We hide CPU states and memory content using public-key encryption (PKE) and hide access
pattern using oblivious (parallel) RAM. Note that KLW already showed how to use PKE to hide the memory
content of Turing machine evaluation. Roughly speaking, the security proof is done by a sequence of hybrids
that “erases” the computation step by step backward in time. However, hiding access pattern for Turing machine
is simple since oblivious Turing machine compiler [PF79] is deterministic.

In contrast, ORAM and OPRAM compilers are probabilistic, and they only hide the access pattern sta-
tistically when the adversary learns only the access pattern, but not the CPU states and the memory content.
However, since the obfuscated program contains the hardwired secret key of PKE , we can only argue that the
memory content is hidden by puncturing argument at the cost of hardwiring information. In other words, we
can only afford to argue hiding holds “locally” but not “globally”. This is why the proof of KLW erases the
computation step by step. More importantly, this prevents using ORAM/OPRAM security in a black-box way.

We remark that the seminal work of Canetti et al. [CHJV15] encountered this technical problem in the
context of one-time RAM garbling scheme, where they resolve the issue by identifying stronger security of a
specific ORAM construction [CP13]. However, this approach requires “erasing” the computation forward in
time in the security hybrids, which in turn require hardwiring information proportional to the space complexity
of the RAM computation. We instead resolve this issue by a puncturing ORAM/OPRAM technique that also
relies on specific ORAM/OPRAM constructions [CP13, BCP16], to be elaborated below for the case of RAM.

3.2.1 ORAM Puncturing Technique for Simulation

We develop an ORAM puncturing technique to reason about the simulation for a specific ORAM construc-
tion [CP13] (referred to as CP-ORAM hereafter).16 The high level strategy is to switch the ORAM access
pattern from a real one to a simulated one step by step (backward in time). To enable switching at time step i
(i.e., for the i-th memory access), we “puncture” the real execution in a way that ensures that the i-th memory
access is information theoretically hidden even given the memory content of the first (i − 1) steps execution.
Since we do hybrids backward in time, the computation after i-th step is already erased, and so once the ORAM
is “punctured”, we can replace the real i-th step access pattern by a simulated one (both of which are random
given full information of the punctured real ORAM execution). To further explain how this is done, we first
review the CP-ORAM construction.

3.2.2 Review of the CP-ORAM Construction

In a tree-based ORAM (CP-ORAM), the memory is stored in a complete binary tree (as known as ORAM
tree), where each node is associated with a bucket. A bucket is a vector of K elements, where each element is
either a memory block, or a unique symbol dummy stands for an empty slot. Note that a memory block is the
smallest unit of operation in CP-ORAM, which consists of a fixed small number of memory cells. In particular,
a position map pos (stored in CPU state) records where each memory block is stored in the tree, i.e., a node
somewhere along a path from the root to the leaf indexed by pos[`]. Each memory block ` in the ORAM tree
also stores its index ` and position map value pos[`] as meta data. Each memory access to block ` is performed
by OACCESS, which (i) reads the position map value p = pos[`] and refreshes pos[`] to a random value, (ii)
fetches and removes the block ` (i.e., replaces it by dummy) from the path, (iii) updates the block content and
puts it back to the root (i.e., replace a dummy block by the updated memory block), and (iv) performs a flush
operation along another random path p′ to move the blocks down along p′ (subject to the condition that each

16We believe that our puncturing technique works for any tree-based ORAM, but we work with CP-ORAM for concreteness.
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block is stored in the path specified by their position map value). At a high level, the security follows by the fact
that the position map values are uniformly random and hidden from the adversary, and thus the access pattern
of each OACCESS is simply two uniformly random paths, which is trivial to simulate.

Although the position map as described above is large, it can be recursively outsourced to lower level
ORAM structures to reduce its size. For simpler illustration, we consider here a non-recursive version of the
CP-ORAM, where the large position map is stored in the CPU state. We note that our construction can handle
full-fledged recursion.

3.2.3 Key Observation for “Puncturing” CP-ORAM

Consider the execution of an CP-ORAM17 compiled program which accesses memory block ` in the i-th time
step (corresponds to the i-th OACCESS call), the access pattern at this time step is determined by the position
map value p = pos[`] at this time.18 So, as long as this value p is information-theoretically hidden from
the adversary, we can simulate the access pattern by a random path even if everything else is leaked to the
adversary. On the other hand, the value is generated at the last access time t′ of this block, which can be much
smaller than i, stored in both the position map and the block ` (as part of the meta data), and can be touched
multiple times from time step t′ to i. Thus, the value may appear many times in the computation trace of the
evaluation. Nevertheless, by a sequence of carefully defined hybrids (which we refer to as partially punctured
ORAM hybrids), we can erase the information of p step by step with constant-size data hardwired, which allows
us to carry through the puncturing ORAM argument (see our later section for detailed hybrids).

3.2.4 Details for Puncturing CP-ORAM

Below is a more detailed sketch of the security proof to illustrate the puncturing ORAM technique in depth.

RE Simulator and Backward-in-time Hybrids Our construction is RE .Encode(Π) = CiO(Phide, xhide),
where Phide is PKE and CP-ORAM compiled version of P . We construct simulated encoding CiO(PSim, xSim)
where PSim simulates Phide for each time step of P (x) (corresponding to each OACCESS call), and it simulates
the access pattern by two (pseudo-)random paths supplied by PPRF (with a (different) key used in simulation).
For each access, it ignores the input and outputs encryptions of dummy (as before). Note that in the rest of this
section, a time step refers to a time step of P (x), as opposed to a time step of Phide(xhide).

We prove the security by a sequence of hybrids that erases the computation backward in time. Namely,
we consider intermediate hybrids Hybi, a hybrid encoding CiO(PHybi

, xhide) where PHybi
acts as Phide for

the first i time steps, and acts as PSim in the remaining time steps. A main step in the proof is to show
indistinguishability of Hybi and Hybi−1, which corresponds to erasing the computation at the i-th time step. It
is not hard to see that the outputs can be replaced by an encryption of dummy by a similar puncturing argument
as in Section 2.4.1. To replace the access pattern, we define a punctured hybrid Hybpunct

i that punctures ORAM
at time step i.

A Punctured Hybrid Hybpunct
i Let ` be the memory block accessed at the i-th time step of P (x), p = pos[`]

be the position map value at the time, and t′ be the last access time of block ` before time step i. Following the
above key observation, our goal is to move to a hybrid where the value p is information-theoretically erased. We
do so by injecting a “puncturing” code that removes the generation of the value p at time step t′. More precisely,
we define a punctured hybrid Hybpunct

i with a hybrid encoding CiO(PHybpunct
i

, xhide) where PHybpunct
i

is PHybi

with the following puncturing code added:
17Ideally, it is desirable to formalize a “puncturable” property for ORAM or the CP-ORAM construction, and use the property in the

security proof. Unfortunately, we do not know how to formalize such a property without referring to our actual construction, since it
is difficult to quantify what an adversary can learn from the CiO obfuscated computation. Yet, in an independent work [CH15] which
also constructs succinct randomized encoding for RAM (but not for PRAM), a more modular and cleaner technique is developed to
prove security.

18We ignore the uniformly random path used in the flush operation here, which is trivial to simulate.
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Puncturing Code: At time step t = t′, do not generate the value p, and instead of putting back
the (encrypted) fetched block ` to the root of the ORAM tree, an encryption of a dummy block
is put back. Moreover, the position map value pos[`] is not updated. Additionally, the value p is
hardwired, and is used to emulate the memory access at the i-th time step.

In other words, block ` is deleted at time step t′ and pos[`] remains to store the old value (used to fetch the
block at time step t′). So, in Hybpunct

i , the value p is information-theoretically hidden in the computation trace
of the first (i − 1) time steps and is only used to determine the access pattern at time step i. We can then use
puncturing arguments for PPRF to replace p by one generated by the simulation (as opposed to real) PPRF
key.

We also note that since block ` is not accessed before time step i, the computation trace of PHybpunct
i

before
time step i is identical to that of PHybi

, except that each time when PHybi
touches the block ` (resp., pos[`]), it

is replaced by a dummy block (resp., the old value) instead (though this can occur many times).
To complete the argument, we should argue indistinguishability between Hybi and Hybpunct

i . However, for
simplicity of exposition, we consider a simplified goal as follows.

A Simplified Version Ĥyb
punct

i of Puncturing Hybrid Here we consider a simplified version of Hybpunct
i ,

denoted by Ĥyb
punct

i , where only the block ` is removed but the pos[`] value is still updated at time step t′.
Namely, the puncturing code is replaced by the following simplified version.

Puncturing Code (Simplified): At time step t = t′, instead of putting back (an encryption of) the
fetched block ` to the root of the ORAM tree, (an encryption of) a dummy block is put back.

We focus on indistinguishability between Hybi and Ĥyb
punct

i (i.e., “deleting” the block `) to simplify the
exposition. The pos[`] part can be addressed in a similar way to be detailed in the technical section.

Moving from Hybi to Ĥyb
punct

i As discussed above, the computation traces of PHybi
and P

Ĥyb
punct

i

can differ
in many time steps, where each occurrence of the (encrypted) block ` is replaced by a dummy (encrypted) block.
Thus, we cannot move from Hybi to Ĥyb

punct

i in one step, but requires a sequence of hybrids that gradually
modifies the computation trace of PHybi

to that of P
Ĥyb

punct

i

step by step, using puncturing arguments for
PPRF and (local) semantic security of PKE (as in Section 2.4.1). One natural approach is to keep track of the
differing places in the computation trace, and replace the (encrypted) block ` by a (encrypted) dummy block
one by one. This can indeed be done carefully by a sequence of hybrids backwards in time. However, when we
consider parallel RAM computation, the difference of computation traces in the corresponding hybrids is more
complicated, and it becomes tedious to keep track of the differences and modify them through hybrids.

We instead introduce an auxiliary “partially puncturing” code that punctures the information of p from
certain threshold time step j ≥ t′, and move from Hybi to Ĥyb

punct

i by a sequence of hybrids that moves
the threshold j from i ≥ j backwards to t′. Such a code modification technique can be generalized to handle
corresponding hybrids in the PRAM setting.

Partially Punctured Hybrids Ĥyb
p-punct

i,j We define partially punctured hybrids Ĥyb
p-punct

i,j indexed by a
threshold time step j, where the underlying P

Ĥyb
punct

i

is PHybi
with the partially puncturing code below added:

Partially Puncturing Code[j]: At any time step t > j, if the input CPU state or memory contains
the block `, then replace it by a dummy block before performing the computation.

In other words, P
Ĥyb

p-punct
i,j

punctures the block ` after threshold time step j by deleting the block from its input.

We will see it is important that the code removes block ` by deleting it from the input (as opposed to output).
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Moving from Ĥyb
p-punct

i,j to Ĥyb
p-punct

i,j−1 We show indistinguishability between Hybi and Ĥyb
punct

i by mov-

ing the threshold j from i to t′. As the main step, we prove indistinguishability between Ĥyb
p-punct

i,j to

Ĥyb
p-punct

i,j−1 , which corresponds to deleting the block ` from the input at time step j. Now there are two cases.
If the input at the j-th time step does not contain the block `, then PHybp-punct

i,j
and PHybp-punct

i,j−1
have identical

computation trace, and thus indistinguishability follows by CiO security. If the input contains the block `, then
the computation traces can be different. We observe that, since the block ` is not accessed at time step j, the
difference is to correspondingly replace the (encrypted) block ` by a dummy block in the output. Thus, to show
indistinguishability, we use the puncturing PRF argument and semantic security of PKE to modify the output.

However, the situation here is more complicated. Previously, we only modify an encryption whose cor-
responding decryption key is not used in the honest computation, since the computation afterward is erased.
Here, the encrypted output block can later be accessed by PHybp-punct

i,j
at some time step j < t < i, where the

computation is not erased and thus the decryption key is still in use. Let ct be the encrypted output block `
at the j-th time step, and sk be the corresponding decryption key. In order to replace ct, we proceed in the
following steps, which use the property that the partially puncturing code deletes the block ` from the input:

• We first move to a hybrid where the block ` is hardwired, and the decryption of ct is set to the hardwired
value instead of decryption using sk so that the decryption key sk is not used.

• We then replace ct by an encryption of a dummy block using puncturing PRF argument and semantic
security of PKE . Note that this creates inconsistency in that the decryption of ct is still set to the
hardwired block `, as opposed to the dummy block.

• We now undo the hardwiring and use sk to decrypt ct again to reach Ĥyb
p-punct

i,j−1 . This fixes the incon-
sistency from the previous step. On the other hand, the decryption of ct is changed from the block ` to
dummy, so when ct is accessed in later time steps (after j), the input block ` is replaced by a dummy
block. Here is the place we use the property of partially punctured code: after time step j, the input block
` is replaced by a dummy block before the computation anyways. Thus, this change does not effect the
computation trace, and indistinguishability follows by CiO security.

We can now argue indistinguishability of Hybi to Ĥyb
punct

i . Indistinguishability of Hybi and Ĥyb
p-punct

i,i

follows from CiO security by observing that they have identical computation trace. The above argument allows
us to move from Ĥyb

p-punct

i,i to Ĥyb
p-punct

i,t′ . Now, note that the difference between Ĥyb
p-punct

i,t′ and Ĥyb
punct

i is
that the output block ` at time step t′ is replaced by a dummy block in the later hybrid. The indistinguishability
follows by the same argument using PPRF, PKE , and the property of partially punctured code as above.

Recall that Ĥyb
punct

i is a simplified version of punctured hybrid. To move to the actual punctured hybrid
Hybpunct

i , we can apply the same argument to handle the value stored in pos[`].

Summarizing the Hybrids We summarize the long (nested) sequences of hybrids we discussed so far. Above
we showed how to move from Hybi to Hybpunct

i , which corresponds to puncturing ORAM at time step i. From
Hybpunct

i , we can replace the output by encryption of dummy and replace the access pattern by a simulated
one. We can then reach Hybi−1 by undo the puncturing.

Finally, we can complete the proof in a similar way as the previous section, where we move from the real
encoding to Hybt∗−1 by CiO security, then move to Hyb0 by the above puncturing ORAM technique, and then
replace xhide by xSim using puncturable PRF and semantic security of PKE .

3.3 Handling Parallel Memory Access

Lastly, we discuss how the techniques above for ORAM can be extended to the OPRAM setting.
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3.3.1 Review of BCP OPRAM Construction

BCP OPRAM [BCP16] is a natural generalization of tree-based ORAM. Consider that each CPU j wants to
access memory block `j in a (parallel) memory access. At a high level, the CPUs first communicate with each
other to resolve the conflicts, and recursively invoke OPACCESS to fetch and refresh the position map values.
They then fetch the memory blocks from the path, put the blocks back, and flush the tree in parallel. Since
the m CPUs want to access m paths pj of the tree in parallel, they need to communicate with each other to
avoid write conflicts. In BCP OPRAM, the CPUs access the tree level by level, and in each level, they aggregate
the access instructions, select representative to perform the access, and then distribute the answers via oblivious
aggregation and oblivious multi-casting protocols.

3.3.2 Simulated Encoding CiO(PSim, xSim)

As before, PSim simulates Phide for each (parallel) time step of P (x). At each step PSim uses the simulated
access pattern and erases the computation by ignoring the input and then outputting encryption of dummy.
Here, we need to simulate the parallel access pattern of OPACCESS, which is more complicated and involves
polylogarithmic time steps because all CPUs in OPACCESS interact with each other. In particular, the access
pattern of the OPACCESS depends on the paths pj’s each CPU wants to access, where each CPU manipulates
its path with its own state and OPACCESS. If we still erase all the CPU states step by step, we would not have
enough information to simulate the second half access pattern of OPACCESS once the CPU states in the first
half is erased. Nevertheless, the key observation here is that the access pattern is fully determined by the paths
pj’s each CPU wants to access, which are public information revealed in the execution. So, we can view these
pj’s as public states of OPACCESS, and do not erase its content in the hybrids. In other words, we generate
simulated path pj for each CPU, and store them as public states to simulate the access pattern of OPACCESS.

3.3.3 Puncturing BCP OPRAM CPU by CPU

As BCP OPRAM is a generalization of tree-based ORAM, it is not hard to see that the puncturing argument
generalizes to work for BCP OPRAM as well (while maintaining full succinctness). Namely, it suffices to
information-theoretically hide the values of the paths pj’s to simulate the access pattern, and this can be done
by injecting a puncturing code. Additionally, we observe that this can be done CPU by CPU. Namely, for
each pj accessed by CPU j, we can (for all CPUs) inject a puncturing code at the corresponding time step t′j
that the value pj is generated, to remove the generation of pj . Also, we can move to this punctured hybrid by a
sequence of partially punctured hybrids as before, by gradually puncturing the value of pj backwards in time,
per time-step and per CPU. Upon reaching this punctured hybrid, we can switch pj to a simulated one, undo
the puncturing, and move to the next CPU. In this way, we switch the paths pj’s to simulated version one by
one, and never need to hardwire information of size depending on m throughout the hybrids, which maintains
full succinctness.

4 Computation-Trace Indistinguishability Obfuscation (CiO)

We define a new primitive called Computation-trace Indistinguishability Obfuscation (CiO), which produces
indistinguishably obfuscated computations as long as the input computations give identical computation trace.
For this, we need to define a formal notion of computation trace, and before that, a formal notion of (distributed)
computation systems.

We define a distributed computation system Π as a tuple consisting of a collection initial states {st0
k},

a shared initial memory mem0, and a collection of stateful algorithms {Fk}. The entity (named agent Ak)
executes the stateful algorithm Fk by taking as input the state in the previous time step, an access command
received from the memory, and some communication messages received from the other agents. It outputs a
new state, an access command to be sent to the memory, and some communication messages to be sent to the
other agents. The memory which receives access commands from all the agents processes these commands and
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outputs some new access commands to be returned to all the agents. Having specified these, the computation
trace of a distributed computation system is simply defined as the collection of configurations including the
states, access commands and communication messages at all time steps.

The philosophy behind such a definition is to decouple the functionality of a program and its computation
trace. On one hand, programs with the same functionality can still produce different computation traces. On
the other hand, we wish to only focus at one particular instance of a program-input pair (P, x) rather than the
entire functionality of P .

4.1 Model of Distributed Computation Systems

Definition 4.1. We define a distributed computation system Π with an evaluation algorithm evaluate as
follows.

Description of the Computation. Π consists of m agents A1, . . . , Am and a shared memory component M. Each
agent Ak where k ∈ [m] is associated with: (i) a stateful algorithm Fk; (ii) a register for storing its local state
stk; (iii) an incoming communication buffers which allow any other agents Aj where j ∈ [m] \ {k} to send
communication messages ck←j to agent Ak; (iv) an incoming memory access buffer which stores value ak←M

that read from the shared memory.
Memory component M is a distinguished component in the computation system, associated with: (i) a

memory mem; (ii) an incoming memory access buffers which allow any agents Aj where j ∈ [m] to write the
memory with a value aM←j .

For all k ∈ [m], for all j ∈ [m] \ {k}, Π is set to be (stk, ck←j , ak←M, aM←k,mem) with the initialized
values (st0

k, c
0
k←j , a

0
k←M, a

0
M←k,mem0) given externally.

We denote the computation system by

Π = ((mem0, {st0
k, {c0

k←j}j∈[m]\{k}, a
0
k←M, a

0
M←k}mk=1), ({Fk}mk=1)).

Computation System Evaluation Procedure. The procedure evaluate() will evaluate the system Π by rounds.
For each round t > 0,

Each agent Ak where k ∈ [m] operates as follows:

• Reads its incoming communication buffers and memory access buffer, and obtains ct−1
k←· = {c

t−1
k←j}j∈[m]\{k}

and at−1
k←M respectively.

• Computes (sttk, a
t
M←k, c

t
·←k)← Fk(stt−1

k , at−1
k←M, c

t−1
k←·), where ct·←k = {ctj←k}j∈[m]\{k}.

If stt−1
k = (halt, ·) or Reject then atM←k :=⊥, ctj←k :=⊥ for j ∈ [m] \ {k}, sttk := stt−1

k .

• Writes the value atM←k to the incoming memory access buffers, and sends the messages ctj←k to the
incoming communication buffer of agent j ∈ [m] \ {k}.

The memory component M operates as follows:

• Reads its incoming memory access buffers, and obtains atM←1, . . . , a
t
M←m.

• Computes (memt, at1←M, . . . , a
t
m←M) ← access(memt−1, atM←1, . . . , a

t
M←m), where access performs

the memory access command atM←k on memory memt−1 and output its corresponding read value
atk←M and update memory memt for each k ∈ [m].

• Returns value atk←M to each agent k’s memory access buffer, where k ∈ [m].

Terminologies To facilitate presentation, we introduce the following terminologies.

• The terminating time t∗, if it exists, is the smallest t such that sttk = (halt, ·) for all k ∈ [m].

• The computation configuration at any time t ≥ 0, defined as
Conf〈Π, t〉 = ({(sttk, a

t
k←M, a

t
M←k, c

t
k←·)}mk=1,memt), is the output of the evaluation at time t.
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• The computation trace is defined as Trace〈Π〉 = {Conf〈Π, t〉}t≥0.

• The next step function F is another representation of all Fk such that F (k, st, a, c) = Fk(st, a, c) for all
st, a, c.

Remark 4.2. For specific computation systems, we can restrict the initial states, access commands and com-
munication messages to some default values. Such initial values can thus be dropped from the tuple Π, and we
use the simplified form Π =

(
(mem0, st0

1, st0
2, . . . , st0

m), (F1, F2, . . . , Fm)
)
.

Remark 4.3. For easier presentation, the model defined here is centered around PRAM model. We can easily
generalize the definition to support richer syntax for even more fine-grained model of computation.

4.2 Computation-trace Indistinguishability Obfuscation

In this subsection, we will introduce a new security notion named Computation-trace Indistinguishability Ob-
fuscation (CiO for short). Recall that iO captures the security intuition that if the functionalities of the compu-
tations are identical, then the complied / obfuscated versions are indistinguishable. Here, we want to capture
an even milder security property that if the computation traces are identical, then the obfuscated versions are
indistinguishable.

A CiO scheme consists two parts, a probabilistic compilation procedure Obf which transforms a compu-
tation system to an “obfuscated” computation system, and a deterministic evaluation algorithm Eval which
evaluates the obfuscated system to return the output.

Definition 4.4. Let P be a collection of computation systems. A computation-trace indistinguishability obfus-
cation scheme w.r.t P , denoted by CiO = CiO.{Obf,Eval}, is defined as follows:

Compilation algorithm Π̃ := Obf(1λ,Π; ρ): Obf() is a probabilistic algorithm which takes as input the se-
curity parameter λ, the computation system Π ∈ P and some randomness ρ, and returns a complied /
obfuscated system Π̃ as output.

Evaluation algorithm conf := Eval(Π̃): Eval() is a deterministic algorithm which takes as input the obfus-
cated system Π̃, and returns a configuration of the original computation system Π as output.

Correctness For all Π ∈ P with termination time t∗ and all randomness ρ, let Π̃ := Obf(1λ,Π; ρ). It holds
that Eval(Π̃) = Conf〈Π, t∗〉.

Security For any (not necessarily uniform) PPT distinguisher D, there exists a negligible function negl(·)
such that, for all security parameters λ ∈ N, Π0,Π1 ∈ P where Trace〈Π0〉 = Trace〈Π1〉, it holds that

|Pr[D(Obf(1λ,Π0)) = 1]− Pr[D(Obf(1λ,Π1)) = 1] ≤ negl(λ).

Efficiency We require Obf runs in time Õ(poly(|Π|)), and efficient Eval runs in time Õ(t∗). That is, a client
can efficiently compile Π, and a server carries out evaluation in time comparable to the insecure computation.

Let t∗ be the halting time of the computation system Π. A trivial construction is to perform all computations
in the Obf algorithm. However, this trivial case does not work because we require Obf to be efficient and
independent to the computation time t∗.
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5 Starting Point: Constructing CiO in the RAM Model (CiO-RAM)

As introduced in Section 4, positing two computations which give identical computation trace, CiO guarantees
the indistinguishability of their obfuscations. Viewing from another perspective, CiO forces the evaluator to
evaluate the obfuscated computation as intended, so as to only produce the intended computation trace.

To construct CiO, a natural idea is therefore to authenticate the output of a time step and verify the integrity
of the input in the next time step. Straightforwardly, the output state (which is small in size) will be signed using
a signature scheme. On the other hand, the memory has a much larger size and is controlled by the evaluator
outside the obfuscated program. For authenticating the memory, a Merkle-tree-like structure is used to produce
a digest which is then stored in the CPU state. Having a similar construction but a more vigorous and ambitious
security goal, our CiO can be referred to as an abstraction of KLW.

In this section, we first tackle the simpler task of constructing CiO in the RAM model. For this, we com-
pile the underlying function F into another function F̂ which verifies and authenticates its inputs and outputs
respectively. Concretely, upon receiving as input a time t, a CPU state, and a bit read from the memory,
function F̂ verifies the signature of the input CPU states and the memory digest, before executing the under-
lying function F . F̂ then signs the resulting CPU state, updates the Merkle-tree-like structure to obtain an
updated memory digest, and eventually outputs the time (t + 1), a new CPU state, and an access command.
At the compilation stage, we convert the initial state st0 and the initial memory mem0 to an authenticated form
(s̃t

0
, m̃em

0
), and compute CiO(Π) = ((m̃em

0
, s̃t

0
), F̃ ) where F̃ = iO(F̂ ).

5.1 Building Blocks

In our CiO construction in Section 5.2, we will use several building blocks: accumulator, iterator, splittable
signature, puncturable PRF, and indistinguishability obfuscation. The formal definitions of these primitives can
be found in Appendix A. Below we define the notations and parameters for the building blocks we will use in
our CiO construction.

Accumulator scheme Acc = Acc.{Setup,SetupEnforceRead, SetupEnforceWrite,PrepRead,PrepWrite,
VerifyRead,WriteStore,Update} with message space {0, 1}`msg and accumulated value space {0, 1}`Acc .
Iterator scheme Itr = Itr.{Setup, SetupEnforceIterate, Iterate} with message space {0, 1}`Acc+`msg and
iterated value space{0, 1}`Itr .
Splittable signature scheme Spl = Spl.{Setup,Sign,Verify, Split,AboSign}, Spl.Setup uses `rnd bits of
randomness, and the message space is {0, 1}`Itr+`Acc+`msg .
Puncturable PRF scheme PPRF = PPRF.{Setup,Puncture,Eval} with key space K, punctured key space
Kpunct, domain [T ] where T is a parameter to be defined (which will be the time bound on the terminating
time of a RAM program), and range {0, 1}`rnd .
Indistinguishability obfuscation scheme iO for circuits.

5.2 Construction for CiO-RAM

We now construct CiO in the RAM model. Informally, a RAM consists of a single CPU, with random access
to an external memory, executing a next-step circuit F step by step until reaching the termination state which
embeds the computation result P (x) for some program P evaluated on some input x. Hence, a RAM compu-
tation Π can be specified by a program P and an initial input x. The evaluator interprets the input x so as to
prepare the initial state st0 and the initial memory mem0, to which it has random access ability. P is converted
to the stateful algorithm F . At each time step, F is executed with the state in the previous time step and a bit
read from the memory as input. F outputs a new state for the next step, and a memory access command.

Formally, the class PRAM of distributed computation emulating RAM computation is defined as follows:

Definition 5.1 (RAM Computation Class). We define PRAM as a class of distributed computation systems for
RAM computation with a single agent A (a.k.a. CPU) and a memory M where

the terminating time t∗ is bounded by T ;
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the memory size |mem| is bounded by S;
the state size |st| is bounded by poly log(T );
the communication buffer sizes |aA←M| and |aM←A| are bounded by poly log(S);
the initial access commands are empty, i.e., a0

A←M := ⊥ and a0
M←A := ⊥.

In this subsection, we describe our scheme CiO = CiO.{Obf,Eval} where CiO.Obf can transform a given
computation system Π ∈ PRAM into an obfuscated computation system Π̃, where

Π = ((mem0, st0), F ), and

Π̃ = ((m̃em
0
, s̃t

0
), F̃ ).

Compilation algorithm Π̃← CiO.Obf(1λ,Π) The compilation algorithm Obf() consists of several steps.
Step 1: Generating parameters. The compilation algorithm computes the following parameters for the obfus-
cated computation system:

KA ← PPRF.Setup(1λ)

(ppAcc, ŵ0, ˆstore0)← Acc.Setup(T )

(ppItr, v
0)← Itr.Setup(T )

Step 2: Generating stateful algorithms F̃ . Based on the parameters T, ppAcc, ppItr,KA generated above, as
well as program F , we define the program F̂ in Algorithm 1. The compilation procedure then computes an
obfuscation of the program F̂ . That is, F̃ ← iO.Gen(F̂ ).

Algorithm 1: F̂

Input : s̃t
in

= (t, stin, vin, win, σin), ãin
A←M = (ain

A←M, π
in) where ain

A←M = (Iin,Bin)
Data : T, ppAcc, ppItr,KA

1 if Acc.VerifyRead(ppAcc, w
in, Iin,Bin, πin) = 0 then output Reject;

2 Compute rA = PRF(KA, t− 1);
3 Compute (skA, vkA, vkA,rej) = Spl.Setup(1λ; rA);
4 Set min = (vin, stin, win, Iin);
5 if Spl.Verify(vkA,m

in, σin) = 0 then output Reject;

6 Compute (stout, aout
M←A)← F (stin, ain

A←M) where aout
M←A = (Iout,Bout);

7 if stout = Reject then output Reject;

8 wout = Acc.Update(ppAcc, w
in,Bout, πin);

9 if wout = Reject then output Reject;
10 Compute vout = Itr.Iterate(ppItr, v

in, (stin, win, Iin));
11 if vout = Reject then output Reject;
12 Compute r′A = PRF(KA, t);
13 Compute (sk′A, vk′A, vk′A,rej) = Spl.Setup(1λ; r′A);
14 Set mout = (vout, stout, wout, Iout);
15 Compute σout = Spl.Sign(sk′A,m

out);

16 Output s̃t
out

= (t+ 1, stout, vout, wout, σout), ãout
M←A = aout

M←A;

Step 3: Generating the initial configuration (m̃em
0
, s̃t

0
). Recall that a0

A←M = ⊥, a0
M←A = ⊥. Based on given

mem0, st0, the compilation procedure computes the initial configuration as follows.
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For each j ∈ {1, . . . , |mem0|}, it computes iteratively:

πj ← Acc.PrepWrite(ppAcc, ˆstorej−1, j)

ŵj ← Acc.Update(ppAcc, ŵj−1, j, xj , πj)

ˆstorej ← Acc.WriteStore(ppAcc, ˆstorej−1,, j,mem0[j])

Set w0 := ŵ|mem0|, and store0 := ˆstore |mem0|.
Compute σ0 as follows:

rA ← PRF(KA, 0)

(sk0, vk0)← Spl.Setup(1λ; rA)

σ0 ← Spl.Sign(sk0, (0, w0, v0))

Now we can define the initial configuration as

m̃em
0

= store0

s̃t
0

= (0, st0, v0, w0, σ0)

Final step. The compilation procedure returns Π̃ = ((m̃em
0
, s̃t

0
), F̃ ) as output.

Evaluation algorithm conf := Eval(Π̃) Upon receiving an obfuscated system Π̃, the evaluation algorithm
carries out the following:

Set ã0
A←M = ⊥. For t = 1 to T , perform following procedures until F̃ outputs a halting state s̃t

t∗ at that
halting time t∗:

Compute (s̃t
t
, ãtM←A)← F̃ (s̃t

t−1
, ãt−1

A←M);
Run (m̃em

t
, ãtA←M)← ãccess(m̃em

t−1
, ãtM←A), where ãccess is defined in Algorithm 2.

Parse m̃em
t∗

= memt∗ and s̃t
t∗

= (t∗, stt
∗
, vt
∗
, wt

∗
, σt
∗
). Output conf = (memt∗ , stt

∗
, at
∗
A←M, a

t∗
M←A) where

at
∗
A←M = at

∗
M←A = ⊥.

Algorithm 2: ãccess

Input : m̃em
in
, ãin

M←A = (Iin,Bin)

1 if ãin
M←A = ⊥ then output m̃em

out
= m̃em

in;
2 Compute m̃em

out ←WriteStore(ppAcc, m̃em
in
, (Iin,Bin));

3 Compute ((Iout,Bout), πout)← PrepRead(ppAcc, m̃em
out
, Iin);

4 Output (m̃em
out
, ãout

A←M = ((Iout,Bout), πout));

Efficiency Let |F | be the description size of program F , n be the description size of initial memory mem0,
computation system Π proceeds with time and space bound T and S. Assuming iO is a circuit obfuscator with
circuit size |iO(C)| ≤ poly(|C|) for given circuit C. Our CiO-RAM has following complexity:

Compilation time is Õ(poly(|F |) + n).
Compilation size is Õ(poly(|F |) + n).
Evaluation time is Õ(T · poly(|F |)).
Evaluation space is Õ(S), where S term is needed by F intrinsically.
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Theorem 5.2. Assume iO is a secure indistinguishability obfuscation for circuits scheme, PPRF is a secure
puncturable PRF scheme, Itr is a secure iterator, Acc is a secure positional accumulator scheme, and Spl is a
secure splittable signature scheme; then, our construction of CiO is a computation-trace indistinguishability
obfuscation scheme with respect to class PRAM.

The proof can be found in Appendix B.1.

6 Constructing CiO in the PRAM Model (CiO-PRAM)

In this section we construct a computation-trace indistinguishability obfuscation scheme CiO in the PRAM
model. Our final scheme CiO-PRAM is quite technical. For facilitating presentation, we will illustrate our
main ideas gradually via three attempts.

First, as a naı̈ve attempt, we directly extend our CiO-RAM scheme into that in the PRAM model. However,
we face two technical challenges: (i) In our CiO-RAM construction, memory accumulator has been used. We
therefore need a new strategy to efficiently compute the memory accumulator digest in the parallel setting. (ii) In
the PRAM model, for each CPU step, its output depends on all previous CPU steps (and further depends on their
own previous steps). We therefore need to track these dependencies in the security proof. For efficiency, we are
unable to hardwire too much information, so the dependencies pose a significant challenge. In Section 6.1, we
will formalize the dependency problem.

In our second attempt, we focus on the dependency problem raised in the attempt above. Instead of directly
providing a solution in the standard PRAM model, we here consider a special model, memoryless PRAM
model mPRAM, which has no memory component but allows communications between CPUs. To address the
dependency issue in constructing CiO in the mPRAM model, we introduce the “branch-and-combine” tech-
nique, which allows us to maintain an accumulator that stores m CPU states and messages, without scarifying
efficiency too much. In Section 6.5, we will present this technique.

Finally, in our full-fledged attempt, we extend the above mPRAM model solution to CiO in the standard
PRAM model. In addition to the branch-and-combine technique, we also use parallel accumulator to compute
accumulator digest in the standard PRAM model. See Section 6.6 for more details.

Section Outline In the next subsection (Section 6.1), we will describe the naı̈ve attempt based on CiO-RAM
and briefly discuss the reason why it fails. Specifically, we show that the dependency problem exists in parallel
setting. The remainder of this section will be organized as follows. For completeness, we list the building
blocks for our constructions in Section 6.2. Among the building blocks, we will introduce in Section 6.3 a new
primitive named Topological Iterators, which will replace the (ordinary) iterator in our construction. Then, we
will present parallel accumulator as the solution to the first challenge (i) in Section 6.4. Next, as a warm-up
to overcome the second challenge (ii), a construction of CiO for memoryless model mPRAM is shown by
using a new branch-and-combine technique in Section 6.5, with its security proof in Appendix B.3. Finally, in
Section 6.6, we will show the full-fledged construction of CiO for (standard) PRAM, with its security proof
sketched in Appendix B.4.

6.1 Generalizing CiO-RAM to CiO-PRAM: A “Pebble Game” Illustration

To construct CiO-PRAM, a trivial solution is to convert PRAM computation Π to RAM computation Π′ and to
obfuscate Π′ with CiO-RAM in a black-box manner. However, this convert-to-RAM solution is not acceptable
because it has Ω(m) multiplicative parallel time overhead, which does not benefit from parallelization. To
enjoy the benefits of parallel computation, our goal is to construct an efficient CiO-PRAM such that the parallel
time overhead is minimized. In general, we require the parallel time overhead to be O(logm).

An attempt to build efficient CiO-PRAM is through the generalization of CiO-RAM directly. Let Π be a
PRAM computation composed of anm-CPU PRAM program P and an input x. The program P takes CPU id i
as input and emulates the i-th CPU. Then we can obfuscate P associated with i and the input x by the same
way as in CiO-RAM. Finally, the evaluation algorithm runs m copies of the obfuscated program in parallel
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with different CPU id to emulate the PRAM computation. It preserves the parallel runtime of the evaluation
algorithm.

The construction of CiO-RAM (presented in Section 5) follows KLW construction, which utilizes split-
table signature, iterator, and accumulator. To realize CiO-PRAM, we need to address the issue of updating
accumulator digest in the parallel setting, i.e., m CPUs can perform parallel writes to different memory cells,
and they need to obtain updated accumulator digest in some way. However, we face the following distributed
algorithm problem for updating the accumulator digest: There are m CPU agents, where each CPU i holds
the same accumulator digest w, memory cell index `i, write value vali, and an authentication path πi for `i
(received from the evaluation algorithm) as its inputs, with the goal of computing the updated accumulator
digest w′ with respect to write instructions {(`i, vali)}i∈[m]. We need a distributed algorithm to solve this prob-
lem with oblivious communication pattern, poly log(m) rounds, and per-CPU space complexity poly log(m),
where oblivious communication requires the sender and receiver of any message be public information and
independent from the input. With oblivious communication, a message can be signed and verified with a fixed
pair of signature keys, which authenticates this message just by signatures to CPU states. This is a non-trivial
problem, but not too difficult. Our solution (of using parallel accumulator) is to rely on an oblivious update
protocol with desired complexity, which is based on existing oblivious aggregation and oblivious multicasting
protocols [BCP16]. For more details, we will introduce the parallel accumulator in Section 6.4.

With the above update protocol, each CPU can concurrently obtain the correct accumulator digest, and then
we have a construction that emulates the PRAM execution with poly log(m) overhead in both CPU program
size and parallel time complexity. Then, it seems that we can directly generalize the proof techniques of CiO-
RAM to prove the security of CiO-PRAM. However, if we were to prove the security of the above construction,
in the proof, we will still need to hardwire all m CPU states (at some time step t) in some intermediate hybrids.
As a result, the obfuscated program must be padded to size Ω(m), which leads to inefficient constructions
because each step takes time Ω(m) and the total parallel time is multiplied by a factor of Ω(m). The reason
why hardwiring Ω(m) information in the program is necessary is illustrated in the following “pebble game”.

Pebble Game Illustration A pebble game is a type of mathematical game played by moving pebbles on a
directed graph. The pebble game that involves placing pebbles on the nodes of a directed acyclic graph DAG
according to certain rules which are given as follows.

A step of the game is either placing a pebble on an empty node of DAG or removing a pebble from a
previously pebbled node.
A pebble can be added to node v only if either (1) all its predecessors u, such that u→ v, have pebbles, or
(2) v is a source node.
The pebble on a node v can be removed only if all its successors u′, such that v −→ u′, had been traversed
by some other pebbles.
The winning condition of the game is to successively put pebbles at each node to traverse the whole graph
(in any order) while minimizing the number of pebbles that are ever on the graph simultaneously.
We rely on an (oversimplified) interpretation of the security proof as a pebble game, to show why hard-

wiring m CPU states is necessary. Firstly, we show that the pebble game illustration is applicable to the KLW
proof techniques in proving the security of CiO-RAM, where a formal proof has already presented in Ap-
pendix B.1. Conceptually, we can interpret each time step t as a node and the connection of two time steps as
an edge. The computation will be transformed into a line path, and thus the KLW proof techniques (Hyb0,2,i

and Hyb0,2′,i) can be viewed as a way to put and move a check-point (pebble) on the nodes. When the pebble
is placed on a node t, we obtain an information theoretic guarantee for the correctness of the input/output of
the t-th step computation, such that the input/output values from an honest evaluation must pass the verifica-
tion. This allows us to locally change the program code at time step t, so that the pebble can be moved forward
or backward along the computation path. Very interestingly, although the computation path is long, moving
a pebble corresponds to hardwiring only O(1) information in the hybrids, independent of the time bound T .
In Appendix B.1, the security proof of CiO-RAM has shown how to replace program P0 to P1 gradually in
this way.
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However, in the PRAM setting, the computation trace becomes a directed layered graph with width m,
where each layer corresponds to a time step and

each node is indexed by a time t and a CPU id i,
there is a directed edge (u, v) if node u outputs either a CPU state or a communication message as input to
node v.

Note that an edge only exists between the nodes in neighboring layers, which means that an edge denotes some
dependency between the two nodes in the actual computation. In particular, nodes u and v can be either the
same CPU depends on its previous state or different CPUs such that v receives a message from u.19

Suppose that we generalize the proof techniques of KLW to this setting in a straightforward manner, which
is analogous to putting and moving check-points along the graph. By moving check-points, we introduce the
check condition which checks the output mout of a computation step u against the hardwired value mu. The
general pebble game rules bring a constraint that we can only put one pebble on a node v if, for every u such
that (u, v) ∈ E, a pebble is put on each node u. This is analogous to that adding another hardwired value mv

must depend on all its input. As such, we can only remove a check-point after we have put check-points on
all its outgoing neighbors, which is analogous to the hybrid removing the hardwired signing key and CPU
output state mu. In general, placing (or removing) a pebble on (or from) node u is analogous to hardwiring
(or un-hardwiring) the output of computation step u in an intermediate hybrid program. Recall that our goal of
the security proof is to traverse all computation steps, and to locally change the program while minimizing the
total number of hardwired values for any intermediate hybrid. Accordingly, in the corresponding pebble game
abstraction, the goal is to traverse the whole graph while minimizing the total number of pebbles (a.k.a. pebble
complexity) on the graph.

Using the pebble game abstraction, the graph of OUpdate is partially depicted in Figure 1. To win this
game, the straightforward solution is to put m pebbles on all m CPUs of the first column, and then placing
pebbles to the next column while removing from the first greedily whenever possible. We can remove all
pebbles on the first column when its next is filled with pebbles, since any column only depends on its previous
one. The pebble complexity is at most 2m. Unfortunately, we have not found a solution yet to winning
this pebble game with pebble complexity less than the number of CPUs m. The straightforward solution
implies an inefficient CiO scheme with encoding of size overhead Ω(m). However, we provide a generic
transformation that converts any PRAM program with oblivious communication to a special class of PRAM
program with logm pebble complexity (with logm parallel time overhead in addition). Such transformation
allows us to construct efficient CiO-PRAM programs.

Branch and Combine Transformation Here we very briefly describe the transformation. It is motivated
by the observation that a hardwired value (and thus a pebble) is corresponding to the signature signing and
verifying a CPU state or communication, and in a sense we can replace such verification with an additional
accumulator structure. Furthermore, computing the digest of the CPU accumulator is much simpler than that
of memory accumulator, since each CPU computes directly with its fixed neighbor without additional commu-
nication. We divide the transformation into two stages: branch and combine.

At the beginning, all m input CPU states and messages are stored in a random access buffer buff , and then
the evaluator is required to provide each state sti and message comi with a proof πi to each CPU. All CPUs
receive as input the same signed accumulator digest wbuff of the buff , their corresponding states and mes-
sages with proofs. Each CPU then verifies accumulator digest with signature, verifies state and message with
accumulator digest and proof, computes its output state and message, and signs the output with the signature
scheme. In this branch stage, these procedures have one signature as input but m different signatures as output.

Now the evaluator has m new signed states and messages, but the CPU steps at the next branch stage
require a new signed accumulator digest w′buff . Our next goal is to design a series of CPU steps to compute
such digest and its signature, which should be verifiable at the next stage by the CPUs but unforgeable by the

19We assume here we have the protocol to update the memory accumulator digest (Section 6.4) in the parallel setting. Although
memory accesses lead to dependencies between two steps, they are verified by memory accumulators, and thus are not hardwired in
hybrid programs. Therefore we do not consider memory accesses in this pebble game.
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Figure 1: A graph showing partially the computation dependencies of OUpdate with 4 CPUs, which needs
4+2 pebbles to traverse: Solid black arrows denote CPU state transitions, and dashed blue arrows denote
communications between two CPUs.
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Figure 2: Illustrating an evaluation of “branch and combine” program: each node is a step computation of
either Fbranch or Fcombine with its CPU id denoted by a binary string, each arrow denotes dispatching an output
to the input of another node; dummy computations are omitted, and dispatching is performed in the evaluator.
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evaluator. Intuitively, we construct a CPU program following the Merkle-tree-like structure, which takes a pair
of signed inputs and outputs one signed output in each step (Figure 2). From a leaf to the root, the program
indeed computes the whole tree structure of buff ′ including the tree root, which is exactly the accumulator
digest w′buff , and each step has output signed with a signature. Now that we have this new signed accumulator
digest, the evaluator can start the next branch stage iteratively. In this combine stage, there arem leaf signatures
at the beginning but only one root signature as the final output.

To analyze our branch and combine technique, we observe that those states and communications in the
original program are transformed into buff , and dependencies are simple. In the pebble game abstraction, it
is easy to traverse from a root in a combine stage to the next root via post order, where its pebble complexity
is logm. Specifically, our strategy is to merge two sibling pebbles into their parent node as soon as possible.
There is an invariant that each layer in the binary tree has at most 2 pebbles. Multiplying logm overhead of
branch and combine transformation with logm pebble complexity, the overall overhead isO(log2m) in parallel
time. As a result, it significantly improves the naı̈ve solution. Also note that the evaluation of the branch and
combine program is parallel, but the pebble game (and thus the series of hybrids) is sequential because it is
not possible to traverse Tm nodes with only logm pebbles in T moves. We will describe branch-and-combine
construction in the simpler mPRAM model in Section 6.5, and then prove its security in Appendix B.3.

6.2 Building Blocks

In our CiO construction in Section 6.5, we will use several building blocks: accumulator, topological iterator,
splittable signature, puncturable PRF, and indistinguishability obfuscation. Topological iterator is a new build-
ing block and we will investigate it in detail in next subsection. The formal definitions for other building blocks
can be found in Appendix A. We next define the parameters for the building blocks we will use in our CiO
construction.

Accumulator scheme Acc = Acc.{Setup,SetupEnforceRead, SetupEnforceWrite,PrepRead,PrepWrite,
VerifyRead,WriteStore,Update} with message space {0, 1}`msg and accumulated value space {0, 1}`Acc .
Topological Iterator scheme TItr = TItr.{Setup,SetupEnforceIterate, Iterate} with message space
{0, 1}`Acc+`msg and iterated value space {0, 1}`Itr bits. (Section 6.3)
Splittable signature scheme Spl = Spl.{Setup,Sign,Verify, Split,AboSign} with message space
{0, 1}`Itr+`Acc+`msg ; We will assume Spl.Setup uses `rnd bits of randomness.
Puncturable PRF scheme PPRF = PPRF.{Setup,Puncture,Eval} with key space K, punctured key space
Kpunct, domain [T ], and range {0, 1}`rnd .
Indistinguishability obfuscation scheme iO for circuits.
Parallel accumulator scheme (Section 6.4).

6.3 Topological Iterators

In this section, we will define a primitive named Topological Iterators based on the original KLW iterator
(Appendix A.3.1). We will demonstrate a construction for this new primitive by using PKE , puncturable PRF
and iO, and then prove its security. The main difference between our iterators and KLW iterators is that, we
allow iterating two states, instead of one, into a new state.

Syntax Let poly be any polynomial. An iterator TItr with message spaceMλ = {0, 1}poly(λ) and state space
Sλ consists of four algorithms - TItr.Setup, TItr.SetupEnf, TItr.Iterate, and TItr.Iterate2to1 defined below.

TItr.Setup(1λ, N): The setup algorithm takes as input the security parameter λ (in unary), and an integer
bound N (in binary) on the number of iterations. It outputs public parameters ppItr and an initial state
v ∈ Sλ.
TItr.SetupEnf(1λ, N,DAG): The enforced setup algorithm takes as input the security parameter λ (in
unary), an integer bound T (in binary), and a directed acyclic graph DAG which has following properties:
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1. DAG = (N , E , source, sink) is a directed acyclic graph with |N | < N ;

2. Single “source” node and single “sink” node;

3. Each node (except source) has in-degree 1 or 2;

4. Each node n has a unique message value mn ∈Mλ. This is important for the “enforcing” property.

It outputs public parameters ppItr and an initial state v ∈ Sλ.
TItr.Iterate(ppItr, v,m): The iterate algorithm takes as input the public parameters ppItr, a state v, and a
message m ∈Mλ. It outputs a state vout ∈ Sλ.
TItr.Iterate2to1(ppItr, vl, vr,m): The iterate algorithm takes as input the public parameters ppItr, two states
(vl, vr), and a unique message m ∈Mλ. It outputs a state vout ∈ Sλ.

Security Let TItr = TItr.{Setup,SetupEnforceIterate, Iterate, Iterate2to1} be an iterator with message
spaceMλ and state space Sλ. We require the following notions of security.

Definition 6.1 (Indistinguishability of Setup). An iterator TItr is said to satisfy indistinguishability of Setup
phase if any PPT adversaryA’s advantage in the security game Exp-Setup-Itr(1λ,TItr,A) is at most negligible
in λ, where Exp-Setup-Itr is defined as follows.

Exp-Setup-Itr(1λ,TItr,A)

The adversary A chooses a bound N ∈ Θ(2λ) and sends it to challenger.
A sends DAG = (N , E , source, sink) to the challenger.
The challenger chooses a bit b. If b = 0, the challenger outputs (ppItr, v) ← TItr.Setup(1λ, N). Else, it
outputs (ppItr, v)← TItr.SetupEnf(1λ, N,DAG).
A sends a bit b′.

A wins the security game if b = b′.

Definition 6.2 (Enforcing). Consider any λ ∈ N, N ∈ Θ(2λ),DAG = (N , E , source, sink). Let (ppItr, v) ←
TItr.SetupEnf(1λ, N,DAG) and vn = TItr.Iterate2to1(ppItr, v(l,n), v(r,n),mn) for all n ∈ N \ {source}.
TItr = (TItr.Setup,TItr.SetupEnf,TItr.Iterate2to1) is said to be enforcing if

vsink = TItr.Iterate2to1(ppItr, vl, vr,m)⇒ (vl, vr,m) = (vl,sink, vr,sink,msink).

Note that this enforcing property is an information-theoretic property.

6.3.1 Construction

TItr.Setup(1λ, T ): The setup algorithm chooses (PK,SK) ← PKE .Gen(1λ) and puncturable PRF key
K ← PRF.Setup(1λ). It sets ppItr ← iO(prog{K,PK}), where prog is defined in Algorithm 3. Let
ct← PKE .Encrypt(PK, 0). The initial state v = ct. It outputs (ppItr, v).

Algorithm 3: prog

Input : vl, vr,m ∈Mλ

Data : Puncturable PRF key K, PKE public key PK
1 Compute r ← PRF(K, (vl, vr,m));
2 Let ct← PKE .Encrypt(PK, 0; r);
3 Output vout = ct;

TItr.SetupEnf(1λ, T,DAG): The setup algorithm chooses (PK,SK)← PKE .Gen(1λ) and puncturable
PRF key K ← PRF.Setup(1λ). Let DAG = (N , E , source, sink). ∀n ∈ N , compute vn as follows.

1. ∀n ∈ N , vn ← ⊥.

2. The initial state vsource = PKE .Encrypt(PK, 0).
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3. ∀n ∈ N with definite in-edge, compute vn. That is,

∀n ∈ N s.t. (vn = ⊥) ∧ (∃(l, n), (r, n) ∈ E) ∧ (vl 6= ⊥) ∧ (vr 6= ⊥),

rn ← PRF(K, (vl, vr,mn)), and vn ← PKE .Encrypt(PK, 0; rn).

4. Repeat previous step until ∀n ∈ N , vn 6= ⊥.

Let (lsink, sink), (rsink, sink) ∈ E be the two edges directed to sink. It computes a punctured key K ′ ←
PRF.Puncture(K, (vl,sink, vr,sink,msink)), chooses r ← {0, 1}r and sets ctsink = PKE .Encrypt(PK, 1; r).
Finally, for progEnforce which is defined in Algorithm 4, it computes the public parameters ppItr ←
iO(progEnforce{sink, (vl,sink, vr,sink,msink), ctsink,K

′, PK}). It outputs (ppItr, vsource).

Algorithm 4: progEnforce

Input : vl, vr,m ∈Mλ

Data : sink, states (vl,sink, vr,sink), message msink, ctsink, puncturable PRF key K ′, PKE public key
PK

1 if (vl, vr,m) = (vl,sink, vr,sink,msink) then
2 Output ctsink;

3 Compute r ← PRF(K, (vl, vr,m));
4 Let ct← PKE .Encrypt(PK, 0; r);
5 Output vout = ct;

TItr.Iterate(ppItr, v,m): simply outputs ppItr(v,⊥,m).
TItr.Iterate2to1(ppItr, vl, vr,m): simply outputs ppItr(vl, vr,m).

6.3.2 Security

We show that the construction described in Section 6.3.1 satisfies indistinguishability of setup (Definition 6.1)
and enforcing property (Definition 6.2).

Lemma 6.3 (Indistinguishability of Setup). Assuming iO is a secure indistinguishable obfuscator, PRF is a
selectively secure puncturable PRF, and PKE is a semantically-secure public key encryption scheme, any PPT
adversary A has only negligible advantage in the Exp-Setup-Itr game.

The proof can be found in Appendix B.2.

Lemma 6.4 (Enforcing). Assuming PKE is a perfectly correct public key encryption scheme, then TItr =
(TItr.Setup,TItr.SetupEnf,TItr.Iterate,TItr.Iterate2to1) is enforcing.

Proof. This follows directly from the correctness of PKE because the sink node has vsink being an encryption
of 1 but all other nodes are encryption of 0.

6.4 Parallel Accumulator

Consider the (standard) PRAM model in whichm CPUs have random access to a shared memory atm locations
at each time step. An intuitive approach is to extend the construction of CiO-RAM into the PRAM model,
where each bit read by each CPU is verified against the accumulator value (a.k.a. digest) w. The verification is
straightforward and can be run in parallel. The problem, however, is that the digest w must be updated correctly
after each bit written by each CPU (in order to verify the next bit to be read). Therefore, suppose all m CPUs
write in a time step, the new digest w depends on all m newly written bits, which may take roughly m (total)
steps to update w. The trivial solution which sequentially updates w with each m bits obviously introduces
an unacceptable Ω(m) multiplicative parallel time overhead. To retain the benefits of using m CPUs, we must
design a clever update mechanism with at most O(logm) overhead.

Recall that by our assumption the m CPUs read and write synchronously and alternatively. Consider a time
step when m synchronized writes occur. Our goal here is to let each CPU, with their own bits to be written,
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exchange information with each others and concurrently compute the same digest w. Ignoring the steps where
the bits are actually written to the memory, the procedures for computing the digest alone form a memoryless
PRAM computation, which can be obfuscated using techniques in the construction of CiO for memoryless
PRAM.

To argue the security of this approach, we observe that the whole accumulator tree structure is accessible
to the malicious evaluator/adversary, and thus it is not necessary to hide any intermediates while updating. In
fact, the CPUs compute and communicate with their sequences forming a binary tree bottom-up, and leak a
partially updated memory to the decoder at each level of the tree. However, any partially updated memory does
not give the adversarial decoder additional information because it can always compute these values from the
previous memory contents and the newly written bits. For correctness, as long as the CPU states and messages
are authenticated by CiO, any adversary is not able to forge a malicious message or digest, and hence the CPUs
will eventually agree on the same digest w correctly.

The construction of CiO for memoryless PRAM requires the communication pattern between CPUs to be
oblivious, which means the receiver of each communication is uniquely determined by the iteration counter t
and the sender CPU id. In the following Section 6.4.1, we recall the oblivious aggregation and oblivious
multicasting protocols from [BCP16] to build oblivious communication between the CPUs. We then use these
protocols to construct the mechanism for computing the digest w in Section 6.4.2.

6.4.1 Oblivious Aggregation and Multicasting

To simplify the “updating” algorithm, we apply two PRAM primitives, namely oblivious aggregation and
oblivious multicasting, which are introduced in [BCP16] and described below for completeness. Both primitive
are deterministic PRAM algorithms that run with only CPU states and oblivious communication. By oblivious
communication, we mean that the source and destination of all messages are specified by algorithm but not
dependent on the input. The functionality and complexity are specified in the following definitions.

Oblivious Aggregation OblivAgg is a procedure satisfying the following aggregation goal with communica-
tion patterns independent of the input, using only Õ(poly log(m)) local memory and communication per CPU,
in only Õ(poly log(m)) sequential time steps.

Input: Each CPU i ∈ [m] holds (keyi, datai). Let K =
⋃
{keyi} be the set of distinct keys. We assume that

any (subset of) data associated with the same key can be aggregated by an aggregation function Agg to a
short digest of size at most poly(|datai|, logm).

Goal: Each CPU i outputs outi such that the following holds.

for every key ∈ K, there exists unique agent i with keyi = key such that outi = (rep, key, aggkey),
where aggkey = Agg({dataj : keyj = key}).
for every remaining agent i, outi = (dummy,⊥,⊥).

Oblivious Multicasting OblivMCast is a procedure satisfying the following multicasting goal with commu-
nication patterns independent of the inputs, using only Õ(poly log(m)) local memory and communication per
CPU, in only Õ(poly log(m)) sequential time steps. Namely, a subset of CPUs must deliver information to (un-
known) collections of other CPUs who request it. This is abstractly modelled as follows, where keyi denotes
which data item is requested by each CPU i.

Input: Each CPU i holds (keyi, datai) with the following promise. Let K =
⋃
{keyi} be the set of distinct

keys. For every key ∈ K, there exists a unique agent i with keyi = key such that datai 6= ⊥; let datakey

be such datai.

Goal: Each agent i outputs outi = (keyi, datakeyi).
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6.4.2 OUpdate Algorithm

In the following, we construct a distributed Acc.OUpdate algorithm (Algorithm 5) to be run with m CPUs.
Each CPU i takes i, loci, bi, πi as input, communicates with other CPUs obliviously using OblivAgg and
OblivMCast defined above, and outputs the same digest w of the whole updated memory, where for CPU i

loci, bi are the writing location and value, and
πi is the authentication path (proof) of the writing location loci.
Acc.OUpdate introduces a multiplicativeO(logS) parallel time overhead in the worst case where all CPUs

write in parallel m different values at distinct locations of the size-S memory. Acc.OUpdate traverses each
authentication path πi in a bottom-up manner. For each node in πi, it checks if another CPU possesses a fresh
sibling node by the OblivAgg protocol, which exchanges information between all CPUs and yields a pair of
fresh nodes (nl, nr) that may depend on one or more CPUs, to the representative CPU (Algorithm 6). All CPUs
then share the pair of fresh nodes by OblivMCast from those representative CPUs, and each CPU computes the
updated parent node of the updated pair directly by the public parameter ppAcc. With the updated parent node,
the procedure is able to continue with the next node in πi iteratively. The procedure is finished when the root
node of πi is updated.

Some additional notations used in Acc.OUpdate are listed in Table 2.

Notations
z The depth of node to be updated in π
locx The x bit prefix of loc
loc[x] The x-th bit of loc (loc[−1] := ε)
loc[x] = 0 (loc[x] = 1) Implies that the left (right) node should be updated
π[x] The pair of nodes (nl, nr)x at depth x such that π[−1] := root
π[x][0] (π[x][1]) The left node nl (right node nr) in the pair (nl, nr)x such that π[−1][ε] := root
flag = Done Implies that both nodes (nl, nr) are fresh in aggdata

Table 2: Additional notations for the OUpdate protocol: We omit subscription i and use loc, b and π in OUpdate
(Algorithm 5).

Algorithm 5: Acc.OUpdate

Input : i, loc, b, π
Output : w
Data : ppAcc,mem

1 Parse π = (root, (nl, nr)0, . . . , (nl, nr)MemAccDepth−1);
2 Let the leaf node π[MemAccDepth− 1][loc[MemAccDepth− 1]]← b;
3 for z ← MemAccDepth to 0 do
4 keyi ← locz−1;
5 (rep, keyi, aggdata)← Run OblivAgg with input (i, keyi, (loc[z], π[z][0], π[z][1])) and aggregation

function Agg;
6 (flag, nl, nr)← Run OblivMCast with input (keyi, aggdata);
7 π[z − 1][loc[z − 1]]← Acc.Combine(ppAcc,mem, nl, nr, locz−1);

8 return root;

6.4.3 Notation of OUpdate Compiler

In this sub-section, we describe the notations used in describing how to compile a PRAM computation into a
memory checking PRAM computation with protocol OUpdate described above. Without loss of generality, we
assume that there is a step function FOUpdate which runs the protocol OUpdate.
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Algorithm 6: Agg

Input : datatemp1, datatemp2

Output : aggdata
1 if datatemp1 has the form (Done, nl, nr) then
2 // If any data is already done, return it.
3 return datatemp1;

4 if datatemp2 has the form (Done, nl, nr) then
5 return datatemp2;

6 if datatemp1 = datatemp2 has the form (loc[z], nl, nr) then
7 // If both data are identical, keep any one.
8 return datatemp1;

9 if datatemp1 has the form (loc[z]1, nl,1, nr,1) and datatemp2 has the form (loc[z]2, nl,2, nr,2) then
10 // If two data differs, merge by their freshness and mark as done.
11 if (loc[z]1 > loc[z]2) then
12 Swap (loc[z]1, nl,1, nr,1), (loc[z]2, nl,2, nr,2);

13 return (Done, nl,1, nr,2);

Given a PRAM computation system Π with synchronous and alternative READ and WRITE,

Π =
(

(mem0, {st0
k, a

0
k←M, a

0
M←k}mk=1), F

)
,

and step function FOUpdate described above, we define Πcheck = AccCompile(Π,Acc.OUpdate{ppAcc,mem}),
which verifies data read from memory with accumulator and use Acc.OUpdate to compute a new accumulator
digest. By the assumption of synchronous and alternative READ and WRITE, we simply assume F always reads
at even rounds and writes at odd rounds, and thus Πcheck has a straightforward construction: repeatedly invokes
(i) step function F one reading round, (ii) step function F one writing round, (iii) step function FOUpdate a fixed
number DAcc of rounds. Specifically,

Πcheck =
(

(mem0, {št0
k, ǎ

0
k←M, ǎ

0
M←k}mk=1), Fcheck

)
,

where Fcheck is defined in Algorithm 7, št and ǎ are defined by augmenting the corresponding st and a from Π.
We can use Fcheck = AccCompile(F,Acc.OUpdate{ppAcc,mem}) to specify the compilation.

Fcheck has three major stages, which are READ, WRITE, and OUpdate.
In a READ state, it has no memory input and just invokes F , which issues a READ command.
In a WRITE state, the previous state must be READ. Therefore, Fcheck verifies the value read from memory
and invokes F , which issues a WRITE command.
In OUpdate states, Fcheck first verifies the proof πin against old accumulator digest. Then, it initializes
FOUpdate with the correct proof πin and runs FOUpdate stepwise to obtain the new accumulator digest.

These stages are controlled by the simple counter dAcc and the fixed running time DAcc, which is defined
implicitly by OUpdate.

6.5 Warm-up: Construction for CiO-mPRAM

As a warm-up, we construct CiO in the memoryless PRAM (mPRAM) model. Recall in Appendix A.1.3
that the mPRAM model is similar to the PRAM model except that it has no external memory, but oblivious
communication between pairs of CPUs is allowed. Formally, the class of distributed computation for mPRAM,
denoted by PmPRAM, is defined as follows:

Definition 6.5 (mPRAM Computation Class). PmPRAM is a class of distributed computation for mPRAM
with m agents without external memory where

37



Algorithm 7: Fcheck

Input : id, štin, ǎin = (bin, comin, πin)
Data : DAcc

1 Parse štin as ((stin
Π , stin

Acc), dAcc, b, w, loc);
2 if (dAcc = Read or dAcc = Write) then
3 (stout

Acc, comout)← (⊥,⊥);
4 if dAcc = Read then
5 Compute (stout

Π , (locout, bout))← F (id, stin
Π , b

in);
6 if stout

Π = Reject then output Reject;
7 Set štout = ((stout

Π , stout
Acc), Write, b

out, w, locout);

8 else
9 if Acc.VerifyRead(ppAcc,mem, w, (loc, bin), πin) = 0 then output Reject;

10 Compute (stout
Π , (locout, bout))← F (id, stin

Π , b
in);

11 if stout
Π = Reject then output Reject;

12 Set štout ← ((stout
Π , stout

Acc), 0, b
out, w, locout);

13 Set ǎout ← (comout, (locout, bout));

14 else
15 if dAcc = 0 then
16 if Acc.VerifyRead(ppAcc,mem, w, (loc, bin), πin) = 0 then output Reject;
17 Initialize stin

Acc with (loc, b, πin);

18 (stout
Acc, comout)← FOUpdate(id, stin

Acc, comin) ; // Execute FOUpdate iteratively
19 dAcc ← dAcc + 1;
20 if dAcc = DAcc then
21 Parse stout

Acc to obtain new accumulator digest wout;
22 dAcc ← Read;

23 else
24 Let wout = w;

25 Set štout ← ((stin
Π , stout

Acc), dAcc,⊥, wout,⊥);
26 Set ǎout ← (comout, (⊥,⊥));

27 return (štout, ǎout);
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the terminating time t∗ is bounded by T ;
the communication between agents is restricted in the sense that in each round t, each agent k is only
allowed to receive a single message ctk from agent src(t, k) where src is a public function, and the agent k
is allowed to at most send one message to other agent;
for all k ∈ [m], the state size |stk| is bounded by poly log(T );
for all k ∈ [m], the access commands are restricted to atM←k := ⊥ and atk←M := ⊥;
for all k ∈ [m], the initial communication messages are restricted to c0

k := ⊥.

Notations
m The total number of CPUs in a PRAM program
node A node contains (t, index, wst, wcom, v, σ)
src(·, ·) A function decides an oblivious communication

(e.g., at time t, idcpu(b) sends to idcpu(a), then src(t, idcpu(a))→ idcpu(b))
max-cpu(·) A mapping function, defined on index, outputs a leaf node:

If index is a leaf, max-cpu(index) = index.
If not, outputs the maximum leaf index from index’s descendants.

min-cpu(·) A mapping function, defined on index, outputs a leaf node:
If index is a leaf, min-cpu(index) = index.
If not, outputs the minimum leaf index from index’s descendants.

Ci,j A set of indices of internal nodes defined by an index j for t = i.
(For all index ∈ Ci,j , index < j and index’s parent /∈ Ci,j)

Mi,j A set of hardwired output messages corresponding to indices of Ci,j

Table 3: Additional notations for CiO in the mPRAM model

We now describe our scheme CiO = CiO.{Obf,Eval} in the mPRAM model. For readability, we first
introduce additional notations in Table 3. Our construction of CiO for mPRAM follows the structure of the
construction of CiO-RAM, except for the following differences. First, since there is no memory access in
the mPRAM model, no accumulator is needed for storing the memory content. However, we do need two
new accumulators to store the states and messages, as we wish to compress m states and messages into their
corresponding digests respectively. In order to compute these digests, the next step function F̃ of the obfuscated
program is split into the branch stage and the combine stage. The branch stage is essentially the first half of F̃ in
the construction of CiO-RAM, where the function verifies its inputs and performs the actual computation. The
steps for computing the digests are deferred to the combine stage, where the m CPUs collaboratively update
the digests for their states and messages.

The compilation procedure CiO.Obf can transform a given computation system Π in the memoryless
PRAM model, i.e., Π ∈ PmPRAM, into an obfuscated computation system Π̃, where

Π = ({st0
k}mk=1, F ), and

Π̃ = ((m̃em
0
, {s̃t

0
k}mk=1), F̃ ).

We note that for Π ∈ PmPRAM, the variables mem, ak←M, aM←k are not defined.

Compilation procedure Π̃← CiO.Obf(1λ,Π): The compilation procedure Obf() consists of several steps.
Step 1: Generating parameters. A set of parameters will be generated:

KA ← PRF.Setup(1λ)

(ppAcc,st, ŵst,0, ˆstorest,0)← Acc.Setup(m)

(ppAcc,com, ŵcom,0, ˆstorecom,0)← Acc.Setup(m)

(ppItr, v
0)← TItr.Setup(T )
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Step 2: Generating stateful algorithms F̃ . Based on the parameters T, ppAcc,st, ppAcc,com, ppItr,KA generated
above, as well as the program F , we define the program F̂ in Algorithm 8. Here F̂ executes internal pro-
grams Fbranch (Algorithm 9), which in turn executes F , or Fcombine (Algorithm 10) depending on its input.

Similar to the program F̂ (Algorithm 1) in the construction of CiO-RAM, Fbranch first verifies its input,
performs the actual computation of F , and authenticates its output. The communication commands of F are
interpreted as access commands in the obfuscated program, and will be accumulated to the corresponding
memory accumulator. The difference is that here updating the accumulator is deferred to the combine stage
of F̂ defined in Fcombine, and the obfuscated CPU state s̃t is never signed or verified by signature.

Then, m copies of Fcombine will be executed multiple rounds so as to combine the m newly accumulated
value into a common digest. At the first iteration of Fcombine, each pair of neighboring CPUs form a group
to combine their accumulated access commands into a common value in the parent node. Then, each pair of
neighboring groups will form a larger group to combine their values into a common parent node. This process
will continue until a common root node is reached, so that the program F̂ will resume to the branch stage.

The compilation procedure then computes an obfuscation of the program F̂ . That is, F̃ ← iO.Gen(F̂ ).

Algorithm 8: F̂
// for simplicity, we drop the subscripts from ãin

idcpu←M and ãout
M←idcpu

, and use ãin and ãout respectively

Input : s̃t
in

= (stin, idcpu, root node), ãin

1 if stin = (halt, ·) then
2 Output Reject;

3 else if root node 6= ⊥ then
4 Compute (s̃t

out
, ãout) = Fbranch(s̃t

in
, ãin);

5 else
6 Compute (s̃t

out
, ãout) = Fcombine(s̃t

in
, ãin);

7 Output (s̃t
out
, ãout);

Step 3: Generating the initial configuration (m̃em
0
, {s̃t

0
k}mk=1). Recall that c0

k = ⊥. Based on given states
st0

1, . . . , st0
m, the compilation procedure computes the initial configuration for the complied computation system

as follows.

For each j ∈ {1, . . . ,m}, it computes iteratively:

πj ← Acc.PrepWrite(ppAcc,st, ˆstorest,j−1, j − 1)

ŵst,j ← Acc.Update(ppAcc,st, ŵst,j−1, j − 1, st0
j , πj)

ˆstorest,j ← Acc.WriteStore(ppAcc,st, ˆstorest,j−1, j − 1, st0
j )

Set w0
st := ŵst,m, and store0

st := ˆstorest,m.
Set w0

com = ⊥ and store0
com = ˆstorecom,0 (w0

com is computed similarly as w0
st. However, since com0

j = ⊥
for all CPU j, w0

com = ⊥.)
Compute root node0 = (t, root index, w0

st, w
0
com, v

0, σ0) where t = 0, root index = ε, and w0
st, w

0
com,v0

are computed above. σ0 is computed as follows:

rA ← PRF(KA, 0)

(sk0, vk0)← Spl.Setup(1λ; rA)

σ0 ← Spl.Sign(sk0, (t, root index, w0
st, w

0
com, v

0))
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Algorithm 9: Fbranch

// for simplicity, we drop the subscripts from ãin
idcpu←M and ãout

M←idcpu
, and use ãin and ãout respectively

Input : s̃t
in

= (stin, idcpu, root node), ãin = (comin, πin
st , π

in
com)

Data : ppAcc,st, ppAcc,com, ppItr,KA

1 Parse root node as (t, root index, win
st , w

in
com, v

in, σin);
2 Let rA = PRF(KA, (t, root index));
3 Compute (skA, vkA, vkA,rej) = Spl.Setup(1λ; rA);
4 Let min = (t, root index, win

st , w
in
com, v

in);
5 if Spl.Verify(vkA,m

in, σin) = 0 then output Reject;
6 if Acc.VerifyRead(ppAcc,st, w

in
st , (idcpu, stin), πin

st ) = 0 then output Reject;
7 if Acc.VerifyRead(ppAcc,com, w

in
com, (src(t, idcpu), comin), πin

com) = 0 then output Reject;
8 Compute (stout, comout)← F (idcpu, stin, comin);
9 Compute vout = TItr.Iterate(ppItr, v

in, (t+ 1, idcpu, stin, comin, win
st , w

in
com));

10 if stout = Reject then
11 Output Reject;

12 else
13 Let r′A = PRF(KA, (t+ 1, idcpu));
14 Compute (sk′A, vk′A, vk′A,rej) = Spl.Setup(1λ; r′A);
15 Let mout = (t+ 1, idcpu, stout, comout, vout) and σout = Spl.Sign(sk′A,m

out);
16 Let nodeout = (t+ 1, idcpu, stout, comout, vout, σout);
17 Output s̃t

out
= (stout, idcpu,⊥), ãout = nodeout;

Now we compute the initial configuration as

m̃em
0

= (store0
st, store0

com)

s̃t
0
j = (st0

j , j, root node0)

Final step. Finally the compilation procedure returns the value Π̃ = ((m̃em
0
, {s̃t

0
k}mk=1), F̃ ) as output.

Evaluation algorithm conf := Eval(Π̃): Upon receiving an obfuscated system Π̃, the evaluator runs Algo-
rithm 11 and returns at the halting time t∗ the result

(m̃em
t∗
, {s̃t

t∗

k , ã
t∗
M←k}mk=1).

For each 1 ≤ k ≤ m, parse:

s̃t
t∗

k = (stt
∗
k , k, ·)

ãt
∗
M←k = (comt∗

k )

Return conf = {stt
∗
k , c

t∗
k = comt∗

k }mk=1.

Efficiency Let m be the number of CPUs, |F | be the description size of program F , n/m be the size of each
initial states st0

k for k ∈ [m], computation system Π proceeds with time bound T . We first note the circuit size
of F̂ is |F | + O(logm), where logm is the amount of hardwired information in some hybrid programs that
required in security proof. Please refer to Appendix B.3.2 for details. Assuming iO is a circuit obfuscator with
circuit size |iO(C)| ≤ poly|C| for given circuit C. Our CiO for mPRAM has following complexity:

Compilation time is O(poly(|F |) + n).
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Algorithm 10: Fcombine

// for simplicity, we drop the subscripts from ãin
idcpu←M and ãout

M←idcpu
, and use ãin and ãout respectively

Input : s̃t
in

= (stin, idcpu,⊥), ãin = (node1,node2)
Data : T, ppAcc,st, ppAcc,com, ppItr,KA

1 Parse nodeζ as (tζ , indexζ , wst,ζ , wcom,ζ , vζ , σζ) for ζ = 1, 2;
2 if t1 6= t2 then output Reject;
3 else let t = t1;
4 if t < 1 then output Reject;
5 if index1 and index2 are not siblings then output Reject;
6 Set parent index as the parent of index1 and index2;
7 for ζ = 1, 2 do
8 Let rA,ζ = PRF(KA, (tζ , indexζ));
9 Compute (skA,ζ , vkA,ζ , vkA,rej,ζ) = Spl.Setup(1λ; rA,ζ);

10 Let mζ = (tζ , indexζ , wst,ζ , wcom,ζ , vζ);
11 if Spl.Verify(vkA,ζ ,mζ , σζ) = 0 then output Reject;

12 Compute w′st = Acc.Combine(ppAcc,st, wst,1, wst,2,parent index);
13 Compute w′com = Acc.Combine(ppAcc,com, wcom,1, wcom,2,parent index);
14 Compute v′ = TItr.Iterate2to1(ppItr, (v1, v2), (t,parent index, wst,1, wcom,1, wst,2, wcom,2));
15 Let r′A = PRF(KA, (t,parent index));
16 Compute (sk′A, vk′A, vk′A,rej) = Spl.Setup(1λ; r′A);
17 Let m′ = (t,parent index, w′st, w

′
com, v

′);
18 Compute σ′ = Spl.Sign(sk′A,m

′);
19 Let parent node = (t,parent index, w′st, w

′
com, v

′, σ′);
20 if parent index = ε then
21 Output s̃t

out
= (stin, idcpu,parent node), ãout = ⊥;

22 else
23 Output s̃t

out
= (stin, idcpu,⊥), ãout = parent node;
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Algorithm 11: Eval: Evaluator of Π̃

Input : Π̃ = ((m̃em
0
, {s̃t

0
k}mk=1), F̃ )

1 Let zmax ← dlog(m)e be the length of m in binary;
2 for 1 ≤ t ≤ T do
3 Parse m̃em

t−1
= (storet−1

st , storet−1
com);

4 for 1 ≤ k ≤ m do
5 Compute (·, πt−1

st,k )← PrepRead(ppAcc,st, storet−1
st , k);

6 Compute (comt−1
k , πt−1

com,k)← PrepRead(ppAcc,com, storet−1
com, src(t− 1, k));

7 Let ãin
k ← (comt−1

k , πt−1
st,k , π

t−1
com,k) ;

8 Evaluate (s̃t
t,zmax

k , ãout
k )← F̃ (s̃t

t−1
k , ãin

k ) ; // Evaluate Fbranch

9 Parse ãout
k = (·, ·, stt,zmax

k , comt
k, ·, ·);

10 Let storetst[k]← stt,zmax

k , which stores stt,zmax

k in the k-th cell in storetst;
11 Let storetcom[k]← comt

k, which stores comt
k in the k-th cell in storetcom;

12 Let nodetk ← ãout
k ;

13 if all s̃t
t,zmax

k is halt state then
14 Let m̃em

t ← (storetst, storetcom);
15 for 1 ≤ k ≤ m do let s̃t

t
k ← s̃t

t,zmax

k ;
16 for 1 ≤ k ≤ m do let ãtM←k ← comt

k;
17 return (m̃em

t
, {s̃t

t
k, ã

t
M←k}mk=1);

18 for z ← zmax − 1 to 0 do
19 foreach k ∈ [m] do
20 Represent k − 1 in a binary string s(k − 1) of length zmax ;
21 Let kz be the prefix z bits of s(k − 1);
22 Let kz‖b be the binary string that kz concatenates bit b;

23 for 1 ≤ k ≤ m do
24 Let ãin

k ← (nodetkz‖0,nodetkz‖1);

25 Evaluate (s̃t
t,z
k , ã

out
k )← F̃ (s̃t

t,z+1
k , ãin

k ) ; // Evaluate Fcombine

26 Let nodetkz ← ãout
k ;

27 Let m̃em
t ← (storetst, storetcom) ; // Input to the next iteration

28 Let s̃t
t
k ← s̃t

t,0
k ;
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Compilation size is O(poly(|F |) + n).
Parallel evaluation time is O(T · poly(|F |)).
Evaluation space is O(m), which corresponds to keeping the CPU states of F during branch and combine.

Theorem 6.6. Assuming iO is a secure indistinguishability obfuscator, PRF is a selectively secure puncturable
PRF, TItr is a secure topological iterator, Acc is a secure accumulator, Spl is a secure splittable signature
scheme; then CiO is a secure computation-trace indistinguishability obfuscation with respect to PmPRAM.

Proof can be found in Appendix B.3.

6.6 Construction for CiO-PRAM

Finally, we construct CiO in the (standard) PRAM (PRAM) model. A PRAM consists of m CPUs running si-
multaneously with random access to a shared memory, but without communication with each others. Formally,
the class of distributed computation for PRAM, denoted by PPRAM, is defined as follows:

Definition 6.7 (PRAM Computation Class). PPRAM is a class of distributed computation systems for PRAM
with m agents (a.k.a. CPU) 1, . . . ,m and a shared memory M where

the terminating time t∗ is bounded by T ;
the communication between agents are not allowed, i.e., ctj←k := ⊥ for all t ∈ [t∗] and for all j, k ∈ [m];
the memory size |mem| is bounded by S;
for all k ∈ [m], the state size |stk| and the communication buffer sizes |ak←M| and |aM←k| are bounded by
poly log(T );
for all k ∈ [m], the initial access commands are restricted to a0

k←M := ⊥ and a0
M←k := ⊥;

for all k ∈ [m], the initial states are restricted to st0
k := ⊥.

Our construction of CiO-PRAM is very similar to that of CiO for mPRAM except that Fbranch now also
takes as input a bit read from the memory with its proof, and outputs a bit to be written to some memory location.
Thus, as for CiO-RAM, the evaluator in addition maintains an accumulator for storing the actual memory
content. Correspondingly, instead of executing F directly, Fbranch executes another program called Fcheck

which encapsulates F and the oblivious update mechanism described above.
We next describe in details our scheme CiO = CiO.{Obf,Eval} in the PRAM model. The compilation

procedure CiO.Obf can transform a given computation system Π ∈ PPRAM into an obfuscated computation
system Π̃, where

Π = (mem0, F ), and

Π̃ = ((m̃em
0
, s̃t

0
), F̃ ).

Compilation procedure Π̃← CiO.Obf(1λ,Π): We provide the details of the compilation procedure Obf()
which consists of several steps as follows.

Step 1: Generating parameters. The compilation procedure computes the following parameters for the obfus-
cated computation system:

KA ← PRF.Setup(1λ)

(ppAcc,mem, ŵmem,0, ˆstoremem,0)← Acc.Setup(m)

(ppAcc,st, ŵst,0, ˆstorest,0)← Acc.Setup(m)

(ppAcc,com, ŵcom,0, ˆstorecom,0)← Acc.Setup(S)

(ppItr, v
0)← TItr.Setup(T )
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Step 2: Generating stateful algorithms F̃ . Based on the parameters T, ppAcc,mem, ppAcc,st, ppAcc,com, ppItr,KA

generated above, as well as program F , we define the program F̂ in Algorithm 12. F̂ executes internal pro-
grams Fbranch (Algorithm 13) or Fcombine (Algorithm 14) depending on its input. Now Fbranch in turn executes
Fcheck defined in Algorithm 7, where Fcheck = AccCompile(F,Acc.OUpdate{ppAcc,mem}).

The compilation procedure then computes an obfuscation of the program F̂ . That is, F̃ ← iO.Gen(F̂ ).

Algorithm 12: F̂ , which is identical to its mPRAM counterpart (Algorithm 8)
// for simplicity, we drop the subscripts from ãin

idcpu←M and ãout
M←idcpu

, and use ãin and ãout respectively

Input : s̃t
in

= (stin, idcpu, root node), ãin

1 if stin = (halt, ·) then
2 Output Reject;

3 else if root node 6= ⊥ then
4 Compute (s̃t

out
, ãout) = Fbranch(s̃t

in
, ãin);

5 else
6 Compute (s̃t

out
, ãout) = Fcombine(s̃t

in
, ãin);

7 Output (s̃t
out
, ãout);

Algorithm 13: Fbranch

// for simplicity, we drop the subscripts from ãin
idcpu←M and ãout

M←idcpu
, and use ãin and ãout respectively

Input : s̃t
in

= (stin, idcpu, root node), ãin = (bin, comin, πin
mem, π

in
st , π

in
com)

Data : ppAcc,mem, ppAcc,st, ppAcc,com, ppItr,KA

1 Parse root node as (t, root index, win
st , w

in
com, v

in, σin);
2 Let rA = PRF(KA, (t, root index));
3 Compute (skA, vkA, vkA,rej) = Spl.Setup(1λ; rA);
4 Let min = (t, root index, win

st , w
in
com, v

in);
5 if Spl.Verify(vkA,m

in, σin) = 0 then output Reject;
6 if Acc.VerifyRead(ppAcc,st, w

in
st , (idcpu, stin), πin

st ) = 0 then output Reject;
7 if Acc.VerifyRead(ppAcc,com, w

in
com, (src(t, idcpu), comin), πin

com) = 0 then output Reject;
8 (stout, (comout, locout, bout))← Fcheck(idcpu, stin, (bin, comin, πin

mem));
9 Compute vout = TItr.Iterate(ppItr, v

in, (t+ 1, idcpu, stin, comin, win
st , w

in
com));

10 if stout = Reject then
11 Output Reject;

12 else
13 Let r′A = PRF(KA, (t+ 1, idcpu));
14 Compute (sk′A, vk′A, vk′A,rej) = Spl.Setup(1λ; r′A);
15 Let mout = (t+ 1, idcpu, stout, comout, vout) and σout = Spl.Sign(sk′A,m

out);
16 Let nodeout = (t+ 1, idcpu, stout, comout, vout, σout);
17 Output s̃t

out
= (stout, idcpu,⊥), ãout = (nodeout, locout, bout);

Step 3: Generating the initial configuration (m̃em
0
, s̃t

0
). Recall that initial memory accesses are empty:

a0
k←M = ⊥, a0

M←k = ⊥. Based on mem0 and st0
k = ⊥ for all k ∈ [m], the compilation procedure computes the

initial configuration for the complied computation system as follows.
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Algorithm 14: Fcombine, which is identical to its mPRAM counterpart (Algorithm 10)
// for simplicity, we drop the subscripts from ãin

idcpu←M and ãout
M←idcpu

, and use ãin and ãout respectively

Input : s̃t
in

= (stin, idcpu,⊥), ãin = (node1,node2)
Data : ppAcc,st, ppAcc,com, ppItr,KA

1 for ζ = 1, 2 do Parse nodeζ as (tζ , indexζ , wst,ζ , wcom,ζ , vζ , σζ);
2 if t1 6= t2 then output Reject;
3 else let t = t1;
4 if t < 1 then output Reject;
5 if index1 and index2 are not siblings then output Reject;
6 Set parent index as the parent of index1 and index2;
7 for ζ = 1, 2 do
8 Let rA,ζ = PRF(KA, (tζ , indexζ));
9 Compute (skA,ζ , vkA,ζ , vkA,rej,ζ) = Spl.Setup(1λ; rA,ζ);

10 Let mζ = (tζ , indexζ , wst,ζ , wcom,ζ , vζ);
11 if Spl.Verify(vkA,ζ ,mζ , σζ) = 0 then output Reject;

12 Compute w′st = Acc.Combine(ppAcc,st, wst,1, wst,2,parent index);
13 Compute w′com = Acc.Combine(ppAcc,com, wcom,1, wcom,2,parent index);
14 Compute v′ = TItr.Iterate2to1(ppItr, (v1, v2), (t,parent index, wst,1, wcom,1, wst,2, wcom,2));
15 Let r′A = PRF(KA, (t,parent index));
16 Compute (sk′A, vk′A, vk′A,rej) = Spl.Setup(1λ; r′A);
17 Let m′ = (t,parent index, w′st, w

′
com, v

′);
18 Compute σ′ = Spl.Sign(sk′A,m

′);
19 Let parent node = (t,parent index, w′st, w

′
com, v

′, σ′);
20 if parent index = ε then
21 Output s̃t

out
= (stin, idcpu,parent node), ãout = ⊥;

22 else
23 Output s̃t

out
= (stin, idcpu,⊥), ãout = parent node;
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For each j ∈ {1, . . . , |mem0|}, it computes iteratively:

ˆstoremem,j ← Acc.WriteStore(ppAcc,mem, ˆstoremem,j−1,, j,mem0[j])

πj ← Acc.PrepWrite(ppAcc,mem, ˆstoremem,j−1, j)

ŵj ← Acc.Update(ppAcc,mem, ŵj−1, j, xj , πj)

Set w0
mem := ŵ|mem0|, and store0

mem := ˆstore |mem0|.
Set w0

st := ⊥ and store0
st := ˆstorest,0, where ˆstorest,0 is initialized with value ⊥ as the initial state in all m

cells.
Set w0

com := ⊥ and store0
com := ˆstorecom,0, where ˆstorecom,0 is initialized with value ⊥ as no communi-

cation in all m cells.
Set root node0 = (t, root index, w0

st, w
0
com, v

0, σ0) where t = 0, root index = ε; and w0
st, w

0
com,v0 are

computed above; and σ0 is computed as follows:

rA ← PRF(KA, 0)

(sk0, vk0)← Spl.Setup(1λ; rA)

σ0 ← Spl.Sign(sk0, (0, root index, w0
st, w

0
com, v

0))

st0 = ((st0
Π, st0

Acc), dAcc, b, w
0, loc) = ((⊥,⊥),READ,⊥, w0

mem,⊥) where w0
mem is computed above.

buff 0[1] = . . . = buff 0[m] = (⊥,⊥)

Now we can define the initial configuration to be

m̃em
0

= (store0
mem, store0

st, store0
com, buff 0)

s̃t
0

= (root node0,⊥, st0, com0).

Final step. Finally, the compilation procedure returns the value Π̃ = ((m̃em
0
, s̃t

0
), F̃ ) as output.

Evaluation algorithm conf := Eval(Π̃): Upon receiving an obfuscated system Π̃, the evaluator parse Π̃ =

(m̃em
0
, s̃t

0
), where s̃t

0
= (root node0,⊥, st0, com0). It sets s̃t

0
k = (root node0, k, st0, com0) for k = 1 tom.

It then runs Algorithm 11 and carries out the result

(m̃em
t∗
, {s̃t

t∗

k , ã
t∗
M←k}mk=1)

at the halting time t∗.
For 1 ≤ k ≤ m, parse:

m̃em
t∗

= (storet
∗

mem, storet
∗

st , storet
∗

com, buff t∗)

s̃t
t∗

k = (stt
∗
k , k, ·)

ãt
∗
M←k = (nodet

∗

k , loct
∗
k , b

t∗
k )

For 1 ≤ k ≤ m, let:

at
∗
M←k = (loct

∗
k , b

t∗
k )

at
∗
k←M = ⊥.

Let memt∗ = storet
∗

mem.
Return conf = ({stt

∗
k , a

t∗
M←k, a

t∗
k←M}mk=1,memt∗).
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Algorithm 15: Eval: Evaluator of Π̃

Input : Π̃ = ((m̃em
0
, {s̃t

0
k}mk=1), F̃ )

1 Let zmax ← dlog(m)e be the length of m in binary;
2 for 1 ≤ t ≤ T do
3 Parse m̃em

t−1
= (storet−1

mem, storet−1
st , storet−1

com, buff t−1);
4 for 1 ≤ k ≤ m do
5 Compute (·, πt−1

st,k )← PrepRead(ppAcc,st, storet−1
st , k);

6 Compute (comt−1
k , πt−1

com,k)← PrepRead(ppAcc,com, storet−1
com, src(t− 1, k));

7 Parse buff t−1[k] = (bink , π
in
mem,k);

8 Let ãin
k ← (bink , comt−1

k , πin
mem,k, π

t−1
st,k , π

t−1
com,k) ;

9 Evaluate (s̃t
t,zmax

k , ãout
k )← F̃ (s̃t

t−1
k , ãin

k ) ; // Evaluate Fbranch

10 Parse ãout
k = (nodetk, loctk, b

t
k);

11 Parse nodetk = (·, ·, stt,zmax

k , comt
k, ·, ·);

12 Let storetst[k]← stt,zmax

k , which stores stt,zmax

k in the k-th cell in storetst;
13 Let storetcom[k]← comt

k, which stores comt
k in the k-th cell in storetcom;

14 if loctk = ⊥ ∀1 ≤ k ≤ m then
15 Let storetmem ← storet−1

mem;
16 for 1 ≤ k ≤ m do let buff t[k] = (⊥,⊥);

17 else
18 for 1 ≤ k ≤ m do
19 Compute buff t[k] = (bink , π

in
mem,k)← PrepRead(ppAcc,mem, storet−1

mem, loctk);

20 Let storet,0mem ← storet−1
mem;

21 for 1 ≤ k ≤ m do compute storet,kmem ←WriteStore(ppAcc,mem, storet,k−1
mem , (loctk, b

t
k));

22 Let storetmem ← storet,mmem;

23 if all s̃t
t,zmax

k is halt state then
24 Let m̃em

t ← (storetmem, storetst, storetcom, buff t);
25 for 1 ≤ k ≤ m do let s̃t

t
k ← s̃t

t,zmax

k ;
26 for 1 ≤ k ≤ m do let ãtM←k ← (nodetk, loctk, b

t
k);

27 return (m̃em
t
, {s̃t

t
k, ã

t
M←k}mk=1);

28 for z ← zmax − 1 to 0 do
29 foreach k ∈ [m] do
30 Represent k − 1 in a binary string s(k − 1) of length zmax ;
31 Let kz be the prefix z bits of s(k − 1);
32 Let kz‖b be the binary string that kz concatenates bit b;

33 for 1 ≤ k ≤ m do
34 Let ãin

k ← (nodetkz‖0,nodetkz‖1);

35 Evaluate (s̃t
t,z
k , ã

out
k )← F̃ (s̃t

t,z+1
k , ãin

k ) ; // Evaluate Fcombine

36 Let nodetkz ← ãout
k ;

37 Let m̃em
t ← (storetmem, storetst, storetcom, buff t) ; // Input to the next iteration

38 Let s̃t
t
k ← s̃t

t,0
k ;
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Efficiency Let m be the number of CPUs, |F | be the description size of program F , n be the description size
of initial memory mem0, computation system Π proceeds with time and space bound T and S. We first note the
circuit size of F̂ is |F | + O(logm), where logm is the amount of hardwired information required in security
proof (similar to Appendix B.3.2). Assume that iO is a circuit obfuscator with circuit size |iO(C)| ≤ poly|C|
for given circuit C. Our CiO-PRAM has following complexity:

Compilation time is Õ(poly(|F |) + n).
Compilation size is Õ(poly(|F |) + n).
Parallel evaluation time is Õ(T · poly(|F |)).
Evaluation space is Õ(m+S), where m term is to keep CPU states of F while branch and combine, and S
term is needed by F intrinsically.

Theorem 6.8. Assuming iO is a secure indistinguishability obfuscator, PRF is a selectively secure puncturable
PRF, TItr is a secure topological iterator, Acc is a secure positional accumulator, and Spl is a secure splittable
signature scheme; CiO is a secure computation-trace indistinguishability obfuscation with respect to PPRAM.

The proof sketch can be found in Appendix B.4.

7 ConstructingRE in the RAM Model (RE-RAM)

In this section, we showcase the power of our fully succinct CiO-RAM by constructing the first fully succinct
randomized encoding in the RAM model. A randomized encoding of a computation instance (P, x) hides ev-
erything except its output y = P (x) and runtime t∗. This requires hiding both the memory content and the
access pattern of the computation. The formal definition can be found in Appendix A.2. At a high level, our
construction is a fairly natural one: We use public-key encryption to hide the memory content (including the
input), and use oblivious RAM to hide the access pattern. We then use CiO to obfuscate the compiled compu-
tation instance. Namely, our RE encoding algorithm outputs Π̃ = CiO(Πhide), where Πhide is a computation
instance defined by Phide and xhide. Phide is a PKE and ORAM compiled version of P , and xhide is an en-
crypted version of x. Namely, Phide outputs encrypted CPU states and memory contents at each time step, and
uses ORAM to compile its memory access (with randomness supplied by PRF for succinctness).

Intuitively, if PKE and ORAM are secure, then the computation should be hidden. However, note that, the
decryption keys need to be hardwired in Phide to evaluate P (x). As CiO does not hide anything explicitly, it
is not clear whether we can use the security of PKE and ORAM at all. In particular, it is unlikely that we can
use the security of ORAM, since it only hides the access pattern when the CPU state and the memory contents
are hidden from the adversary. Indeed, hiding the access pattern is the major technical challenge to prove the
security of ourRE construction. Next we provide an overview of our main ideas.

Basic version: RE for oblivious RAM computation To demonstrate the ideas in our full-fledged construc-
tion, we start with the simpler case ofRE for oblivious RAM computation where the given RAM computation
instance Π defined by (P, x) has oblivious access pattern. Namely, we assume that there is a public access
function ap(t) that predicts the memory access at each time step t, which is given to the simulator. Thus,
we only need to hide the CPU state and the memory content in each step of the computation, without using
oblivious RAM to hide the access pattern.

For this simpler case, we can directly use techniques developed by [KLW15] to hide the memory content
using public-key encryption. In fact, the construction of machine-hiding encoding for TM in [KLW15] can
be modified in a straightforward way to yield RE for oblivious RAM computation based on iO for circuits.
Our CiO-based construction presented below can be viewed as a modularization and simplification of their
construction through our CiO notion.

Recall that our construction is of the formRE .Encode(P, x) = CiO(Πhide), where Πhide is defined by Phide

and xhide. Here, we only use PKE to compile P , and denote the compiled program by PPKE instead of Phide.
We also denote encrypted input by xPKE instead of xhide. At a high level, PPKE emulates P step by step, but
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instead of outputting the CPU state and the memory content in the clear, PPKE outputs an encrypted version
of them. PPKE also expects encrypted CPU states and memory contents as input, and emulates P on the
decryption of the input. A key idea here (following [KLW15]) is to encrypt each message (either a CPU state
of a memory cell) using different keys, and generate these keys (as well as encryption randomness) using
puncturable PRF (PPRF), which allows us to use a standard puncturing argument (extended to work with CiO
instead of iO) to move to a hybrid where semantic security holds for a particular message so that we can “erase”
the message.

In the detailed proof, we prove the security by a sequence of hybrids that “erase” the computation backward
in time, which leads to a simulated encoding CiO(ΠSim) where all ciphertexts generated by PSim as well as
in xSim are replaced by encryption of a special dummy symbol. More precisely, PSim simulates the access
pattern using the public access function ap at each time step t < t∗, simply ignores the input and outputs
encryption of dummy (for both CPU state and memory content), and outputs y at time step t = t∗.

Full solution: RE for general RAM computation We now turn to our full solution, and deal with the
main challenge of hiding access pattern. As mentioned, our approach is a natural one, where we use oblivious
RAM (ORAM) compiler to hide the access pattern. Recall that an ORAM compiler compiles a RAM program
by replacing each memory access by a probabilistic procedure OACCESS which accesses memory in a way
that hides the access pattern. Given a computation instance Π defined by (P, x), we first compile P using an
ORAM compiler with randomness supplied by puncturable PRF. Let PORAM be the compiled program. We also
initiate the ORAM memory by inserting the input x. Let xORAM be the resulting memory. We then compile
(PORAM, xORAM) using PKE in the same way as in the basic version above. Namely, we use PPRF to generate
multiple keys, and use each key to encrypt a single message, including the input xORAM. Denote the resulting
instance by (Phide, xhide). Our randomized encoding of computation instance (P, x) is now Π̃ = CiO(Πhide),
where Πhide is defined by Phide and xhide.

Note that ORAM security only holds when the adversary does not learn any content of the computation.
Given the fact that CiO does not hide anything explicitly, it is unlikely that we can use the security of ORAM in
a black-box way. In a previous seminal work [CHJV15], Canetti et al. provide a novel solution to this problem,
and prove the security via a sequence of hybrids that “erase” the computation forward in time. Unfortunately,
their solution incurs dependency on the space complexity of the RAM program, and thus is not fully succinct.

To solve this problem, we rely on the specific ORAM construction of [CP13] (referred to as CP-ORAM
hereafter), and develop a puncturing technique to reason about the simulation. As in our basic version, we
prove the security by a sequence of hybrids that “erase” the computation backward in time. At a very high
level, to move from the i-th hybrid to the (i − 1)-th hybrid, i.e., erase the computation at i-th time step, we
“puncture” ORAM at time step i (i.e., the i-th memory access), which enables us to replace the access pattern
by a simulated one at this time step. We can then move to the (i− 1)-th hybrid by replacing the access pattern,
erasing the memory content and computation, and undoing the “puncturing.”

Puncturing the ORAM access pattern cleanly could be very subtle. Note that the access pattern at time
step i is generated at the latest time step t′ that access the same memory location as time step i; This last access
time t′ can be much smaller than i, so the puncturing may cause global changes in the computation. Thus,
moving to the punctured hybrid, i.e., the (i − 1)-th hybrid in the previous paragraph, requires a sequence of
sub-hybrids that modifies the computation step by step. We therefore further introduce an auxiliary “partially
puncturing” technique to achieve this goal.

This completes the overview of our main ideas. In the detailed proof in Appendix B.5, we will elaborate
the above ideas.

Section Outline The remaining of this section will be organized as follows. We will first list all required
building blocks in Section 7.1 and then review the CP-ORAM in Section 7.2. Next we provide the RE con-
struction details in Section 7.3, and finally, prove the security in Appendix B.5.
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7.1 Building Blocks

In ourRE construction in Section 7.3, we will use several building blocks:

Public-key encryption scheme PKE = PKE .{Gen,Encrypt,Decrypt} with IND-CPA security. Here we
use `1 = `1(λ) bits of randomness in PKE .Gen, and `2 = `2(λ) bits of randomness in PKE .Encrypt
respectively; we let `rnd = `1 + `2, and assume the ciphertext length in PKE .Encrypt is `3.
Puncturable PRF scheme PPRF = PPRF.{Setup,Puncture,Eval} with key space K, punctured key space
Kpunct, domain [T ] ∪ ([T ]× [log n]), and range {0, 1}`rnd .
Computation-trace indistinguishability obfuscation scheme in the RAM model, CiO = CiO.{Obf,Eval}.
The oblivious RAM complier by Chung and Pass [CP13].

The computation-trace indistinguishability obfuscation for RAM has been introduced and constructed in
Section 5.2. In the next subsection, we will briefly review the oblivious RAM compilation technique in [CP13].

We also use several primitives in vector form (Section 7.3), and they are defined here for completeness.
Bold face symbols, such as pk, sk, r, and dummy, denote vectors, and a vector v concatenated with index i
in square brackets v[i] denotes the i-th element in v.

The public key encryption scheme is generalized to vector form as follows:
PKE .Gen(1λ; r): The key generating algorithm takes as input the security parameter λ and a vector
of randomness r. It outputs vector of pairs of public and secret keys (pk, sk), where (pk[i], sk[i]) =
PKE .Gen(1λ, r[i]) for each i.
PKE .Encrypt(pk,m; r): The encrypting algorithm takes as input a vector of public keys pk, a vec-
tor of messages m, and a vector of randomness r. It outputs a vector of ciphertext c, where c[i] =
PKE .Encrypt(pk[i],m[i], r[i]) for each i.
PKE .Decrypt(sk, c): The decrypting algorithm takes as input a vector of secret keys sk and a vector of
ciphertext c. It outputs a vector of messages m, where m[i] = PKE .Decrypt(sk[i], c[i]) for each i.
The puncturable PRF scheme is generalized to vector form as follows, and we did not extend the puncturing

procedure Puncture.
PRF(K,x): The pseudorandom function takes as input the key K and a vector x. It outputs vector of
pseudorandom numbers r, where r[i] = PRF(K,x[i]) for each i.
PPRF.Eval(K{x′},x): The pseudorandom function takes as input the punctured keyK{x′} and a vector x.
It outputs vector of pseudorandom numbers r, where r[i] = PPRF.Eval(K{x′},x[i]) for each i.

7.2 Recap: The CP-ORAM

As mentioned in the section summary above, we use ORAM techniques to hide the access pattern. Our con-
struction is essentially based on the ORAM compilation technique by Chung and Pass [CP13]. For short, we
call it CP-ORAM. We believe that our construction can also be based on all existing tree-based ORAM compila-
tion techniques [SCSL11]. Below, we give an overview of CP-ORAM. Please refer to [CP13] for more details.
For better presentation, we will use both function program and next-step program to describe the programs that
used in our construction.

In CP-ORAM (as well as all tree-based ORAM), the memory is stored in a complete binary tree (called
ORAM tree), where each node of the tree is associated with a bucket that can store a few memory blocks. A
position map Pos is used to record where each memory block is stored in the tree, where a block b is stored in a
node somewhere along a path from the root to the leave indexed by Pos[b]. Each memory block b in the ORAM
tree also stores its index b and position map value Pos[b] as meta data. Each memory access (say, to block b) is
performed by OACCESS, which (i) reads the position map value pos = Pos[b] and refresh Pos[b] to a random
value, (ii) fetches and remove the block b from the path, (iii) updates the block content and puts it back to the
root, and (iv) performs a flush operation along another random path pos′ to move the blocks down along pos′

(subject to the condition that each block is stored in the path specified by their position map value). At a high
level, the security follows by the fact that the position map values are uniform and hidden from the adversary,
and thus the access pattern of each OACCESS is simply a uniformly random path, which is trivial to simulate.
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This completes the basic version of CP-ORAM which can be found in Section 7.2.1. The position map is
large in the above basic version, but it is recursively outsourced to lower level ORAM structures to reduce its
size in the full-fledged version. See Section 7.2.2 for more details.

7.2.1 Basic version: ORAM with Θ(n) registers

We here present the basic version of CP-ORAM. Consider memory be an array with n cells. The CP complier
can transform a given program P into a new program Po, which replaces the memory access instructions by the
oblivious memory access algorithm OACCESS. More concretely, each memory access command READ(loc)
and WRITE(loc, val) is replaced by corresponding commands OACCESS(loc,⊥) and OACCESS(loc, val) re-
spectively which will be specified shortly. The new program Po has the same registers as P and additionally
has n/α registers for storing a position map Pos, plus a polylogarithmic number of additional work registers
used by OACCESS, where α ≥ 2 is a constant to ensure that the position map is smaller than the memory size.
In its external memory, Po will maintain a complete binary tree Γ of depth log(n/α). We index nodes in the
tree by a binary string of length at most tree depth log(n/α), where the root is indexed by the empty string ε,
and each node indexed by γ has left and right children indexed γ0 and γ1, respectively. Each memory cell at
location loc will be associated with a random leaf pos in the tree, specified by the position map Pos; as we shall
see shortly, the memory cell loc will be stored at one of the nodes on the path from the root ε to the leaf pos.
We assign a block of α consecutive memory cells to the same leaf; thus any memory cell loc corresponding to
block b = bloc/αc will be associated with leaf pos = Pos(b).

Each node in the tree is associated with a bucket which stores (at most) K tuples (b, pos, v), where v is the
memory content of block b and pos is the leaf associated with the block b, and K ∈ ω(log n) ∩ poly log(n)
is a parameter that will determine the security of the ORAM (thus each bucket stores K(α + 2) words). A
bucket may store 0 to K valid tuples, and each empty slot in the bucket is denoted by Empty = (⊥,⊥,⊥). We
assume that all registers and memory cells are initialized with a special symbol⊥, and all buckets are initialized
with Empty.

The following is a specification of the OACCESS(loc, val) procedure:

Update Position Map: Pick a uniformly random leaf pos′ ← [n/α].

Fetch: Let b = bloc/αc be the block containing memory cell loc (in the original database), and let i =
loc mod α be loc’s component within the block b. We first look up the position of the block b using
the position map: pos = Pos(b) and let Pos(b) = pos′; if pos =⊥, then choose a uniformly random
leaf pos← [n/α].

Next, traverse the data tree from the root to the leaf pos, making exactly one READ and one WRITE

operation for the memory bucket associated with each of the nodes along the path. More precisely, we
read the memory content once, and then we either write it back (unchanged), or we simply “erase it”
(writing ⊥) so as to implement the following task: Search for a tuple of the form (b, pos, v) for the
desired b, pos in any of the nodes during the traversal; if such a tuple is found, remove it from its place in
the tree and set v to the found value, and otherwise set v =⊥. Finally, return the i-th component of v as
the output of the OACCESS(loc, val) operation.

Put Back: If val is not ⊥ (which means this is a WRITE), let v′ be the string v but the i-th component is set
to val. Otherwise, let v′ = v. Add the tuple (b, pos′, v′) to the root ε of the tree. If there is not enough
space left in the root bucket, abort and output overflow.

Flush: Pick a uniformly random leaf pos′′ ← [n/α] and traverse the tree from the root to the leaf pos′′, making
exactly one READ and one WRITE operation for every memory cell associated with the nodes along the
path so as to implement the following task: “Push down” each tuple (b, pos, v) read in the nodes traversed
as far as possible along the path to pos′′ while ensuring that the tuple is still on the path to its associated
leaf pos (that is, the tuple ends up in the node γ = longest common prefix of pos and pos′′.) Note that
this operation can be performed trivially as long as the CPU has sufficiently many work registers to load
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two whole buckets into memory; since the bucket size is polylogarithmic, this is possible. If at any point
some bucket is about to overflow, abort and output overflow.

We overloaded the second parameter of OACCESS to replace both READ and WRITE with the special
symbol ⊥ in the “Put Back” steps. Note that with all input including val =⊥, OACCESS always outputs the
original memory content of the cell loc; this feature will be useful in the “full-fledged” construction.

7.2.2 The full-fledged construction: ORAM with poly log registers

The full-fledged construction of the CP-ORAM proceeds as above, except that instead of storing the position
map in registers in the CPU, we now recursively store them in another ORAM (which only needs to operate
on n/α memory cells, but still using buckets that store K tuples). Recall that each invocation of OACCESS

requires reading one position in the position map and updating its value to a random leaf. That is, we need to
perform a single recursive OACCESS call (recall that OACCESS updates the value in a memory cell, and returns
the old value) to emulate the position map.

At the base of the recursion, when the position map is of constant size, we use the trivial ORAM construction
which simply stores the position map in the CPU registers.

7.2.3 Notations for CP-ORAM compilation

We use CP-ORAM.{Compile,Eval} to denote the CP-ORAM scheme described above,where Compile and
Eval denote the compilation and evaluation algorithms respectively. As mentioned before, the CP-ORAM can
compile a given RAM program P into a new RAM program Po by replacing the memory access instructions
with the oblivious memory access algorithm OACCESS. Formally, we write

Po = CP-ORAM.Compile(P,OACCESS).

To feed such ORAM on our RE construction, we slightly change the presentation of the oblivious ac-
cess pattern algorithm in [CP13], OACCESS{KN}, in Algorithm 16. The involved randomness is produced
by invoking PRF with a key KN and the time parameter t. For simplicity, we use OACCESS instead of
OACCESS{KN} if not specified. Other detailed routines are abstracted as follows:

PATH(d, pos) outputs the path I from root ε to leaf pos in the d-th ORAM tree Γd, where d is the recursion
level of OACCESS.
FETCHANDUPDATE(Bfetch, loc, val, α, pos, newpos) performs the “Fetch” and “Put Back” steps.
FLUSH(Bflush, pos′′) performs “Flush” steps from tree root to leaf pos′′. We remark that there is a negligible
probability (w.r.t. bucket size K) that overflow occurs at this step. For simplicity, we just assume that
OACCESS is supplied with a “good” randomness.20

We remark that OACCESS initializes the memory during the compilation, and the ORAM compiled pro-
gram is still a RAM program. Therefore the evaluation algorithm Eval is a standard evaluation algorithm for
RAM programs. In addition, we can construct a simulation algorithm SIMOACCESS to generate statistically in-
distinguishable memory access pattern, and define a simulated RAM program Po,sim based on SIMOACCESS,
and thus we write

Po,sim = CP-ORAM.Compile(SIMOACCESS).

Note that the simulated access pattern is independent of the original program P .
20If the honest encoding overflowed, then an adversary could distinguish that from a simulated one. However, the overall probability

to distinguish the honest is still negligible because the probability to overflow is negligible with good randomness.
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Algorithm 16: OACCESS{KN}: the recursive ORAM accessing function
Input : t, d, loc, val
Output : oldval
Data : KN , α,MaxDepth (Memory size S = αMaxDepth)

1 if d ≥ MaxDepth then
2 return 0

3 Pick leaf newpos at recursion level d based on PRF(KN , (t, d,FetchR)) ; // Update position map

4 pos← OACCESS(d+ 1, bloc/αc, newpos) ; // Fetch

5 Ifetch ← PATH(d, pos);
6 Bfetch ← READ(Ifetch);
7 (Bout

fetch, oldval)← FETCHANDUPDATE(Bfetch, loc, val, α, pos, newpos);
8 WRITE(Ifetch,B

out
fetch);

9 Pick leaf pos′′ at recursion level d based on PRF(KN , (t, d,FlushR)) ; // Flush

10 Iflush ← PATH(d, pos′′);
11 Bflush ← READ(Iflush);
12 Bout

flush ← FLUSH(Bflush, pos′′);
13 WRITE(Iflush,B

out
flush);

14 return oldval;

7.2.4 ORAM compilation of a computation system

Next, we describe how to use CP-ORAM to compile a computation system. We recall the notations above and
for a given next-step program, and write

Fo = CP-ORAM.Compile(F,OACCESS).

Given a RAM computation system Π = ((mem0, st0), F ), we compile it into Πo as follows. First, the
compilation runs OACCESS to initialize mem0

o for each non-empty memory cell in mem0, and sets st0
o = Init.

Then the compilation transforms next-step program F into a new next-step program Fo. Finally it outputs
Πo := ((mem0

o, st0
o), Fo). We abuse the notations again, and write

Πo = CP-ORAM.Compile(Π,OACCESS).

Similarly, based on SIMOACCESS, we can define Fo,sim and write

Fo,sim = CP-ORAM.Compile(SIMOACCESS)

Complied next-step program Fo For readability, we present Fo as a stateful, next-step program that reads or
writes a complete ORAM tree path (rather than one memory cell) in each round, while the locations of memory
cells on this path are denoted with a vector I, as follows:

(stout, Iout,Bout)← Fo(t, stin, Iin,Bin).

Here Fo takes as input a round counter t of the given program F , a state stin, a vector of input locations Iin,
a vector of input values Bin, and outputs a state stout, a vector of output locations Iout, and a vector of output
values Bout. Note that the efficiency does not suffer too much in this vector notation because any path in the
ORAM tree has length log(n), and it is straightforward to transform it to a cell-wise function. The ORAM
compiled program has a multiplicative overhead qo in computation time. We denote the time counter of pro-
gram F by t and denote the time counter of Fo by t, where t = dt/qoe. In the remaining of this section, both
time metrics are used when simulating access patterns.

We further abuse the notation of the READ and WRITE operations in OACCESS such that they now work
on vector of locations I and values B. In particular, Fo has the following output cases depending on the input
memory command of a round:
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1. Neither READ nor WRITE command: outputs both I and B as an empty set.

2. READ command: outputs I as a vector of locations to read and B as an empty set.

3. WRITE command: outputs I as a vector of locations to write and B as a vector of values to write.

7.3 Construction forRE-RAM

A randomized encoding of a computation instance (P, x) hides everything about the computation instance
except its output y = P (x) and runtime t∗. This requires hiding both the memory content and the access
pattern of the computation. We follow a natural construction idea: we use public-key encryptions to hide
the memory content (including the input) and oblivious RAM to hide the access pattern, and then use CiO
to obfuscate the compiled computation instance. Namely, our RE encoding algorithm outputs CiO(Πhide) as
the encoding, where Πhide is defined by Phide and xhide: Phide is a PKE and ORAM compiled version of P ,
and xhide is an encrypted version of x. Namely, Phide outputs encrypted CPU states and memory contents at
each time step, and uses ORAM to compile its memory access.

More concretely, our construction of RE in the RAM model is split into four major steps: (i) given a
RAM program P and its input x, we interpret it as a RAM computation Π; (ii) we compile Π into Πo using
CP-ORAM compiler to hide the access pattern; (iii) we transform Πo into Πe, which further hides the memory
content in the computation system; and (iv) we obfuscate Πe into ENC using CiO-RAM. Formally, we construct
ourRE = RE .{Encode,Decode} for the RAM program P and input x as follows:

Encoding algorithm ENC ← RE .Encode(P, x, 1λ): The encoding algorithm takes the following steps to
generate the encoding ENC.

Upon receiving the description of RAM program P and an input value x, first, the encoding algorithm
transforms them into a computation system. It represents P into a next-step program F , and stores x into
the memory, i.e., sets mem0 := x. Then it sets st0 := Init, and defines the following computation system
in the RAM model

Π = ((mem0, st0), F ).

Second, the encoding algorithm hides the access pattern in the computation system. It randomly chooses
puncturable PRF key KN ← PPRF.Setup(1λ). Then it runs the CP-ORAM compilation described in
Section 7.2, i.e., Πo = CP-ORAM.Compile(Π,OACCESS{KN}) and obtains

Πo = ((mem0
o, st0

o), Fo).

Third, the encoding algorithm further hides the CPU state and the memory content. That is, it transforms Πo

into
Πe = ((mem0

e, st0
e), Fe).

Here the encoding algorithm randomly chooses puncturable PRF key KE ← PPRF.Setup(1λ), and gener-
ates an initial configuration of the encrypted version of memory and CPU state as follows:

To initialize memory mem0
e, the encoding algorithm parses mem0

o as ORAM trees {Γ}, and for each Γ
it further parses all paths I from root to leaf. For each path (I,B) with its index I and buckets B, the
encoding algorithm computes

(r0
1, r

0
2) = PRF(KE , (lw

0, h(I))) where lw0 = 0,

(pk0, sk0) = PKE .Gen(1λ; r0
1),

B [i] =

{
PKE .Encrypt(pk0[i],B[i]), if B[i] stores any valid block
B[i], otherwise,
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where h is a function to compute the “height” of elements in vector I. That is, for any vector I of length |I|,
define h(I) = (1, 2, . . . , |I|). For each non-empty encrypted bucket B [i], store ( B [i], 0) to its corre-
sponding location I[i] in mem0

e, which are the encrypted ORAM trees. Because many buckets are empty
and never touched while OACCESS initializes mem0

o, we represent mem0
o and mem0

e in sparse arrays for
efficiency, where only those non-empty buckets are stored and processed with encryption. Therefore, the
encoding time and space of mem0

e are both efficient.
In addition, the encoding algorithm computes (r0

3, r
0
4) = PRF(KE , 0), (pkst, skst) = PKE .Gen(1λ; r0

3),
and st

0 ← PKE .Encrypt(pkst, st0
o). Then it sets st0

e = ( st
0
, 0).

The encoding algorithm then upgrades Fo, into a more sophisticated next-step program Fe which de-
crypts its inputs, performs the computation of Πo, and encrypts its outputs. Please refer to Algorithm 17 for
more details of Fe. Because there are non-encrypted empty buckets in mem0

e, the procedure PKE .Decrypt

to decrypt B
in

in Fe is augmented to ignore any empty bucket in mem0
e, that is for each i

Bin[i] =

{
PKE .Decrypt(sk[i], B

in
[i]) if B

in
[i] 6= empty bucket

B
in

[i] otherwise.

This technique is applied to eliminate the dependency of memory size S from the complexity of encoding
size and time, and we summarize it in Table 4.

Note that Fe (Algorithm 17) abuses the notation of PRF, PKE .Gen, PKE .Encrypt, PKE .Decrypt,
which computes on a vector of inputs and returns a vector of outputs. Please refer to Section 7.1 for formal
description.
Finally, the encoding algorithm computes ENC ← CiO.Obf(1λ,Πe) and outputs ENC.

Observation Technique to encode input efficiently Corresponding shorthand in programFe

Sparse input data in
ORAM tree

Encrypt only those buckets with data For each encrypted bucket B
in

, decrypt
ciphertext except empty bucket

Table 4: Techniques to improve encoding efficiency

Decoding algorithm y ← RE .Decode(ENC, 1λ, T, S): Upon receiving the encoding ENC, the decoding
algorithm executes CiO.Eval(ENC). If the decoding algorithm does not terminate in T steps, it outputs y := ⊥.
Otherwise, if it terminates at step t∗, and obtains

(
m̃em

t∗
, s̃t

t∗) where s̃t
t∗

= (halt, y) then it outputs y.
It is straightforward to verify the correctness of the above construction. Next, we describe the efficiency

and then present a theorem for its security.

Efficiency Let |F | be the description size of program F , n be the size of input x, F computes on x with
time and space bound T and S. Assuming CiO has compilation time O(poly(|F |) + n logS), compilation
size O(poly(|F |) + n), evaluation time Õ(T · poly(|F |)), and evaluation space proportional to S. Observing
only constant amount of information is hardwired throughout our security proof (Appendix B.5), our RE has
following complexity:

Encoding time is Õ(poly|F |+ n).
Encoding size is Õ(poly|F |+ n).
Decoding time is Õ(T · poly(|F |)).
Decoding space is Õ(S).

Security We now state the following theorem that the randomized encoding scheme RE described above is
secure. Please refer to Appendix A.2 for the security definition of randomized encoding scheme.
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Theorem 7.1. Let PKE be an IND-CPA secure public key encryption scheme, CiO be a computation-trace
indistinguishability obfuscation scheme in the RAM model, PRF be a secure puncturable PRF scheme; then
RE is a secure randomized encoding scheme.

The security proof can be found in Appendix B.5.

Algorithm 17: Fe

Input : s̃t
in

= ( st
in
, t), ãin

A←M = (Iin, ( B
in
, lwin))

Data : T,KE ,KN

1 Compute t = dt/qoe ; // qo is the ORAM compilation overhead

2 Compute (rin
1 , r

in
2 ) = PRF(KE , (lw

in, h(Iin))) ; // For any vector I of length |I|, define h(I) = (1, 2, . . . , |I|)
3 Compute (pkin, skin) = PKE .Gen(1λ; rin

1 );

4 Compute Bin = PKE .Decrypt(skin, B
in

);
5 Compute (rt−1

3 , rt−1
4 ) = PRF(KE , t− 1);

6 Compute (pkst, skst) = PKE .Gen(1λ; rt−1
3 );

7 Compute stin = PKE .Decrypt(skst, st
in

);

8 Compute (stout, Iout,Bout) = Fo(t, stin, Iin,Bin);

9 Set lwout = (t, . . . , t);
10 Compute (rout

1 , rout
2 ) = PRF(KE , (lw

out, h(Iout)));
11 Compute (pk′, sk′) = PKE .Gen(1λ; rout

1 );

12 Compute B
out

= PKE .Encrypt(pk′,Bout; rout
2 );

13 if stout 6= (halt, ·) then
14 Compute (rt3, r

t
4) = PRF(KE , t);

15 Compute (pk′, sk′) = PKE .Gen(1λ; rt3);
16 Compute st

out
= PKE .Encrypt(pk′, stout; rt4);

17 else
18 Output s̃t

out
= stout

19 Output s̃t
out

= ( st
out
, t+ 1), ãout

M←A = (Iout, ( B
out
, lwout)) ;

8 ConstructingRE in the PRAM Model (RE-PRAM)

In this section, we describe our construction of randomized encoding for PRAM (RE-PRAM). As RE-RAM,
the main goal of RE-PRAM is to hide states and memory access pattern. Recall the construction of RE-RAM
in Section 7 based on CiO-RAM, tree-based ORAM, and PKE ; naturally, we use CiO-PRAM, tree-based
oblivious PRAM (OPRAM), and PKE as building blocks to achieveRE simulation security.

At a high level, ourRE-PRAM construction works as follows.
We first use OPRAM compiler to hide the access pattern. Given a computation instance Π defined by (P, x),
we compile P using an OPRAM compiler with randomness supplied by a puncturable PRF. Let POPRAM

be the compiled program. We also initiate the OPRAM memory by inserting the input x. Let xOPRAM be
the resulting memory.
We then compile (POPRAM, xOPRAM) using PKE in the same way as in the RAM version above. Namely,
we use PPRF to generate multiple keys, and use each key to encrypt a single message, including the
input xOPRAM. Denote the resulting instance by (Phide, xhide).
The randomized encoding of computation instance Π is Π̃ = CiO(Πhide), where CiO(Πhide) is defined
by (Phide, xhide).
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To buildRE-PRAM, we use the oblivious PRAM compiler by Boyle, Chung, and Pass [BCP16] (BCP-OPRAM)
and the other building blocks which are identical to those in Section 7.1. The security proof of the RE-PRAM
construction also follows identical steps, where we prove the security by a sequence of hybrids that erases the
computation backward in time, and argue simulation of access patterns by generalizing the puncturing ORAM
argument to puncturing BCP-OPRAM. However, there are two natural issues in the arguments of generaliza-
tion: (i) As the OPACCESS algorithm of BCP-OPRAM is more complicated, we need to be slightly careful
in defining the simulated encoding CiO(PSim, xSim). (ii) To avoid dependency on the number m of CPUs, we
need to gradually handle a single CPU at a time in the hybrids to puncture OPRAM.

Section Outline We will review BCP-OPRAM compilation technique in the next subsection. The construc-
tion ofRE-PRAM and its proof sketch will be shown in Section 8.2 and Appendix B.6.

8.1 Recap: The BCP-OPRAM

For hiding access pattern, the security of our RE-PRAM must rely heavily on OPRAM as a building block.
We first briefly review BCP’s OPACCESS [BCP16], and then show its puncturability property similar to that of
OACCESS where the randomness is generated from a PPRF.

The BCP OPRAM Construction The OPRAM compiler, on input m,n ∈ N and an m-processor PRAM
program P with memory size n, outputs a program P ′ that is identical to P , except that each access(r, v)
operation is replaced by a sequence of operations defined by subroutine OPACCESS(r, v), which is described
as follows.

The OPACCESS procedure begins withmCPUs, each requesting data cell r (within some block b) and some
action to be taken (either⊥ denoting a read, or v denoting rewriting cell r with value v). The primary challenges
in implementing oblivious parallel data accesses within the tree-based ORAM structure ([SCSL11, CP13]) are
in handling collisions between processor accesses, and in reinserting data to the ORAM (and flushing data down
the tree) in parallel. OPACCESS addresses these challenges by the following sequence of tasks:

1. Resolve Conflict:

Choose one representative CPU per requested data block b (in the real database). This representative
will perform the real data fetch and computation on b in later steps, while the other CPUs will simply
make “dummy” accesses of the ORAM structure.
Aggregate all CPU instructions to take place on each requested block b.

2. Read/Write Position Map:

Each representative CPU: Sample a fresh random leaf id `′. Perform a (recursive) read/write access
command on the position map database ` ← OPACCESS(bi, `

′) to fetch the current position map
value ` and rewrite it with the newly sampled value `′.
Each dummy CPU: Perform a dummy access to an arbitrary cell in the position map database, say
the first. (Recall that the position map database is itself protected by a layer of ORAM). That is,
execute `← OPACCESS(1, ∅), and ignore the read value `.

3. Look Up Current Memory Values: Each representative CPU fetches memory from ORAM database
nodes corresponding to accessing its desired data block b (i.e., the collection of buckets down the rel-
evant path in the ORAM tree) and copies the values into local memory. We denote this representative
CPU by rep(b). Non-chosen (dummy) CPUs choose a random path ` (independent of the position map
above) and make analogous dummy data fetches along the path to `, ignoring all read values. Recall that
simultaneous data reads do not yield conflicts.

4. Remove Old Data: Consider the paths down the ORAM tree accessed in the previous step.
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Aggregate instructions across CPUs accessing the same “buckets” of memory on the server side.
Each representative CPU rep(b) begins with the instruction of “remove block b if it occurs” and
dummy CPUs hold the empty instruction. (Aggregation is as before, but at bucket level instead of
the block level).
For each bucket to be modified, the CPU with the smallest id from those who wish to modify it
executes the aggregated block-removal instructions for the bucket.

5. Insert Updated Data into Database in Parallel: All CPUs execute a parallel insertion procedure into
the ORAM database at the appropriate level (corresponding to the number of active CPUs) in order to
insert the updated data tuples (b, `′, v′) with new leaf node `′ as sampled in Step 1 and new value v′ into
the bucket along the path to `′.

6. Flush the ORAM Database: In parallel, each CPU initiates an independent flush of the ORAM tree.
(Recall that this corresponds to selecting a random path down the tree, and pushing all data blocks in this
path as far as they will go). To implement the simultaneous flush commands, as before, commands are
aggregated across CPUs for each bucket to be modified, and the CPU with the smallest id performs the
corresponding aggregated set of commands. (For example, all CPUs will wish to access the root node in
their flush; the aggregation of all corresponding commands to the root node data will be executed by the
lowest-numbered CPU who wishes to access this bucket, which is CPU 1 in this case).

7. Return Output: Each representative CPU rep(b) communicates the original value of the data block b to
the subset of CPUs that originally requested it.

As a result, the BCP-OPRAM compiler enjoys the same advantages as CP-ORAM by finishing the above tasks.
Intuitively, CP-ORAM and BCP-OPRAM must have the same property, puncturability.

Puncturability of BCP-OPRAM In the above OPACCESS, observe that the location to be looked up (in
Step 3) only depends on the previous fresh random sample `′ (in Step 2). Therefore, if previous random
sample `′ is information-theoretically hidden, the look up step can be simulated. Specifically, the punctured
OPRAM program erases that block blk∗ containing `′ at that time step t′ such that `′ is generated by PPRF and
does not recursively write `′ to the position map. With this punctured OPRAM (and PPRF key punctured at
the corresponding point of `′), the step looking for blk∗ can be simulated indistinguishably with a uniformly
random OPRAM tree path. Hence, BCP-OPRAM achieves puncturability similar to that of ORAM described
in Appendix B.5.4.

8.2 Construction forRE-PRAM

A randomized encoding of a computation instance (P, x) hides both the memory content and the access pattern
of the computation except for its output y = P (x) and runtime t∗. Conceptually, we follow the same natural
idea to use public-key encryption to hide the memory content (including the input) and oblivious PRAM to
hide the access pattern, and then use CiO-PRAM to obfuscate the compiled computation instance. Namely,
ourRE encoding algorithm outputs CiO(Πhide) as the encoding, where Πhide is defined by (Phide, xhide), Phide

is a PKE and OPRAM compiled version of P , and xhide is an encrypted version of x. Phide outputs encrypted
CPU states and memory contents at each time step, and uses OPRAM to compile its memory access.

Our construction of RE in the PRAM model is split into four major steps: (i) given a PRAM program P
and its input x, we interpret it as a PRAM computation Π; (ii) we compile Π into Πo using BCP-OPRAM
compiler to hide the access pattern; (iii) we transform Πo into Πe, which further hides the memory content in
the computation system; and finally (iv) we obfuscate Πe into ENC using CiO-PRAM. Formally, we construct
ourRE = RE .{Encode,Decode} for the PRAM program P and input x as follows:
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Encoding algorithm ENC ← RE .Encode(P, x, 1λ): The encoding algorithm takes the following steps to
generate the encoding ENC.

Upon receiving the description of PRAM program P and an input value x, first, the encoding algorithm
transforms them into a computation system Π. It represents P into a next-step program F , and stores x into
the memory, i.e., sets mem0 := x. Then it sets st0

k := ⊥ for all k, 1 ≤ k ≤ m, and defines the following
computation system in the PRAM model

Π = ((mem0, {st0
k}mk=1), F ).

Second, the encoding algorithm hides the access pattern in the computation system. It chooses puncturable
PRF key KN ← PPRF.Setup(1λ). Then it runs the BCP-OPRAM compilation described in Section 8.1,
i.e., Πo = BCP-OPRAM.Compile(Π,OPACCESS{KN}), and obtains

Πo = ((mem0
o, {st0

o,k}mk=1), Fo),

where st0
o,k = st0

o such that all CPUs have the same OPRAM state.
Third, the encoding algorithm further hides the CPU state and the memory content. That is, it transforms Πo

into
Πe = ((mem0

e, {st0
e,k}mk=1), Fe).

Here the encoding algorithm chooses puncturable PRF key KE ← PPRF.Setup(1λ), and generates an
initial configuration of the encrypted version of memory and CPU state as follows:

To initialize memory mem0
e, the encoding algorithm parses mem0

o as trees Γ, and then for each Γ it
further parses all paths I from root to leaf. For each vector I, the encoding algorithm computes

(r0
1, r

0
2) = PRF(KE , (lw

0, h(I))) where lw0 = 0,

(pk0, sk0) = PKE .Gen(1λ; r0
1),

B [i] =

{
PKE .Encrypt(pk0[i],B[i]) if B[i] stores any valid block
B[i] otherwise,

where B[i] denotes the i-th element (which is also a bucket here) in vector B, and h is a function to compute
the “height” of elements in vector I. That is, for any vector I of length |I|, define h(I) = (1, 2, . . . , |I|).
For each non-empty B , store ( B , lw0) to its corresponding path I in mem0

e.
In addition, the encoding algorithm sets st0

e,k = st0
o,k for all k ∈ [m]. Note that each CPU holds the

same non-encrypted st0
e,k because st0

k is only ⊥ for all k. To work with such initialization, the procedure
PKE .Decrypt(skst, ·) for decryption of states (in Fe) is augmented to ignore non-encrypted special value⊥
as follows:

stin
A =

{
PKE .Decrypt(skst, st

in
A ) if st

in
A 6= ⊥

⊥ otherwise.

These techniques are applied to eliminate the dependency of memory size S and number of CPUs m from
the complexity of encoding size and time, and we summarize them in Table 5.

The encoding algorithm then upgrades Fo into a more sophisticated next-step program Fe which de-
crypts its inputs, performs the computation of Πo, and encrypts its outputs. Please refer to Algorithm 18
for more details of Fe.
Finally, the encoding algorithm computes ENC ← CiO.Obf(1λ,Πe) and outputs ENC.

Decoding algorithm y ← RE .Decode(ENC, 1λ, T, S): Upon receiving the encoding ENC, the decoding
algorithm executes CiO.Eval(ENC). If the decoding algorithm does not terminate in T steps, then it outputs
y := ⊥. Otherwise, if it terminates at step t∗, and obtains

(
m̃em

t∗
, s̃t

t∗

1

)
where s̃t

t∗

1 = (halt, y), then it
outputs y by cpu1, a special CPU designated to output the result.
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Observation Technique to encode input efficiently Corresponding shorthand in pro-
gram Fe

Input data in ORAM tree
structure is sparse

Encrypt only those buckets with data For each encrypted bucket B
in

A , de-
crypt ciphertext except empty bucket

All m initial CPU states
are the same empty value

Leave the state in plaintext Decrypt ciphertext st
in
A except empty

state

Table 5: Techniques to improve encoding efficiency

Efficiency Let |F | be the description size of program F , n be the description size of initial memory mem0,
m be the total number of CPUs, T and S be time and space bound. According to CiO-PRAM, assume that
CiO has compilation time Õ(poly(|F |) + n) and compilation size Õ(poly(|F |) + n), and parallel evaluation
time Õ(T · poly(|F |)) and evaluation space Õ(m + S). However, there remains polylogarithmic overhead of
OPRAM including computation overhead poly logmpoly logS and space overhead ω(logS). Finally, our RE
construction has following complexity:

Encoding time is Õ(poly(|F |) + n).
Encoding size is Õ(poly(|F |) + n).
Parallel decoding time is Õ(T · poly(|F |)).
Decoding space is Õ(m+ S).

Security We state the following theorem that the randomized encoding schemeRE described above is secure.
Please refer to Appendix A.2 for the security definition of randomized encoding schemes.

Theorem 8.1. Let PKE be a semantically-secure public key encryption scheme, CiO be a computation-trace
indistinguishability obfuscation scheme in the PRAM model, and PRF be a secure puncturable PRF scheme;
thenRE is a secure randomized encoding scheme in the PRAM model.

The proof sketch can be found in Appendix B.6.

9 Extensions

In this section, we extend our results in previous sections to suit for several important scenarios of delegation
of computations. One of our major extensions is to let RE support persistent database (PDB). This can be
achieved by first defining and constructing the corresponding variants of CiO with PDB. Next, recall that or-
dinary RE only provides input and program privacy, and produces a short output in the clear. For practical
scenarios of delegation of computation, other properties such as long output, output hiding, and output verifia-
bility may be desirable. Thus, we will demonstrate how we can obtain these extensions by possibly using other
primitives such as encryption and signatures.

9.1 CiO with Persistent Database

In the persistent database setting, we consider an initial memory and a sequence of programs which work on
the memory content processed and left over by the previous program. Recall that CiO in some sense forces
the evaluator to evaluate an obfuscated program as intended to produce the intended computation trace. In the
persistent database setting, we further require that the sequence of programs is executed in the intended order.

9.1.1 Definition

Let a computation system Π ∈ P be composed of an initial database and many programs written as Π =
(mem0,0, {Fsid}lsid=1) where sid denotes the session identity and l denotes the total number of programs. Each
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Algorithm 18: Fe inRE-PRAM

Input : s̃t
in
e,A = (A, stin

e,A, t), ã
in
A←M = (Iin

A , ( B
in

A , lw
in
A ))

Data : T,KE ,KN

1 Compute t = dt/qoe;
2 Compute (rin

1 , r
in
2 ) = PRF(KE , (lw

in
A , h(Iin

A )));
3 Compute (pkin, skin) = PKE .Setup(1λ; rin

1 );

4 Compute BA = PKE .Decrypt(skin, B
in

A );
5 Compute (rt−1

3 , rt−1
4 ) = PRF(KE , t− 1);

6 Compute (pkst, skst) = PKE .Setup(1λ; rt−1
3 );

7 Parse stin
e,A as ( st

in
A ||stin

o,A);

8 Compute stin
A = PKE .Decrypt(skst, st

in
A );

9 Set ŝt
in
A = (stin

A ||stin
o,A);

10 Compute rN = PRF(KN , t);

11 Compute (ŝt
out
A , Iout

A ,Bout
A ) = Fo(t, A, ŝt

in
A , I

in
A ,B

in
A , rN );

12 Parse ŝt
out
A as (stout

A ||stout
o,A );

13 Set lwout
A = (t, . . . , t);

14 Compute (rout
1 , rout

2 ) = PRF(KE , (lw
out
A , h(Iout

A )));
15 Compute (pk′, sk′) = PKE .Setup(1λ; rout

1 );

16 Compute B
out

A = PKE .Encrypt(pk′,Bout
A ; rout

2 );
17 if stout

A 6= (halt, ·) then
18 Compute (rt3, r

t
4) = PRF(KE , t);

19 Compute (pk′, sk′) = PKE .Setup(1λ; rt3);
20 Compute st

out
A = PKE .Encrypt(pk′, stout

A ; rt4);
21 Set stout

e,A = ( st
out
A ||stout

o,A );

22 else
23 if all agents output stout

A = (halt,⊥) then a special CPU agent returns the output y;
24 else A returns stout

A as (halt, ·);

25 Output s̃t
out
e,A = (A, stout

e,A , t+ 1), ãout
M←A = (Iout

A ,Dout
A ), where Dout

A = ( B
out

A , lwout
A );
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stateful function Fsid has its program and state hardwired. For simplicity, we adopt a convention that the label
of the database and the state are set to 1) (sid− 1, 0) at the beginning of session sid, 2) (sid− 1, i) where i 6= 0
in the duration of session sid, and finally 3) (sid, 0) in the termination stage.

Definition 9.1 (CiO with Persistent Database). A computation-trace indistinguishability obfuscation scheme
with persistent database w.r.t. P , denoted by CiO = CiO.{DBCompile,Obf,Eval}, is defined as follows:

Database compilation algorithm (m̃em
0,0
, s̃t

0,0
) := DBCompile(1λ,mem0,0; ρ): DBCompile() is a proba-

bilistic algorithm which takes as input the security parameter λ, the database mem0,0, and some ran-
domness ρ; and returns the complied database and state (m̃em

0,0
, s̃t

0,0
) as output.

Program compilation algorithm F̃sid := Obf(1λ, Fsid; ρ′): Obf() is a probabilistic algorithm which takes as
input the security parameter λ, the stateful function Fsid, and some randomness ρ′; and returns a com-
plied / obfuscated function F̃sid as output.

Evaluation algorithm conf := Eval(m̃em
sid−1,0

, s̃t
sid−1,0

, F̃sid): Eval() is a deterministic algorithm which takes
as input (m̃em

sid−1,0
, s̃t

sid−1,0
, F̃sid); and returns a configuration conf = (m̃em

sid,0
, s̃t

sid,0
) as output.

Correctness For all Fsid with termination time t∗sid and all randomness ρ′, let F̃sid := Obf(1λ, Fsid; ρ′); it
holds that Eval(m̃em

sid−1,0
, s̃t

sid−1,0
, F̃sid) = Conf〈memsid−1,0, stsid−1,0, Fsid, t

∗
sid〉.

Security For any (not necessarily uniform) PPT distinguisher D, there exists a negligible function negl(·)
such that, for all security parameters λ ∈ N, Π0,Π1 ∈ P where Πb = (mem0,0, F b1 , . . . , F

b
l ) for b ∈ {0, 1}

and Trace〈Π0〉 = Trace〈Π1〉, it holds that

|Pr[D(Obf(1λ,Π0)) = 1]− Pr[D(Obf(1λ,Π1)) = 1] ≤ negl(λ).

Efficiency We require DBCompile and Obf runs in time Õ(|mem0,0|) and Õ(poly(|Fsid|)), and efficient Eval
runs in time Õ(t∗sid).

9.1.2 Constructing CiO-RAM with persistent database

Construction We construct CiO-RAM with persistent database from the ordinary CiO-RAM (without per-
sistent database). In general, we still follow the original setting of CiO-RAM, but use (sid, t) as timestamp
instead. Moreover, a new key KT , called termination key, is involved in the obfuscated state function and only
used at the beginning and end of a program. These three algorithms work as follows.

Database compilation algorithm DBCompile is identical to Steps 1 and 3 of CiO-RAM (without persis-
tent database). It generates the initial configuration (m̃em

0,0
, s̃t

0,0
) except that σ0,0 is generated from the

(pseudo-)randomness r0 ← PRF(KT , 0).
Program compilation algorithm Obf is similar to Step 2 of CiO-RAM except additional authentications
under KT for each sid, 1 ≤ sid ≤ l. It generates the obfuscated stateful function (See Algorithm 19).
Note that the authentications under KT are only performed in the beginning and end of a program. This
algorithm outputs F̃sid ← iO.Gen(F̂ ′sid).

Evaluation algorithm Eval(m̃em
sid−1,0

, s̃t
sid−1,0

, F̃sid) is identical to Evaluation algorithm of CiO-RAM. It
outputs (m̃em

sid,0
, s̃t

sid,0
) for the next session.
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Algorithm 19: F̂ ′sid in CiO-RAM with persistent database

Input : s̃t
in

= ((sid, t), stin, vin, win, σin), . . .
Data : . . . ,KT

1 if sid is correct and (sid, t) is the beginning of the session sid then
2 Compute rsid−1 = PRF(KT , sid− 1) and (sksid−1, vksid−1, vksid−1,rej) = Spl.Setup(1λ; rsid−1);
3 if Spl.Verify(vksid−1, (sid− 1, stin, vin, win), σin) = 0 then output Reject;
4 Set stin = Init;

5 . . . // Lines 1 to 16, Algorithm 1

6 if stout returns halt for termination then
7 Compute rsid = PRF(KT , sid) and (sksid, vksid, vksid,rej) = Spl.Setup(1λ; rsid);
8 Compute σout = Spl.Sign(sksid, (sid, stout, vout, wout));
9 Output s̃t

out
= ((sid, 0), stout, vout, wout, σout) // no database access

Security Sketch Recall that the computation system Π consists of an initial memory and a sequence of
programs. Although we cannot directly use the security of CiO-RAM, using the pebble game analogy, we can
go through the hybrid argument that is quite similar to CiO-RAM without persistent database.

Conceptually, we can view the computation paths of the sequence of programs as a single large computation
path. The proof strategy is modified as follows: Recall that in the security proof of CiO-RAM without persistent
database, we move the check-point from t = 1 to t = t∗ through hybrid argument. In the persistent database
setting, the technique of moving from the timestamp (sid, t) to (sid, t + 1) is identical to that in the setting
without PDB.

The only difference here is that we need to move from the termination time (sid, t∗sid) of session sid to
the beginning (sid + 1, 0) of the next session. For this, we can use the same technique as before to switch
between the type A and B termination key KT . We note that the purpose of KT is to introduce keys which
are independent of the termination time of the programs. It is otherwise conceptually the same as the type A
key KA used to sign the internal states.

A special conceptual point to note is that, in some intermediate hybrids, the enforcement of the accumulator
or iterator is required to enforce the whole history from the initiation to the current timestamp.

9.1.3 Constructing CiO-PRAM with persistent database

Construction Following the same technique and conventions above, we construct CiO-PRAM with persistent
database from full-fledged CiO-PRAM. In our construction of CiO-PRAM with persistent database, database
compilation DBCompile, program compilation Obf, and evaluation algorithm Eval works as those in CiO-RAM
with persistent database respectively, except for the obfuscated stateful function (See Algorithm 20). Note that
once all CPUs terminate in session sid, the stateful function F̂ ′sid only takes the cpu1’s state to generate the
signature for connecting the next session.

Security Sketch As for CiO-RAM with persistent database, the enforcement of the accumulator or iterator is
required to enforce the whole history from the initiation to the current timestamp. We can use the same proof
technique illustrated by the pebble game to go through the hybrid argument.

9.2 RE with Persistent Database

As in the ordinary setting without persistent database, after obtaining CiO which forces the obfuscated program
to be executed as intended, we can extend it toRE so as to provide input and program privacy. In the persistent
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Algorithm 20: F̂ ′sid in CiO-PRAM with persistent database

Input : s̃t
in

= (sid, stin, idcpu, root node), . . .
Data : . . . ,KT

1 Parse root node as before // extract t from root node
2 if sid is correct and (sid, t) is the beginning of the session sid then
3 Compute rsid−1 = PRF(KT , sid) and (sksid−1, vksid−1, vksid−1,rej) = Spl.Setup(1λ; rsid−1);
4 if Spl.Verify(vksid−1, (sid− 1, stin, vin, win

st , w
in
com), σin) = 0 then output Reject;

5 Set stin = Init;

6 . . . // Branch and Combine of CiO-PRAM

7 if all CPUs enter halt for termination then
8 Set stout as cpu1’s state;
9 // Let cpu1’s final state be the initial state of the next session

10 Computes rsid = PRF(KT , sid) and (sksid, vksid, vksid,rej) = Spl.Setup(1λ; rsid);
11 Compute σout = Spl.Sign(sksid, (sid, stout, vout, wout

st , wout
com));

12 Generate root node = (t,Root, wout
st , wout

com, v
out, σout);

13 Output s̃t
out

= (sid, stout, root node) ;

database setting, we wish to protect the privacy of the entire sequence of inputs and programs, while allowing
the output of each program in the sequence to be learnt by the decoder in the clear.

9.2.1 Definition

Definition 9.2 (RE with Persistent Database). A randomized encoding scheme RE with persistent database
consists of algorithmsRE = RE .{DBInit,Encode,Decode} described below.

RE .DBEncode(mem0,0, 1λ) → m̃em
0,0: The database compilation algorithm DBEncode is a probabilis-

tic algorithm which takes as input the security parameter 1λ and a database mem0,0. It outputs a compiled
database m̃em

0,0.
RE .Encode(Psid, xsid, 1

λ) → ENCsid: The encoding algorithm Encode is a probabilistic algorithm which
takes as input the security parameter 1λ, the description of a RAM program Psid with time bound T and
space bound S, and an input xsid. It outputs an encoding ENCsid.
RE .Decode(ENCsid, m̃em

sid−1,0
, 1λ, T, S)→ (ysid, m̃em

sid,0
): The decoding algorithm Decode is a deter-

ministic algorithm which takes as input the security parameter 1λ, time bound T and space bound S, an
encoding ENCsid, and a compiled database m̃em

sid−1,0. It outputs ysid = Psid(xsid) or ⊥, and a compiled
database m̃em

sid,0.

Correctness A randomized encoding schemeRE is said to be correct if

Pr[m̃em
0,0 ← RE .DBEncode(mem0,0, 1λ); ENCsid ← RE .Encode(Psid, xsid, 1

λ);

(ysid, m̃em
sid,0

)← RE .Decode(ENCsid, m̃em
sid−1,0

, 1λ, T, S) : ysid = Psid(xsid) ∀sid, 1 ≤ sid ≤ l] = 1.

Security A randomized encoding scheme RE with persistent database is said to be hiding if for all PPT
adversary A, time l, database mem0,0, program Psid with time bound T and space bound S, input value xsid,
and output value ysid = Psid(xsid) for sid ≥ 0 that generated at termination time t∗sid, there exists a PPT
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simulator S such that

|Pr[m̃em
0,0 ← S(1|mem0,0|, 1λ); ENCsid ← S(1|Psid|, 1|xsid|, t∗sid, ysid, 1

λ, T, S) :

A(1λ, m̃em
0,0
, {ENCsid}lsid=1) = 1]

−Pr[m̃em
0,0 ← RE .DBEncode(mem0,0, 1λ); ENCsid ← RE .Encode(Psid, xsid, 1

λ) :

A(1λ, m̃em
0,0
, {ENCsid}lsid=1) = 1]| ≤ negl(λ).

Efficiency We require DBEncode and Encode runs in time Õ(|mem0,0|) and Õ(poly(|Psid|) + |xsid|), and
efficient Decode runs in time Õ(t∗sid).

9.2.2 ConstructingRE with Persistent Database

Construction The construction of RE with PDB relies on the same technique to build RE from CiO with-
out PDB. As in Section 7, we use public-key encryption to hide the CPU state and the memory content,
use oblivious RAM or PRAM to hide the access pattern, and finally use CiO-RAM or PRAM with PDB to
obfuscate the compiled programs. TheRE with PDB construction works as follows.

RE .DBEncode: It first compiles database mem0,0 to (m̃em
0,0
o , s̃t

0,0
o ) by ORAM or OPRAM compiler, then

generates encryption of (m̃em
0,0
e , s̃t

0,0
e ) by PKE . Finally, it outputs (m̃em

0,0
c , s̃t

0,0
c ) by DBCompile of CiO

with PDB.
RE .Encode: Unlike in ordinary RE where the input is written to the memory, we embed both the pro-
gram Psid and the input xsid into a stateful function Fsid. It compiles the stateful function Fsid to Fsid,o by
ORAM or OPRAM compiler, and then generates Fsid,e which includes decryption and encryption, except
that at t = 0, Fsid,e accepts the plaintext output generated by the previous program without performing
decryption. We note that now the last write time used for decryption is in the format lw = (sid, t). Finally,
it outputs ENCsid = Obf(Fsid,e) by Obf of CiO.

RE .Decode: It executes Eval((m̃em
sid−1,0
c , s̃t

sid−1,0
c ), ENCsid).

Security Sketch As in the security proof ofRE without PDB, we wish to prove that if PKE and ORAM are
secure, then the computation should be hidden. As before, we go through the hybrid argument backward in
time, i.e., from the termination time of the last program, to the beginning of the last program, then the second
last program, etc. Within a single program, the technique to move backward is identical to that in the setting
without PDB. The only difference is at the beginning of a program. Instead of a ciphertext state, the initial
state is hardwired, since the output of the previous program is a plaintext. This is possible since all intermediate
outputs are given to the simulator.

9.3 RE with Output Hiding

In some applications, a client might want to delegate a computation to a server while ensuring that the latter
does not learn anything about the input, the program, and the output. Observe that this extension of RE is
somewhat similar to fully homomorphic encryption (FHE) as both FHE and RE with output hiding hide the
input and output, and allow arbitrary computation on the input. However, RE is a symmetric key primitive,
and it additionally hides the program functionality. On the other hand, FHE is a public key encryption scheme
which does not protect program privacy.

Definition 9.3 (RE with output hiding). A randomized encoding scheme with output hidingREohiding, denoted
byREohiding = REohiding.{Encode,Decode,Decrypt}, is defined as follows.

REohiding.Encode(P, x, 1λ) → (ENC, sk): The encoding algorithm Encode is a probabilistic algorithm
which takes as input the security parameter 1λ, the description of a RAM or PRAM program P with time
bound T and space bound S, and an input x. It outputs an encoding ENC and a private key sk.
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REohiding.Decode(ENC, 1λ, T, S)→ c: The decoding algorithm Decode is a deterministic algorithm which
takes as input the security parameter 1λ, time bound T , space bound S, and an encoding ENC. It outputs
ciphertext c, or ⊥.
REohiding.Decrypt(sk, c) → y: The output decrypting algorithm Decrypt is a deterministic algorithm
which takes as input the private key sk and the ciphertext c. It outputs the plaintext y.

For efficiency, we require that Encode runs in time Õ(poly(|P |) + |x|) and Decrypt runs in time Õ(1), and
efficient Decode runs in time Õ(T ). That is, a client can efficiently Encode a computation and Decrypt the
ciphertext output c, and a server carries out Decode in time comparable to the original unsecured computation.

Correctness A schemeREohiding is said to be correct if

Pr[(ENC, sk)← REohiding.Encode(P, x, 1λ); c← REohiding.Decode(ENC, 1λ, T, S);

y ← REohiding.Decrypt(sk, c) : y = P (x)] = 1.

Hiding A scheme REohiding is said to have output hiding if for all PPT adversary A, program P with time
bound T and space bound S, input value x, and output value y = P (x) that generated at termination time t∗,
there exists a PPT simulator Sim such that

|Pr[ENC ← Sim(1|P |, 1|x|, 1|y|, t∗, 1λ, T, S) : A(1λ, ENC) = 1]

−Pr[(ENC, sk)← REohiding.Encode(P, x, 1λ) : A(1λ, ENC) = 1]| ≤ negl(λ).

Construction LetRE = RE .{Encode,Decode} be a randomized encoding scheme. Let SKE = SKE .{Gen,
Encrypt,Decrypt} be a symmetric key encryption scheme. The randomized encoding scheme with output hid-
ing,REohiding = REohiding.{Encode,Decode,Decrypt}, is constructed as follows:

ENC ← REohiding.Encode(P, x, 1λ):
Compute sk← SKE .Gen(1λ).
Sample ρ← {0, 1}λ.
Compute ENC ← RE .Encode(P ′, (x, ρ), 1λ), where P ′ is defined in Algorithm 21.
Return (ENC, sk).

c← REohiding.Decode(ENC, 1λ, T, S): Compute c← RE .Decode(ENC, 1λ, T, S).
y ← REohiding.Decrypt(sk, c): Return y ← SKE .Decrypt(sk, c).

Algorithm 21: P ′

Input : (x, ρ)
Data : P, sk

1 Compute y ← P (x);
2 Compute c← SKE .Encrypt(sk, y; ρ);
3 Output c;

Security The security follows directly from the security ofRE and SKE .

9.4 RE with Verifiability, and Verifiable Encoding (VE)

In this extension, we consider adding verifiability to RE . We call it a verifiable randomized encoding (VRE).
Intuitively, to achieve verifiability, the encoding process first generates a signing key and verification key, then
uses CiO to obfuscate a program which signs the output of the program being encoded using the signing key.
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Observe that although such a construction is non-black-box, it is mostly orthogonal to the construction
of RE . On the other hand, an encoding with verifiability but without privacy, which we call a verifiable
encoding (VE), is already useful in some delegation scenarios. Thus, it makes sense to consider VE as a
stand-alone extension from CiO.

More explicitly, we consider a verifiable encoding VE which encodes a program P and an input x into an
encoding ENC, which can be decoded by the decoder to produce the computation result y = P (x) and a proof π
proving the correctness of the computation. The encoding algorithm also outputs a public verification key vk,
with which any public verifier can check the correctness of y by verifying the proof π. This directly implies a
two-message publicly-verifiable delegation scheme in the corresponding computation model.

9.4.1 Verifiable Encoding (VE)

Formally, a verifiable encoding scheme VE consists of algorithms VE = VE .{Encode,Decode,Verify} de-
scribed below.

VE .Encode(P, x, 1λ) → (ENC, vk): The encoding algorithm Encode is a probabilistic algorithm which
takes as input the security parameter 1λ, the description of a RAM / PRAM program P with time bound T
and space bound S, and an input x. It outputs an encoding ENC and a verification key vk.
VE .Decode(ENC, 1λ, T, S) → (y, π): The decoding algorithm Decode is a deterministic algorithm which
takes as input the security parameter 1λ, time bound T , space bound S, and an encoding ENC. It outputs y =
P (x) or ⊥, and a proof π.
VE .Verify(vk, π, y) → b: The verification algorithm Verify is a deterministic algorithm which takes as
input a verification key vk, a proof π and an output of the computation y. It outputs a bit b = 0 or 1.

Correctness A verifiable randomized encoding scheme VE is said to be correct if

Pr[(ENC, vk)← VE .Encode(P, x, 1λ); (y, π)← VE .Decode(ENC, 1λ, T, S);

b← VE .Verify(vk, π, y) : y = P (x) ∧ b = 1] = 1.

Verifiability A verifiable randomized encoding scheme VE is said to be verifiable if for all PPT adversary A

Pr[(ENC, vk)← VE .Encode(P, x, 1λ); (ỹ, π̃)← A(1λ, T, S, ENC, vk);

b← VE .Verify(vk, π̃, ỹ) : ỹ 6= P (x) ∧ b = 1] ≤ negl(λ).

Efficiency We require Encode runs in time Õ(poly(|P |) + |x|) and Verify runs in time Õ(`out), and efficient
Decode runs in time Õ(T ), where `out = |y| is the length of output.

9.4.2 Building Blocks

Our construction uses several building blocks listed as follows:

A signature scheme SIG = SIG.{Gen, Sign,Verify}.
A computation-trace indistinguishability obfuscation scheme CiO = CiO.{Obf,Eval}, for RAM or PRAM
computation.

9.4.3 The Construction

We define our VE = VE .{Encode,Decode,Verify} for the program P and input x as follows:
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Encoding algorithm (ENC, vk) ← VE .Encode(P, x, 1λ): For input (P, x), the encoding algorithm rep-
resents it as Π = ((mem0, st0), F ) for RAM program P or Π = (mem0, F ) for PRAM program P with x
written to mem0 sequentially. The encoding algorithm randomly chooses r1, r2, r3, and computes (sk, vk) =
SIG.Gen(1λ; r1). It then further compiles F into a program F̂ defined in Algorithm 22.

Let Π̂ = ((mem0, st0
1, . . . , st0

m), F̂ ), it computes ENC ← CiO.Obf(1λ, Π̂). Finally, it outputs (ENC, vk).

Decoding algorithm (y, π) ← VE .Decode(ENC, 1λ, T, S): It executes CiO.Eval(ENC) to obtain the con-
figuration

(
ŝt
t∗

1 = ((halt, y), σ), ŝt
t∗

2 , . . . , ŝt
t∗

m,memt∗
)

upon termination, and outputs (y, π) = (y, σ).

Verification algorithm b← VE .Verify(vk, y, σ): The verification algorithm outputs b = SIG.Verify(vk, y, σ).

Theorem 9.4. Let CiO be an indistinguishability obfuscation for computation in the RAM / PRAM model, and
SIG be a secure signature scheme; then VE is a secure verifiable encoding scheme.

The proof can be found in Appendix B.7.

Algorithm 22: F̂ // this program is used in VE
Input : ŝt

in
= (stin, t), ain

Data : T, r1, r2, sk
1 Compute (stout, aout) = F (stin, ain);
2 if stout 6= (halt, ·) then
3 Set ŝt

out
= (stout, t+ 1);

4 else
5 Parse stout = (halt, y);
6 if y = ⊥ then
7 Set ŝt

out
= stout;

8 else
9 Compute (sk, vk) = SIG.Gen(1λ; r1);

10 Compute σ = SIG.Sign(sk, y; r2);
11 Set ŝt

out
= (stout, σ);

12 Set aout = ⊥;

13 Output ŝt
out
, aout;

9.5 RE and VE with Long Output

Recall that in the definitions of RE and its extensions (including VE), we always consider a program P and
input x such that y = P (x) is of a fixed short length. However, in practical applications, a program might
produce an output of length which is long and possibly variable.

To support long output, our main strategy is to let the main program write its output into a specified area
of the memory. In the following, we first consider the simpler case of RE with output hiding. In this case, the
decoder simply returns the ciphertexts stored in the specified area. Next, for the more complicated case of RE
without output hiding, RE with long output can be constructed using RE with persistent database. The idea
is to encode a sequence of short programs which reads, decrypts, and outputs a short portion of the specified
area. Finally, for VE which only provides verifiability but without any privacy, our strategy is very similar to
that ofRE with output hiding. Concretely, the main program writes its output, which is in plaintext, along with
a signature into a specified area of the memory. Note that in VE the memory content is not encrypted. Thus,
the decoder simply returns the plaintexts stored in the specified area.
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RE with Long Output with Output Hiding In this setting, instead of the output y, a position-length pair is
put in the termination state. The decoder then simply returns the specified portion of the memory to the encoder.
In the case where verifiability (of the ciphertexts) is required, the main program signs the long sequence of
ciphertexts using the hash-then-sign paradigm, so that a single short signature can be appended to the end of
the sequence. Concretely, the main program maintains a hash tree which compresses the long sequence of
output ciphertexts into a short digest stored in the root of the tree. The root is then signed to authenticate
the entire tree. Notice that in this setting, the size of the encoding is independent of the output size. This
corresponds to the fact that the simulator can simply simulate the encrypted output sequence by a sequence of
random values, so that no hardwiring of the long output is needed.

RE with Long Output without Output Hiding In the following, we let l be an upper bound of the output
length of the program P with input x. RE with long output without output hiding can be achieved by first
writing the sequence of ciphertext into the memory as specified above, then encoding a sequence of l short
programs which reads, decrypts, and outputs a short portion of the specified area. In the case where verifiability
(of the plaintexts) is required, we simply add into these short programs some additional lines of code for signing.
We note that the number of encodings l depends on the output length of the program. This is due to the fact that
the entire sequence of outputs must be hardwired to the simulated encoding in the security proof. Thus, RE
with output hiding not only provides output privacy, but also produces shorter encodings.

To see why the dependency on l is necessary, we consider a program which functions as a pseudo random
generator (PRG) which has short input and long output. Suppose that there exists secure RE with long output
without output hiding, which produces encoding of (P, x) with length independent of the length of y = P (x).
By the security ofRE , there exists a simulator forRE which produces upon input y a simulated encoding with
length independent of the length of y. We wish to construct a distinguisher which distinguishes PRG from a
random function. Suppose in the security game of PRG the challenger return an output y upon a query x. We
then pass y to the simulator of RE . If the chosen function is a PRG, then the simulated encoding has length
independent of y. Otherwise, if the chosen function is a random function, then either the simulated encoding
has length dependent on y, or the decoding of the simulated encoding produces result different from y with
non-negligible probability. In either case, we can distinguish a PRG from the random function.

VE with Long Output Similar to RE with output hiding, the main program signs the long sequence of
outputs using the hash-then-sign paradigm, so that a single short signature can be appended to the end of the
sequence. Then, instead of the output y, a position-length pair is put in the termination state. Finally, the
decoder returns the specified portion of the memory to the encoder.

9.6 Application: Searchable Symmetric Encryption (SSE)

In the previous sections, we show how RE-RAM and PRAM can be extended to support a wide range of
properties, including persistent database (Section 9.2), output hiding (Section 9.3), long output (Section 9.5),
and verifiability (Section 9.4). Different combinations of these properties are useful for different scenarios of
outsourced computation. In particular, as a direct application ofRE with all the above extensions, we consider
a very powerful searchable symmetric encryption (SSE) scheme with almost all desirable properties considered
in the SSE literature.

Roughly, SSE allows a client to outsource the storage of his or her encrypted data to a semi-honest (possibly
malicious) server, while retaining the server’s ability to query over the encrypted data without learning the
plaintext data. The query can be as general as data modification, (conjunctive / fuzzy) keyword search, or
essentially any function over the plaintext data. To query over the encrypted data, the client uses its private
key to transform its query into a trapdoor, which is sent to the server. With the help of the trapdoor, the server
possibly updates the encrypted database and returns the encrypted query results to the client.

Ideally, an SSE scheme is considered secure if the encrypted data and queries do not reveal any information

70



about the plaintext data and query results21 respectively. It is commonly believed that such security require-
ments can be achieved using ORAM. In reality, typical SSE schemes which do not rely on ORAM leak some
information such as the search and access patterns as a trade-off for efficiency.

Using RE with persistent database, we can naturally encode our plaintext data into an encrypted database
which will then be stored in a cloud server. Then, with the support of long output and output hiding, an
encoded query can be processed by the server to return a long sequence of ciphertext, which can be decrypted
to obtain the results of the query. Moreover, by the succinctness of our RE construction, the query complexity
is preserved up to a logarithmic factor.

In terms of security, note that by the security of RE , the server only learns the sizes of the database and
the query results. The security of this SSE scheme is thus not only much stronger than most of the existing
schemes which leak search and access patterns, but also achieves two very desirable properties named forward
privacy and backward privacy. Forward privacy means that a previously issued trapdoor for a query is not useful
for querying newly added data. Similarly, backward privacy means that a trapdoor is not useful for querying
deleted data. In addition, with the verifiability extension, the correctness of the query results can be verified.
It is also worth mentioning that while most SSE schemes are proven secure in the random oracle model, our
construction is secure in the standard model.

21Consider the query result returned by the server is in an encrypted form which only the client can decrypt.
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A Preliminaries

Notations Let λ be the security parameter. Let poly be any polynomial. Let negl be any negligible function.

A.1 Models of Computation

A.1.1 Random-Access Machines (RAM)

A random-access machine (RAM) consists of a CPU with a local register st of size log n and an external
memory mem ∈ {0, 1}n, where n = poly(λ). A RAM program P with random-access to mem takes as
input x ∈ {0, 1}`input , where `input ≤ n, and outputs y = P (x) as the result of the computation. During the
computation, the CPU may access the memory multiple times using READ or WRITE operations:

READ(loc): upon receiving a memory address loc, return the value mem[loc].
WRITE(loc, val): upon receiving a memory address loc and a value val, set mem[loc] := val.
In this work, we use both functional program and next-step program to represent the RAM program, and

we represent the above functional program P as a series of executions of a small next-step program F which
executes a single CPU step:

(stout, locout, valout) = F (stin, locin, valin).

At each time step t, the CPU-step circuit takes as input an input state stin, a location locin, and a value valin =
mem[locin] read from the memory, and outputs an output state stout, a location locout to be accessed, and a
value valout.

By convention, at the first step (i.e., step 0), the next-step program is executed with locin = ⊥ and valin = ⊥.
At each step, a copy of the next-step program is executed. If F issues a WRITE memory operation with locout

and valout specified, then the value valout will be written to mem[locout], and the evaluator sets locin = ⊥
and valin = ⊥ for the next step. Else if F issues a READ memory operation with locin specified and valout = ⊥,
then the evaluator sets locin = locout, and the location locin is read by setting valin = mem[locin] for the next
step.

There are two ways to define the output of the computation. The first approach is to interpret the output
state of the last CPU-step circuit as the output of the computation, which limits the size of the output to log n.
The second approach is to interpret a pre-defined region of the external memory mem as the output of the
computation. For simplicity, we adopt in this work the first definition, but note that the second definition can
also be adopted.

A.1.2 Parallel RAM (PRAM)

A parallel random-access machine (PRAM) consists ofm CPUs, each with local memory register of size log n,
sharing an external memory mem ∈ {0, 1}n, where n = poly(λ). A RAM is simply a PRAM with m = 1.
A PRAM program P has random-access to mem, takes as input x and outputs y = P (x) as the result of the
computation. In general, a PRAM program utilizes a dynamic number of CPUs in each time step. In a simpler
variant, it is assumed that the program always uses all the m CPUs.

Similar to a RAM program, a PRAM program can be represented by a series of executions of the next-
step program F , but with the additional ability to execute m copies in parallel at each time step. For each
CPU k ∈ [m], F computes a time step with its k-th copy of state and memory operation, and an additional
argument k denoting which CPU it is computing. That is, for each k ∈ [m],

(stout
k , locout

k , valout
k ) = F (k, stin

k , locin
k , valink ).

The conflicts in read and write locations are resolved according to either the exclusive read exclusive write
(EREW), concurrent read exclusive write (CREW), or concurrent read concurrent write (CRCW) strategy. For
simpler analysis, we always assume that a PRAM program P follows the CREW rule, so that there must not
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be any conflicting writes. We further assume for simplicity (but equivalently) that all m CPUs read and write
synchronously and alternatively, which yields a two-fold (parallel) time overhead because any CPU can at least
issue a dummy access and defer the actual access to the next iteration.

Without loss of generality, the input x is stored in a pre-defined region of the external memory mem, and
all initial states are the same value ⊥ for all CPUs. The output of the computation is the output state of the
last CPU-step circuit of a specific CPU, which is defined similarly as that for RAM programs. All CPUs halt
at the same time with a state st = (halt, ·). There is a special CPU cpu1 which always halts with result y by
outputting st = (halt, y) while all other CPUs output st = (halt,⊥).

In some occasions, we will assume additionally (but equivalently) that the CPUs can communicate with
each other directly. Roughly speaking, such communication can be simulated by accessing the shared memory.
We will explain the details when needed in Sections 6 and 8.

A.1.3 Memoryless PRAM (mPRAM)

A simpler variant of PRAM is the memoryless PRAM (denoted by mPRAM), which consists of m CPUs,
each with local memory register of size log n, but without external memory. However, there are synchronous
communications transmitting constant size messages between CPUs. Their communication pattern is assumed
to be oblivious and, at each time step, each CPU only receives one message from one CPU and sends one
message to one other CPU.

Similar to the standard PRAM program, an mPRAM program can be represented by a series of executions
of the next-step circuit, but with the additional ability to execute multiple copies of the circuit at a time step,
corresponding to the number of CPUs used in that time step. Unlike in PRAM, the input and output are both
stored in the corresponding initial and final CPU states. We will explain the details when needed in Section 6.

Memoryless PRAM is strictly weaker than the standard PRAM, which can emulate mPRAM with memory
size m < n and emulate each communication by writing and reading memory cells.

A.2 Randomized Encoding (RE)

Randomized encoding scheme RE was originally introduced by Ishai and Kushilevitz [IK00]. Recently, Bi-
tansky et al. and Canetti et al. studied RE in the TM/RAM models [BGL+15, CHJV15]. Here we state the
definition ofRE in the RAM model, as follows. We can similarly defineRE in the PRAM model.

A randomized encoding schemeRE consists of algorithmsRE = RE .{Encode,Decode} described below.

RE .Encode(P, x, 1λ)→ ENC: The encoding algorithm Encode is a probabilistic algorithm which takes as
input the security parameter 1λ, the description of a RAM program P with time bound T and space bound
S, and an input x. It outputs an encoding ENC.
RE .Decode(ENC, 1λ, T, S)→ y: The decoding algorithm Decode is a deterministic algorithm which takes
as input the security parameter 1λ, time bound T and space bound S, and an encoding ENC. It outputs
y = P (x) or ⊥.

Correctness A randomized encoding schemeRE is said to be correct if

Pr[ENC ← RE .Encode(P, x, 1λ); y ← RE .Decode(ENC, 1λ, T, S) : y = P (x)] = 1.

Hiding A randomized encoding scheme RE is said to be hiding if for all PPT adversary A, program P with
time bound T and space bound S, input value x, and output value y = P (x) that generated at termination
time t∗, there exists a PPT simulator Sim such that

|Pr[ẼNC ← Sim(1|P |, 1|x|, t∗, y, 1λ, T, S) : A(1λ, ẼNC) = 1]

−Pr[ENC ← RE .Encode(P, x, 1λ) : A(1λ, ENC) = 1]| ≤ negl(λ).
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Efficiency We require Encode runs in time Õ(poly(|P |)+ |x|), and efficient Decode runs in time Õ(t∗). That
is, a client can efficiently encode (P, x), and a server carries out evaluation in time comparable to the original
unsecured computation.

A.3 Building Blocks

A.3.1 Iterators

An iterator [KLW15] is a cryptographic data structure which maintains a small iterator state regardless of the
number of messages iterated. Although it is impossible for a small iterator state to uniquely identify a sequence
of iterated messages, a secure iterator guarantees that normally generated public-parameters are computation-
ally indistinguishable from specially constructed “enforcing” parameters, which ensures a particular iterator
state to be obtainable only by iterating a specific message to another specific iterator state. Such a localized
property can be achieved information-theoretically by fixing the enforcement ahead of time.

Syntax An iterator Itr with message spaceMλ = {0, 1}poly(λ) and state space Sλ consists of three algorithms
- Itr.{Setup,SetupEnforceIterate, Iterate}, defined below.

Itr.Setup(1λ, T ): The setup algorithm takes as input the security parameter λ (in unary), and an integer
bound T (in binary) on the number of iterations. It outputs public parameters ppItr and an initial state
v0 ∈ Sλ.
Itr.SetupEnforceIterate(1λ, T,m): The enforced setup algorithm takes as input the security parameter λ
(in unary), an integer bound T (in binary), and a vector of messages m = (m1, . . . ,mk). It outputs public
parameters ppItr and an initial state v0 ∈ Sλ.
Itr.Iterate(ppItr, v

in,m): The iterate algorithm takes as input the public parameters ppItr, a state vin, and a
message m ∈Mλ. It outputs a state vout ∈ Sλ.

For presentational convenience, we use the notation Itr.Iteratej(ppItr, v
0, (m1, . . . ,mj)) to denote vj where

vj ← Itr.Iterate(ppItr, v
j−1,mj) for all j ∈ [k].

Security Let Itr = Itr.{Setup,SetupEnforceIterate, Iterate} be an iterator with message spaceMλ and state
space Sλ. We require the following notions of security.

Definition A.1 (Indistinguishability of Setup). An iterator Itr is said to satisfy indistinguishability of Setup
phase if any PPT adversary A’s advantage in the security game Exp-Setup-Itr(1λ, Itr,A) is at most negligible
in λ, where Exp-Setup-Itr is defined as follows.

Exp-Setup-Itr(1λ, Itr,A)

The adversary A chooses a bound N ∈ Θ(2λ) and sends it to the challenger.
A sends m to the challenger, where m = (m1, . . . ,mk) ∈ (Mλ)k.
The challenger chooses a bit b. If b = 0, the challenger outputs (ppItr, v

0) ← Itr.Setup(1λ, T ). Else, it
outputs (ppItr, v

0)← Itr.SetupEnforceIterate(1λ, T,m) where m = (m1, . . . ,mk) ∈ (Mλ)k.
A sends a bit b′.

A wins the security game if b = b′.

Definition A.2 (Enforcing). Consider any λ ∈ N, T ∈ Θ(2λ),m = (m1, . . . ,mk) ∈ (Mλ)k. Let (ppItr, v
0)←

SetupEnforceIterate(1λ, T,m) and vj = Itr.Iteratej(ppItr, v
0, (m1, . . . ,mk)) for all j ∈ [k]. We say Itr =

Itr.{Setup,SetupEnforceIterate, Iterate} is enforcing if

vk = Itr.Iterate(ppItr, v
′,m′)⇒ (v′,m′) = (vk−1,mk).

Note that the enforcing property is an information-theoretic property.

74



A.3.2 Positional Accumulators

A positional accumulator [KLW15] is a cryptographic data structure which maintains a relatively large storage
with a short accumulator value. The accumulator is designed in such a way that, given the last accumulator
value and some new modification to the storage, a new accumulator value can be computed efficiently. While
the accumulator value does not contain all the information about the storage, a “helper” algorithm allows the
(untrusted) storage party who is maintaining the full storage to help the (restricted) computation party that
has the accumulator value recover any data stored in arbitrary location. A positional accumulator for message
spaceMλ consists of the following algorithms.

Syntax
Acc.Setup(1λ, S): The setup algorithm takes as input the security parameter λ (in unary), and an integer
bound S (in binary) on the number of iterations. It outputs public parameters ppAcc, an initial accumulator
value w0, and an initial storage value store0.
Acc.SetupEnforceRead(1λ, S, (m1, index1), . . . , (mk, indexk), index∗): The setup enforce-read algorithm
takes as input the security parameter λ (in unary), an integer bound S (in binary) representing the maxi-
mum number of values that can be stored, and a vector of symbol-index pairs where each index is in
{0, . . . , S − 1}, and an additional index∗ also in {0, . . . , S − 1}. It outputs public parameters ppAcc, an
initial accumulator value w0, and an initial storage value store0.
Acc.SetupEnforceWrite(1λ, S, (m1, index1), . . . , (mk, indexk)): The setup enforce-write algorithm takes
as input the security parameter λ (in unary), an integer bound S (in binary) representing the maximum num-
ber of values that can be stored, and a vector of symbol-index pairs where each index is in {0, . . . , S − 1}.
It outputs public parameters ppAcc, an initial accumulator value w0, and an initial storage value store0.
Acc.PrepRead(ppAcc, store in, index): The prep-read algorithm takes as input the public parameters ppAcc,
a storage value store in, and an index ∈ {0, . . . , S−1}. It outputs a symbolm (that can be ∅) and a value π.
Acc.PrepWrite(ppAcc, store in, index): The prep-write algorithm takes as input the public parameters ppAcc,
a storage value store in, and an index ∈ {0, . . . , S − 1}. It outputs an auxiliary value aux .
Acc.VerifyRead(ppAcc, w

in,mread, index, π): The verify-read algorithm takes as input the public parame-
ters ppAcc, a, accumulator value win, a symbol mread, an index ∈ {0, . . . , S− 1}, and a value π. It outputs
True or False.
Acc.WriteStore(ppAcc, store in, index,m): The write-store algorithm takes as input the public parame-
ters ppAcc, a storage value store in, an index ∈ {0, . . . , S − 1}, and a symbol m. It outputs a storage
value storeout.
Acc.Update(ppAcc, w

in,mwrite, index, π): The update algorithm takes as input the public parameters ppAcc,
an accumulator value win, a symbol mwrite, an index ∈ {0, . . . , S − 1}, and an auxiliary value aux . It
outputs an accumulator value wout or Reject.
Acc.Combine(ppAcc, h1, h2, index): The update algorithm takes as input the public parameters ppAcc, two
hashes h1, h2 ∈ {0, 1}`, and an index ∈ {0, 1}<dlogSe. It outputs another hash value hout ∈ {0, 1}`, which
must be consistent with the output of Acc.Update after iterating over the whole storage store .

Security Let Acc = Acc.{Setup,SetupEnforceRead,SetupEnforceWrite,PrepRead,PrepWrite,VerifyRead,
WriteStore, Update} be an accumulator with message spaceMλ and state space Sλ. We require the following
notions of security.

Definition A.3 (Indistinguishability of Read-Setup). A positional accumulator Acc is said to satisfy indistin-
guishability of Read-Setup phase if any PPT adversaryA’s advantage is negligible at most in λ for winning the
security game Exp-Setup-Read(1λ, Itr,A), where Exp-Setup-Read is defined as follows.

Exp-Setup-Read(1λ,Acc,A)

The adversary A chooses a bound S ∈ Θ(2λ) and sends it to challenger.
A sends k messages m1, . . . ,mk ∈Mλ, and k+ 1 indexes index1, . . . , indexk, index∗ ∈ {0, . . . , S − 1}.
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The challenger chooses a bit b. The challenger outputs, if b = 0, (ppAcc, w
0, store0)← Acc.Setup(1λ, S);

else, (ppAcc, w
0, store0)← Acc.SetupEnforceRead(1λ, S, (m1, index1), . . . , (mk, indexk), index∗).

A sends a bit b′.
A wins the security game if b = b′.

Definition A.4 (Indistinguishability of Write-Setup). A positional accumulator Acc is said to satisfy indistin-
guishability of Write-Setup phase if any PPT adversary A’s advantage is at most negligible in λ for winning
the security game Exp-Setup-Write(1λ, Itr,A), where Exp-Setup-Write is defined as follows.

Exp-Setup-Write(1λ,Acc,A)

The adversary A chooses a bound S ∈ Θ(2λ) and sends it to challenger.
A sends k messages m1, . . . ,mk ∈Mλ, and k indexes index1, . . . , indexk ∈ {0, . . . , S − 1}.
The challenger chooses a bit b. If b = 0, the challenger outputs (ppAcc, w

0, store0) ← Acc.Setup(1λ, S).
Else, it outputs (ppAcc, w

0, store0)← Acc.SetupEnforceWrite(1λ, S, (m1, index1), . . . , (mk, indexk)).
A sends a bit b′.

A wins the security game if b = b′.

Definition A.5 (Read-Enforcing). Consider any λ ∈ N, S ∈ Θ(2λ),m1, . . . ,mk ∈Mλ, index1, . . . , indexk ∈
{0, . . . , S − 1}, and any index∗ ∈ {0, . . . , S − 1}.

Let (ppAcc, w
0, store0)← Acc.SetupEnforceRead(1λ, S, (m1, index1), . . . , (mk, indexk), index∗).

For all j ∈ [k], we define storej iteratively as storej := WriteStore(ppAcc, storej−1, indexj ,mj).
We similarly define aux j and wj iteratively as aux j := PrepWrite(ppAcc, storej−1, indexj) and wj :=

Update(ppAcc, w
j−1,mj , indexj , aux j).

Acc is said to be read-enforcing if VerifyRead(ppAcc, w
k,m, index∗, π) = 1, we have either index∗ 6∈

{index1, . . . , indexk} and m = ∅, or m = mi for the largest i ∈ [k] such that indexi = index∗.

Note that this is an information-theoretic property. We are requiring that for all other symbols m, values
of π that would cause VerifyRead to output 1 at index∗ do not exist.

Definition A.6 (Write-Enforcing). Consider any λ ∈ N, S ∈ Θ(2λ),m1, . . . ,mk ∈Mλ, index1, . . . , indexk ∈
{0, . . . , S − 1}.

Let (ppAcc, w
0, store0)← Acc.SetupEnforceWrite(1λ, S, (m1, index1), . . . , (mk, indexk)).

For all j ∈ [k], we define storej iteratively as storej := WriteStore(ppAcc, storej−1, indexj ,mj).
We similarly define aux j and wj iteratively as aux j := PrepWrite(ppAcc, storej−1, indexj) and wj :=

Update(ppAcc, w
j−1,mj , indexj , aux j).

Acc is said to be write-enforcing if Update(ppAcc, w
k−1,mk, indexk, aux ) = wout 6= Reject for any

aux , then wout = wk.

Note that this is an information-theoretic property: we are requiring that an aux value producing an accu-
mulated value other than wk or Reject does not exist.

A.3.3 Splittable Signatures

Splittable signatures [KLW15] are normal signatures with additional algorithms and properties. In particular,
the following keys are introduced:

“All but one” keys function normally except for a particular message m∗.
“One” keys function only for a particular message m∗.
Reject-verification keys reject all signatures when used for verification.

The security requirement of splittable signatures is weaker than that of normal signatures in the sense that
no signing oracle is provided to the adversary. This weaker requirement is sufficient for our applications and
enables us to argue the indistinguishability between different types of verification keys.
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Syntax A splittable signature scheme Spl for message spaceMλ consists of the following algorithms:

Setup: The setup algorithm is a probabilistic algorithm that takes as input the security parameter λ and
outputs a signing key sk, a verification key vk, and reject-verification key vkrej.
Sign: The signing algorithm is a deterministic algorithm that takes as input a signing key sk and a message
m ∈Mλ. It outputs a signature σ.
Verify: The verification algorithm is a deterministic algorithm that takes as input a verification key vk,
signature σ, and a message m. It outputs either 0 or 1.
Split: The splitting algorithm is probabilistic. It takes as input a secret key sk and a message m∗ ∈ Mλ.
It outputs a signature σone ← Sign(sk,m∗), a one-message verification key vkone, an all-but-one signing
key skabo, and an all-but-one verification key vkabo.
AboSign: The all-but-one signing algorithm is deterministic. It takes as input an all-but-one signing key
skabo and a message m, and outputs a signature σ.

Correctness Let (sk, vk, vkrej)← Spl.Setup(1λ). Letm∗ ∈Mλ be any message and (σone, vkone, skabo, vkabo)
← Spl.Split(sk,m∗). We require the following correctness properties:

1. For all m ∈Mλ, Spl.Verify(vk,m,Spl.Sign(sk,m)) = 1.

2. For all m ∈Mλ, m 6= m∗, Spl.Sign(sk,m) = Spl.AboSign(skabo,m).

3. For all σ, Spl.Verify(vk,m∗, σ) = Spl.Verify(vk,m∗, σ).

4. For all m 6= m∗ and σ, Spl.Verify(vk,m, σ) = Spl.Verify(vkabo,m, σ).

5. For all m 6= m∗ and σ, Spl.Verify(vkone,m, σ) = 0.

6. For all σ, Spl.Verify(vkabo,m
∗, σ) = 0.

7. For all σ and all m ∈Mλ, Spl.Verify(vkrej,m, σ) = 0.

Security We will now define the security notions for splittable signature schemes. Each security notion is
defined in terms of a security game between a challenger and an adversary A.

Definition A.7 (vkrej indistinguishability). A splittable signature scheme Spl is said to be vkrej indistinguish-
able if any PPT adversary A has negligible advantage in the following security game:

Exp-vkrej(1
λ,Spl,A)

The challenger computes (sk, vk, vkrej) ← Setup. It chooses a bit b ∈ {0, 1}. If b = 0, the challenger
sends vk to A. Else, it sends vkrej to A.
A sends a bit b′.

A wins if b = b′.

Definition A.8 (vkone indistinguishability). A splittable signature scheme Spl is said to be vkone indistinguish-
able if any PPT adversary A has negligible advantage in the following security game:

Exp-vkone(1
λ,Spl,A)

A sends a message m∗Mλ.
The challenger computes (sk, vk, vkrej)← Setup, and computes (σone, vkone, skabo, vkabo)← Split(sk,m∗).
It chooses a bit b ∈ {0, 1}. If b = 0, the challenger sends (σone, vkone) toA. Else, it sends (σone, vk) toA.
A sends a bit b′.

A wins if b = b′.
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Definition A.9 (vkabo indistinguishability). A splittable signature scheme Spl is said to be vkabo indistinguish-
able if any PPT adversary A has negligible advantage in the following security game:

Exp-vkabo(1λ, Spl,A)

A sends a message m∗ ∈Mλ.
The challenger computes (sk, vk, vkrej) ← Setup, and (σone, vkone, skabo, vkabo) ← Split(sk,m∗). It
chooses a bit b ∈ {0, 1}. If b = 0, the challenger sends (skabo, vkabo) toA. Else, it sends (skabo, vk) toA.
A sends a bit b′.

A wins if b = b′.

Definition A.10 (Splitting indistinguishability). A splittable signature scheme Spl is said to be splitting indis-
tinguishable if any PPT adversary A has negligible advantage in the following security game:

Exp-vkabo(1λ, Spl,A)

A sends a message m∗ ∈Mλ.
The challenger computes (sk, vk, vkrej) ← Setup(1λ), (sk′, vk′, vk′rej) ← Setup(1λ), and computes
(σone, vkone, skabo, vkabo) ← Split(sk,m∗), (σ′one, vk′one, sk

′
abo, vk′abo) ← Split(sk′,m∗). It chooses a

bit b ∈ {0, 1}. If b = 0, the challenger sends (σone, vkone, skabo, vkabo) to A. Else, if b = 1, it sends
(σ′one, vk′one, skabo, vkabo) to A.
A sends a bit b′.

A wins if b = b′.

A.3.4 Indistinguishability Obfuscation for Circuits

Definition A.11 (Indistinguishability Obfuscation for Circuits [GGH+13, SW14]). Let C = {Cλ}λ∈N be a
family of polynomial-size circuits. Let iO be a uniform PPT algorithm that takes as input the security parameter
λ, a circuit C ∈ Cλ and outputs a circuit C ′. iO is called an indistinguishability obfuscator for a circuit class
{Cλ}λ∈N if it satisfies the following conditions:

(Preserving Functionality.) For all security parameters λ ∈ N, for all circuits C ∈ Cλ, for all inputs x, we
have that C ′(x) = C(x) where C ′ ← iO(1λ, C).
(Indistinguishability of Obfuscation.) For any (not necessarily uniform) PPT distinguisherB = (Samp,D),
there exists a negligible function negl(·) such that the following holds: if for all security parameters λ ∈ N,
Pr[∀x,C0(x) = C1(x) : (C0;C1;σ)← Samp(1λ)] > 1− negl(λ), then

|Pr[D(σ, iO(1λ, C0)) = 1 : (C0;C1;σ)← Samp(1λ)]−
Pr[D(σ, iO(1λ, C1)) = 1 : (C0;C1;σ)← Samp(1λ)] ≤ negl(λ).

In addition, we require the efficiency of the input circuit to be preserved.
(Preserving Efficiency.) For all security parameters λ ∈ N, for all circuits C ∈ Cλ, we have that |C ′| =
poly(λ)|C| where C ′ ← iO(1λ, C).

A.3.5 Puncturable Pseudorandom Functions

Puncturable pseudorandom functions [BW13, BGI14, KPTZ13, SW14] have proven to be very powerful since
introduced. Here we review the definition.

Syntax A function PRF : K × X → Y is a puncturable pseudorandom function if there is an additional key
space Kpunct and three polynomial time algorithms PPRF.Setup, PPRF.Puncture, and PPRF.Eval as follows:

PPRF.Setup(1λ) is a probabilistic algorithm that takes the security parameter λ as input, and outputs a
description of the key space K, the punctured key space Kpunct, and the function PRF.
PPRF.Puncture(K,x) is a probabilistic algorithm that takes as input a PRF key K ∈ K and x ∈ X , and
outputs a key K{x} ∈ Kpunct.
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PPRF.Eval(K{x}, x′) is a deterministic algorithm that takes as input a punctured key K{x} ∈ Kpunct and
x′ ∈ X . Let K ∈ K, x ∈ X and K{x} ← PPRF.Puncture(K,x). For correctness, we require:

PPRF.Eval(K{x}, x′) =

{
PRF(K,x′) if x′ 6= x
⊥ otherwise

For convenience, we simply write PRF(K{x}, x′) to denote PPRF.Eval(K{x}, x′) when the context is clear.

Security We now define the selective security for puncturable PRFs.

Definition A.12 (Selective Security). We say a puncturable PRF scheme PPRF is selectively secure if for all
probabilistic polynomial time adversaries A, its advantage AdvA,PPRF(λ) in the following security game is
negligible in λ:

Challenge Phase A sends a challenge x∗ ∈ X . The challenger chooses uniformly at random a PRF key
K ← K and a bit b ← {0, 1}. It computes K{x∗} ← PPRF.Puncture(K,x∗). If b = 0, the challenger
sets y = PRF(K,x∗), else it chooses uniformly at random y ← Y . It sends K{x∗}, y to A.

Guess Phase A outputs a guess b′ of b.

A wins if b = b′. The advantage of A is defined to be AdvA,PPRF(λ) = Pr[A wins]− 1
2 .
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B Security Proofs

B.1 Proof of Theorem 5.2 (Security for CiO-RAM)

Proof. Let AdvxA be the advantage of the adversaryA in the hybrid Hybx. We first define the first-layer hybrids
Hybi for i ∈ {0, 1}.

Hybi for i ∈ {0, 1} In this hybrid, the challenger outputs an obfuscation computation system of Πi where
stateful algorithm F̂ i is defined in Algorithm 23.

Let us assume the obfuscated computation system terminates at time t∗ < T . We argue that |Adv0
A −

Adv1
A| ≤ negl(λ). To show this, we define the second-layer hybrids Hyb0,1, Hyb0,2, Hyb0,3 and Hyb0,4. We

also define important third-layer hybrids Hyb0,2,i and Hyb0,2′,i for 0 ≤ i < t∗.

Hyb0,0 This hybrid is identical to Hyb0 in the first layer.

Hyb0,1 In this hybrid, the challenger outputs an obfuscation of F̂ 0,1 defined in Algorithm 25. This program
is similar to F̂ 0 except that it has PRF key KB hardwired, accepts both ‘A’ and ‘B’ type signatures for t < t∗.
The type of the outgoing signature follows the type of the incoming signature. Also, if the incoming signature
is ‘B’ type and t < t∗, then the program uses F 1 to compute the output.

Hyb0,2 This hybrid is identical to Hyb0,2,0 defined below.

Hyb0,2,i In this hybrid, based on the initial configuration (mem0, st0, a0
A←M = ⊥, a0

M←A = ⊥), the challenger
computes mi as follows:

Then the challenger outputs an obfuscation of F̂ 0,2,i defined in Algorithm 26. This program is similar to
F̂ 0,1 except that it accepts ‘B’ type signatures only for inputs corresponding to i+ 1 ≤ t ≤ t∗ − 1. It also has
the correct output message mi for step i hardwired. For i+ 1 ≤ t ≤ t∗ − 1, the type of the outgoing signature
follows the type of the incoming signature. At t = i, it outputs an ‘A’ type signature if mout = mi, or outputs
‘B’ type signature otherwise.

Hyb0,2′,i In this hybrid, the challenger outputs an obfuscation of F̂ 0,2′,i defined in Algorithm 27. This pro-
gram is similar to F̂ 0,2,i except that it accepts ‘B’ type signatures only for inputs corresponding to i+ 2 ≤ t ≤
t∗ − 1. It also has the correct input message mi for step i + 1 hardwired. For i + 2 ≤ t ≤ t∗ − 1, the type of
the outgoing signature follows the type of the incoming signature. At t = i+ 1, it outputs an ‘A’ type signature
if min = mi, or outputs ‘B’ type signature otherwise.

Hyb0,3 In this hybrid, the challenger outputs an obfuscation of F̂ 0,3 defined in Algorithm 28. This program
is similar to F̂ 0,2′,t∗−1, except that it does not output ‘B’ type signatures.

Hyb0,4 In this hybrid, the challenger outputs the obfuscation of F̂ 0,4 defined in Algorithm 29. This program
outputs Reject for all t > t∗ including the case when the signature is a valid ‘A’ type signature.

Analysis In the remaining of this subsection, we prove Lemmas B.1, B.9, B.23, B.33, and B.37.
By Lemma B.1, we have |Adv0

A−Adv0,1
A | ≤ negl(λ). Since F̂ 0,1 and F̂ 0,2,0 have identical functionality, we

have |Adv0,1
A −Adv0,2,0

A | ≤ negl(λ). By Lemma B.9, we have |Adv0,2,i
A −Adv0,2′,i

A | ≤ negl(λ) for 0 ≤ i ≤ t∗−1.
By Lemma B.23, we have |Adv0,2′,i

A − Adv0,2,i+1
A | ≤ negl(λ) for 0 ≤ i ≤ t∗ − 2. By Lemma B.33, we have

|Adv0,2′,t∗−1
A − Adv0,3

A | ≤ negl(λ). By Lemma B.37, we have |Adv0,3
A − Adv0,4

A | ≤ negl(λ). Summarizing the
above, we have |Adv0

A − Adv0,4
A | ≤ negl(λ).
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Symmetrically, we can show that |Adv1
A − Adv0,4

A | ≤ negl(λ). Finally, we can conclude that |Adv0
A −

Adv1
A| ≤ negl(λ), which completes the proof.

Algorithm 23: F̂ i

Input : s̃t
in

= (t, stin, vin, win, σin), ãin
A←M = (ain

A←M, π
in) where ain

A←M = (Iin,Bin)
Data : T, ppAcc, ppItr,KA

1 if Acc.VerifyRead(ppAcc, w
in, Iin,Bin, πin) = 0 then output Reject;

2 Compute rA = PRF(KA, t− 1);
3 Compute (skA, vkA, vkA,rej) = Spl.Setup(1λ; rA);
4 Set min = (vin, stin, win, Iin);
5 if Spl.Verify(vkA,m

in, σin) = 0 then output Reject;

6 Compute (stout, aout
M←A)← F i(stin, ain

A←M);
7 if stout = Reject then output Reject;

8 wout = Acc.Update(ppAcc, w
in,Bout, πin);

9 if wout = Reject then output Reject;
10 Compute vout = Itr.Iterate(ppItr, v

in, (stin, win, Iin));
11 if vout = Reject then output Reject;
12 Compute r′A = PRF(KA, t);
13 Compute (sk′A, vk′A, vk′A,rej) = Spl.Setup(1λ; r′A);
14 Set mout = (vout, stout, wout, Iout);
15 Compute σout = Spl.Sign(sk′A,m

out);

16 Output s̃t
out

= (t+ 1, stout, vout, wout, σout), ãout
M←A = aout

M←A;

Algorithm 24: This algorithm is used in Hyb0,2,i

1 for j ∈ {1, . . . , i} do
2 Compute (stj , ajM←A)← F 0(stj−1, aj−1

A←M) ; // aj−1
A←M = (Ij−1,Bj−1)

3 (ajM←A, π
j)← Acc.PrepRead(ppAcc, storej , Ij)

4 wj ← Acc.Update(ppAcc, w
j−1, ajM←A, π

j)

5 storej ← Acc.WriteStore(ppAcc, storej−1,,jM←A , a
j
M←A)

6 vj ← Itr.Iterate(ppItr, v
j−1, (stj−1, wj−1, Ij−1))

7 Set mi = (vi, sti, wi, Ii);

B.1.1 From Hyb0,0 to Hyb0,1:

Lemma B.1. Let iO be a secure indistinguishability obfuscator, PRF be a selectively secure puncturable PRF,
and Spl be a secure splittable signature scheme; then for any PPT adversary A, |Adv0

A − Adv0,1
A | ≤ negl(λ).

Proof. We define third layer hybrids Hyb0,0,i where i ∈ {0, 1, . . . , t∗}.

Hyb0,0,i In this hybrid, the challenger outputs an obfuscation of F̂0,0,i defined in Algorithm 30. This pro-
gram is similar to F̃0 except that it has PRF key KB hardwired, accepts both ‘A’ and ‘B’ type signatures for
i < t ≤ t∗. The type of the outgoing signature follows the type of the incoming signature.
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Algorithm 25: F̂ 0,1

Input : s̃t
in

= (t, stin, vin, win, σin), ãin
A←M = (ain

A←M, π
in) where ain

A←M = (Iin,Bin)
Data : T, ppAcc, ppItr,KA, KB

1 if Acc.VerifyRead(ppAcc, w
in, Iin,Bin, πin) = 0 then output Reject;

2 Compute rA = PRF(KA, t− 1), rB = PRF(KB, t− 1);
3 Compute (skA, vkA, vkA,rej) = Spl.Setup(1λ; rA), (skB, vkB, vkB,rej) = Spl.Setup(1λ; rB);
4 Set min = (vin, stin, win, Iin) and α = ‘-’ ;
5 if Spl.Verify(vkA,m

in, σin) = 1 then set α = ‘A’ ;

6 if α = ‘-’ and t > t∗ then output Reject;

7 if α 6= ‘A’ and Spl.Verify(vkB,m
in, σin) = 1 then set α = ‘B’ ;

8 if α = ‘-’ then output Reject;

9 if α = ‘B’ then
10 Compute (stout, aout

M←A)← F 1(stin, ain
A←M)

11 else
12 Compute (stout, aout

M←A)← F 0(stin, ain
A←M)

13 if stout = Reject then output Reject;

14 wout = Acc.Update(ppAcc, w
in,Bout, πin);

15 if wout = Reject then output Reject;
16 Compute vout = Itr.Iterate(ppItr, v

in, (stin, win, Iin));
17 if vout = Reject then output Reject;
18 Compute r′A = PRF(KA, t), r′B = PRF(KB, t);
19 Compute (sk′A, vk′A, vk′A,rej) = Spl.Setup(1λ; r′A), (sk′B, vk′B, vk′B,rej) = Spl.Setup(1λ; r′B);

20 Set mout = (vout, stout, wout, Iout);
21 Compute σout = Spl.Sign(sk′α,m

out);

22 Output s̃t
out

= (t+ 1, stout, vout, wout, σout), ãout
M←A = aout

M←A;
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Algorithm 26: F̂ 0,2,i

Input : s̃t
in

= (t, stin, vin, win, σin), ãin
A←M = (ain

A←M, π
in) where ain

A←M = (Iin,Bin)
Data : T, ppAcc, ppItr,KA, KB , mi

1 if Acc.VerifyRead(ppAcc, w
in, Iin,Bin, πin) = 0 then output Reject;

2 Compute rA = PRF(KA, t− 1), rB = PRF(KB, t− 1);
3 Compute (skA, vkA, vkA,rej) = Spl.Setup(1λ; rA), (skB, vkB, vkB,rej) = Spl.Setup(1λ; rB);
4 Set min = (vin, stin, win, Iin) and α = ‘-’ ;
5 if Spl.Verify(vkA,m

in, σin) = 1 then set α = ‘A’ ;
6 if α = ‘-’ and (t > t∗ or t ≤ i ) then output Reject;
7 if α 6= ‘A’ and Spl.Verify(vkB,m

in, σin) = 1 then set α = ‘B’ ;
8 if α = ‘-’ then output Reject;

9 if α = ‘B’ or t ≤ i then
10 Compute (stout, aout

M←A)← F 1(stin, ain
A←M)

11 else
12 Compute (stout, aout

M←A)← F 0(stin, ain
A←M)

13 if stout = Reject then output Reject;

14 wout = Acc.Update(ppAcc, w
in,Bout, πin);

15 if wout = Reject then output Reject;
16 Compute vout = Itr.Iterate(ppItr, v

in, (stin, win, Iin));
17 if vout = Reject then output Reject;
18 Compute r′A = PRF(KA, t), r′B = PRF(KB, t);
19 Compute (sk′A, vk′A, vk′A,rej) = Spl.Setup(1λ; r′A), (sk′B, vk′B, vk′B,rej) = Spl.Setup(1λ; r′B);
20 Set mout = (vout, stout, wout, Iout);
21 if t = i and mout = mi then
22 Compute σout = Spl.Sign(sk′A,m

out);

23 else if t = i and mout 6= mi then
24 Compute σout = Spl.Sign(sk′B,m

out);

25 else
26 Compute σout = Spl.Sign(sk′α,m

out);

27 Output s̃t
out

= (t+ 1, stout, vout, wout, σout), ãout
M←A = aout

M←A;
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Algorithm 27: F̂ 0,2′,i

Input : s̃t
in

= (t, stin, vin, win, σin), ãin
A←M = (ain

A←M, π
in) where ain

A←M = (Iin,Bin)
Data : T, ppAcc, ppItr,KA, KB , mi

1 if Acc.VerifyRead(ppAcc, w
in, Iin,Bin, πin) = 0 then output Reject;

2 Compute rA = PRF(KA, t− 1), rB = PRF(KB, t− 1);
3 Compute (skA, vkA, vkA,rej) = Spl.Setup(1λ; rA), (skB, vkB, vkB,rej) = Spl.Setup(1λ; rB);
4 Set min = (vin, stin, win, Iin) and α = ‘-’ ;
5 if Spl.Verify(vkA,m

in, σin) = 1 then set α = ‘A’ ;
6 if α = ‘-’ and (t > t∗ or t ≤ i+ 1 ) then output Reject;
7 if α 6= ‘A’ and Spl.Verify(vkB,m

in, σin) = 1 then set α = ‘B’ ;
8 if α = ‘-’ then output Reject;

9 if α = ‘B’ or t ≤ i+ 1 then
10 Compute (stout, aout

M←A)← F 1(stin, ain
A←M)

11 else
12 Compute (stout, aout

M←A)← F 0(stin, ain
A←M)

13 if stout = Reject then output Reject;

14 wout = Acc.Update(ppAcc, w
in,Bout, πin);

15 if wout = Reject then output Reject;
16 Compute vout = Itr.Iterate(ppItr, v

in, (stin, win, Iin));
17 if vout = Reject then output Reject;
18 Compute r′A = PRF(KA, t), r′B = PRF(KB, t);
19 Compute (sk′A, vk′A, vk′A,rej) = Spl.Setup(1λ; r′A), (sk′B, vk′B, vk′B,rej) = Spl.Setup(1λ; r′B);
20 Set mout = (vout, stout, wout, Iout);
21 if t = i+ 1 and min = mi then
22 Compute σout = Spl.Sign(sk′A,m

out);

23 else if t = i+ 1 and min 6= mi then
24 Compute σout = Spl.Sign(sk′B,m

out);

25 else
26 Compute σout = Spl.Sign(sk′α,m

out);

27 Output s̃t
out

= (t+ 1, stout, vout, wout, σout), ãout
M←A = aout

M←A;
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Algorithm 28: F̂ 0,3

Input : s̃t
in

= (t, stin, vin, win, σin), ãin
A←M = (ain

A←M, π
in) where ain

A←M = (Iin,Bin)
Data : T, ppAcc, ppItr,KA, KB , t∗

1 if Acc.VerifyRead(ppAcc, w
in, Iin,Bin, πin) = 0 then output Reject;

2 Compute rA = PRF(KA, t− 1), rB = PRF(KB, t− 1);
3 Compute (skA, vkA, vkA,rej) = Spl.Setup(1λ; rA), (skB, vkB, vkB,rej) = Spl.Setup(1λ; rB);
4 Set min = (vin, stin, win, Iin) ;
5 if Spl.Verify(vkA,m

in, σin) = 0 then output Reject;

6 if t ≤ t∗ then
7 Compute (stout, aout

M←A)← F 1(stin, ain
A←M)

8 else
9 Compute (stout, aout

M←A)← F 0(stin, ain
A←M)

10 if stout = Reject then output Reject;

11 wout = Acc.Update(ppAcc, w
in,Bout, πin);

12 if wout = Reject then output Reject;
13 Compute vout = Itr.Iterate(ppItr, v

in, (stin, win, Iin));
14 if vout = Reject then output Reject;
15 Compute r′A = PRF(KA, t), r′B = PRF(KB, t);
16 Compute (sk′A, vk′A, vk′A,rej) = Spl.Setup(1λ; r′A), (sk′B, vk′B, vk′B,rej) = Spl.Setup(1λ; r′B);
17 Set mout = (vout, stout, wout, Iout);
18 if t = t∗ then
19 Compute σout = Spl.Sign(sk′B,m

out);

20 else
21 Compute σout = Spl.Sign(sk′A,m

out);

22 Output s̃t
out

= (t+ 1, stout, vout, wout, σout), ãout
M←A = aout

M←A;
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Algorithm 29: F̂ 0,4

Input : s̃t
in

= (t, stin, vin, win, σin), ãin
A←M = (ain

A←M, π
in) where ain

A←M = (Iin,Bin)
Data : T, ppAcc, ppItr,KA, KB , t∗

1 if t > t∗ then output Reject;

2 if Acc.VerifyRead(ppAcc, w
in, Iin,Bin, πin) = 0 then output Reject;

3 Compute rA = PRF(KA, t− 1), rB = PRF(KB, t− 1);
4 Compute (skA, vkA, vkA,rej) = Spl.Setup(1λ; rA), (skB, vkB, vkB,rej) = Spl.Setup(1λ; rB);
5 Set min = (vin, stin, win, Iin) ;
6 if Spl.Verify(vkA,m

in, σin) = 0 then output Reject;

7 if t ≤ t∗ then
8 Compute (stout, aout

M←A)← F 1(stin, ain
A←M)

9 if stout = Reject then output Reject;

10 wout = Acc.Update(ppAcc, w
in,Bout, πin);

11 if wout = Reject then output Reject;
12 Compute vout = Itr.Iterate(ppItr, v

in, (stin, win, Iin));
13 if vout = Reject then output Reject;
14 Compute r′A = PRF(KA, t), r′B = PRF(KB, t);
15 Compute (sk′A, vk′A, vk′A,rej) = Spl.Setup(1λ; r′A), (sk′B, vk′B, vk′B,rej) = Spl.Setup(1λ; r′B);
16 Set mout = (vout, stout, wout, Iout);
17 if t = t∗ then
18 Compute σout = Spl.Sign(sk′B,m

out);

19 else
20 Compute σout = Spl.Sign(sk′A,m

out);

21 Output s̃t
out

= (t+ 1, stout, vout, wout, σout), ãout
M←A = aout

M←A;
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We observe that hybrids Hyb0,0,0 and Hyb0,1 are identical. In addition, hybrids Hyb0,0,t∗ and Hyb0,0 are
functionally identical, since the difference between these two hybrids is a dummy code which has never been
executed. Therefore, it suffices to show that Hyb0,0,i and Hyb0,0,i−1 are computationally indistinguishable for
0 ≤ i ≤ t∗, which is implied by Lemma B.2.

Algorithm 30: F̂0,0,i

Input : s̃t
in

= (t, stin, vin, win, σin), ãin
A←M = (ain

A←M, π
in) where ain

A←M = (Iin,Bin)
Data : T, ppAcc, ppItr,KA, KB

1 if Acc.VerifyRead(ppAcc, w
in, Iin,Bin, πin) = 0 then output Reject;

2 Compute rA = PRF(KA, t− 1), rB = PRF(KB, t− 1);
3 Compute (skA, vkA, vkA,rej) = Spl.Setup(1λ; rA), (skB, vkB, vkB,rej) = Spl.Setup(1λ; rB);
4 Set min = (vin, stin, win, Iin) and α = ‘-’ ;
5 if Spl.Verify(vkA,m

in, σin) = 1 then set α = ‘A’ ;
6 if α = ‘-’ and (t > t∗ or t ≤ i) then output Reject;
7 if α = ‘-’ and Spl.Verify(vkB,m

in, σin) = 1 then set α = ‘B’ ;
8 if α = ‘-’ then output Reject;

9 if α = ‘B’ then
10 Compute (stout, aout

M←A)← F 1(stin, ain
A←M)

11 else
12 Compute (stout, aout

M←A)← F 0(stin, ain
A←M)

13 if stout = Reject then output Reject;

14 wout = Acc.Update(ppAcc, w
in,Bout, πin);

15 if wout = Reject then output Reject;
16 Compute vout = Itr.Iterate(ppItr, v

in, (stin, win, Iin));
17 if vout = Reject then output Reject;
18 Compute r′A = PRF(KA, t), r′B = PRF(KB, t);
19 Compute (sk′A, vk′A, vk′A,rej) = Spl.Setup(1λ; r′A), (sk′B, vk′B, vk′B,rej) = Spl.Setup(1λ; r′B);
20 Set mout = (vout, stout, wout, Iout);
21 Compute σout = Spl.Sign(sk′α,m

out);

22 Output s̃t
out

= (t+ 1, stout, vout, wout, σout), ãout
M←A = aout

M←A;

Lemma B.2. Let iO be a secure indistinguishability obfuscator, PRF be a selectively secure puncturable PRF,
and Spl be a secure splittable signature scheme; then for any PPT adversary A, |Adv0,0,i

A − Adv0,0,i−1
A | ≤

negl(λ).

Proof. We define fourth-layer hybrids Hyb0,0,i,a, . . . ,Hyb0,0,i,f .

Hyb0,0,i,a In this hybrid, the challenger outputs an obfuscation of F̂ 0,0,i,a defined in Algorithm 31. This
program is similar to F̂ 0,0,i except that when t = i, it verifies the signature using vkB,rej if it is not accepted as
‘A’ type signature.

Hyb0,0,i,b In this hybrid, the challenger first punctures the PRF key KB on input i− 1 by computing KB{i−
1} ← PRF.Puncture(KB, i − 1). Next, it computes rC = PRF(KB, i − 1) and (skC , vkC , vkC,rej) =

87



Spl.Setup(1λ; rC). It outputs an obfuscation of F̂ 0,0,i,b defined in Algorithm 32. This program is similar
to F̂ 0,0,i,a except that it has KB{i− 1} and vkC,rej hardwired, and when t = i, it replaces vkB,rej by vkC,rej.

Hyb0,0,i,c This hybrid is similar to Hyb0,0,i,b, except that rC is now chosen uniformly at random from {0, 1}λ.

Hyb0,0,i,d This hybrid is similar to Hyb0,0,i,c, except that vkC instead of vkC,rej is hardwired to the program.

Hyb0,0,i,e This hybrid is similar to Hyb0,0,i,d, except that rC = PRF(KB, i− 1) is now pseudorandom.

Hyb0,0,i,f This hybrid is identical to Hyb0,0,i−1.

Analysis In the remaining we prove the following claims:

Claim B.3. Let iO be a secure indistinguishability obfuscator; then for any PPT adversary A, |Adv0,0,i
A −

Adv0,0,i,a
A | ≤ negl(λ).

Proof. Observe that F̂ 0,0,i and F̂ 0,0,i,a have identical functionality. Therefore Hyb0,0,i and Hyb0,0,i,a are
computationally indistinguishable under the assumption that iO is a secure indistinguishability obfuscation
scheme.

Claim B.4. Let iO be a secure indistinguishability obfuscator; then for any PPT adversary A, |Adv0,0,i,a
A −

Adv0,0,i,b
A | ≤ negl(λ).

Proof. Note that the only difference between F̂ 0,0,i,a and F̂ 0,0,i,b is that the latter uses a punctured PRF key
KB{i − 1} to compute the verification key for time t − 1 and the signing key for time t. For verification, the
functionality is preserved since vkC,rej is hardwired to the circuit. For signing, ‘B’ type key is never used to
sign at time t = i− 1. Therefore Hyb0,0,i,a and Hyb0,0,i,b are computationally indistinguishable.

Claim B.5. Let PRF be a selectively secure puncturable PRF; then for any PPT adversary A, |Adv0,0,i,b
A −

Adv0,0,i,c
A | ≤ negl(λ).

Proof. Since both F̂ 0,0,i,b and F̂ 0,0,i,c depend only on KB{i−1}, by the security of indistinguishability obfus-
cation, the value of PRF(KB, i−1) can be replaced by a random value. Therefore Hyb0,0,i,b and Hyb0,0,i,c are
computationally indistinguishable under the assumption that PRF is a selectively secure puncturable PRF.

Claim B.6. Let Spl be a splittable signature scheme which satisfies vkrej indistinguishability (Definition A.7);
then for any PPT adversary A, |Adv0,0,i,c

A − Adv0,0,i,d
A | ≤ negl(λ).

Proof. Note that skC is not hardwired in either F̂ 0,0,i,c or F̂ 0,0,i,d. Based on the vkrej indistinguishability
property of splittable signature scheme Spl, given only vkC or vkC,rej, the two hybrids are computationally
indistinguishable.

Claim B.7. Let PRF be a selectively secure puncturable PRF; then for any PPT adversary A, |Adv0,0,i,d
A −

Adv0,0,i,e
A | ≤ negl(λ).

Proof. Since both F̂ 0,0,i,d and F̂ 0,0,i,e depend only on KB{i − 1}, by the security of indistinguishability ob-
fuscation, the random value can be switched back to PRF(KB, i − 1). Therefore Hyb0,0,i,d and Hyb0,0,i,e are
computationally indistinguishable.

Claim B.8. Let iO be a secure indistinguishability obfuscator; then for any PPT adversary A, |Adv0,0,i,e
A −

Adv0,0,i,f
A | ≤ negl(λ).
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Proof. Observe that F̂ 0,0,i,e and F̂ 0,0,i,f have identical functionality.

To conclude, we have for all PPT A, |Adv0,0,i
A − Adv0,0,i−1

A | ≤ negl(λ) as required.

Algorithm 31: F̂ 0,0,i,a

Input : s̃t
in

= (t, stin, vin, win, σin), ãin
A←M = (ain

A←M, π
in) where ain

A←M = (Iin,Bin)
Data : T, ppAcc, ppItr,KA, KB

1 if Acc.VerifyRead(ppAcc, w
in, Iin,Bin, πin) = 0 then output Reject;

2 Compute rA = PRF(KA, t− 1), rB = PRF(KB, t− 1);
3 Compute (skA, vkA, vkA,rej) = Spl.Setup(1λ; rA), (skB, vkB, vkB,rej) = Spl.Setup(1λ; rB);
4 Set vk = vkB,rej;
5 Set min = (vin, stin, win, Iin) and α = ‘-’ ;
6 if Spl.Verify(vkA,m

in, σin) = 1 then set α = ‘A’ ;
7 if α = ‘-’ and (t > t∗ or t ≤ i− 1) then output Reject;
8 if α = ‘-’ and t = i and Spl.Verify(vk,min, σin) = 0 then output Reject;

9 if α = ‘-’ and Spl.Verify(vkB,m
in, σin) = 1 then set α = ‘B’ ;

10 if α = ‘-’ then output Reject;

11 if α = ‘B’ then
12 Compute (stout, aout

M←A)← F 1(stin, ain
A←M)

13 else
14 Compute (stout, aout

M←A)← F 0(stin, ain
A←M)

15 if stout = Reject then output Reject;

16 wout = Acc.Update(ppAcc, w
in,Bout, πin);

17 if wout = Reject then output Reject;
18 Compute vout = Itr.Iterate(ppItr, v

in, (stin, win, Iin));
19 if vout = Reject then output Reject;
20 Compute r′A = PRF(KA, t), r′B = PRF(KB, t);
21 Compute (sk′A, vk′A, vk′A,rej) = Spl.Setup(1λ; r′A), (sk′B, vk′B, vk′B,rej) = Spl.Setup(1λ; r′B);
22 Set mout = (vout, stout, wout, Iout);
23 Compute σout = Spl.Sign(sk′α,m

out);

24 Output s̃t
out

= (t+ 1, stout, vout, wout, σout), ãout
M←A = aout

M←A;

B.1.2 From Hyb0,2,i to Hyb0,2′,i

Lemma B.9. Let 1 ≤ i < t∗. Assume iO is a secure indistinguishability obfuscator, PRF is a selectively secure
puncturable PRF, Spl is a secure splittable signature scheme, and Acc is a secure positional accumulator
scheme; then for any PPT adversary A, |Adv0,2,i

A − Adv0,2′,i
A | ≤ negl(λ).

Proof. We define fourth layer hybrids Hyb0,2,i,0, Hyb0,2,i,1, . . . , Hyb0,2,i,13. The first hybrid corresponds to
Hyb0,2,i, and the last one corresponds to Hyb0,2′,i.

Hyb0,2,i,0 This hybrid corresponds to Hyb0,2,i.
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Algorithm 32: F̂ 0,0,i,b

Input : s̃t
in

= (t, stin, vin, win, σin), ãin
A←M = (ain

A←M, π
in) where ain

A←M = (Iin,Bin)
Data : T, ppAcc, ppItr,KA, KB{i− 1}, vkC,rej

1 if Acc.VerifyRead(ppAcc, w
in, Iin,Bin, πin) = 0 then output Reject;

2 Compute rA = PRF(KA, t− 1);
3 Compute (skA, vkA, vkA,rej) = Spl.Setup(1λ; rA);
4 if t 6= i then
5 Compute rB = PRF(KB{i− 1}, t− 1);
6 Compute (skB, vkB, vkB,rej) = Spl.Setup(1λ; rB);
7 Set vk = vkB,rej;

8 else
9 Set vk = vkC,rej;

10 Set min = (vin, stin, win, Iin) and α = ‘-’ ;
11 if Spl.Verify(vkA,m

in, σin) = 1 then set α = ‘A’ ;
12 if α = ‘-’ and (t > t∗ or t ≤ i− 1 ) then output Reject;
13 if α = ‘-’ and t = i and Spl.Verify(vk,min, σin) = 0 then output Reject;

14 if α = ‘-’ and Spl.Verify(vkB,m
in, σin) = 1 then set α = ‘B’ ;

15 if α = ‘-’ then output Reject;

16 if α = ‘B’ then
17 Compute (stout, aout

M←A)← F 1(stin, ain
A←M)

18 else
19 Compute (stout, aout

M←A)← F 0(stin, ain
A←M)

20 if stout = Reject then output Reject;

21 wout = Acc.Update(ppAcc, w
in,Bout, πin);

22 if wout = Reject then output Reject;
23 Compute vout = Itr.Iterate(ppItr, v

in, (stin, win, Iin));
24 if vout = Reject then output Reject;
25 Compute r′A = PRF(KA, t), r′B = PRF(KB{i− 1}, t);
26 Compute (sk′A, vk′A, vk′A,rej) = Spl.Setup(1λ; r′A), (sk′B, vk′B, vk′B,rej) = Spl.Setup(1λ; r′B);
27 Set mout = (vout, stout, wout, Iout);
28 Compute σout = Spl.Sign(sk′α,m

out);

29 Output s̃t
out

= (t+ 1, stout, vout, wout, σout), ãout
M←A = aout

M←A;
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Hyb0,2,i,1 In this hybrid, the challenger punctures key KA, KB at input i, uses PRF(KA, i) and PRF(KB, i)
to compute (skC , vkC) and (skD, vkD) respectively. Formally, it computes KA{i} ← PRF.Puncture(KA, i),
rC = PRF(K, i), (skC , vkC , vkC,rej) = Spl.Setup(1λ; rC) and KB{i} ← PRF.Puncture(KB, i), rD =
PRF(K, i), (skD, vkD, vkD,rej) = Spl.Setup(1λ; rD).

In this hybrid, the challenger outputs an obfuscation of F̂ 0,2,i,1 defined in Algorithm 34. Here F̂ 0,2,i,1 is
identical to F̂ 0,2,i defined in Algorithm 26 except that it uses a punctured PRF key KA{i} instead of KA, and
KB{i} instead of KB .

Hyb0,2,i,2 In this hybrid, the challenger chooses rC , rD uniformly at random instead of computing them
using PRF(KA, i) and PRF(KB, i). In other words, the secret key/verification key pairs are sampled by
(skC , vkC)← Spl.Setup(1λ) and (skD, vkD)← Spl.Setup(1λ).

Hyb0,2,i,3 In this hybrid, the challenger computes constrained signing keys using the Spl.Split algorithm.
As in the previous hybrids, the challenger first computes the i-th message mi; then, it computes the fol-
lowing: (σC,one, vkC,one, skC,abo, vkC,abo) = Spl.Split(skC ,m

i) and (σD,one, vkD,one, skD,abo, vkD,abo) =
Spl.Split(skD,m

i).
In this hybrid, the challenger outputs an obfuscation of F̂ 0,2,i,2 defined in Algorithm 35. Note that the only

difference between F̂ 0,2,i,2 and F̂ 0,2,i,1 is that in F̂ 0,2,i,1, on input corresponding to step i, signs the outgoing
message m using skC if m = mi, else it signs using skD. On the other hand, at step i, F̂ 0,2,i,2 outputs σC,one

if the outgoing message m = mi, else it signs using skC,abo.

Hyb0,2,i,4 This hybrid is similar to the previous one, except that the challenger hardwires vkC,one in F̂ 0,2,i,2

instead of vkC .

Hyb0,2,i,5 This hybrid is similar to the previous one, except that the challenger hardwires vkD,abo instead of
vkD. As in the previous hybrid, the challenger uses Spl.Split to compute (σC,one, vkC,one, skC,abo, vkC,abo)
and (σD,one, vkD,one, skD,abo, vkD,abo) from skC and skD respectively.

Hyb0,2,i,6 In this hybrid, the challenger outputs an obfuscation of F̂ 0,2,i,3 defined in Algorithm 36. This
program performs extra checks before computing the signature. In particular, the program additionally checks
if the input corresponds to step i+ 1. If so, it checks whether min = mi or not, and accordingly outputs either
‘A’ or ‘B’ type signature.

Hyb0,2,i,7 In this hybrid, the challenger makes the accumulator “read enforcing”. It computes the first i num-

ber of “correct inputs” for the accumulator. Based on the initial configuration, we obtain
(
{(j,mem0[j])}|mem0|

j=1

)
;

then we run the following algorithm to obtain {ajM←A}ij=0.

Algorithm 33: This algorithm is for Hyb0,2,i,7

1 for j ∈ {1, . . . , i} do
2 Compute (stj , ajM←A)← F 0(stj−1, aj−1

A←M) ; // aj−1
A←M = (Ij−1,Bj−1)

3 (memj , ajA←M)← access(memj−1, ajM←A) ; // ajM←A = (Ij ,Bj)

Let ` = |mem0|. Now we set

enf =
(

(1,mem0[1]), . . . , (`,mem0[`]), (I0,B0), . . . , (Ii−1,Bi−1)
)

Finally, the challenger computes (ppAcc, ŵ0, ˆstore0)← Acc.SetupEnforceRead(1λ;T, enf , Ii).
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Hyb0,2,i,8 In this hybrid, the challenger outputs an obfuscation of F̂ 0,2,i,4 defined in Algorithm 37. This pro-
gram runs F 1 instead of F 0, if on the (i+ 1)-st step, the input signature ‘A’ verifies. Note that the accumulator
is “read enforced” in this hybrid.

Hyb0,2,i,9 In this hybrid, the challenger uses normal setup for the accumulator related parameters; that is,
it computes (ppAcc, ŵ0, ˆstore0) ← Acc.Setup(1λ;T ). The remaining steps are exactly identical to the corre-
sponding ones in the previous hybrid.

Hyb0,2,i,10 In this hybrid, the challenger computes (σC,one, vkC,one, skC,abo, vkC,abo) = Spl.Split(skC ,m
i),

but does not compute (skD, vkD). Instead, it outputs an obfuscation of F̂ 0,2,i,4 hardwiring KA{i},KB{i},
σC,one, vkC,one, skC,abo, vkC,abo,m

i. Note that the hardwired keys for verification/signing (that is, σC,one,
vkC,one, skC,abo, vkC,abo) are all derived from the same signing key skC , whereas in the previous hybrid, the
first two components were derived from skC while the next two from skD.

Hyb0,2,i,11 In this hybrid, the challenger outputs an obfuscation of F̂ 0,2,i,5 defined in Algorithm 35.

Hyb0,2,i,12 In this hybrid, the challenger chooses the randomness rC used to compute (skC , vkC) pseudoran-
domly; that is, it sets rC = PRF(KA, i).

Hyb0,2,i,13 This corresponds to Hyb0,2′,i.

Analysis In the remaining we prove the following claims.

Claim B.10. Let iO be a secure indistinguishability obfuscator; then for any PPT adversary A, |Adv0,2,i
A −

Adv0,2,i,1
A | ≤ negl(λ).

Proof. The only difference between Hyb0,2,i and Hyb0,2,i,1 is that Hyb0,2,i uses program F̂ 0,2,i, while Hyb0,2,i,1

uses F̂ 0,2,i,1. From the correctness of puncturable PRFs, it follows that both programs have identical function-
ality for t 6= i. For t = i, the two programs have identical functionality because (skC , vkC) and (skD, vkD)
are correctly computed using PRF(KA, i) and PRF(KB, i) respectively. Therefore, by the security of iO, it
follows that the obfuscations of the two programs are computationally indistinguishable.

Claim B.11. Let PRF be a selectively secure puncturable PRF; then for any PPT adversary A, |Adv0,2,i,1
A −

Adv0,2,i,2
A | ≤ negl(λ).

Proof. We will construct an intermediate experiment Hyb, where rC is chosen uniformly at random, while
rD = PRF(KB, i). Now, if an adversary can distinguish between Hyb0,2,i,1 and Hyb, then we can construct
a reduction algorithm that breaks the security of PRF. The reduction algorithm sends i as the challenge, and
receives KA{i}, r. It then uses r to compute (skC , vkC) = Spl.Setup(1λ; r). Depending on whether r is truly
random or not, B simulates either hybrid Hyb or Hyb0,2,i,1. Clearly, if A can distinguish between Hyb0,2,i,1

and Hyb with advantage non-negl, then B breaks the PRF security with advantage non-negl.

Claim B.12. Let iO be a secure indistinguishability obfuscator; then for any PPT adversary A, |Adv0,2,i,2
A −

Adv0,2,i,3
A | ≤ negl(λ).

Proof. The correctness property of Spl ensures that F̂ 0,2,i,1 and F̂ 0,2,i,2 have identical functionality.

Claim B.13. Let Spl be a secure splittable signature scheme which satisfies vkone indistinguishability (Defini-
tion A.8); then for any PPT adversary A, |Adv0,2,i,3

A − Adv0,2,i,4
A | ≤ negl(λ).
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Proof. Suppose there exists an adversary A such that |Adv0,2,i,3
A − Adv0,2,i,4

A | = non-negl; we can construct a
reduction algorithmB that breaks the vkone indistinguishability of splittable signature scheme Spl. Upon receiv-
ingmi fromB, the challenger chooses (skC , vkC , vkC,rej)← Spl.Setup(1λ), (σC,one, vkC,one, skD,abo, vkD,abo)
and receives (σ, vk), where σ = σC,one and vk = vkC or vkC,one. It chooses the remaining components
(including skD,abo and vkD) and computes F̂ 0,2,i,2 where (T, ppAcc, ppItr, KA{i},KB{i}, σC,one, skD,abo,
vk, vkD, mi) is hardwired.

Now, note that B perfectly simulates either Hyb0,2,i,3 or Hyb0,2,i,4, depending on whether the challenge
message was (σC,one, vkC) or (σC,one, vkC,one).

Claim B.14. Let Spl be a secure splittable signature scheme which satisfies vkabo indistinguishability (Defini-
tion A.9); then for any PPT adversary A, |Adv0,2,i,4

A − Adv0,2,i,5
A | ≤ negl(λ).

Proof. This proof is similar to the previous one. Suppose there exists an adversary A such that |Adv0,2,i,4
A −

Adv0,2,i,5
A | = non-negl; then there exists a reduction algorithm B that breaks the vkabo security of Spl with

advantage non-negl. In this case, the reduction algorithm uses the challenger’s output to set up skD,abo and vk,
which is either vkD or vkD,abo.

Claim B.15. Let iO be a secure indistinguishability obfuscator; then for any PPT adversary A, |Adv0,2,i,5
A −

Adv0,2,i,6
A | ≤ negl(λ).

Proof. Let P0 be F̂ 0,2,i,2 and P1 be F̂ 0,2,i,3 respectively with identically computed constants T, ppAcc, ppItr,
KA{i},KB{i}, σC,one, skD,abo, vkC,one, vkD,abo, mi.

It suffices to show that P0 and P1 have identical functionality. Note that the only inputs where P0 and P1

can possibly differ correspond to step i+ 1. Fix any input in step i+ 1. Let us consider two cases:

min = mi. In this case, using the correctness properties of Spl we can argue that for both programs,
α = ‘A’ . Now, P0 outputs Spl.Sign(sk′α,m

out), while P1 is hardwired to output Spl.Sign(sk′A,m
out).

Therefore, both programs have the same output in this case.
min 6= mi. Here, we use the correctness properties of Spl to argue that α 6= ‘A’ , and conclude that
α = ‘B’ . P1 is hardwired to output Spl.Sign(sk′B,m

out), while P0 outputs Spl.Sign(sk′α,m
out).

Claim B.16. Let Acc be a positional accumulator which satisfies indistinguishability of read setup (Defini-
tion A.3); then for any PPT adversary A, |Adv0,2,i,6

A − Adv0,2,i,7
A | ≤ negl(λ).

Proof. Suppose there exists an adversaryA such that |Adv0,2,i,6
A −Adv0,2,i,7

A | = non-negl. We will construct an
algorithm B that uses A to break the read setup indistinguishability of Acc. Here B computes the first i tuples
to be accumulated. It computes (Bj , Ij) for j ≤ i as described in Hyb0,2,i,7, and sends (Bj , Ij) for j < i, and
Ii to the challenger, and receives (ppAcc, ŵ0, ˆstore0). B uses these components to compute the encoding. Note
that the remaining steps are identical in both hybrids, and therefore, B can simulate them perfectly. Finally,
using A’s guess, B guesses whether the setup was normal or read-enforced.

Claim B.17. Let iO be a secure indistinguishability obfuscator, and F 0 and F 1 be functionally equivalent;
then for any PPT adversary A, |Adv0,2,i,7

A − Adv0,2,i,8
A | ≤ negl(λ).

Proof. Let P0 be F̂ 0,2,i,3 and P1 be F̂ 0,2,i,4 respectively with identically computed constants T, ppAcc, ppItr,
KA{i},KB{i}, σC,one, skD,abo, vkC , vkD, mi.

We need to show that P0 and P1 have identical functionality. Note that in this case, F 0 and F 1 are used in
F̂ 0,2,i,3 and in F̂ 0,2,i,4 to compute the output respectively. Based on the assumption that F 0 and F 1 are function-
ally equivalent, now the only difference could be in the case where t = i+1. If Spl.Verify(vkC,one,m

in, σin) =
1 and stout = Reject, the two programs could have different functionality. Next we argue this case cannot
happen.
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From the correctness of Spl, we have that if Spl.Verify(vkC,one,m
in, σin) = 1, then min = mi. As a result,

win = wi, Iin = Ii, stin = sti. So, (Bin = ⊥ or Acc.VerifyRead(ppAcc,B
in, wi, Ii, π) = 1) ⇒ Bin = Bi,

which implies stout = sti+1. However, sti+1 6= Reject. Hence, t = i+1 and Spl.Verify(vkC,one,m
in, σin) =

1 and stout = Reject cannot take place.

Claim B.18. Let Acc be a positional accumulator which satisfies indistinguishability of read setup (Defini-
tion A.3); then for any PPT adversary A, |Adv0,2,i,8

A − Adv0,2,i,9
A | ≤ negl(λ).

Proof. The proof is similar to that for Claim B.16.

Claim B.19. Let Spl be a secure splittable signature scheme which satisfies splitting indistinguishability (Def-
inition A.10); then for any PPT adversary A, |Adv0,2,i,9

A − Adv0,2,i,10
A | ≤ negl(λ).

Proof. Suppose there exists an adversary A such that |Adv0,2,i,9
A − Adv0,2,i,10

A | = non-negl. We will construct
an algorithm B that uses A to break the splitting indistinguishability of Spl. B first receives as input from the
challenger a tuple (σone, vkone, skabo, vkabo), where either all components are derived from the same secret
key, or the first two are from one secret key, and the last two from another secret key. Using this tuple, B can
define the constants required for F̂ 0,2,i,4. It computes KA{i},KB{i}, ppAcc, ppItr,m

i as described in hybrid
Hyb0,2,i,9 and hardwires σone, vkone, skabo, vkabo in the program. In this way, B can simulate either Hyb0,2,i,9

or Hyb0,2,i,10, and therefore, use A’s advantage to break the splitting indistinguishability.

Claim B.20. Let iO be a secure indistinguishability obfuscator; then for any PPT adversary A, |Adv0,2,i,10
A −

Adv0,2,i,11
A | ≤ negl(λ).

Proof. This claim follows from correctness properties of Spl. Note that the programs F̂ 0,2,i,4 and F̂ 0,2,i,5 can
possibly differ only if t = i+ 1. We argue that in this case, the two programs are identical as follows:

First, if signatures verify and stin = Reject, then both programs will output Reject.
Second, if Spl.Verify(vkC,one,m

in, σin) = 1, and stout 6= Reject, then both programs will output
Spl.Sign(sk′A,m

out).
Third, if Spl.Verify(vkC,one,m

in, σin) = 0 but Spl.Verify(vkC,abo,m
in, σin) = 1, then both programs will

output Spl.Sign(sk′B,m
out).

Finally, if signatures do not verify at both steps, then both programs will output Reject.

Claim B.21. Let PRF be a selectively secure puncturable PRF; then for any PPT adversary A, |Adv0,2,i,11
A −

Adv0,2,i,12
A | ≤ negl(λ).

Proof. The proof is similar to that for Claim B.11.

Claim B.22. Let iO be a secure indistinguishability obfuscator; then for any PPT adversary A, |Adv0,2,i,12
A −

Adv0,2,i,13
A | ≤ negl(λ).

Proof. The proof is similar to that for Claim B.10.

B.1.3 From Hyb0,2′,i to Hyb0,2,i+1

Lemma B.23. Let 1 ≤ i < t∗. Assume iO is a secure indistinguishability obfuscator, Itr is a secure iterator
scheme, and Acc is a secure positional accumulator scheme; then for any PPT adversary A, |Adv0,2′,i

A −
Adv0,2,i+1

A | ≤ negl(λ).

Proof. We define fourth layer hybrids Hyb0,2′,i,0, Hyb0,2′,i,1, . . . , Hyb0,2′,i,8. The first hybrid corresponds to
Hyb0,2′,i, and the last one corresponds to Hyb0,2,i+1.
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Algorithm 34: F̂ 0,2,i,1

Input : s̃t
in

= (t, stin, vin, win, σin), ãin
A←M = (ain

A←M, π
in) where ain

A←M = (Iin,Bin)
Data : T, ppAcc, ppItr, KA{i},KB{i}, skC , skD, vkC , vkD, mi

1 if Acc.VerifyRead(ppAcc, w
in, Iin,Bin, πin) = 0 then output Reject;

2 if t 6= i+ 1 then
3 Compute rA = PRF(KA{i}, t− 1), rB = PRF(KB{i}, t− 1);
4 Compute (skA, vkA, vkA,rej) = Spl.Setup(1λ; rA), (skB, vkB, vkB,rej) = Spl.Setup(1λ; rB);

5 else
6 Set vkA = vkC , vkB = vkD;

7 Set min = (vin, stin, win, Iin) and α = ‘-’ ;
8 if Spl.Verify(vkA,m

in, σin) = 1 then set α = ‘A’ ;
9 if α = ‘-’ and (t > t∗ or t ≤ i ) then output Reject;

10 if α 6= ‘A’ and Spl.Verify(vkB,m
in, σin) = 1 then set α = ‘B’ ;

11 if α = ‘-’ then output Reject;

12 if α = ‘B’ or t ≤ i then
13 Compute (stout, aout

M←A)← F 1(stin, ain
A←M)

14 else
15 Compute (stout, aout

M←A)← F 0(stin, ain
A←M)

16 if stout = Reject then output Reject;

17 wout = Acc.Update(ppAcc, w
in,Bout, πin);

18 if wout = Reject then output Reject;
19 Compute vout = Itr.Iterate(ppItr, v

in, (stin, win, Iin));
20 if vout = Reject then output Reject;
21 if t 6= i then
22 Set r′A = PRF(KA{i}, t), r′B = PRF(KB{i}, t);
23 Compute (sk′A, vk′A, vk′A,rej) = Spl.Setup(1λ; r′A), (sk′B, vk′B, vk′B,rej) = Spl.Setup(1λ; r′B);

24 else
25 Set sk′A = skC , sk′B = skD;

26 Set mout = (vout, stout, wout, Iout);
27 if t = i and mout = mi then
28 Compute σout = Spl.Sign(sk′A,m

out);

29 else if t = i and mout 6= mi then
30 Compute σout = Spl.Sign(sk′B,m

out);

31 else
32 Compute σout = Spl.Sign(sk′α,m

out);

33 Output s̃t
out

= (t+ 1, stout, vout, wout, σout), ãout
M←A = aout

M←A;
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Algorithm 35: F̂ 0,2,i,2

Input : s̃t
in

= (t, stin, vin, win, σin), ãin
A←M = (ain

A←M, π
in) where ain

A←M = (Iin,Bin)
Data : T, ppAcc, ppItr, KA{i},KB{i}, σC,one, skD,abo, vkC , vkD, mi

1 if Acc.VerifyRead(ppAcc, w
in, Iin,Bin, πin) = 0 then output Reject;

2 if t 6= i+ 1 then
3 Compute rA = PRF(KA{i}, t− 1), rB = PRF(KB{i}, t− 1);
4 Compute (skA, vkA, vkA,rej) = Spl.Setup(1λ; rA), (skB, vkB, vkB,rej) = Spl.Setup(1λ; rB);

5 else
6 Set vkA = vkC , vkB = vkD;

7 Set min = (vin, stin, win, Iin) and α = ‘-’ ;
8 if Spl.Verify(vkA,m

in, σin) = 1 then set α = ‘A’ ;
9 if α = ‘-’ and (t > t∗ or t ≤ i ) then output Reject;

10 if α 6= ‘A’ and Spl.Verify(vkB,m
in, σin) = 1 then set α = ‘B’ ;

11 if α = ‘-’ then output Reject;

12 if α = ‘B’ or t ≤ i then
13 Compute (stout, aout

M←A)← F 1(stin, ain
A←M)

14 else
15 Compute (stout, aout

M←A)← F 0(stin, ain
A←M)

16 if stout = Reject then output Reject;

17 wout = Acc.Update(ppAcc, w
in,Bout, πin);

18 if wout = Reject then output Reject;
19 Compute vout = Itr.Iterate(ppItr, v

in, (stin, win, Iin));
20 if vout = Reject then output Reject;
21 if t 6= i then
22 Set r′A = PRF(KA{i}, t), r′B = PRF(KB{i}, t);
23 Compute (sk′A, vk′A, vk′A,rej) = Spl.Setup(1λ; r′A), (sk′B, vk′B, vk′B,rej) = Spl.Setup(1λ; r′B);

24 else
25 Set sk′A = σC,one, sk′B = skD,abo;

26 Set mout = (vout, stout, wout, Iout);
27 if t = i and mout = mi then
28 Compute σout = σC,one;

29 else if t = i and mout 6= mi then
30 Compute σout = Spl.AboSign(sk′D,abo,m

out);

31 else
32 Compute σout = Spl.Sign(sk′α,m

out);

33 Output s̃t
out

= (t+ 1, stout, vout, wout, σout), ãout
M←A = aout

M←A;
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Algorithm 36: F̂ 0,2,i,3

Input : s̃t
in

= (t, stin, vin, win, σin), ãin
A←M = (ain

A←M, π
in) where ain

A←M = (Iin,Bin)
Data : T, ppAcc, ppItr, KA{i},KB{i}, σC,one, skD,abo, vkC , vkD, mi

1 if Acc.VerifyRead(ppAcc, w
in, Iin,Bin, πin) = 0 then output Reject;

2 if t 6= i+ 1 then
3 Compute rA = PRF(KA{i}, t− 1), rB = PRF(KB{i}, t− 1);
4 Compute (skA, vkA, vkA,rej) = Spl.Setup(1λ; rA), (skB, vkB, vkB,rej) = Spl.Setup(1λ; rB);

5 else
6 Set vkA = vkC , vkB = vkD;

7 Set min = (vin, stin, win, Iin) and α = ‘-’ ;
8 if Spl.Verify(vkA,m

in, σin) = 1 then set α = ‘A’ ;
9 if α = ‘-’ and (t > t∗ or t ≤ i ) then output Reject;

10 if α 6= ‘A’ and Spl.Verify(vkB,m
in, σin) = 1 then set α = ‘B’ ;

11 if α = ‘-’ then output Reject;
12 if α = ‘B’ or t ≤ i then
13 Compute (stout, aout

M←A)← F 1(stin, ain
A←M)

14 else
15 Compute (stout, aout

M←A)← F 0(stin, ain
A←M)

16 if stout = Reject then output Reject;
17 wout = Acc.Update(ppAcc, w

in,Bout, πin);
18 if wout = Reject then output Reject;
19 Compute vout = Itr.Iterate(ppItr, v

in, (stin, win, Iin));
20 if vout = Reject then output Reject;
21 if t 6= i then
22 Set r′A = PRF(KA{i}, t), r′B = PRF(KB{i}, t);
23 Compute (sk′A, vk′A, vk′A,rej) = Spl.Setup(1λ; r′A), (sk′B, vk′B, vk′B,rej) = Spl.Setup(1λ; r′B);

24 else
25 Set sk′A = σC,one, sk′B = skD,abo;

26 Set mout = (vout, stout, wout, Iout);
27 if t = i and mout = mi then
28 Compute σout = σC,one;

29 else if t = i and mout 6= mi then
30 Compute σout = Spl.AboSign(sk′D,abo,m

out);

31 else if t = i+ 1 and min = mi then
32 Compute σout = Spl.Sign(sk′A,m

out);

33 else if t = i+ 1 and min 6= mi then
34 Compute σout = Spl.Sign(sk′B,m

out);

35 else
36 Compute σout = Spl.Sign(sk′α,m

out);

37 Output s̃t
out

= (t+ 1, stout, vout, wout, σout), ãout
M←A = aout

M←A;
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Algorithm 37: F̂ 0,2,i,4

Input : s̃t
in

= (t, stin, vin, win, σin), ãin
A←M = (ain

A←M, π
in) where ain

A←M = (Iin,Bin)
Data : T, ppAcc, ppItr, KA{i},KB{i}, σC,one, skD,abo, vkC , vkD, mi

1 if Acc.VerifyRead(ppAcc, w
in, Iin,Bin, πin) = 0 then output Reject;

2 if t 6= i+ 1 then
3 Compute rA = PRF(KA{i}, t− 1), rB = PRF(KB{i}, t− 1);
4 Compute (skA, vkA, vkA,rej) = Spl.Setup(1λ; rA), (skB, vkB, vkB,rej) = Spl.Setup(1λ; rB);

5 else
6 Set vkA = vkC , vkB = vkD;

7 Set min = (vin, stin, win, Iin) and α = ‘-’ ;
8 if Spl.Verify(vkA,m

in, σin) = 1 then set α = ‘A’ ;
9 if α = ‘-’ and (t > t∗ or t ≤ i ) then output Reject;

10 if α 6= ‘A’ and Spl.Verify(vkB,m
in, σin) = 1 then set α = ‘B’ ;

11 if α = ‘-’ then output Reject;
12 if α = ‘B’ or t ≤ i+ 1 then
13 Compute (stout, aout

M←A)← F 1(stin, ain
A←M)

14 else
15 Compute (stout, aout

M←A)← F 0(stin, ain
A←M)

16 if stout = Reject then output Reject;
17 wout = Acc.Update(ppAcc, w

in,Bout, πin);
18 if wout = Reject then output Reject;
19 Compute vout = Itr.Iterate(ppItr, v

in, (stin, win, Iin));
20 if vout = Reject then output Reject;
21 if t 6= i then
22 Set r′A = PRF(KA{i}, t), r′B = PRF(KB{i}, t);
23 Compute (sk′A, vk′A, vk′A,rej) = Spl.Setup(1λ; r′A), (sk′B, vk′B, vk′B,rej) = Spl.Setup(1λ; r′B);

24 else
25 Set sk′A = σC,one, sk′B = skD,abo;

26 Set mout = (vout, stout, wout, Iout);
27 if t = i and mout = mi then
28 Compute σout = σC,one;

29 else if t = i and mout 6= mi then
30 Compute σout = Spl.AboSign(sk′D,abo,m

out);

31 else if t = i+ 1 and min = mi then
32 Compute σout = Spl.Sign(sk′A,m

out);

33 else if t = i+ 1 and min 6= mi then
34 Compute σout = Spl.Sign(sk′B,m

out);

35 else
36 Compute σout = Spl.Sign(sk′α,m

out);

37 Output s̃t
out

= (t+ 1, stout, vout, wout, σout), ãout
M←A = aout

M←A;
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Algorithm 38: F̂ 0,2,i,5

Input : s̃t
in

= (t, stin, vin, win, σin), ãin
A←M = (ain

A←M, π
in) where ain

A←M = (Iin,Bin)
Data : T, ppAcc, ppItr, KA{i},KB{i}, skC , vkC , mi

1 if Acc.VerifyRead(ppAcc, w
in, Iin,Bin, πin) = 0 then output Reject;

2 if t 6= i+ 1 then
3 Compute rA = PRF(KA{i}, t− 1), rB = PRF(KB{i}, t− 1);
4 Compute (skA, vkA, vkA,rej) = Spl.Setup(1λ; rA), (skB, vkB, vkB,rej) = Spl.Setup(1λ; rB);

5 else
6 Set vkA = vkC ;

7 Set min = (vin, stin, win, Iin) and α = ‘-’ ;
8 if Spl.Verify(vkA,m

in, σin) = 1 then set α = ‘A’ ;
9 if α = ‘-’ and (t > t∗ or t ≤ i+ 1 ) then output Reject;

10 if α 6= ‘A’ and Spl.Verify(vkB,m
in, σin) = 1 then set α = ‘B’ ;

11 if α = ‘-’ then output Reject;
12 if α = ‘B’ or t ≤ i+ 1 then
13 Compute (stout, aout

M←A)← F 1(stin, ain
A←M)

14 else
15 Compute (stout, aout

M←A)← F 0(stin, ain
A←M)

16 if stout = Reject then output Reject;
17 wout = Acc.Update(ppAcc, w

in,Bout, πin);
18 if wout = Reject then output Reject;
19 Compute vout = Itr.Iterate(ppItr, v

in, (stin, win, Iin));
20 if vout = Reject then output Reject;
21 if t 6= i then
22 Set r′A = PRF(KA{i}, t), r′B = PRF(KB{i}, t);
23 Compute (sk′A, vk′A, vk′A,rej) = Spl.Setup(1λ; r′A), (sk′B, vk′B, vk′B,rej) = Spl.Setup(1λ; r′B);

24 else
25 Set sk′A = skC ;

26 Set mout = (vout, stout, wout, Iout);
27 if t = i then
28 Compute σout = Spl.Sign(sk′A,m

out);

29 else if t = i+ 1 and min = mi then
30 Compute σout = Spl.Sign(sk′A,m

out);

31 else if t = i+ 1 and min 6= mi then
32 Compute σout = Spl.Sign(sk′B,m

out);

33 else
34 Compute σout = Spl.Sign(sk′α,m

out);

35 Output s̃t
out

= (t+ 1, stout, vout, wout, σout), ãout
M←A = aout

M←A;
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Hyb0,2′,i,0 This hybrid corresponds to Hyb0,2′,i.

Hyb0,2′,i,1 In this hybrid, the challenger makes the accumulator “read enforcing”.

Based on the initial configuration, we first obtain
(
{(j,mem0[j])}|mem0|

j=1

)
. Let ` = |mem0|. It computes

the first `+ i “correct inputs” for the accumulator; then we run the following algorithm to obtain {ajM←A}ij=0.

Algorithm 39: This algorithm is for Hyb0,2′,i,1

1 for j ∈ {1, . . . , i} do
2 Compute (stj , ajM←A)← F 0(stj−1, aj−1

A←M) ; // aj−1
A←M = (Ij−1,Bj−1)

3 (memj , ajA←M)← access(memj−1, ajM←A) ; // ajM←A = (Ij ,Bj)

Now we set

enf =
(

(1,mem0[1]), . . . , (`,mem0[`]), (I0,B0), . . . , (Ii−1,Bi−1)
)
.

Finally, the challenger computes (ppAcc, ŵ0, ˆstore0)← Acc.SetupEnforceRead(1λ;T, enf , Ii).

Hyb0,2′,i,2 In this hybrid, the challenger uses program F̂ 0,2′,i,2 (defined in Algorithm 42), which is similar to
F̂ 0,2,i. However, in addition to checking if mi = min, it also checks if (vout, stout, Iout) = (vi+1, sti+1, Ii+1).

Hyb0,2′,i,3 In this experiment, the challenger uses normal setup instead of “read enforced” setup for the
accumulator.

Hyb0,2′,i,4 In this hybrid, the challenger “write enforces” the accumulator. As in Hyb0,2′,i,1, based on the

initial configuration, we first obtain
(
{(j,mem0[j])}|mem0|

j=1

)
. But now it computes the first ` + i + 1 “correct

inputs” for the accumulator. We run the following algorithm to obtain {ajM←A}i+1
j=0.

Algorithm 40: This algorithm is for Hyb0,2′,i,4

1 for j ∈ {1, . . . , i} do
2 Compute (stj , ajM←A)← F 0(stj−1, aj−1

A←M) ; // aj−1
A←M = (Ij−1,Bj−1)

3 (memj , ajA←M)← access(memj−1, ajM←A) ; // ajM←A = (Ij ,Bj)

Now we set
enf =

(
(1,mem0[1]), . . . , (`,mem0[`]), (I0,B0), . . . , (Ii,Bi)

)
Finally, the challenger computes (ppAcc, ŵ0, ˆstore0)← Acc.SetupEnforceRead(1λ;T, enf).

Hyb0,2′,i,5 In this experiment, the challenger outputs an obfuscation of F̂ 0,2′,i,5 in Algorithm 43, which is
very similar to F̂ 0,2′,i,2. However, on input where t = i + 1, before computing signature, it also checks if
wout = wi+1. Therefore, it checks whether min = mi and mout = mi+1.

Hyb0,2′,i,6 This experiment is similar to the previous one, except that the challenger uses normal setup for
accumulator instead of “enforcing write”.
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Hyb0,2′,i,7 This experiment is similar to the previous one, except that the challenger uses enforced setup for
iterator instead of normal setup. It first computes ppAcc, w

0, store0 as in the previous hybrid. Next, it computes
the first i+ 1 “correct messages” for the iterator.

Based on the initial configuration mem0, st0, a0
A←M = ⊥, a0

M←A = ⊥), the challenger computes enf =(
(st0, w0, I0), (st1, w1, I1), . . . , (sti, wi, Ii)

)
as follows:

Algorithm 41: This algorithm is for Hyb0,2′,i,7

1 for j ∈ {1, . . . , i+ 1} do
2 Compute (stj , ajM←A)← F 0(stj−1, aj−1

A←M) ; // aj−1
A←M = (Ij−1,Bj−1)

3 (ajM←A, π
j)← Acc.PrepRead(ppAcc, storej , Ij)

4 wj ← Acc.Update(ppAcc, w
j−1, ajM←A, π

j)

5 storej ← Acc.WriteStore(ppAcc, storej−1,, ajM←A)

Then the challenger computes (ppItr, v
0)← Itr.SetupEnforceIterate(1λ;T, enf).

Hyb0,2′,i,8 In this experiment, the challenger outputs an obfuscation of F̂ 0,2′,i,8 in Algorithm 44, which is
similar to F̂ 0,2′,i,5, except that it only checks if mout = mi+1.

Hyb0,2′,i,9 This corresponds to Hyb0,2,i+1. The only difference between this experiment and the previous
one is that this uses normal setup for iterator.

Analysis.

Claim B.24. Let Acc be a positional accumulator which satisfies indistinguishability of read setup (Defini-
tion A.3); then for any PPT adversary A, |Adv0,2′,i

A − Adv0,2′,i,1
A | ≤ negl(λ).

Proof. The proof is very similar to that for Claim B.16.

Claim B.25. Let Acc be a positional accumulator which is read-enforcing (Definition A.5), and iO be a secure
indistinguishability obfuscator; then for any PPT adversary A, |Adv0,2′,i,1

A − Adv0,2′,i,2
A | ≤ negl(λ).

Proof. In order to prove the claim, it suffices to show that P0 = F̂ 0,2′,i and P1 = F̂ 0,2,i,b are functionally equiv-
alent. These two programs are functionally identical iff min = mi ⇒ (vout, Iout, stout) = (vi+1, Ii+1, sti+1),
which is implied by the read-enforcing property of the accumulator.

Claim B.26. Let Acc be a positional accumulator which satisfies indistinguishability of read setup (Defini-
tion A.3); then for any PPT adversary A, |Adv0,2′,i,2

A − Adv0,2′,i,3
A | ≤ negl(λ).

Proof. The proof is very similar to that for Claim B.16.

Claim B.27. Let Acc be a positional accumulator which satisfies indistinguishability of write setup (Defini-
tion A.4); then for any PPT adversary A, |Adv0,2′,i,3

A − Adv0,2′,i,4
A | ≤ negl(λ).

Proof. Suppose there exists an adversaryA such that |Adv0,2′,i,3
A −Adv0,2′,i,4

A | = non-negl. We will construct an
algorithm B that uses A to break the write setup indistinguishability of Acc. Here B computes the first `input +
i+ 1 tuples to be accumulated, i.e., enf . It then sends enf to the challenger, and receives (ppAcc, ŵ0, ˆstore0).
Note that the remaining steps are identical in both hybrids, and therefore, B can simulate them perfectly. Finally,
using A’s guess, B guesses whether the setup was normal or write-enforced.
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Claim B.28. Let Acc be a positional accumulator which is write-enforcing (Definition A.6), and iO be a secure
indistinguishability obfuscator; then for any PPT adversary A, |Adv0,2′,i,4

A − Adv0,2′,i,5
A | ≤ negl(λ).

Proof. In order to prove the claim, it suffices to show that F̂ 0,2,i,b and F̂ 0,2,i,c are functionally equivalent. These
two programs are functionally identical iff min = mi and (vout, Iout, stout) = (vi+1, Ii+1, sti+1) ⇒ wout =
wi+1, which is implied by the read-enforcing property of the accumulator.

Claim B.29. Let Acc be a positional accumulator which satisfies indistinguishability of write setup (Defini-
tion A.4); then for any PPT adversary A, |Adv0,2′,i,5

A − Adv0,2′,i,6
A | ≤ negl(λ).

Proof. The proof is very similar to that for Claim B.27.

Claim B.30. Let Itr be an iterator which satisfies indistinguishability of setup (Definition A.1); then for any
PPT adversary A, |Adv0,2′,i,6

A − Adv0,2′,i,7
A | ≤ negl(λ).

Proof. Suppose there exists an adversary A such that |Adv0,2′,i,6
A − Adv0,2′,i,7

A | = non-negl. We will construct
an algorithm B that uses A to break the setup indistinguishability of Itr. Here B computes the first i + 1

tuples to be iterated on, i.e., enf =
(

(st0, w0, I0), (st1, w1, I1), . . . , (sti, wi, Ii)
)

. It then sends enf to the
challenger, and receives (ppItr, v0). Note that the remaining steps are identical in both hybrids, and therefore,
B can simulate them perfectly. Finally, using A’s guess, B guesses whether the setup was normal or enforced.

Claim B.31. Let Itr be an iterator which is enforcing (Definition A.2), and iO be a secure indistinguishability
obfuscator; then for any PPT adversary A, |Adv0,2′,i,7

A − Adv0,2′,i,8
A | ≤ negl(λ).

Proof. In order to prove the claim, it suffices to show that P0 = F̂ 0,2′,i,5 and P1 = F̂ 0,2′,i,8 are functionally
equivalent. Note that the only difference between P0 and P1 is that, in P0 we check if (min = mi) and
(mout = mi+1), while in P1 we only check if (mout = mi+1). Therefore, we need to show that mout =
mi+1 ⇒ min = mi. This follows directly from the enforcing property of the iterator.

Claim B.32. Let Itr be an iterator which satisfies indistinguishability of setup (Definition A.1); then for any
PPT adversary A, |Adv0,2′,i,8

A − Adv0,2′,i,9
A | ≤ negl(λ).

Proof. The proof is very similar to that for Claim B.30.

B.1.4 From Hyb0,2′,t∗−1 to Hyb0,3

Lemma B.33. Let iO be a secure indistinguishability obfuscator, and Acc be a secure positional accumulator;
then for any PPT adversary A, |Adv0,2,t∗−1

A − Adv0,3
A | ≤ negl(λ).

Hyb0,2′,t∗−1,1 In this hybrid, the challenger makes the accumulator “read enforcing”.

Based on the initial configuration, we first obtain
(
{(j,mem0[j])}|mem0|

j=1

)
. Let ` = |mem0|. It computes

the first t∗− 1 “correct inputs” for the accumulator; then we run the following algorithm to obtain {ajM←A}t
∗−1
j=0 .

Now we set

enf =
(

(1,mem0[1]), . . . , (`,mem0[`]), (I0,B0), . . . , (It
∗−2,Bt∗−2)

)
Finally, the challenger computes (ppAcc, ŵ0, ˆstore0)← Acc.SetupEnforceRead(1λ;T, enf , It

∗−1).
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Algorithm 42: F̂ 0,2′,i,2

Input : s̃t
in

= (t, stin, vin, win, σin), ãin
A←M = (ain

A←M, π
in) where ain

A←M = (Iin,Bin)
Data : T, ppAcc, ppItr,KA, KB , mi, vi+1, sti+1, Ii+1

1 if Acc.VerifyRead(ppAcc, w
in, Iin,Bin, πin) = 0 then output Reject;

2 Compute rA = PRF(KA, t− 1), rB = PRF(KB, t− 1);
3 Compute (skA, vkA, vkA,rej) = Spl.Setup(1λ; rA), (skB, vkB, vkB,rej) = Spl.Setup(1λ; rB);
4 Set min = (vin, stin, win, Iin) and α = ‘-’ ;
5 if Spl.Verify(vkA,m

in, σin) = 1 then set α = ‘A’ ;
6 if α = ‘-’ and (t > t∗ or t ≤ i+ 1 ) then output Reject;
7 if α 6= ‘A’ and Spl.Verify(vkB,m

in, σin) = 1 then set α = ‘B’ ;
8 if α = ‘-’ then output Reject;

9 if α = ‘B’ or t ≤ i+ 1 then
10 Compute (stout, aout

M←A)← F 1(stin, ain
A←M)

11 else
12 Compute (stout, aout

M←A)← F 0(stin, ain
A←M)

13 if stout = Reject then output Reject;

14 wout = Acc.Update(ppAcc, w
in,Bout, πin);

15 if wout = Reject then output Reject;
16 Compute vout = Itr.Iterate(ppItr, v

in, (stin, win, Iin));
17 if vout = Reject then output Reject;
18 Compute r′A = PRF(KA, t), r′B = PRF(KB, t);
19 Compute (sk′A, vk′A, vk′A,rej) = Spl.Setup(1λ; r′A), (sk′B, vk′B, vk′B,rej) = Spl.Setup(1λ; r′B);
20 Set mout = (vout, stout, wout, Iout);
21 if t = i+ 1 and (min = mi and (vout, stout, Iout) = (vi+1, sti+1, Ii+1)) then
22 Compute σout = Spl.Sign(sk′A,m

out);

23 else if t = i+ 1 and (min 6= mi or (vout, stout, Iout) 6= (vi+1, sti+1, Ii+1)) then
24 Compute σout = Spl.Sign(sk′B,m

out);

25 else
26 Compute σout = Spl.Sign(sk′α,m

out);

27 Output s̃t
out

= (t+ 1, stout, vout, wout, σout), ãout
M←A = aout

M←A;
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Algorithm 43: F̂ 0,2′,i,5

Input : s̃t
in

= (t, stin, vin, win, σin), ãin
A←M = (ain

A←M, π
in) where ain

A←M = (Iin,Bin)
Data : T, ppAcc, ppItr,KA, KB , mi, mi+1

1 if Acc.VerifyRead(ppAcc, w
in, Iin,Bin, πin) = 0 then output Reject;

2 Compute rA = PRF(KA, t− 1), rB = PRF(KB, t− 1);
3 Compute (skA, vkA, vkA,rej) = Spl.Setup(1λ; rA), (skB, vkB, vkB,rej) = Spl.Setup(1λ; rB);
4 Set min = (vin, stin, win, Iin) and α = ‘-’ ;
5 if Spl.Verify(vkA,m

in, σin) = 1 then set α = ‘A’ ;
6 if α = ‘-’ and (t > t∗ or t ≤ i+ 1 ) then output Reject;
7 if α 6= ‘A’ and Spl.Verify(vkB,m

in, σin) = 1 then set α = ‘B’ ;
8 if α = ‘-’ then output Reject;

9 if α = ‘B’ or t ≤ i+ 1 then
10 Compute (stout, aout

M←A)← F 1(stin, ain
A←M)

11 else
12 Compute (stout, aout

M←A)← F 0(stin, ain
A←M)

13 if stout = Reject then output Reject;

14 wout = Acc.Update(ppAcc, w
in,Bout, πin);

15 if wout = Reject then output Reject;
16 Compute vout = Itr.Iterate(ppItr, v

in, (stin, win, Iin));
17 if vout = Reject then output Reject;
18 Compute r′A = PRF(KA, t), r′B = PRF(KB, t);
19 Compute (sk′A, vk′A, vk′A,rej) = Spl.Setup(1λ; r′A), (sk′B, vk′B, vk′B,rej) = Spl.Setup(1λ; r′B);
20 Set mout = (vout, stout, wout, Iout);
21 if t = i+ 1 and (min = mi and mout = mi+1) then
22 Compute σout = Spl.Sign(sk′A,m

out);

23 else if t = i+ 1 and (min 6= mi or mout 6= mi+1) then
24 Compute σout = Spl.Sign(sk′B,m

out);

25 else
26 Compute σout = Spl.Sign(sk′α,m

out);

27 Output s̃t
out

= (t+ 1, stout, vout, wout, σout), ãout
M←A = aout

M←A;
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Algorithm 44: F̂ 0,2′,i,8

Input : s̃t
in

= (t, stin, vin, win, σin), ãin
A←M = (ain

A←M, π
in) where ain

A←M = (Iin,Bin)
Data : T, ppAcc, ppItr,KA, KB , mi+1

1 if Acc.VerifyRead(ppAcc, w
in, Iin,Bin, πin) = 0 then output Reject;

2 Compute rA = PRF(KA, t− 1), rB = PRF(KB, t− 1);
3 Compute (skA, vkA, vkA,rej) = Spl.Setup(1λ; rA), (skB, vkB, vkB,rej) = Spl.Setup(1λ; rB);
4 Set min = (vin, stin, win, Iin) and α = ‘-’ ;
5 if Spl.Verify(vkA,m

in, σin) = 1 then set α = ‘A’ ;
6 if α = ‘-’ and (t > t∗ or t ≤ i+ 1 ) then output Reject;
7 if α 6= ‘A’ and Spl.Verify(vkB,m

in, σin) = 1 then set α = ‘B’ ;
8 if α = ‘-’ then output Reject;

9 if α = ‘B’ or t ≤ i+ 1 then
10 Compute (stout, aout

M←A)← F 1(stin, ain
A←M)

11 else
12 Compute (stout, aout

M←A)← F 0(stin, ain
A←M)

13 if stout = Reject then output Reject;

14 wout = Acc.Update(ppAcc, w
in,Bout, πin);

15 if wout = Reject then output Reject;
16 Compute vout = Itr.Iterate(ppItr, v

in, (stin, win, Iin));
17 if vout = Reject then output Reject;
18 Compute r′A = PRF(KA, t), r′B = PRF(KB, t);
19 Compute (sk′A, vk′A, vk′A,rej) = Spl.Setup(1λ; r′A), (sk′B, vk′B, vk′B,rej) = Spl.Setup(1λ; r′B);
20 Set mout = (vout, stout, wout, Iout);
21 if t = i+ 1 and (mout = mi+1) then
22 Compute σout = Spl.Sign(sk′A,m

out);

23 else if t = i+ 1 and (mout 6= mi+1) then
24 Compute σout = Spl.Sign(sk′B,m

out);

25 else
26 Compute σout = Spl.Sign(sk′α,m

out);

27 Output s̃t
out

= (t+ 1, stout, vout, wout, σout), ãout
M←A = aout

M←A;

Algorithm 45: This algorithm is for Hyb0,2′,t∗−1,1

1 for j ∈ {1, . . . , t∗ − 1} do
2 Compute (stj , ajM←A)← F 0(stj−1, aj−1

A←M) ; // aj−1
A←M = (Ij−1,Bj−1)

3 (memj , ajA←M)← access(memj−1, ajM←A) ; // ajM←A = (Ij ,Bj)
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Hyb0,2′,t∗−1,2 In this hybrid, the challenger outputs an obfuscation of F̂ 0,3.

Hyb0,2′,t∗−1,3 In this hybrid, the challenger uses Acc.Setup instead of using Acc.SetupEnforceRead.

Claim B.34. Let Acc be an accumulator which satisfies indistinguishability of read setup (Definition A.3); then
for any PPT adversary A, |Adv0,2′,t∗−1

A − Adv0,2′,t∗−1,1
A | ≤ negl(λ).

Proof. This proof is similar to that for Claim B.16.

Claim B.35. Let iO be a secure indistinguishability obfuscator; then for any PPT adversaryA, |Adv0,2′,t∗−1,1
A −

Adv0,2′,t∗−1,2
A | ≤ negl(λ).

Proof. This proof is similar to that for Claim B.17.

Claim B.36. Let Acc be an accumulator which satisfies indistinguishability of read setup (Definition A.3); then
for any PPT adversary A, |Adv0,2′,t∗−1,2

A − Adv0,2′,t∗−1,3
A | ≤ negl(λ).

Proof. This proof is similar to that for Claim B.16.

B.1.5 From Hyb0,3 to Hyb0,4

Lemma B.37. Let iO be a secure indistinguishability obfuscator, PRF be a selectively secure puncturable PRF,
and Spl be a secure splitting signature scheme; then for any PPT adversary A, |Adv0,3

A − Adv0,4
A | ≤ negl(λ).

Proof. We will define T − t∗ + 1 hybrids, and show they are computationally indistinguishable.

Hyb0,3,i In this hybrid, the challenger outputs an obfuscation of F̂ 0,3,i defined in Algorithm 46 for t∗ ≤ i ≤
T .

Clearly, programs F̂0,3 and F̂0,3,t∗ are functionally identical, and therefore Hyb0,3 and Hyb0,3,t∗ are com-
putationally indistinguishable. In addition, hybrids Hyb0,3,T and Hyb0,4 are functionally identical, since the
difference between these two hybrids is a dummy code which has never been executed. In order to show
that Hyb0,3,i and Hyb0,3,i+1 are computationally indistinguishable, we define intermediate hybrid experiments
Hyb0,3,i,a, Hyb0,3,i,a, . . . , Hyb0,3,i,f as follows. Note that Hyb0,3,i,a corresponds to Hyb0,3,i and Hyb0,3,i,f

corresponds to Hyb0,3,i+1.

Hyb0,3,i,a This hybrid corresponds to Hyb0,3,i.

Hyb0,3,i,b In this hybrid, the challenger first punctures the PRF key KA on input i by computing KA{i} ←
PRF.Puncture(KA, i). Next, it computes rC = PRF(KA, i) and (skC , vkC , vkC,rej) = Spl.Setup(1λ; rC). It
outputs an obfuscation of F̂ 0,3,i,b defined in Algorithm 47. This program is similar to F̂ 0,3,i,a except that it has
KA{i} and vkC,rej hardwired, and when t = i, it replaces vkA,rej by vkC,rej.

Hyb0,3,i,c This hybrid is similar to Hyb0,3,i,b, except that rC is now chosen uniformly at random from {0, 1}λ.

Hyb0,3,i,d This hybrid is similar to Hyb0,3,i,c, except that vkC,rej is hardwired to the program.

Hyb0,3,i,e This hybrid is similar to Hyb0,3,i,d, except that rC = PRF(KB, i) is now pseudorandom.
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Hyb0,3,i,f This hybrid corresponds to Hyb0,3,i+1.

Claim B.38. Let iO be a secure indistinguishability obfuscator; then for any PPT adversary A, |Adv0,3,i
A −

Adv0,3,i,a
A | ≤ negl(λ).

Proof. Observe that F̂ 0,3,i and F̂ 0,3,i,a have identical functionality. Therefore Hyb0,3,i and Hyb0,3,i,a are
computationally indistinguishable under the assumption that iO is a secure indistinguishability obfuscation
scheme.

Claim B.39. Let iO be a secure indistinguishability obfuscator; then for any PPT adversary A, |Adv0,3,i,a
A −

Adv0,3,i,b
A | ≤ negl(λ).

Proof. Note that the only difference between F̂ 0,3,i,a and F̂ 0,3,i,b is that the latter uses a punctured PRF key
KA{i} to compute the verification key for time t − 1 and the signing key for time t. For verification, the
functionality is preserved since vkC,rej is hardwired to the circuit. For signing, ‘B’ type key is never used to
sign at time t = i. Therefore Hyb0,3,i,a and Hyb0,3,i,b are computationally indistinguishable.

Claim B.40. Let PRF be a selectively secure puncturable PRF; then for any PPT adversary A, |Adv0,3,i,b
A −

Adv0,3,i,c
A | ≤ negl(λ).

Proof. Since both F̂ 0,3,i,b and F̂ 0,3,i,c depend only on KA{i}, by the security of indistinguishability obfus-
cation, the value of PRF(KA, i) can be replaced by a random value. Therefore Hyb0,3,i,b and Hyb0,3,i,c are
computationally indistinguishable under the assumption that PRF is selectively secure puncturable PRF.

Claim B.41. Let Spl be a splittable signature scheme which satisfies vkrej indistinguishability (Definition A.7);
then for any PPT adversary A, |Adv0,3,i,c

A − Adv0,3,i,d
A | ≤ negl(λ).

Proof. Note that skC is not hardwired in either F̂ 0,3,i,c or F̂ 0,3,i,d. Based on the vkrej indistinguishability
property of splittable signature scheme Spl, given only vkC or vkC,rej, the two hybrids are computationally
indistinguishable.

Claim B.42. Let PRF be a selectively secure puncturable PRF; then for any PPT adversary A, |Adv0,3,i,d
A −

Adv0,3,i,e
A | ≤ negl(λ).

Proof. Since both F̂ 0,3,i,d and F̂ 0,3,i,e depend only on KB{i}, by the security of indistinguishability obfusca-
tion, the random value can be switched back to PRF(KB, i). Therefore Hyb0,3,i,d and Hyb0,3,i,e are computa-
tionally indistinguishable.

Claim B.43. Let iO be a secure indistinguishability obfuscator; then for any PPT adversary A, |Adv0,3,i,e
A −

Adv0,3,i,f
A | ≤ negl(λ).

Proof. Observe that F̂ 0,3,i,e and F̂ 0,3,i,f have identical functionality. Therefore Hyb0,3,i,e and Hyb0,3,i,f are
computationally indistinguishable under the assumption that iO is a secure indistinguishability obfuscation
scheme.

Claim B.44. Let iO be a secure indistinguishability obfuscator; then for any PPT adversary A, |Adv0,3,i,f
A −

Adv0,3,i+1
A | ≤ negl(λ).

Proof. Observe that F̂ 0,3,i,f and F̂ 0,3,i+1 have identical functionality. Therefore Hyb0,3,i,f and Hyb0,3,i+1

are computationally indistinguishable under the assumption that iO is a secure indistinguishability obfuscation
scheme.

To conclude, we have for all PPT A, |Adv0,3,i
A − Adv0,3,i+1

A | ≤ negl(λ) as required.
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Algorithm 46: F̂ 0,3,i

Input : s̃t
in

= (t, stin, vin, win, σin), ãin
A←M = (ain

A←M, π
in) where ain

A←M = (Iin,Bin)
Data : T, ppAcc, ppItr,KA, KB , t∗

1 if t∗ < t ≤ i then output Reject;

2 if Acc.VerifyRead(ppAcc, w
in, Iin,Bin, πin) = 0 then output Reject;

3 Compute rA = PRF(KA, t− 1), rB = PRF(KB, t− 1);
4 Compute (skA, vkA, vkA,rej) = Spl.Setup(1λ; rA), (skB, vkB, vkB,rej) = Spl.Setup(1λ; rB);
5 Set min = (vin, stin, win, Iin) ;
6 if Spl.Verify(vkA,m

in, σin) = 0 then output Reject;

7 if t ≤ t∗ then
8 Compute (stout, aout

M←A)← F 1(stin, ain
A←M)

9 else
10 Compute (stout, aout

M←A)← F 0(stin, ain
A←M)

11 if stout = Reject then output Reject;

12 wout = Acc.Update(ppAcc, w
in,Bout, πin);

13 if wout = Reject then output Reject;
14 Compute vout = Itr.Iterate(ppItr, v

in, (stin, win, Iin));
15 if vout = Reject then output Reject;
16 Compute r′A = PRF(KA, t), r′B = PRF(KB, t);
17 Compute (sk′A, vk′A, vk′A,rej) = Spl.Setup(1λ; r′A), (sk′B, vk′B, vk′B,rej) = Spl.Setup(1λ; r′B);
18 Set mout = (vout, stout, wout, Iout);
19 if t = t∗ then
20 Compute σout = Spl.Sign(sk′B,m

out);

21 else
22 Compute σout = Spl.Sign(sk′A,m

out);

23 Output s̃t
out

= (t+ 1, stout, vout, wout, σout), ãout
M←A = aout

M←A;
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Algorithm 47: F̂ 0,3,i,b

Input : s̃t
in

= (t, stin, vin, win, σin), ãin
A←M = (ain

A←M, π
in) where ain

A←M = (Iin,Bin)
Data : T, ppAcc, ppItr,KA{i}, KB , t∗, vk

1 if t∗ < t ≤ i then output Reject;
2 if Acc.VerifyRead(ppAcc, w

in, Iin,Bin, πin) = 0 then output Reject;
3 if t 6= i+ 1 then
4 Compute rA = PRF(KA{i}, t− 1), rB = PRF(KB, t− 1);
5 Compute (skA, vkA, vkA,rej) = Spl.Setup(1λ; rA), (skB, vkB, vkB,rej) = Spl.Setup(1λ; rB);

6 else
7 Set vkA = vk;

8 Set min = (vin, stin, win, Iin) ;
9 if Spl.Verify(vkA,m

in, σin) = 0 then output Reject;

10 if t ≤ t∗ then
11 Compute (stout, aout

M←A)← F 1(stin, ain
A←M)

12 else
13 Compute (stout, aout

M←A)← F 0(stin, ain
A←M)

14 if stout = Reject then output Reject;

15 wout = Acc.Update(ppAcc, w
in,Bout, πin);

16 if wout = Reject then output Reject;
17 Compute vout = Itr.Iterate(ppItr, v

in, (stin, win, Iin));
18 if vout = Reject then output Reject;
19 Compute r′A = PRF(KA, t), r′B = PRF(KB, t);
20 Compute (sk′A, vk′A, vk′A,rej) = Spl.Setup(1λ; r′A), (sk′B, vk′B, vk′B,rej) = Spl.Setup(1λ; r′B);
21 Set mout = (vout, stout, wout, Iout);
22 if t = t∗ then
23 Compute σout = Spl.Sign(sk′B,m

out);

24 else
25 Compute σout = Spl.Sign(sk′A,m

out);

26 Output s̃t
out

= (t+ 1, stout, vout, wout, σout), ãout
M←A = aout

M←A;
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B.2 Proof of Lemma 6.3 (Security for Topological Iterators)

Proof. To prove this lemma, we define Hyb0, . . ., Hyb3.

Hyb0 In this experiment, the challenger always sends the normal setup, (ppItr, v)← TItr.Setup(1λ, N), to A.

Hyb1 In this experiment, the challenger computes the normal setup TItr.Setup(1λ, N) and the enforced setup
with the sink point ct∗ hardwired (ppItr{ct∗,K{vl,sink, vr,sink,msink}}, v)← TItr.SetupEnf(1λ, N,DAG),
and it sends one of the two to A.

Hyb2 In this experiment, the challenger computes the normal setup TItr.Setup(1λ, N) and the enforced setup
with the sink point ct∗ (encrypted with a fresh randomness) hardwired by using the TItr.SetupEnf algo-
rithm, i.e., (ppItr{ct∗,K{vl,sink, vr,sink,msink}}, v)← TItr.SetupEnf(1λ, N,DAG), and it sends one of
the two to A.

Hyb3 In this experiment, the challenger computes the normal setup TItr.Setup(1λ, N) and the enforced setup
and it sends one of the two to A.

Claim B.45. Hyb3 has only negligible advantage over Hyb0.

Proof. Given that TItr.SetupEnf requires each node n has a unique message value mn ∈ Mλ, progEnforce
only differs from prog at the input (vl,sink, vr,sink,msink). Thus we focused on the sink point in following
hybrid steps. Assuming iO is a secure indistinguishable obfuscator, Hyb0 ≈ Hyb1 because ppItr and ppItr{ct∗,
K{vl,sink, vr,sink, msink}} are functionally equivalent. Hyb1 ≈ Hyb2 by the selective security of puncturable
PRF (because the only difference is the randomness at the punctured point). Hyb2 ≈ Hyb3 by the semantic
security of PKE .

The adversary A has no advantage in Hyb0, and has only negligible advantage in Hyb3 (which is the
Exp-Setup-Itr game) over Hyb0. Therefore, any PPT adversary A has only negligible advantage in the
Exp-Setup-Itr game.

B.3 Proof of Theorem 6.6 (Security for CiO-mPRAM)

We now prove the security for our CiO in the mPRAM model. The proof idea is essentially similar to that
for CiO-RAM. We first allow the program to accept ‘B’ type signatures, to do this we can straightly use the
sequence of hybrids backward from time i = t∗ to 0. Then, we slowly switch F 0 by F 1 from t = 0 to t = t∗.
Recall that now both F 0 and F 1 include the branch and combine stages. The branch stage is taken care of using
the same techniques in the proof of CiO-RAM. In particular, the main challenge here is the combine stage.
We will show how this is tackled by hardwiring logm amount of information in the intermediate steps of the
combine stage.

Proof. To show the contradiction, we suppose the theorem statement is false, and then there exists a security
parameter 1λ, computation systems Π0,Π1 with the identical computation trace, and a PPT adversary A such
that |Pr[A(1λ, Π̃β) = 1]− 1

2 | is non-negligible.
Before proceeding to the proof, we first define some notations and conventions used in the following proof.
We use F̂ ′ = F1 � F2 to denote a program which is identical to F̂ except that Fbranch in F̂ is replaced by
F1 and Fcombine is replaced by F2.
Unless specified, the challenger in each hybrid replaces F̂ by some F̂ ′, so that the computation system Π̂
defined by F̂ is replaced by another computation system Π̂′ that is defined by F̂ ′ and outputs the obfuscated
computation Π̂′ ← Obf(1λ, Π̂′; ρ).
We first define the first-layer hybrids Hybβ for β ∈ {0, 1}.
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Hybβ In this hybrid, the challenger replaces F̂ by F̂ β = F βbranch�Fcombine, where F βbranch is similar to Fbranch

except that F is replaced by F β .
Let us assume that the program F̂ β terminates at time t∗ < T . To argue that |Adv0

A − Adv1
A| ≤ negl(λ),

we define the second- and third-layer hybrids Hyb0,0, Hyb0,0,i, Hyb0,1, Hyb0,1,i, Hyb0,2, and Hyb0,3 for
0 ≤ i ≤ t∗ − 1.

Hyb0,0 This hybrid is identical to Hyb0 in the first layer.

Hyb0,0,i In this hybrid, the challenger replaces F̂ by F̂ 0,0,i = F 0,0,i
branch � F 0,0,i

combine defined in Algorithms 48
and 49. F̂ 0,0,i is similar to F̂ 0,0 except the following differences.

F 0,0,i
branch uses F 1 to compute the output if the incoming signature is ‘B’ type.

At i+ 1 ≤ t ≤ t∗ − 1, F 0,0,i
branch and F 0,0,i

combine accept ‘B’ type signatures.
At i+ 1 ≤ t ≤ t∗ − 1, F 0,0,i

branch and F 0,0,i
combine follow the type of the incoming signature to generate the type

of the outgoing signature.

Hyb0,1 In this hybrid, the challenger replaces F̂ by F̂ 0,1 = F 0,1
branch � F 0,1

combine defined in Algorithms 50
and 51. This program is similar to F̂ 0 except that it has PRF key KB hardwired, accepts both ‘A’ and ‘B’ type
signatures at time t < t∗. The type of the outgoing signature follows the type of the incoming signature. In
addition, if the incoming signature is ‘B’ type and t < t∗, then F 0,1

branch uses F 1 to compute the output.

Hyb0,1,i In this hybrid, the challenger replaces F̂ by F̂ 0,1,i = F 0,1,i
branch � F 0,1,i

combine defined in Algorithms 52
and 53. F̂ 0,1,i is similar to F̂ 0,1 except the following differences.

At t ≤ i, F 0,1,i
branch uses F 1 to compute the output; otherwise, uses F 0.

At t = i, F 0,1,i
branch has the correct input message mi hardwired.

At t = i, F 0,1,i
branch outputs an ‘A’ type signature if mout = mi, ‘B’ type otherwise.

At i+ 1 ≤ t ≤ t∗ − 1, F 0,1,i
branch and F 0,1,i

combine accept ‘B’ type signatures.
At i+ 1 ≤ t ≤ t∗ − 1, F 0,1,i

branch and F 0,1,i
combine follow the type of the incoming signature to generate the type

of the outgoing signature.

Hyb0,2 This hybrid is similar to Hyb0,1,t∗−1 except that F 0,2
branch does not hardwire the input message mt∗−1.

Hyb0,3 This hybrid is similar to Hyb0,2 except that F 0,3
branch uses F 1 to compute the output if t > t∗ instead.

Analysis Let AdvzA be the advantage of adversary A in Hybz .

Lemma B.46. Assuming iO is a secure indistinguishability obfuscator, PRF is a selectively secure puncturable
PRF, TItr is an topological iterator satisfying Definitions 6.1 and 6.2, Acc is a secure accumulator, Spl is a
secure splittable signature scheme; then for any PPT adversary A, |Adv0

A − Adv0,1
A | ≤ negl(λ).

Proof. Hyb0 is identical to Hyb0,0.
Hyb0,0 is identical to Hyb0,0,t∗−1.
Hyb0,0,i ≈ Hyb0,0,i−1 for 1 ≤ i ≤ t∗ will be proven in Appendix B.3.1.
Hyb0,0,0 is identical to Hyb0,1.

Lemma B.47. Assuming iO is a secure indistinguishability obfuscator, |Adv0,1
A − Adv0,2

A | ≤ negl(λ).

Proof. Hyb0,1 ≈ Hyb0,1,0 since the programs F̂ 0,1 and F̂ 0,1,0 are functionally identical.
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Hyb0,1,i ≈ Hyb0,1,i+1 for 0 ≤ i ≤ t∗ − 1 will be proven in Appendix B.3.2.

Hyb0,1,t∗−1 ≈ Hyb0,2 since the programs F̂ 0,1,t∗−1 and F̂ 0,2 are functionally identical.

Lemma B.48. Assuming iO is a secure indistinguishability obfuscator, |Adv0,2
A − Adv0,3

A | ≤ negl(λ).

Proof. The programs F̂ 0,2 and F̂ 0,3 are functionally identical, since they run neither F 0 nor F 1 at time t > t∗.

Lemma B.49. Assuming iO is a secure indistinguishability obfuscator, PRF is a selectively secure puncturable
PRF, TItr is an topological iterator satisfying Definitions 6.1 and 6.2, Acc is a secure positional accumulator,
Spl is a secure splittable signature scheme; then for any PPT adversary A, |Adv0,3

A − Adv1
A| ≤ negl(λ).

The proof of this lemma is identical to the previous proof technique of CiO-RAM.

Algorithm 48: F 0,0,i
branch

Input : s̃t
in

= (stin, idcpu, root node), ãin = (comin, πin
st , π

in
com)

Data : ppAcc,st, ppAcc,com, ppItr,KA

1 Parse root node as (t, root index, win
st , w

in
com, v

in, σin);
2 Let rA = PRF(KA, (t, root index)) and rB = PRF(KB, (t, root index));
3 Compute (skA, vkA, vkA,rej) = Spl.Setup(1λ; rA) and (skB, vkB, vkB,rej) = Spl.Setup(1λ; rB);
4 Let α = ‘-’ and min = (t, root index, win

st , w
in
com, v

in);
5 if t ≤ i then
6 if Spl.Verify(vkA,m

in, σin) = 1 then set α = ‘A’;
7 Else, output Reject;

8 else
9 if Spl.Verify(vkA,m

in, σin) = 1 then set α = ‘A’;

if α 6= ‘A’ and Spl.Verify(vkB,m
in, σin) = 1 then set α = ‘B’;

10 if α = ‘-’ then output Reject;

11 if Acc.VerifyRead(ppAcc,st, w
in
st , (idcpu, stin), πin

st ) = 0 then output Reject;
12 if Acc.VerifyRead(ppAcc,com, w

in
com, (src(t, idcpu), comin), πin

com) = 0 then output Reject;
13 if α = ‘B’ then
14 Compute (stout, comout)← F 1(idcpu, stin, comin);

15 else
16 Compute (stout, comout)← F 0(idcpu, stin, comin);

17 Compute vout = TItr.Iterate(ppItr, v
in, (t+ 1, idcpu, stin, comin, win

st , w
in
com));

18 if stout = Reject then
19 Output Reject;

20 else
21 Let r′A = PRF(KA, (t+ 1, idcpu)) and r′B = PRF(KB, (t+ 1, A));
22 Compute (sk′A, vk′A, vk′A,rej) = Spl.Setup(1λ; r′A) and (sk′B, vk′B, vk′B,rej) = Spl.Setup(1λ; r′B);

23 Let mout = (t+ 1, idcpu, stout, comout, vout);
24 Compute σout = Spl.Sign(sk′α,m

out);
25 Let nodeout = (t+ 1, idcpu, stout, comout, vout, σout);
26 Output s̃t

out
= (stout, idcpu,⊥), ãout = nodeout;
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Algorithm 49: F 0,0,i
combine

Input : s̃t
in

= (stin, idcpu,⊥), ãin = (node1,node2)
Data : T, ppAcc,st, ppAcc,com, ppItr,KA

1 Parse nodeζ as (tζ , indexζ , wst,ζ , wcom,ζ , vζ , σζ) for ζ = 1, 2;
2 if t1 6= t2 then output Reject;
3 else let t = t1;
4 if t < 1 then output Reject;
5 if index1 and index2 are not siblings then output Reject;
6 Set parent index as the parent of index1 and index2;
7 for ζ = 1, 2 do
8 Let rA,ζ = PRF(KA, (tζ , indexζ)) and rB,ζ = PRF(KB, (tζ , indexζ));
9 Compute (skA,ζ , vkA,ζ , vkA,rej,ζ) = Spl.Setup(1λ; rA,ζ) and

(skB,ζ , vkB,ζ , vkB,rej,ζ) = Spl.Setup(1λ; rB,ζ);
10 Let αζ = ‘-’ and mζ = (tζ , indexζ , wst,ζ , wcom,ζ , vζ);
11 if t ≤ i then
12 if Spl.Verify(vkA,mζ , σζ) = 1 then set αζ = ‘A’;
13 else output Reject;

14 else
15 if Spl.Verify(vkA,mζ , σζ) = 1 then set αζ = ‘A’;

if αζ 6= ‘A’ and Spl.Verify(vkB,mζ , σζ) = 1 then set αζ = ‘B’;

16 if αζ = ‘-’ then output Reject;

17 if α1 = ‘A’ and α2 = ‘A’ then set α = ‘A’;else set α = ‘B’;

18 Compute w′st = Acc.Combine(ppAcc,st, wst,1, wst,2);
19 Compute w′com = Acc.Combine(ppAcc,com, wcom,1, wcom,2);
20 Compute v′ = TItr.Iterate2to1(ppItr, (v1, v2), (t,parent index, wst,1, wcom,1, wst,2, wcom,2));
21 Let r′A = PRF(KA, (t,parent index)) and r′B = PRF(KB, (t,parent index));
22 Compute (sk′A, vk′A, vk′A,rej) = Spl.Setup(1λ; r′A) and (sk′B, vk′B, vk′B,rej) = Spl.Setup(1λ; r′B);

23 Let m′ = (t,parent index, w′st, w
′
com, v

′);
24 if t ≤ i then
25 Compute σ′ = Spl.Sign(sk′A,m

′);

26 else
27 Compute σ′ = Spl.Sign(sk′α,m

′);

28 Let parent node = (t,parent index, w′st, w
′
com, v

′, σ′);
29 if parent index = ε then
30 Output s̃t

out
= (stin, idcpu,parent node), ãout = ⊥;

31 else
32 Output s̃t

out
= (stin, idcpu,⊥), ãout = parent node;
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Algorithm 50: F 0,1
branch

Input : s̃t
in

= (stin, idcpu, root node), ãin = (comin, πin
st , π

in
com)

Data : ppAcc,st, ppAcc,com, ppItr,KA

1 Parse root node as (t, root index, win
st , w

in
com, v

in, σin);
2 Let rA = PRF(KA, (t, root index)) and rB = PRF(KB, (t, root index));
3 Compute (skA, vkA, vkA,rej) = Spl.Setup(1λ; rA) and (skB, vkB, vkB,rej) = Spl.Setup(1λ; rB);
4 Let α = ‘-’ and min = (t, root index, win

st , w
in
com, v

in);
5 if Spl.Verify(vkA,m

in, σin) = 1 then set α = ‘A’;

6 if α = ‘-’ and t > t∗ then output Reject;

7 if α 6= ‘A’ and Spl.Verify(vkB,m
in, σin) = 1 then set α = ‘B’;

8 if α = ‘-’ then output Reject;

9 if Acc.VerifyRead(ppAcc,st, w
in
st , (idcpu, stin), πin

st ) = 0 then output Reject;
10 if Acc.VerifyRead(ppAcc,com, w

in
com, (src(t, idcpu), comin), πin

com) = 0 then output Reject;
11 if α = ‘B’ then
12 Compute (stout, comout)← F 1(idcpu, stin, comin);

13 else
14 Compute (stout, comout)← F 0(idcpu, stin, comin);

15 Compute vout = TItr.Iterate(ppItr, v
in, (t+ 1, idcpu, stin, comin, win

st , w
in
com));

16 if stout = Reject then
17 Output Reject;

18 else
19 Let r′A = PRF(KA, (t+ 1, idcpu)) and r′B = PRF(KB, (t+ 1, A));
20 Compute (sk′A, vk′A, vk′A,rej) = Spl.Setup(1λ; r′A) and (sk′B, vk′B, vk′B,rej) = Spl.Setup(1λ; r′B);
21 Let mout = (t+ 1, idcpu, stout, comout, vout);
22 Compute σout = Spl.Sign(sk′α,m

out);
23 Let nodeout = (t+ 1, idcpu, stout, comout, vout, σout);
24 Output s̃t

out
= (stout, idcpu,⊥), ãout = nodeout;
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Algorithm 51: F 0,1
combine

Input : s̃t
in

= (stin, idcpu,⊥), ãin = (node1,node2)
Data : T, ppAcc,st, ppAcc,com, ppItr,KA

1 Parse nodeζ as (tζ , indexζ , wst,ζ , wcom,ζ , vζ , σζ) for ζ = 1, 2;
2 if t1 6= t2 then output Reject;
3 else let t = t1;
4 if t < 1 then output Reject;
5 if index1 and index2 are not siblings then output Reject;
6 Set parent index as the parent of index1 and index2;
7 for ζ = 1, 2 do
8 Let rA,ζ = PRF(KA, (tζ , indexζ)) and rB,ζ = PRF(KB, (tζ , indexζ));
9 Compute (skA,ζ , vkA,ζ , vkA,rej,ζ) = Spl.Setup(1λ; rA,ζ) and

(skB,ζ , vkB,ζ , vkB,rej,ζ) = Spl.Setup(1λ; rB,ζ);
10 Let αζ = ‘-’ and mζ = (tζ , indexζ , wst,ζ , wcom,ζ , vζ);
11 if Spl.Verify(vkA,mζ , σζ) = 1 then set αζ = ‘A’;

12 if αζ 6= ‘A’ and Spl.Verify(vkB,mζ , σζ) = 1 then set αζ = ‘B’;

13 if αζ = ‘-’ then output Reject;

14 if α1 = ‘A’ and α2 = ‘A’ then set α = ‘A’;
15 else set α = ‘B’;
16 Compute w′st = Acc.Combine(ppAcc,st, wst,1, wst,2);
17 Compute w′com = Acc.Combine(ppAcc,com, wcom,1, wcom,2);
18 Compute v′ = TItr.Iterate2to1(ppItr, (v1, v2), (t,parent index, wst,1, wcom,1, wst,2, wcom,2));
19 Let r′A = PRF(KA, (t,parent index)) and r′B = PRF(KB, (t,parent index));
20 Compute (sk′A, vk′A, vk′A,rej) = Spl.Setup(1λ; r′A) and (sk′B, vk′B, vk′B,rej) = Spl.Setup(1λ; r′B);
21 Let m′ = (t,parent index, w′st, w

′
com, v

′);
22 Compute σ′ = Spl.Sign(sk′α,m

′);
23 Let parent node = (t,parent index, w′st, w

′
com, v

′, σ′);
24 if parent index = ε then
25 Output s̃t

out
= (stin, idcpu,parent node), ãout = ⊥;

26 else
27 Output s̃t

out
= (stin, idcpu,⊥), ãout = parent node;
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Algorithm 52: F 0,1,i
branch

Input : s̃t
in

= (stin, idcpu, root node), ãin = (comin, πin
st , π

in
com)

Data : ppAcc,st, ppAcc,com, ppItr,KA,KB,mi,Root

1 Parse root node as (t, root index, win
st , w

in
com, v

in, σin);
2 Let rA = PRF(KA, (t, root index)) and rB = PRF(KB, (t, root index));
3 Compute (skA, vkA, vkA,rej) = Spl.Setup(1λ; rA) and (skB, vkB, vkB,rej) = Spl.Setup(1λ; rB);
4 Let α = ‘-’ and min = (t, root index, win

st , w
in
com, v

in);
5 if t ≤ i then
6 if Spl.Verify(vkA,m

in, σin) = 1 then set α = ‘A’; else output Reject;

7 else
8 if Spl.Verify(vkA,m

in, σin) = 1 then set α = ‘A’;
9 if α 6= ‘A’ and Spl.Verify(vkB,m

in, σin) = 1 then set α = ‘B’;
10 if α = ‘-’ then output Reject;

11 if Acc.VerifyRead(ppAcc,st, w
in
st , (idcpu, stin), πin

st ) = 0 then output Reject;
12 if Acc.VerifyRead(ppAcc,com, w

in
com, (src(t, idcpu), comin), πin

com) = 0 then output Reject;
13 if t ≤ i or α = ‘B’ then
14 Compute (stout, comout)← F 1(idcpu, stin, comin);

15 else
16 Compute (stout, comout)← F 0(idcpu, stin, comin);

17 Compute vout = TItr.Iterate(ppItr, v
in, (t+ 1, idcpu, stin, comin, win

st , w
in
com));

18 if stout = Reject then
19 Output Reject;

20 else
21 Let r′A = PRF(KA, (t+ 1, idcpu)) and r′B = PRF(KB, (t+ 1, A));
22 Compute (sk′A, vk′A, vk′A,rej) = Spl.Setup(1λ; r′A) and (sk′B, vk′B, vk′B,rej) = Spl.Setup(1λ; r′B);
23 Let mout = (t+ 1, idcpu, stout, comout, vout);
24 if t = i and min = mi,Root then compute σout = Spl.Sign(sk′A,m

out);

else if t = i and min 6= mi,Root then compute σout = Spl.Sign(sk′B,m
out);

else compute σout = Spl.Sign(sk′α,m
out);

25 Let nodeout = (t+ 1, idcpu, stout, comout, vout, σout);
26 Output s̃t

out
= (stout, idcpu,⊥), ãout = nodeout;
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Algorithm 53: F 0,1,i
combine

Input : s̃t
in

= (stin, idcpu,⊥), ãin = (node1,node2)
Data : T, ppAcc,st, ppAcc,com, ppItr,KA,KB

1 Parse nodeζ as (tζ , indexζ , wst,ζ , wcom,ζ , vζ , σζ) for ζ = 1, 2;
2 if t1 6= t2 then output Reject;
3 else let t = t1;
4 if t < 1 then output Reject;
5 if index1 and index2 are not siblings then output Reject;
6 Set parent index as the parent of index1 and index2;
7 for ζ = 1, 2 do
8 Let rA,ζ = PRF(KA, (tζ , indexζ)) and rB,ζ = PRF(KB, (tζ , indexζ));
9 Compute (skA,ζ , vkA,ζ , vkA,rej,ζ) = Spl.Setup(1λ; rA,ζ) and

(skB,ζ , vkB,ζ , vkB,rej,ζ) = Spl.Setup(1λ; rB,ζ);
10 Let αζ = ‘-’ and mζ = (tζ , indexζ , wst,ζ , wcom,ζ , vζ);
11 if t ≤ i then
12 if Spl.Verify(vkA,mζ , σζ) = 1 then set αζ = ‘A’; else output Reject;

13 else
14 if Spl.Verify(vkA,mζ , σζ) = 1 then set αζ = ‘A’;
15 if αζ 6= ‘A’ and Spl.Verify(vkB,mζ , σζ) = 1 then set αζ = ‘B’;
16 if αζ = ‘-’ then output Reject;

17 if α1 = ‘A’ and α2 = ‘A’ then
18 set α = ‘A’

19 else
20 set α = ‘B’

21 Compute w′st = Acc.Combine(ppAcc,st, wst,1, wst,2);
22 Compute w′com = Acc.Combine(ppAcc,com, wcom,1, wcom,2);
23 Compute v′ = TItr.Iterate2to1(ppItr, (v1, v2), (t,parent index, wst,1, wcom,1, wst,2, wcom,2));
24 Let r′A = PRF(KA, (t,parent index)) and r′B = PRF(KB, (t,parent index));
25 Compute (sk′A, vk′A, vk′A,rej) = Spl.Setup(1λ; r′A) and (sk′B, vk′B, vk′B,rej) = Spl.Setup(1λ; r′B);
26 Let m′ = (t,parent index, w′st, w

′
com, v

′);
27 if t ≤ i then
28 Compute σ′ = Spl.Sign(sk′A,m

′);

29 else
30 Compute σ′ = Spl.Sign(sk′α,m

′);

31 Let parent node = (t,parent index, w′st, w
′
com, v

′, σ′);
32 if parent index = ε then
33 Output s̃t

out
= (stin, idcpu,parent node), ãout = ⊥;

34 else
35 Output s̃t

out
= (stin, idcpu,⊥), ãout = parent node;
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B.3.1 From Hyb0,0,i to Hyb0,0,i−1:

Lemma B.50. Assuming iO is a secure indistinguishability obfuscator, PRF is a selectively secure puncturable
PRF, TItr is an topological iterator satisfying Definitions 6.1 and 6.2, Acc is a secure accumulator, Spl is a
secure splittable signature scheme; then for any PPT adversary A, |Adv0,0,i

A − Adv0,0,i−1
A | ≤ negl(λ).

Proof. To argue |Adv0,0,i
A − Adv0,0,i−1

A | ≤ negl(λ), we define a sequence of fourth-layer hybrids Hyb0,0,i,j

where j is indexed by the node index via pre-order. For example, in Figure 3, we consider 4 CPUs, the order
of hybrids is (Hyb0,0,i,ε, Hyb0,0,i,0, Hyb0,0,i,00, Hyb0,0,i,01, Hyb0,0,i,1, Hyb0,0,i,10, Hyb0,0,i,11).

Hyb0,0,i,j This hybrid similar to Hyb0,0,i except of the following:

At time t = i, if idcpu ≥ min-cpu(j), F 0,0,i,j
branch follows the type of the incoming signature to generate the

type of the outgoing signature.
At time t = t+ 1, if parent index ≥ j, F 0,0,i,j

combine only accepts ‘A’ type signatures.
Finally, from Hyb0,0,i,j to Hyb0,0,i,j+1, we can directly apply KLW proof technique as in the proof of

Lemma B.2.

B.3.2 From Hyb0,1,i to Hyb0,1,i+1:

Lemma B.51. Assuming iO is a secure indistinguishability obfuscator, PRF is a selectively secure puncturable
PRF, TItr is an topological iterator satisfying Definitions 6.1 and 6.2, Acc is an accumulator, Spl is a secure
splittable signature scheme; then for any PPT adversary A, |Adv0,1,i

A − Adv0,1,i+1
A | ≤ negl(λ).

Proof. To argue |Adv0,1,i
A −Adv0,1,i+1

A | ≤ negl(λ), we define a sequence of fourth-layer hybrids Hyb0,1,i,j(type)

where j is indexed by the node index via post-order, and (type) specifies the type of node j.
Concretely, we define the fourth-layer hybrids Hyb0,1,i,j(left-leaf), Hyb0,1,i,j(right-leaf), Hyb0,1,i,j(internal), and

Hyb0,1,i,j(intermediate). See Figure 3 as an example.

root nodei

0, 1, i, 00,
left

0, 1, i, 01,
right

0, 1, i, 0,
internal

0, 1, i, 10,
left

0, 1, i, 11
right

0, 1, i, 1,
internal

0, 1, i, ǫ,
internal

Figure 3: The sequence of hybrids with 4 CPUs: Each node is a computation step, which also has
a corresponding hybrid on it. Each arrow is the input/output to be hardwired by some hybrids. Hy-
brids are proceeded by: Hyb0,1,i,00,(left-leaf), Hyb0,1,i,01,(right-leaf), Hyb0,1,i,0,(internal), Hyb0,1,i,10,(left-leaf),
Hyb0,1,i,11,(right-leaf), Hyb0,1,i,1,(internal), Hyb0,1,i,ε,(internal). As an example, Hyb0,1,i,10,(left-leaf) is circled in
thick blue line (0, 1, i, 10), and its hardwired information are shown in thick blue arrows.
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Algorithm 54: F 0,0,i,j
branch

Input : s̃t
in

= (stin, idcpu, root node), ãin = (comin, πin
st , π

in
com)

Data : ppAcc,st, ppAcc,com, ppItr,KA

1 Parse root node as (t, root index, win
st , w

in
com, v

in, σin);
2 Let rA = PRF(KA, (t, root index)) and rB = PRF(KB, (t, root index));
3 Compute (skA, vkA, vkA,rej) = Spl.Setup(1λ; rA) and (skB, vkB, vkB,rej) = Spl.Setup(1λ; rB);
4 Let α = ‘-’ and min = (t, root index, win

st , w
in
com, v

in);
5 if t ≤ i then
6 if Spl.Verify(vkA,m

in, σin) = 1 then set α = ‘A’;
7 else output Reject;

8 else
9 if Spl.Verify(vkA,m

in, σin) = 1 then set α = ‘A’;
10 if α 6= ‘A’ and Spl.Verify(vkB,m

in, σin) = 1 then set α = ‘B’;
11 if α = ‘-’ then output Reject;

12 if Acc.VerifyRead(ppAcc,st, w
in
st , (idcpu, stin), πin

st ) = 0 then output Reject;
13 if Acc.VerifyRead(ppAcc,com, w

in
com, (src(t, idcpu), comin), πin

com) = 0 then output Reject;
14 if α = ‘B’ then
15 Compute (stout, comout)← F 1(idcpu, stin, comin);

16 else
17 Compute (stout, comout)← F 0(idcpu, stin, comin);

18 Compute vout = TItr.Iterate(ppItr, v
in, (t+ 1, idcpu, stin, comin, win

st , w
in
com));

19 if stout = Reject then
20 Output Reject;

21 else
22 Let r′A = PRF(KA, (t+ 1, idcpu)) and r′B = PRF(KB, (t+ 1, A));
23 Compute (sk′A, vk′A, vk′A,rej) = Spl.Setup(1λ; r′A) and (sk′B, vk′B, vk′B,rej) = Spl.Setup(1λ; r′B);
24 Let mout = (t+ 1, idcpu, stout, comout, vout);
25 if t = i then
26 if idcpu ≥ min-cpu(j) then compute σout = Spl.Sign(sk′α,m

out);

27 else compute σout = Spl.Sign(sk′A,m
out);

28 else
29 Compute σout = Spl.Sign(sk′α,m

out);

30 Let nodeout = (t+ 1, idcpu, stout, comout, vout, σout);
31 Output s̃t

out
= (stout, idcpu,⊥), ãout = nodeout;
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Algorithm 55: F 0,0,i,j
combine

Input : s̃t
in

= (stin, idcpu,⊥), ãin = (node1,node2)
Data : T, ppAcc,st, ppAcc,com, ppItr,KA

1 Parse nodeζ as (tζ , indexζ , wst,ζ , wcom,ζ , vζ , σζ) for ζ = 1, 2;
2 if t1 6= t2 then output Reject;
3 else let t = t1;
4 if t < 1 then output Reject;
5 if index1 and index2 are not siblings then output Reject;
6 Set parent index as the parent of index1 and index2;
7 for ζ = 1, 2 do
8 Let rA,ζ = PRF(KA, (tζ , indexζ)) and rB,ζ = PRF(KB, (tζ , indexζ));
9 Compute (skA,ζ , vkA,ζ , vkA,rej,ζ) = Spl.Setup(1λ; rA,ζ) and

(skB,ζ , vkB,ζ , vkB,rej,ζ) = Spl.Setup(1λ; rB,ζ);
10 Let αζ = ‘-’ and mζ = (tζ , indexζ , wst,ζ , wcom,ζ , vζ);
11 if t ≤ i or (t = i+ 1 and parent index ≥ j) then
12 if Spl.Verify(vkA,mζ , σζ) = 1 then set αζ = ‘A’;
13 else output Reject;

14 else
15 if Spl.Verify(vkA,mζ , σζ) = 1 then set αζ = ‘A’;
16 else output Reject;
17 if αζ 6= ‘A’ and Spl.Verify(vkB,mζ , σζ) = 1 then set αζ = ‘B’;
18 if αζ = ‘-’ then output Reject;

19 if α1 = ‘A’ and α2 = ‘A’ then set α = ‘A’;
20 else set α = ‘B’;
21 Compute w′st = Acc.Combine(ppAcc,st, wst,1, wst,2);
22 Compute w′com = Acc.Combine(ppAcc,com, wcom,1, wcom,2);
23 Compute v′ = TItr.Iterate2to1(ppItr, (v1, v2), (t,parent index, wst,1, wcom,1, wst,2, wcom,2));
24 Let r′A = PRF(KA, (t,parent index)) and r′B = PRF(KB, (t,parent index));
25 Compute (sk′A, vk′A, vk′A,rej) = Spl.Setup(1λ; r′A) and (sk′B, vk′B, vk′B,rej) = Spl.Setup(1λ; r′B);
26 Let m′ = (t,parent index, w′st, w

′
com, v

′);
27 if t ≤ i then
28 Compute σ′ = Spl.Sign(sk′A,m

′);

29 else
30 Compute σ′ = Spl.Sign(sk′α,m

′);

31 Let parent node = (t,parent index, w′st, w
′
com, v

′, σ′);
32 if parent index = ε then
33 Output s̃t

out
= (stin, idcpu,parent node), ãout = ⊥;

34 else
35 Output s̃t

out
= (stin, idcpu,⊥), ãout = parent node;
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Hyb0,1,i,j(left-leaf): j is a left leaf node. In this hybrid, the challenger outputs an obfuscation of F̂ 0,1,i,j(left-leaf) =

F
0,1,i,j(left-leaf)
branch �F

0,1,i,j(left-leaf)
combine defined in Algorithms 56 and 57. F̂ 0,1,i,j(left-leaf) is similar to F̂ 0,1,i except the

following differences.
At t = i, F 0,1,i,j(left-leaf)

branch has the correct input message mi,root index and an agent j’s output message mi,j

hardwired.
At t = i, if min = mi and A > j, F 0,1,i,j(left-leaf)

branch outputs an ‘A’ type signature.
If min 6= mi and A > j, outputs a ‘B’ type signature.
If mout = mi,j and A = j, outputs an ‘A’ type signature.
If mout 6= mi,j and A = j, outputs a ‘B’ type signature.

F
0,1,i,j(left-leaf)
combine hardwires a set of indices Ci,j and the corresponding set of output message Mi,j .

F
0,1,i,j(left-leaf)
combine accepts ‘B’ type signatures only for inputs if i+ 2 ≤ t ≤ t∗ − 1 or (parent index > j and
t = i+ 1).
For parent index ∈ Ci,j at time t = i + 1, F 0,1,i,j(left-leaf)

combine checks whether m′ = mparent index ∈Mi,j or
not. If m′ = mparent index, outputs an ‘A’ type signature; otherwise, outputs ‘B’ type.

Hyb0,1,i,j(right-leaf): j is a right leaf node. In this hybrid, the challenger outputs an obfuscation of F̂ 0,1,i,j(right-leaf) =

F
0,1,i,j(right-leaf)
branch �F 0,1,i,j(right-leaf)

combine whereF 0,1,i,j(right-leaf)
branch is defined in Algorithm 58. In particular, F 0,1,i,j(right-leaf)

combine

is functionally identical to F 0,1,i,j−1(left-leaf)
combine since hardwired (Ci,j ,Mi,j) in F 0,1,i,j(right-leaf)

combine is identical to the
hardwired (Ci,j−1,Mi,j−1) in F 0,1,i,j−1(left-leaf)

combine . F̂ 0,1,i,j(right-leaf) is similar to F̂ 0,1,i except the following dif-
ferences.

At t = i, F 0,1,i,j(right-leaf)
branch has the correct input messagemi,root index and agents j−1 and j’s output message

mi,j−1 and mi,j hardwired.

At t = i, if min = mi,root index and A > j, F 0,1,i,j(right-leaf)
branch outputs an ‘A’ type signature.

If min 6= mi,root index and A > j, outputs a ‘B’ type signature.
If mout = mi,j and A = j, outputs an ‘A’ type signature.
If mout 6= mi,j and A = j, outputs a ‘B’ type signature.
If mout = mi,j−1 and A = j − 1, outputs an ‘A’ type signature.
If mout 6= mi,j−1 and A = j − 1, outputs a ‘B’ type signature.

Hyb0,1,i,j(internal): j is an internal node. In this hybrid, the challenger outputs an obfuscation of F̂ 0,1,i,j(internal) =

F
0,1,i,j(internal)
branch �F 0,1,i,j(internal)

combine defined in Algorithms 59 and 60. F̂ 0,1,i,j(internal) is similar to F̂ 0,1,i except the
following differences.

At t = i, if min = mi,root index and A > max-cpu(j), F 0,1,i,j(internal)
branch outputs an ‘A’ type signature.

If min 6= mi,root index and A > max-cpu(j), outputs a ‘B’ type signature.

F
0,1,i,j(internal)
combine hardwires an output message mi,j , a set of indices Ci,j and the corresponding set of output

message Mi,j .

F
0,1,i,j(internal)
combine accepts ‘B’ type signatures only for inputs if i+ 2 ≤ t ≤ t∗ − 1 or (parent index > j and
t = i+ 1).
For parent index ∈ Ci,j at time t = i + 1, F 0,1,i,j(internal)

combine checks whether m′ = mparent index ∈Mi,j or
not. If m′ = mparent index, outputs an ‘A’ type signature; otherwise, outputs ‘B’ type.

For parent index = j at time t = i + 1, F 0,1,i,j(internal)
combine checks whether m′ = mi,j or not. If m′ = mi,j ,

outputs an ‘A’ type signature; otherwise, outputs ‘B’ type.

Hyb0,1,i,j(intermediate): j is an internal node. In this hybrid, the challenger outputs an obfuscation of

F̂ 0,1,i,j(intermediate) = F
0,1,i,j(intermediate)
branch � F

0,1,i,j(intermediate)
combine . F 0,1,i,j(intermediate)

branch is functionally identical to
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F
0,1,i,j(internal)
branch , and F 2,i,j(intermediate)

combine is defined in Algorithm 61. This hybrid is similar to Hyb0,1,i,j(internal)
except that

F
0,1,i,j(intermediate)
combine hardwires two input messages (mi,j,1,mi,j,2)

For parent index = j at time t = i+ 1, F 0,1,i,j(intermediate)
combine outputs ‘A’ type signature if m1 = mi,j,1 and

m2 = mi,j,2, or outputs ‘B’ type if not.

Conclusively, we define Hyb0,1,i,root index∗ : in F̂ 0,1,i,root index∗ , F 0,1,i,root index∗
branch is similar to F 0,1,i+1

branch except for

no hardwired information, andF 0,1,i,root index∗
combine is identical toF 0,1,i,root index(internal)

combine . Note that F̂ 0,1,i,root index(internal)

and F̂ 0,1,i,root index∗ are functionally equivalent, which implies Hyb0,1,i,root index(internal) ≈ Hyb0,1,i,root index∗ .
Then, we conclude Hyb0,1,i,root index∗ ≈ Hyb0,1,i+1 by KLW proof technique. In general, we can directly apply
it as in the proof of Lemma B.9 to prove the argument from any case Hyb0,1,i,j to Hyb0,1,i,j+1 (with/without
Hyb0,1,i,j+1(intermediate)).

Instantiation Consider the following sequence of hybrids which corresponds to Hyb0,1,i,10, Hyb0,1,i,11,
Hyb0,1,i,1, and Hyb0,1,i,ε in Figure 3.

Hyb0,1,i,j(left-leaf) ≈ Hyb0,1,i,j+1(right-leaf) ≈ Hyb0,1,i,j+2(internal) ≈ Hyb0,1,i,j+3(internal)

To prove the indistinguishability of the hybrids in the above sequence, we further claim the sequences
below:

Hyb0,1,i,j(left-leaf) ≈ Hyb0,1,i,j+1(right-leaf)
Hyb0,1,i,j+1(right-leaf) ≈ Hyb0,1,i,j+2(intermediate) ≈ Hyb0,1,i,j+2(internal)
Hyb0,1,i,j+2(internal) ≈ Hyb0,1,i,j+3(intermediate) ≈ Hyb0,1,i,j+3(internal)

The indistinguishability of the hybrids in each of the above sequence can be proven by the KLW proof
techniques as in the proof of Lemma B.9. Note that we only need to hardwire O(logm) messages in Hyb0,1,i,j

according to the above argument.

B.4 Proof Sketch of Theorem 6.8 (Security for CiO-PRAM)

Compared to the CiO construction in the memoryless PRAM model, there are two major differences in the
construction in the standard PRAM model. Firstly, we need to verify memory inputs, which can be a value that
read from memory, or a proof of the path to the writing location, against the memory accumulator. Secondly,
we need to compute the memory accumulator (digest) by running oblivious algorithm OUpdate several rounds.
Both differences have a similar hybridizing strategy described in previous sections, and we introduce a series
of hybrids by the computation time, which is the same as that for RAM.

Hybrids to replace F 0 with F 1 are applied iteratively as follows.

Verification of Memory Input To illustrate these hybrids, let time i be a read round for both F 0 and F 1,
where both program takes no input from memory and outputs a read command. Let F̂ i be a hybrid program
that runs F 1 if t < i with the memory digest value wi−1

mem hardwired. Because there is no memory input, those
hybrids from program F̂ i to F̂ i+1 is identical to the combine tree described in Appendix B.3.2, which replaces
F 0 by F 1 at t = i.

Because time i is a read step and does not change memory digest value, F̂ i+1 also hardwires wi−1
mem. The

next round i+ 1 must be a write round which has an input read from memory and outputs a write command. At
time i+1, F̂ i+1 verifies memory inputs just as that of RAM programs, so the security proof is directly identical
to that of the RAM program (Appendix B.1) except we need a series of hybrids for each CPU agent A ∈ [m].
Given the fact that the digest value is correct at time i + 1, the hybrids are to setup read enforcement for the
memory input at time i + 1 and to argue that read value is information-theoretically correct if it is verified by
the accumulator. At this step, we can safely replace the PRAM program from F 0 to F 1 by the security of iO,
and then we have the next hybrid program F̂ i+1,OUpdate by the combine tree described in Appendix B.3.2.
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Algorithm 56: F 0,1,i,j(left-leaf)
branch

Input : s̃t
in

= (stin, idcpu, root node), ãin = (comin, πin
st , π

in
com)

Data : ppAcc,st, ppAcc,com, ppItr,KA,KB,mi,Root,mi,j

1 Parse root node as (t, root index, win
st , w

in
com, v

in, σin);
2 Let rA = PRF(KA, (t, root index)) and rB = PRF(KB, (t, root index));
3 Compute (skA, vkA, vkA,rej) = Spl.Setup(1λ; rA) and (skB, vkB, vkB,rej) = Spl.Setup(1λ; rB);
4 Let α = ‘-’ and min = (t, root index, win

st , w
in
com, v

in);
5 if t ≤ i then
6 if Spl.Verify(vkA,m

in, σin) = 1 then set α = ‘A’;
7 else output Reject;

8 else
9 if Spl.Verify(vkA,m

in, σin) = 1 then set α = ‘A’;
10 if α 6= ‘A’ and Spl.Verify(vkB,m

in, σin) = 1 then set α = ‘B’;
11 if α = ‘-’ then output Reject;

12 if Acc.VerifyRead(ppAcc,st, w
in
st , (idcpu, stin), πin

st ) = 0 then output Reject;
13 if Acc.VerifyRead(ppAcc,com, w

in
com, (src(t, idcpu), comin), πin

com) = 0 then output Reject;
14 if t ≤ i or α = ‘B’ then
15 Compute (stout, comout)← F 1(idcpu, stin, comin);

16 else
17 Compute (stout, comout)← F 0(idcpu, stin, comin);

18 Compute vout = TItr.Iterate(ppItr, v
in, (t+ 1, idcpu, stin, comin, win

st , w
in
com));

19 if stout = Reject then
20 Output Reject;

21 else
22 Let r′A = PRF(KA, (t+ 1, idcpu)) and r′B = PRF(KB, (t+ 1, A));
23 Compute (sk′A, vk′A, vk′A,rej) = Spl.Setup(1λ; r′A) and (sk′B, vk′B, vk′B,rej) = Spl.Setup(1λ; r′B);
24 Let mout = (t+ 1, idcpu, stout, comout, vout);
25 if t = i then
26 if idcpu > j and min = mi,Root then σout = Spl.Sign(sk′A,m

out);

else if idcpu > j and min 6= mi,Root then σout = Spl.Sign(sk′B,m
out);

else if idcpu = j and mout = mi,j then σout = Spl.Sign(sk′A,m
out);

else if idcpu = j and mout 6= mi,j then σout = Spl.Sign(sk′B,m
out);

27 else σout = Spl.Sign(sk′α,m
out);

28 else
29 Compute σout = Spl.Sign(sk′α,m

out)

30 Let nodeout = (t+ 1, idcpu, stout, comout, vout, σout);
31 Output s̃t

out
= (stout, idcpu,⊥), ãout = nodeout;
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Algorithm 57: F 0,1,i,j(left-leaf)
combine

Input : s̃t
in

= (stin, idcpu,⊥), ãin = (node1,node2)
Data : T, ppAcc,st, ppAcc,com, ppItr,KA,KB, (Ci,j ,Mi,j)

1 Parse nodeζ as (tζ , indexζ , wst,ζ , wcom,ζ , vζ , σζ) for ζ = 1, 2;
2 if t1 6= t2 then output Reject;
3 else let t = t1;
4 if t < 1 then output Reject;
5 if index1 and index2 are not siblings then output Reject;
6 Set parent index as the parent of index1 and index2;
7 for ζ = 1, 2 do
8 Let rA,ζ = PRF(KA, (tζ , indexζ)) and rB,ζ = PRF(KB, (tζ , indexζ));
9 Compute (skA,ζ , vkA,ζ , vkA,rej,ζ) = Spl.Setup(1λ; rA,ζ) and

(skB,ζ , vkB,ζ , vkB,rej,ζ) = Spl.Setup(1λ; rB,ζ);
10 Let αζ = ‘-’ and mζ = (tζ , indexζ , wst,ζ , wcom,ζ , vζ);
11 if t ≤ i or (t = i+ 1 and parent index ≤ j) then
12 if Spl.Verify(vkA,mζ , σζ) = 1 then set αζ = ‘A’;
13 else output Reject;

14 else
15 if Spl.Verify(vkA,mζ , σζ) = 1 then set αζ = ‘A’;
16 if αζ 6= ‘A’ and Spl.Verify(vkB,mζ , σζ) = 1 then set αζ = ‘B’;
17 if αζ = ‘-’ then output Reject;

18 if α1 = ‘A’ and α2 = ‘A’ then set α = ‘A’;
19 else set α = ‘B’;
20 Compute w′st = Acc.Combine(ppAcc,st, wst,1, wst,2);
21 Compute w′com = Acc.Combine(ppAcc,com, wcom,1, wcom,2);
22 Compute v′ = TItr.Iterate2to1(ppItr, (v1, v2), (t,parent index, wst,1, wcom,1, wst,2, wcom,2));
23 Let r′A = PRF(KA, (t,parent index)) and r′B = PRF(KB, (t,parent index));
24 Compute (sk′A, vk′A, vk′A,rej) = Spl.Setup(1λ; r′A) and (sk′B, vk′B, vk′B,rej) = Spl.Setup(1λ; r′B);
25 Let m′ = (t,parent index, w′st, w

′
com, v

′);
26 if t ≤ i then
27 Compute σ′ = Spl.Sign(sk′A,m

′);

28 if t = i+ 1 then
29 if parent index = index′ and m′ = mindex′ for index′ ∈ Ci,j and mindex′ ∈Mi,j then
30 compute σ′ = Spl.Sign(sk′A,m

′);

31 else if parent index = index′ and m′ 6= mindex′ for index′ ∈ Ci,j and mindex′ ∈Mi,j then
32 compute σ′ = Spl.Sign(sk′B,m

′);

33 else compute σ′ = Spl.Sign(sk′α,m
′);

34 else
35 Compute σ′ = Spl.Sign(sk′α,m

′);

36 Let parent node = (t,parent index, w′st, w
′
com, v

′, σ′);
37 if parent index = ε then
38 Output s̃t

out
= (stin, idcpu,parent node), ãout = ⊥;

39 else
40 Output s̃t

out
= (stin, idcpu,⊥), ãout = parent node;
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Algorithm 58: F 0,1,i,j(right-leaf)
branch

Input : s̃t
in

= (stin, idcpu, root node), ãin = (comin, πin
st , π

in
com)

Data : ppAcc,st, ppAcc,com, ppItr,KA,KB,mi,Root,mi,j−1,mi,j

1 Parse root node as (t, root index, win
st , w

in
com, v

in, σin);
2 Let rA = PRF(KA, (t, root index)) and rB = PRF(KB, (t, root index));
3 Compute (skA, vkA, vkA,rej) = Spl.Setup(1λ; rA) and (skB, vkB, vkB,rej) = Spl.Setup(1λ; rB);
4 Let α = ‘-’ and min = (t, root index, win

st , w
in
com, v

in);
5 if t ≤ i then
6 if Spl.Verify(vkA,m

in, σin) = 1 then set α = ‘A’;
7 else output Reject;

8 else
9 if Spl.Verify(vkA,m

in, σin) = 1 then set α = ‘A’;
10 if α 6= ‘A’ and Spl.Verify(vkB,m

in, σin) = 1 then set α = ‘B’;
11 if α = ‘-’ then output Reject;

12 if Acc.VerifyRead(ppAcc,st, w
in
st , (idcpu, stin), πin

st ) = 0 then output Reject;
13 if Acc.VerifyRead(ppAcc,com, w

in
com, (src(t, idcpu), comin), πin

com) = 0 then output Reject;
14 if t ≤ i or α = ‘B’ then
15 Compute (stout, comout)← F 1(idcpu, stin, comin);

16 else
17 Compute (stout, comout)← F 0(idcpu, stin, comin);

18 Compute vout = TItr.Iterate(ppItr, v
in, (t+ 1, idcpu, stin, comin, win

st , w
in
com));

19 if stout = Reject then
20 Output Reject;

21 else
22 Let r′A = PRF(KA, (t+ 1, idcpu)) and r′B = PRF(KB, (t+ 1, A));
23 Compute (sk′A, vk′A, vk′A,rej) = Spl.Setup(1λ; r′A) and (sk′B, vk′B, vk′B,rej) = Spl.Setup(1λ; r′B);
24 Let mout = (t+ 1, idcpu, stout, comout, vout);
25 if t = i then
26 if idcpu > j and min = mi,Root then σout = Spl.Sign(sk′A,m

out);

else if idcpu > j and min 6= mi,Root then σout = Spl.Sign(sk′B,m
out);

else if idcpu = j − 1 and mout = mi,j−1 then σout = Spl.Sign(sk′A,m
out);

else if idcpu = j − 1 and mout 6= mi,j−1 then σout = Spl.Sign(sk′B,m
out);

else if idcpu = j and mout = mi,j then σout = Spl.Sign(sk′A,m
out);

else if idcpu = j and mout 6= mi,j then σout = Spl.Sign(sk′B,m
out);

else σout = Spl.Sign(sk′α,m
out);

27 else
28 Compute σout = Spl.Sign(sk′α,m

out)

29 Let nodeout = (t+ 1, idcpu, stout, comout, vout, σout);
30 Output s̃t

out
= (stout, idcpu,⊥), ãout = nodeout;
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Algorithm 59: F 0,1,i,j(internal)
branch

Input : s̃t
in

= (stin, idcpu, root node), ãin = (comin, πin
st , π

in
com)

Data : ppAcc,st, ppAcc,com, ppItr,KA,KB,mi,Root

1 Parse root node as (t, root index, win
st , w

in
com, v

in, σin);
2 Let rA = PRF(KA, (t, root index)) and rB = PRF(KB, (t, root index));
3 Compute (skA, vkA, vkA,rej) = Spl.Setup(1λ; rA) and (skB, vkB, vkB,rej) = Spl.Setup(1λ; rB);
4 Let α = ‘-’ and min = (t, root index, win

st , w
in
com, v

in);
5 if t ≤ i then
6 if Spl.Verify(vkA,m

in, σin) = 1 then set α = ‘A’;
7 else output Reject;

8 else
9 if Spl.Verify(vkA,m

in, σin) = 1 then set α = ‘A’;
10 if α 6= ‘A’ and Spl.Verify(vkB,m

in, σin) = 1 then set α = ‘B’;
11 if α = ‘-’ then output Reject;

12 if Acc.VerifyRead(ppAcc,st, w
in
st , (idcpu, stin), πin

st ) = 0 then output Reject;
13 if Acc.VerifyRead(ppAcc,com, w

in
com, (src(t, idcpu), comin), πin

com) = 0 then output Reject;
14 if t ≤ i or α = ‘B’ then
15 Compute (stout, comout)← F 1(idcpu, stin, comin);

16 else
17 Compute (stout, comout)← F 0(idcpu, stin, comin);

18 Compute vout = TItr.Iterate(ppItr, v
in, (t+ 1, idcpu, stin, comin, win

st , w
in
com));

19 if stout = Reject then
20 Output Reject;

21 else
22 Let r′A = PRF(KA, (t+ 1, idcpu)) and r′B = PRF(KB, (t+ 1, A));
23 Compute (sk′A, vk′A, vk′A,rej) = Spl.Setup(1λ; r′A) and (sk′B, vk′B, vk′B,rej) = Spl.Setup(1λ; r′B);
24 Let mout = (t+ 1, idcpu, stout, comout, vout);
25 if t = i then
26 if idcpu > max-cpu(j) and min = mi,Root then
27 σout = Spl.Sign(sk′A,m

out);

28 else if idcpu > max-cpu(j) and min 6= mi,Root then
29 σout = Spl.Sign(sk′B,m

out);

30 else σout = Spl.Sign(sk′α,m
out);

31 else
32 Compute σout = Spl.Sign(sk′α,m

out);

33 Let nodeout = (t+ 1, idcpu, stout, comout, vout, σout);
34 Output s̃t

out
= (stout, idcpu,⊥), ãout = nodeout;
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Algorithm 60: F 0,1,i,j(internal)
combine

Input : s̃t
in

= (stin, idcpu,⊥), ãin = (node1,node2)
Data : T, ppAcc,st, ppAcc,com, ppItr,KA,KB,mi,j

1 Parse nodeζ as (tζ , indexζ , wst,ζ , wcom,ζ , vζ , σζ) for ζ = 1, 2;
2 if t1 6= t2 then output Reject;
3 else let t = t1;
4 if t < 1 then output Reject;
5 if index1 and index2 are not siblings then output Reject;
6 Set parent index as the parent of index1 and index2;
7 for ζ = 1, 2 do
8 Let rA,ζ = PRF(KA, (tζ , indexζ)) and rB,ζ = PRF(KB, (tζ , indexζ));
9 Compute (skA,ζ , vkA,ζ , vkA,rej,ζ) = Spl.Setup(1λ; rA,ζ) and

(skB,ζ , vkB,ζ , vkB,rej,ζ) = Spl.Setup(1λ; rB,ζ);
10 Let αζ = ‘-’ and mζ = (tζ , indexζ , wst,ζ , wcom,ζ , vζ);
11 if t ≤ i or (t = i+ 1 and parent index ≤ j) then
12 if Spl.Verify(vkA,mζ , σζ) = 1 then set αζ = ‘A’;
13 else output Reject;

14 else
15 if Spl.Verify(vkA,mζ , σζ) = 1 then set αζ = ‘A’;
16 if αζ 6= ‘A’ and Spl.Verify(vkB,mζ , σζ) = 1 then set αζ = ‘B’;
17 if αζ = ‘-’ then output Reject;

18 if α1 = ‘A’ and α2 = ‘A’ then set α = ‘A’;
19 else set α = ‘B’;
20 Compute w′st = Acc.Combine(ppAcc,st, wst,1, wst,2);
21 Compute w′com = Acc.Combine(ppAcc,com, wcom,1, wcom,2);
22 Compute v′ = TItr.Iterate2to1(ppItr, (v1, v2), (t,parent index, wst,1, wcom,1, wst,2, wcom,2));
23 Let r′A = PRF(KA, (t,parent index)) and r′B = PRF(KB, (t,parent index));
24 Compute (sk′A, vk′A, vk′A,rej) = Spl.Setup(1λ; r′A) and (sk′B, vk′B, vk′B,rej) = Spl.Setup(1λ; r′B);
25 Let m′ = (t,parent index, w′st, w

′
com, v

′);
26 if t ≤ i then Compute σ′ = Spl.Sign(sk′A,m

′);
27 if t = i+ 1 then
28 if parent index = index′ for index′ ∈ Ci,j then
29 if m′ = mindex′ for mindex′ ∈Mi,j then compute σ′ = Spl.Sign(sk′A,m

′);

else (m′ 6= mindex′ for mindex′ ∈Mi,j) compute σ′ = Spl.Sign(sk′B,m
′);

30 else if parent index = j then
31 if m′ = mi,j then compute σ′ = Spl.Sign(sk′A,m

′);

32 else compute σ′ = Spl.Sign(sk′B,m
′);

33 else
34 Compute σ′ = Spl.Sign(sk′α,m

′);

35 else
36 Compute σ′ = Spl.Sign(sk′α,m

′);

37 Let parent node = (t,parent index, w′st, w
′
com, v

′, σ′);
38 if parent index = ε then Output s̃t

out
= (stin, idcpu,parent node), ãout = ⊥ ;

39 else Output s̃t
out

= (stin, idcpu,⊥), ãout = parent node ;
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Algorithm 61: F 0,1,i,j(intermediate)
combine

Input : s̃t
in

= (stin, idcpu,⊥), ãin = (node1,node2)
Data : T, ppAcc,st, ppAcc,com, ppItr,KA,KB, (mi,j,1,mi,j,2)

1 Parse nodeζ as (tζ , indexζ , wst,ζ , wcom,ζ , vζ , σζ) for ζ = 1, 2;
2 if t1 6= t2 then output Reject;
3 else let t = t1;
4 if t < 1 then output Reject;
5 if index1 and index2 are not siblings then output Reject;
6 Set parent index as the parent of index1 and index2;
7 for ζ = 1, 2 do
8 Let rA,ζ = PRF(KA, (tζ , indexζ)) and rB,ζ = PRF(KB, (tζ , indexζ));
9 Compute (skA,ζ , vkA,ζ , vkA,rej,ζ) = Spl.Setup(1λ; rA,ζ) and

(skB,ζ , vkB,ζ , vkB,rej,ζ) = Spl.Setup(1λ; rB,ζ);
10 Let αζ = ‘-’ and mζ = (tζ , indexζ , wst,ζ , wcom,ζ , vζ);
11 if t ≤ i or (t = i+ 1 and parent index ≤ j) then
12 if Spl.Verify(vkA,mζ , σζ) = 1 then set αζ = ‘A’;
13 else output Reject;

14 else
15 if Spl.Verify(vkA,mζ , σζ) = 1 then set αζ = ‘A’;
16 if αζ 6= ‘A’ and Spl.Verify(vkB,mζ , σζ) = 1 then set αζ = ‘B’;
17 if αζ = ‘-’ then output Reject;

18 if α1 = ‘A’ and α2 = ‘A’ then set α = ‘A’;
19 else set α = ‘B’;
20 Compute w′st = Acc.Combine(ppAcc,st, wst,1, wst,2);
21 Compute w′com = Acc.Combine(ppAcc,com, wcom,1, wcom,2);
22 Compute v′ = TItr.Iterate2to1(ppItr, (v1, v2), (t,parent index, wst,1, wcom,1, wst,2, wcom,2));
23 Let r′A = PRF(KA, (t,parent index)) and r′B = PRF(KB, (t,parent index));
24 Compute (sk′A, vk′A, vk′A,rej) = Spl.Setup(1λ; r′A) and (sk′B, vk′B, vk′B,rej) = Spl.Setup(1λ; r′B);
25 Let m′ = (t,parent index, w′st, w

′
com, v

′);
26 if t ≤ i then
27 Compute σ′ = Spl.Sign(sk′A,m

′);

28 if t = i+ 1 then
29 if parent index = index′ for index′ ∈ Ci,j then
30 if m′ = mindex′ for mindex′ ∈Mi,j then compute σ′ = Spl.Sign(sk′A,m

′);

else if m′ 6= mindex′ for mindex′ ∈Mi,j then compute σ′ = Spl.Sign(sk′B,m
′);

31 else if parent index = j then
32 if m1 = mi,j,1 and m2 = mi,j,2 then compute σ′ = Spl.Sign(sk′A,m

′);

33 else compute σ′ = Spl.Sign(sk′B,m
′);

34 else
35 Compute σ′ = Spl.Sign(sk′α,m

′);

36 else
37 Compute σ′ = Spl.Sign(sk′α,m

′);

38 Let parent node = (t,parent index, w′st, w
′
com, v

′, σ′);
39 if parent index = ε then Output s̃t

out
= (stin, idcpu,parent node), ãout = ⊥ ;

40 else Output s̃t
out

= (stin, idcpu,⊥), ãout = parent node ;
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We continue with those hybrids of OUpdate.

Hardwiring the Next Accumulator Digest Let us consider the second difference after time i + 1. It is
necessary to show the digest computed by OUpdate is correct, and we need to show the result of OUpdate can
be replaced by a hardwired correct memory digest wi+1

mem at the next hybrid program F̂ i+2.
Firstly, an observation is that OUpdate is exactly carried through an oblivious and memoryless PRAM

computation, where each CPU agent A has old digest wi−1
mem, write location locA, old proof πA to the loca-

tion, and a bit bA to write. Therefore, we can apply those hybrids in Section 6.5 and replace OUpdate with
OUpdatei+1 that always outputs the correct new memory digest wi+1

mem at time i + 1. In particular, we design
hybrids through Fbranch and Fcombine, use the hybrid steps in memoryless PRAM, and then we can use (indistin-
guishably) F̂ i+1,OUpdatei+1

that hardwires the correct digest value as the result. Finally, we design hybrids from
F̂ i+1,OUpdatei+1

to F̂ i+2, where the difference is only at the last round of OUpdatei+1. The proof is similar to
Lemma B.9, which is to move hardwired digest from the output of OUpdatei+1 to input of F̂ i+2.

Now we have a hybridized program F̂ i+2 that always has a correct digest value at a read round, and the
hybrid can be carried iteratively to replace all F 0 with F 1.

B.5 Proof of Theorem 7.1 (Security forRE-RAM)

In this subsection, we provide the security proof for our RE scheme. Following the security definition of
randomized encoding scheme, in order to prove that our construction achieves the hiding property, we first
present in Appendix B.5.1 a simulator which generates a simulated encoding, then we outline in Appendix B.5.2
the main hybrids to prove that the simulated encoding is indistinguishable from the encoding generated in our
RE scheme. As highlighted in technical overview in Section 3, our proof here is highly non-trivial, and we use
“backward in time” hybrid argument of KLW [KLW15] in Appendix B.5.3, and introduce “puncturing ORAM”
technique in Appendix B.5.4, and more fine-grained “partial puncturing” technique in Appendix B.5.5. In order
to present our proof in a better way, we formulate several technical lemmas. In the proof of each technical
lemma, we first give the high-level intuitions, and then present the proof details.

B.5.1 Real and Ideal Experiments

Recall that in our construction, the generated encoding is of the form CiO(Phide, xhide), where Phide is a com-
piled version of P , and xhide is an encrypted version of x. To prove the security, i.e., hiding, of ourRE , we need
to obtain, via a sequence of hybrids, a simulated encoding CiO(PSim, xSim) where all encryptions generated by
PSim as well as in xSim are replaced by encryption of a special dummy symbol. More precisely, PSim simulates
the access pattern by applying the known public strategy. At each time step t < t∗, it simply ignores the input
and outputs encryptions of dummy (for both CPU state and memory content), and outputs y at time step t = t∗.
More concretely, we consider two security experiments, Real and Ideal:

in Real, the adversary A is given the encoding ENC which is generated as in the RE scheme, i.e., ENC ←
RE .Encode(P, x, 1λ).
in Ideal, the adversary A is given the emulated encoding ENCsim which is generated by a simulator S, i.e.,
ENCsim ← S(1|P |, 1|x|, t∗, y, 1λ, T, S).

To complete the proof, we now construct such simulator S to generate a simulated encoding, then we show that
a computationally bounded A cannot distinguish ENC from ENCsim in the next subsection.

Encoding-Simulation algorithm ENCsim ← S(1|P |, 1|x|, t∗, y, 1λ, T, S): The simulator, i.e., the encoding-
simulation algorithm takes the following steps to generate the encoding ENCsim .

The encoding-simulation algorithm first stores dummy information with |x|-bits in mem0
sim , and sets

st0 := Init, and then transforms (mem0
sim , st0) into (mem0

o,sim , st0
o) using OACCESS{KN} as in the

construction. Then it chooses puncturable PRF key KSim ← PPRF.Setup(1λ), and constructs an access
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pattern simulation program SIMOACCESS{KSim} (see Algorithm 62), and further defines Fo,sim based on
SIMOACCESS. Now the encoding-simulation algorithm defines

Πo,sim = ((mem0
o,sim , st0

o), Fo,sim).

The encoding-simulation algorithm transforms Πo,sim into

Πe,sim = ((mem0
e,sim , st0

e), Fe,sim).

Here the encoding-simulation algorithm chooses puncturable PRF key KE ← PPRF.Setup(1λ), and then
compute t∗ = dt∗/qoe. Then, based on Fo,sim , t∗ as well as the corresponding output value y, it generates
the next-step program Fe,sim as in Algorithm 63.

The simulation algorithm encrypts mem0
o,sim into mem0

e,sim as in the construction. In addition, the
encoding of st0

e is identical to that in the construction.
Finally, the encoding-simulation algorithm computes ENCsim ← CiO.Obf(1λ,Πe,sim) and outputs ENCsim .

Algorithm 62: SIMOACCESS{KSim}: the recursive program simulates the access pattern of
OACCESS{KN}

Input : t, d
Output : No return value
Data : KSim, α,MaxDepth (Memory size S = αMaxDepth)

1 if d ≥ MaxDepth then
2 return;

3 SIMOACCESS(t, d+ 1) ; // Fetch

4 Pick leaf pos at recursion level d based on PRF(KSim, (t, d,FetchR));
5 Ifetch ← PATH(d, pos);
6 Bfetch ← READ(Ifetch);
7 WRITE(Ifetch,dummy);
8 Pick leaf pos′′ at recursion level d based on PRF(KSim, (t, d,FlushR)) ; // Flush

9 Iflush ← PATH(d, pos′′);
10 Bflush ← READ(Iflush);
11 WRITE(Iflush,dummy);
12 return;

B.5.2 Proof Outline: From Hyb0 to Hyb3

We here provide a roadmap for proving the security of ourRE construction, and then outline the main hybrids.

Proof. Let Hyb0 be the real security game Real, and Hyb3 be the ideal security game Ideal. We will show
via multiple layers of hybrids that Hyb0 is computationally indistinguishable from Hyb3. In each hybrid, the
simulator generates the encoding ENC as in the construction, except that different next-step programs are used.
The overview of the intermediate hybrids is shown as follows:

Real = Hyb0 ≈ Hyb1 ≈ Hyb2,t∗ ≈ . . . ≈ Hyb2,0 = Hyb3 = Ideal
Hyb2,i = Hyb2,i,0,0 ≈ . . . ≈ Hyb2,i,0,dmax

≈ . . . ≈ Hyb2,i,0′,0 = Hyb2,i−1

Hyb2,i,0,j ≈ Hyb2,i,0,j,1 ≈ Hyb2,i,0,j,2 ≈ Hyb2,i,0,j,3 ≈ Hyb2,i,0,j+1

Hyb2,i,0,j,1 ≈ Hyb2,i,0,j,1,i−1 ≈ Hyb2,i,0,j,1′,i−1 ≈ . . . ≈ Hyb2,i,0,j,1,tpos
≈ Hyb2,i,0,j,1′,tpos

≈ Hyb2,i,j,2

Hyb2,i,0,j,1,z ≈ Hyb2,i,0,j,1′,z ≈ Hyb2,i,0,j,1,z−1

In the first and outermost layer, we define the hybrids Hyb1 and Hyb2,i for 0 ≤ i ≤ t∗.
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Algorithm 63: Fe,sim

Input : s̃t
in

= ( st
in
, t), ãin

A←M = (Iin, ( B
in
, lwin))

Data : T,KE , t
∗, y, KN ,KSim

1 Compute t = dt/qoe;
2 if t > t∗ then output Reject;
3 if t = t∗ then
4 Set s̃t

out
= (halt, y), ãout

M←A =⊥;
5 Output (s̃t

out
, ãout

M←A);

6 Compute (I∗,B∗)← Fo,sim(t)

7 Set lwout = (t, . . . , t);
8 Compute (rout

1 , rout
2 ) = PRF(KE , (lw

out, h(I∗)));
9 Compute (rt3, r

t
4) = PRF(KE , t);

10 Compute (pk′, sk′) = PKE .Gen(1λ; rout
1 );

11 Compute B
out

= PKE .Encrypt(pk′,B∗; rout
2 );

12 Compute (pk′, sk′) = PKE .Gen(1λ; rt3);

13 Compute st
out

= PKE .Encrypt(pk′,dummy; rt4);
14 Set Iout = I∗;

15 Output s̃t
out

= ( st
out
, t+ 1), ãout

M←A = (Iout, ( B
out
, lwout)) ;

Hyb0 This hybrid is the real security game Real.

Hyb1 In this hybrid, next-step program F 1
e as defined in Algorithm 64, is used. This program is similar to

the next-step program Fe in Real, except that, at time t = t∗, it outputs the signed correct computation result
y := P (x), which is hardwired into the program. At t > t∗, the program outputs Reject.

Hyb2,i In this hybrid, F 1
e is replaced by F 2,i

e defined in Algorithm 65. This program is similar to F 1
e , except

that its access pattern at time t, where i ≤ t ≤ t∗ is replaced by a simulated access pattern provided by the
SIMOACCESS defined in Algorithm 62, and the output state is replaced by an encryption of a special symbol
dummy.

Hyb3 This hybrid is the ideal security game Ideal. In this hybrid, Fe,sim, defined in Algorithm 63, is used.
This program is identical to F 2,0

e , in which the access pattern in all time steps t where t ≤ t∗ are simulated.
The initial memory mem0 is written with dummy (rather than x) during the encoding process, and mem0 is the
only difference between Hyb2,0 and Hyb3.

Analysis In the remaining of this subsection, we complete the proof of the theorem via several lemmas.

From Hyb0 to Hyb1: The only difference between Fe and F 1
e is that, in F 1

e , the output in time t = t∗ is
hardwired and all computations are rejected after halting time t∗. Therefore, by Theorem 5.2, since Πe and
Π1
e have the same computation trace, their encodings are computationally indistinguishable. We remark that

rejecting all computations after t∗ is very useful when arguing PKE security in following hybrids because it
guarantees the private key is never used after time t∗.
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From Hyb1 to Hyb2,t∗: The only difference between F 1
e and F 2,t∗

e is that, in F 2,t∗
e , the access pattern in time

t = t∗ is simulated. However, since the program terminates at t = t∗ (that means, t = t∗) by outputting the
hardwired computation result, the modified part will never be executed. Therefore, by Theorem 5.2, since Π1

e

and Π2,t∗
e have the same computation trace, their encodings are computationally indistinguishable.

From Hyb2,i to Hyb2,i−1: This is the most complicated part, which we will defer the discussion to Lemma B.52.

From Hyb2,0 to Hyb3: The only difference between the two hybrids is that the initial memory mem0 in
Hyb3 is encryption of dummy. Note that the initial memory is never decrypted in Fe,sim, and we argue its
indistinguishability by standard puncturing and PKE properties. For each non-empty bit bi in mem0, replace
its corresponding bit b′i ∈ mem0

o with dummy by following hybrids:
Puncture PRF key KE at (0, hi) in Fe,sim, where hi is the “height” given by function h(·) to encrypt the
bucket B storing b′i. This does not change the computation trace and is computationally indistinguishable.
Encrypt B that contains bit b′i in mem0

o with a truly random PKE public key, which is computationally
indistinguishable by the selective security of PPRF.
Encrypt B that contains dummy instead of bit b′i. The indistinguishability is guaranteed by the IND-CPA
security of PKE .

Therefore, Hyb2,0 and Hyb3 are computationally indistinguishable.

From above, Hyb0 and Hyb3 are computationally indistinguishable as required.
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Algorithm 64: F 1
e

Input : s̃t
in

= ( st
in
, t), ãin

A←M = (Iin, ( B
in
, lwin))

Data : T,KE , t
∗, y, KN

1 Compute t = dt/qoe;
2 if t > t∗ then output Reject;

3 if t = t∗ then
4 Set s̃t

out
= (halt, y), ãout

M←A =⊥;

5 Output (s̃t
out
, ãout

M←A);

6 Compute (rin
1 , r

in
2 ) = PRF(KE , (lw

in, h(Iin)));
7 Compute (pkin, skin) = PKE .Gen(1λ; rin

1 );

8 Compute Bin = PKE .Decrypt(skin, B
in

);
9 Compute (rt−1

3 , rt−1
4 ) = PRF(KE , t− 1);

10 Compute (pkst, skst) = PKE .Gen(1λ; rt−1
3 );

11 Compute stin = PKE .Decrypt(skst, st
in

);

12 Compute (stout, Iout,Bout) = Fo(t, stin, Iin,Bin);

13 Set lwout = (t, . . . , t);
14 Compute (rout

1 , rout
2 ) = PRF(KE , (lw

out, h(Iout)));
15 Compute (pk′, sk′) = PKE .Gen(1λ; rout

1 );

16 Compute B
out

= PKE .Encrypt(pk′,Bout; rout
2 );

17 Compute (rt3, r
t
4) = PRF(KE , t);

18 Compute (pk′, sk′) = PKE .Gen(1λ; rt3);
19 Compute st

out
= PKE .Encrypt(pk′, stout; rt4);

20 Output s̃t
out

= ( st
out
, t+ 1), ãout

M←A = (Iout, ( B
out
, lwout)) ;
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Algorithm 65: F 2,i
e

Input : s̃t
in

= ( st
in
, t), ãin

A←M = (Iin, ( B
in
, lwin))

Data : T,KE , t
∗, y, KN ,KSim, i

1 Compute t = dt/qoe;
2 if t > t∗ then output Reject;
3 if t = t∗ then
4 . . .

5 if i ≤ t < t∗ then
6 Compute (I∗,B∗)← Fo,sim(t)

7 Set lwout = (t, . . . , t);
8 Compute (rout

1 , rout
2 ) = PRF(KE , (lw

out, h(I∗)));
9 Compute (rt3, r

t
4) = PRF(KE , t);

10 Compute (pk′, sk′) = PKE .Gen(1λ; rout
1 );

11 Compute B
out

= PKE .Encrypt(pk′,B∗; rout
2 );

12 Compute (pk′, sk′) = PKE .Gen(1λ; rt3);

13 Compute st
out

= PKE .Encrypt(pk′,dummy; rt4);
14 Set Iout = I∗;

15 else
16 Compute (rin

1 , r
in
2 ) = PRF(KE , (lw

in, h(Iin)));
17 Compute (pkin, skin) = PKE .Gen(1λ; rin

1 );

18 Compute Bin = PKE .Decrypt(skin, B
in

);
19 Compute (rt−1

3 , rt−1
4 ) = PRF(KE , t− 1);

20 Compute (pkst, skst) = PKE .Gen(1λ; rt−1
3 );

21 Compute stin = PKE .Decrypt(skst, st
in

);

22 Compute (stout, Iout,Bout) = Fo(t, stin, Iin,Bin);

23 Set lwout = (t, . . . , t);
24 Compute (rout

1 , rout
2 ) = PRF(KE , (lw

out, h(Iout)));
25 Compute (pk′, sk′) = PKE .Gen(1λ; rout

1 );

26 Compute B
out

= PKE .Encrypt(pk′,Bout; rout
2 );

27 Compute (rt3, r
t
4) = PRF(KE , t);

28 Compute (pk′, sk′) = PKE .Gen(1λ; rt3);
29 Compute st

out
= PKE .Encrypt(pk′, stout; rt4);

30 Output s̃t
out

= ( st
out
, t+ 1), ãout

M←A = (Iout, ( B
out
, lwout)) ;
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B.5.3 Backward Erasing: From Hyb2,i to Hyb2,i−1

We start to elaborate the outline provided in the previous subsection. We prove the security by a sequence
of hybrids that “erases” the computation backward in time, which leads to a simulated encoding ENCsim =
CiO(PSim, xSim) where all encryptions generated by PSim as well as in xSim are replaced by encryption of a
special dummy symbol. More precisely, PSim simulates the access pattern using the public access function ap,
and at each time step t < t∗, simply ignores the input and outputs encryptions of dummy (for both CPU state
and memory content), and outputs y at time step t = t∗.

By erasing the computation backward in time, we consider intermediate hybrids Hyb2,i where the first i
time steps of computation are real, and those of the remaining time step are simulated. Namely, Hyb2,i is a
hybrid encoding CiO(PHyb2,i

, xhide), where PHyb2,i
acts as Phide for the first i time steps, and acts as PSim in the

remaining time steps. (Note here that PHyb2,i
, Phide, PSim correspond to next-step programs F 2,i

e , Fe, Fe,sim,
respectively.)

The main step is to show indistinguishability of Hyb2,i and Hyb2,i−1, which corresponds to erasing the
computation at the i-th time step. Roughly, to argue this, the key observation is that the i-th decryption key is
not used in the honest evaluation, which allows us to replace the output of the i-th time step by encryption of
dummy by a puncturing argument. We can then further remove the computation at the i-th time step readily by
CiO security.

In fact, the argument is more involved given the fact that the CP-ORAM is used in our construction. Suppose
that at time i the program wishes to access a memory block ` which is well-defined by the computation. The
program must read the position map value p = pos[`] at first, and then fetches the block ` along the path p in
the ORAM tree. However, our RE construction relies on CP-ORAM tree-based structure where the position
map is recursively outsourced to dmax ORAM trees. Here we divide the sequence of hybrids into two phases.
The first one is to simulate the memory accesses from level 0 to dmax. The second one is also to simulate the
memory accesses as the first phase, but additionally to erase the CPU states from level dmax to 0. The two
important hybrids corresponding to these two phases are respectively defined as follows.

Hyb2,i,0,j (the first phase):

At time t = i− 1, F 2,i,0,j
e returns real stout, and outputs real accesses identical to OACCESS if

d ≥ j.
At time t = i− 1, F 2,i,0,j

e returns real stout, but outputs the simulated accesses if d < j.

Hyb2,i,0′,j (the second phase):

At time t = i− 1, F 2,i,0′,j
e outputs the simulated accesses, and returns real stout if d ≤ j.

At time t = i−1, F 2,i,0′,j
e outputs the simulated accesses, but returns stout = dummy if d > j.

Note that Hyb2,i is identical to Hyb2,i,0,0, and Hyb2,i,0′,0 is also identical to Hyb2,i−1. Clearly, we need to
argue the remaining hybrids are indistinguishable, Hyb2,i,0,0 ≈ . . . ≈ Hyb2,i,0,dmax

≈ Hyb2,i,0′,dmax
≈ . . . ≈

Hyb2,i,0′,0.

Lemma B.52. Let PKE be an IND-CPA secure public key encryption scheme, CiO be a computation-trace
indistinguishability obfuscation scheme in the RAM model, PRF be a secure puncturable PRF scheme; then the
hybrids Hyb2,i and Hyb2,i−1 are computationally indistinguishable for 1 ≤ i ≤ t∗.

Proof. For each i, we define two second-layer hybrids Hyb2,i,0,j and Hyb2,i,0′,j for 0 ≤ j ≤ dmax, where
dmax denotes the maximum depth of the ORAM tree.

Hyb2,i,0,j In this hybrid, the program F 2,i,0,j
e is defined in Algorithm 66. At time t = i − 1, F 2,i,0,j

e uses
HYBOACCESSj which outputs the simulated accesses if d < j, and it outputs those accesses identical to
OACCESS if d ≥ j (Algorithm 67). Like previous programs, F 2,i,0,j

e uses the HYBOACCESSj compiled
program named F jo,hyb = Compile(F,HYBOACCESSj{KN ,KSim}). Note that the values (loc, val) from the
input, newpos and pos returned by PRF(KN , ·) and HYBOACCESSj(d+ 1, ·) are never used if d < j.
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Hyb2,i,0′,j In this hybrid, the program F 2,i,0′,j
e is defined in Algorithm 68. At time t = i−1, F 2,i,0′,j

e replaces
stout by dummy for all d > j.

Analysis In the remaining of this subsection, we will complete the proof of the lemma.

From Hyb2,i to Hyb2,i,0,0: These two hybrids are identical.

From Hyb2,i,0,j to Hyb2,i,0,j+1: We defer the discussion to Lemma B.53.

From Hyb2,i,0,dmax
to Hyb2,i,0′,dmax

: These two hybrids are identical.

From Hyb2,i,0′,j to Hyb2,i,0′,j−1: This step can be proved via multiple hybrids. For readability, we describe

the hybrids without defining them in separate algorithms. The only difference between F 2,i,0′,j
e and F 2,i,0′,j−1

e

is that, in F 2,i,0′,j−1
e , stout is replaced by dummy at time t = i − 1 and depth d = j. In the first hybrid, we

puncture the input (i− 1, j,Init) for PRF key KE and hardwire the pseudorandomness computed from KE .
Since the computation defined by this program has identical computation trace as that in the previous hybrid,
indistinguishability is guaranteed by Theorem 5.2. In the next hybrid, we replace the pseudorandomness by
a truly random number. Indistinguishability is guaranteed by the security of the puncturable PRF. Then, we
hardwire st

out, which is generated by the true randomness in the previous hybrid, into the program and take
away the hardwired true randomness. Since the computation defined by this program has identical computation
trace as that in the previous hybrid, indistinguishability is guaranteed by Theorem 5.2. Next, we replace hard-
wired st

out by an encryption of dummy. Indistinguishability is guaranteed by the IND-CPA security of PKE .
Finally, we un-puncture the PRF key KE to obtain the required hybrid. Indistinguishability is again guaranteed
by the security of the puncturable PRF.

From Hyb2,i,0′,0 to Hyb2,i−1: These two hybrids are identical.
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Algorithm 66: F 2,i,0,j
e

Input : s̃t
in

= ( st
in
, t), ãin

A←M = (Iin, ( B
in
, lwin))

Data : T,KE , t
∗, y, KN ,KSim, i, j

1 Compute t = dt/qoe;
2 if t > t∗ then output Reject;
3 if t = t∗ then
4 . . .

5 if i ≤ t < t∗ then
6 . . .

7 else
8 Compute (rin

1 , r
in
2 ) = PRF(KE , (lw

in, h(Iin)));
9 Compute (pkin, skin) = PKE .Gen(1λ; rin

1 );

10 Compute Bin = PKE .Decrypt(skin, B
in

);
11 Compute (rt−1

3 , rt−1
4 ) = PRF(KE , t− 1);

12 Compute (pkst, skst) = PKE .Gen(1λ; rt−1
3 );

13 Compute stin = PKE .Decrypt(skst, st
in

);
14 if t = i− 1 then
15 Compute (stout, Iout,Bout)← F jo,hyb(t, stin, Iin,Bin) ;

// F j
o,hyb = CP-ORAM.Compile(F,HYBOACCESSj)

16 else
17 Compute (stout, Iout,Bout) = Fo(t, stin, Iin,Bin);

18 Set lwout = (t, . . . , t);
19 Compute (rout

1 , rout
2 ) = PRF(KE , (lw

out, h(Iout)));
20 Compute (pk′, sk′) = PKE .Gen(1λ; rout

1 );

21 Compute B
out

= PKE .Encrypt(pk′,Bout; rout
2 );

22 Compute (rt3, r
t
4) = PRF(KE , t);

23 Compute (pk′, sk′) = PKE .Gen(1λ; rt3);
24 Compute st

out
= PKE .Encrypt(pk′, stout; rt4);

25 Output s̃t
out

= ( st
out
, t+ 1), ãout

M←A = (Iout, ( B
out
, lwout)) ;
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Algorithm 67: HYBOACCESSj{KN ,KSim}
Input : t, d, loc, val
Output : oldval
Data : KN ,KSim, α,MaxDepth (Memory size S = αMaxDepth)

1 if d ≥ MaxDepth then
2 return 0;

3 Pick leaf newpos at recursion level d based on PRF(KN , (t, d,FetchR)) ; // Update position map

4 pos← HYBOACCESSj(t, d+ 1, bloc/αc, newpos);
5 if (d < j) then
6 Pick leaf pos at recursion level d based on PRF(KSim, (t, d,FetchR));
7 Ifetch ← PATH(d, pos);
8 Bfetch ← READ(Ifetch);
9 WRITE(Ifetch,dummy);

10 Pick leaf pos′′ at recursion level d based on PRF(KSim, (t, d,FlushR));
11 Iflush ← PATH(d, pos′′);
12 Bflush ← READ(Iflush);
13 WRITE(Iflush,dummy);
14 return;

15 else // identical to OACCESS

16 Ifetch ← PATH(d, pos) ; // Fetch

17 Bfetch ← READ(Ifetch);
18 (Bout

fetch, oldval)← FETCHANDUPDATE(Bfetch, loc, val, α, pos, newpos);
19 WRITE(Ifetch,B

out
fetch);

20 Pick leaf pos′′ at recursion level d based on PRF(KN , (t, d,FlushR)) ; // Flush

21 Iflush ← PATH(d, pos′′);
22 Bflush ← READ(Iflush);
23 Bout

flush ← FLUSH(Bflush, pos′′);
24 WRITE(Iflush,B

out
flush);

25 return oldval;
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Algorithm 68: F 2,i,0′,j
e

Input : s̃t
in

= ( st
in
, t), ãin

A←M = (Iin, ( B
in
, lwin))

Data : T,KE , t
∗, y , KN ,KSim, i, j

1 Compute t = dt/qoe;
2 if t > t∗ then output Reject;
3 if t = t∗ then
4 . . .

5 if i ≤ t < t∗ then
6 . . .

7 else
8 Compute (rin

1 , r
in
2 ) = PRF(KE , (lw

in, h(Iin)));
9 Compute (pkin, skin) = PKE .Gen(1λ; rin

1 );

10 Compute Bin = PKE .Decrypt(skin, B
in

);
11 Compute (rt−1

3 , rt−1
4 ) = PRF(KE , t− 1);

12 Compute (pkst, skst) = PKE .Gen(1λ; rt−1
3 );

13 Compute stin = PKE .Decrypt(skst, st
in

);
14 if t = i− 1 then
15 Compute (stout, Iout,Bout)← F dmax

o,hyb (t, stin, Iin,Bin);
16 if (d > j and a = Init) then set stout = dummy;

17 else
18 Compute (stout, Iout,Bout) = Fo(t, stin, Iin,Bin);

19 Set lwout = (t, . . . , t);
20 Compute (rout

1 , rout
2 ) = PRF(KE , (lw

out, h(Iout)));
21 Compute (pk′, sk′) = PKE .Gen(1λ; rout

1 );

22 Compute B
out

= PKE .Encrypt(pk′,Bout; rout
2 );

23 Compute (rt3, r
t
4) = PRF(KE , t);

24 Compute (pk′, sk′) = PKE .Gen(1λ; rt3);
25 Compute st

out
= PKE .Encrypt(pk′, stout; rt4);

26 Output s̃t
out

= ( st
out
, t+ 1), ãout

M←A = (Iout, ( B
out
, lwout)) ;
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B.5.4 Punctured ORAM: From Hyb2,i,0,j to Hyb2,i,0,j+1

Our goal now is to show that Hyb2,i,0,j and Hyb2,i,0,j+1 are indistinguishable, which amounts to switch time
step (t, d) = (i − 1, j) from real computation to a simulated one. Suppose that at time (t, d) = (i − 1, j)
the ORAM compiled program Fo wishes to access some memory location loc, which points to a cell in block∗

(recall that the program is deterministic, so loc is well-defined by the computation), it reads the position map
value pos∗ and fetches the block∗ along the path pos∗ in the ORAM tree. We need to simulate the memory
access pattern (induced by pos∗) and output data (including memory data and CPU state), where output data
are encrypted in ciphertext and the indistinguishable simulation can be constructed by semantic security of
PKE . The main challenge here is to switch pos∗ to a simulated path, since pos∗ is information theoretically
determined by the previous computation and pos∗ must be revealed directly through memory access.

Punctured ORAM To simulate pos∗, our approach is to move to a hybrid with punctured ORAM program,
where pos∗ is information-theoretically erased so that we can switch pos∗ to a simulated path. Towards this
goal, let us trace closely the value pos∗ in the program execution. First, we observe that pos∗ is stored in two
places in the ORAM data structure:

1. The block block∗ itself, which is stored somewhere in the ORAM tree.
2. The position map stored in another layer of ORAM tree recursively.

Let tpos be that time pos∗ being created by PPRF, which is also the last access time of block∗ before time step
i − 1. At time tpos, the value pos∗ is stored in both block∗ in the root node and the recursive position map.
Note that tpos can be much smaller than i− 1. To “information-theoretically erase” pos∗, we move to a hybrid
program where the value pos∗ is not generated at time tpos. Specifically, we define an intermediate hybrid
Hyb2,i,0,j,2 in which the program is replaced by a punctured ORAM program such that:

Hyb2,i,0,j,2: At time t = tpos, do not generate the value pos∗, and instead of putting back the
encryption of the fetched block∗ to the root of the ORAM tree, an encryption of empty values is
put back22. Moreover, the position map value pos∗ is not updated.

In Hyb2,i,0,j,2, the value pos∗ is information-theoretically hidden before time step i− 1. Since the block∗ is not
be accessed from time tpos to time i − 1, the modification does not change the computation from time tpos to
time i− 1. Now, we can simulate the computation at time step i− 1 as before, and switch pos∗ to a simulated
value by the standard PPRF argument. After the path is switched to a simulated one, we obtain Hyb2,i,0,j+1 by
un-puncturing ORAM program Fo at the point pos∗.

We prove Hyb2,i,0,j and Hyb2,i,0,j+1 are indistinguishable in Lemma B.53 with the help of puncturable
ORAM, and we will later prove that punctured ORAM is computationally indistinguishable from its non-
punctured ORAM counterpart in the next sub-section (Lemma B.54).

t = tpos and d = j t = (i− 1) and d = j t = (i− 1) and d < j

Hyb2,i,0,j Honest Honest path and values Sim. path, erased values
Hyb2,i,0,j,1 Honest Honest path, erased values Sim. path, erased values
Hyb2,i,0,j,2 Puncture pos∗ Hardwired honest path, erased values Sim. path, erased values
Hyb2,i,0,j,3 Puncture pos∗ Sim. path, erased values Sim. path, erased values
Hyb2,i,0,j+1 Honest Sim. path, erased values Sim. path, erased values

Table 6: Intuitions of the hybrid series from Hyb2,i,0,j to Hyb2,i,0,j+1, where we focus on the simulated
memory access locations as a path in the ORAM tree; “Sim.” stands for simulated

22Recall in the ORAM construction, a bucket is a vector of K elements, where each element is either a valid block or a unique
empty-slot symbol Empty = (⊥,⊥,⊥). The value being put pack is in fact Empty (rather than block∗), which also yields a consistent
ORAM tree.
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Lemma B.53. Let PKE be an IND-CPA secure public key encryption scheme, CiO be a computation-trace
indistinguishability obfuscation scheme in the RAM model, PRF be a secure puncturable PRF scheme; then the
hybrids Hyb2,i,0,j and Hyb2,i,0,j+1 are computationally indistinguishable for all 0 ≤ i ≤ t∗ and all 0 ≤ j ≤
dmax.

Proof. We define three third-layer hybrids Hyb2,i,0,j,1, Hyb2,i,0,j,2 and Hyb2,i,0,j,3.

Hyb2,i,0,j,1 In this hybrid, F is replaced by F 2,i,0,j,1
e defined in Algorithm 69. F 2,i,0,j,1

e uses HYBOACCESSj,1

that is similar to HYBOACCESSj , except that at d = j all values written are replaced by dummy data. All other
computations are carried out honestly and access locations Ifetch (induced by pos∗) in HYBOACCESSj,1 are
identical to those in HYBOACCESSj .

Hyb2,i,0,j,2 In this hybrid, F is replaced by F 2,i,0,j,2
e defined in Algorithm 71. F 2,i,0,j,2

e invokes different
variants of Fo at different t: Fo,sim for t ≥ i, F j,2o,hyb for t = i − 1, F j,punct

o for t = tpos, and normal Fo
otherwise, where

F j,2o,hyb is the ORAM compiled program using HYBOACCESSj,2 that is similar to HYBOACCESSj,1 except
that it hardwires and uses pos∗ (rather than pos that returned from recursive call), where pos∗ is the pre-
computed value of pos at (t = i− 1 ∧ d = j) in an honest evaluation of OACCESS (Algorithm 72).
F j,punct
o is the punctured ORAM program using HYBOACCESSj,punct that is similar to normal OACCESS,

except that it is punctured at tpos, which writes dummy symbol to the position map and removes block∗ at
the j-th recursion (Algorithm 73)23.
tpos is the time t so that pos∗ is generated by PRF(KN , (t, d, flag)).

Hyb2,i,0,j,3 In this hybrid, F is replaced by F 2,i,0,j,3
e defined in Algorithm 74 F 2,i,0,j,3

e is similar to F 2,i,0,j,2
e ,

except that it uses HYBOACCESSj+1 at t = i− 1.

Analysis In the remaining of this subsection, we will complete the proof of the lemma.

From Hyb2,i,0,j to Hyb2,i,0,j,1: Note that in F 2,i,0,j
e , the entire computation for i ≤ t ≤ t∗ is simulated, and

when t > t∗, F 2,i,0,j
e always outputs Reject. It will thus never be the case that, at time t > i− 1, the program

decrypts the ciphertext written at (i− 1, j, flag) where flag = FetchW or FlushW. We can therefore replace
the ciphertexts output in the fetch and flush phase by the encryption of dummy, and replace the flush positions
by a simulated version.

Formally, indistinguishability is established via the following hybrids:

1. In the first hybrid, we puncture the input (i − 1, j,FlushR) for PRF keys KN and KSim, and the input
(i− 1, j, flag) where flag = FetchW and FlushW for PRF keys KE . We hardwire the pseudorandom-
ness computed from KN , KSim and KE . Since the computation defined by the program has identical
computation trace as that in the previous hybrid, indistinguishability is guaranteed by Theorem 5.2.

2. In the next hybrid, we replace the pseudorandomness by truly random numbers. Indistinguishability is
guaranteed by the security of the puncturable PRF.

3. Then, we hardwire B
out

and Iflush, which are generated by the true randomness in the previous hybrid,
into the program; and take away the hardwired true randomness. Since the computation defined by the
program has identical computation trace as that in the previous hybrid, indistinguishability is guaranteed
by Theorem 5.2.

23REMOVEBLOCK(B, loc, α, pos) searches for the tuple of block = (bloc/αc, pos, data) in each bucket ∈ B. It outputs B− with
block being removed.

141



4. Next, we replace the values to be written by dummy. Indistinguishability is guaranteed by the IND-CPA
security of PKE because these values are encrypted and F 2,i,0,j,1

e would never decrypt the ciphertext
with the private key.

5. We replace Iflush by a simulated version, which is generated from the hardwired true randomness that
corresponds to KSim. Indistinguishability is guaranteed by the selective security of the puncturable PRF.

6. Finally, we un-puncture the PRF keys KN , KSim, and KE to obtain the required hybrid. Indistinguisha-
bility is again guaranteed by the security of the puncturable PRF.

From Hyb2,i,0,j,1 to Hyb2,i,0,j,2: We defer the discussion to Lemma B.54.

From Hyb2,i,0,j,2 to Hyb2,i,0,j,3: In F 2,i,0,j,2
e , since our ORAM program has punctured pos∗ that generated at

time (tpos, j), and pos∗ is only used at time (i−1, j), we can use HYBOACCESSj+1 instead of HYBOACCESSj,2

by the selective security of PPRF and Theorem 5.2.
Formally, indistinguishability is established via the following hybrids:

1. In the first hybrid, we use punctured PRF keysKN{(tpos, j,FetchR)} andKSim{i−1, j,FetchR}. We
do not useKSim at (i−1, j,FetchR) in this step, and the only value relies on theKN at (tpos, j,FetchR)
is pos∗, which is already hardwired. Since the program has identical computation trace as that in the
previous hybrid, indistinguishability is guaranteed by Theorem 5.2.

2. In the next hybrid, we replace hardwired value pos∗ (generated fromKN{(tpos, j,FetchR)}) with pos∗∗,
which is the random ORAM position computed from a true randomness. Indistinguishability is guaran-
teed by the selective security of PPRF.

3. Then, we replace hardwired value pos∗∗ with pos∗Sim, which is generated by randomness computed by
PRF(KSim, (i− 1, j,FetchR)). Indistinguishability is guaranteed by the selective security of PPRF.

4. Finally, we un-puncture the PRF keys KN , KSim to obtain the required hybrid. Since the program has
identical computation trace as that in the previous hybrid, indistinguishability is guaranteed by Theo-
rem 5.2.

From Hyb2,i,0,j,3 to Hyb2,i,0,j+1: The proof is similar to that of Lemma B.54.
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Algorithm 69: F 2,i,0,j,1
e

Input : s̃t
in

= ( st
in
, t), ãin

A←M = (Iin, ( B
in
, lwin))

Data : T,KE , t
∗, y, KN ,KSim, i, j

1 Compute t = dt/qoe;
2 if t > t∗ then output Reject;
3 if t = t∗ then
4 . . .

5 if i ≤ t < t∗ then
6 . . .

7 else
8 Compute (rin

1 , r
in
2 ) = PRF(KE , (lw

in, h(Iin)));
9 Compute (pkin, skin) = PKE .Gen(1λ; rin

1 );

10 Compute Bin = PKE .Decrypt(skin, B
in

);
11 Compute (rt−1

3 , rt−1
4 ) = PRF(KE , t− 1);

12 Compute (pkst, skst) = PKE .Gen(1λ; rt−1
3 );

13 Compute stin = PKE .Decrypt(skst, st
in

);
14 if t = i− 1 then
15 Compute (stout, Iout,Bout)← F j,1o,hyb(t, stin, Iin,Bin) ;

// F j,1
o,hyb = CP-ORAM.Compile(F,HYBOACCESSj,1)

16 else
17 Compute (stout, Iout,Bout) = Fo(t, stin, Iin,Bin);

18 Set lwout = (t, . . . , t);
19 Compute (rout

1 , rout
2 ) = PRF(KE , (lw

out, h(Iout)));
20 Compute (pk′, sk′) = PKE .Gen(1λ; rout

1 );

21 Compute B
out

= PKE .Encrypt(pk′,Bout; rout
2 );

22 Compute (rt3, r
t
4) = PRF(KE , t);

23 Compute (pk′, sk′) = PKE .Gen(1λ; rt3);
24 Compute st

out
= PKE .Encrypt(pk′, stout; rt4);

25 Output s̃t
out

= ( st
out
, t+ 1), ãout

M←A = (Iout, ( B
out
, lwout)) ;
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Algorithm 70: HYBOACCESSj,1{KN ,KSim}
Input : t, d, loc, val
Output : oldval
Data : KN ,KSim, α,MaxDepth (Memory size S = αMaxDepth)

1 if d ≥ MaxDepth then
2 return 0;

3 Pick leaf newpos at recursion level d based on PRF(KN , (t, d,FetchR)) ; // Update position map

4 pos← HYBOACCESSj,1(t, d+ 1, bloc/αc, newpos);
5 if (d < j) then
6 Pick leaf pos at recursion level d based on PRF(KSim, (t, d,FetchR));
7 Ifetch ← PATH(d, pos);
8 Bfetch ← READ(Ifetch);
9 WRITE(Ifetch,dummy);

10 Pick leaf pos′′ at recursion level d based on PRF(KSim, (t, d,FlushR));
11 Iflush ← PATH(d, pos′′);
12 Bflush ← READ(Iflush);
13 WRITE(Iflush,dummy);
14 return;

15 else
16 Ifetch ← PATH(d, pos) ; // Fetch

17 Bfetch ← READ(Ifetch);
18 if (d = j) then
19 WRITE(Ifetch,dummy);
20 Pick leaf pos′′ at recursion level d based on PRF(KSim, (t, d,FlushR));
21 Iflush ← PATH(d, pos′′);
22 Bflush ← READ(Iflush);
23 WRITE(Iflush,dummy);
24 return;

25 else
26 (Bout

fetch, oldval)← FETCHANDUPDATE(Bfetch, loc, val, α, pos, newpos);
27 WRITE(Ifetch,B

out
fetch);

28 Pick leaf pos′′ at recursion level d based on PRF(KN , (t, d,FlushR)) ; // Flush

29 Iflush ← PATH(d, pos′′);
30 Bflush ← READ(Iflush);
31 Bout

flush ← FLUSH(Bflush, pos′′);
32 WRITE(Iflush,B

out
flush);

33 return oldval;
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Algorithm 71: F 2,i,0,j,2
e

Input : s̃t
in

= ( st
in
, t), ãin

A←M = (Iin, ( B
in
, lwin))

Data : T,KE , t
∗, y, KN ,KSim, i, j

1 Compute t = dt/qoe;
2 if t > t∗ then output Reject;
3 if t = t∗ then
4 . . .

5 if i ≤ t < t∗ then
6 . . .

7 else
8 Compute (rin

1 , r
in
2 ) = PRF(KE , (lw

in, h(Iin)));
9 Compute (pkin, skin) = PKE .Gen(1λ; rin

1 );

10 Compute B = PKE .Decrypt(skin, B
in

);
11 Compute (rt−1

3 , rt−1
4 ) = PRF(KE , t− 1);

12 Compute (pkst, skst) = PKE .Gen(1λ; rt−1
3 );

13 Compute stin = PKE .Decrypt(skst, st
in

);
14 if t = i− 1 then
15 Compute (stout, Iout,Bout)← F j,2o,hyb(t, stin, Iin,Bin) ;

// F j,2
o,hyb = CP-ORAM.Compile(F,HYBOACCESSj,2)

16 else if t = tpos then
17 Compute (stout, Iout,Bout) = F j,punct

o (t, stin, Iin,Bin) ;
// F j,punct

o = CP-ORAM.Compile(F,HYBOACCESSj,punct)

18 else
19 Compute (stout, Iout,Bout) = Fo(t, stin, Iin,Bin);

20 Set lwout = (t, . . . , t);
21 Compute (rout

1 , rout
2 ) = PRF(KE , (lw

out, h(Iout)));
22 Compute (pk′, sk′) = PKE .Gen(1λ; rout

1 );

23 Compute B
out

= PKE .Encrypt(pk′,Bout; rout
2 );

24 Compute (rt3, r
t
4) = PRF(KE , t);

25 Compute (pk′, sk′) = PKE .Gen(1λ; rt3);
26 Compute st

out
= PKE .Encrypt(pk′, stout; rt4);

27 Output s̃t
out

= ( st
out
, t+ 1), ãout

M←A = (Iout, ( B
out
, lwout)) ;
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Algorithm 72: HYBOACCESSj,2{KN ,KSim}
Input : t, d, loc, val
Output : oldval
Data : KN ,KSim, α,MaxDepth (Memory size S = αMaxDepth), pos∗

1 if d ≥ MaxDepth then
2 return 0;

3 Pick leaf newpos at recursion level d based on PRF(KN , (t, d,FetchR)) ; // Update position map

4 pos← HYBOACCESSj,2(t, d+ 1, bloc/αc, newpos,KSim);
5 if (d < j) then
6 Pick leaf pos at recursion level d based on PRF(KSim, (t, d,FetchR));
7 Ifetch ← PATH(d, pos);
8 Bfetch ← READ(Ifetch);
9 WRITE(Ifetch,dummy);

10 Pick leaf pos′′ at recursion level d based on PRF(KSim, (t, d,FlushR));
11 Iflush ← PATH(d, pos′′);
12 Bflush ← READ(Iflush);
13 WRITE(Iflush,dummy);
14 return;

15 else
16 if (d = j) then
17 Ifetch ← PATH(d, pos∗);
18 Bfetch ← READ(Ifetch);
19 WRITE(Ifetch,dummy);
20 Pick leaf pos′′ at recursion level d based on PRF(KSim, (t, d,FlushR));
21 Iflush ← PATH(d, pos′′);
22 Bflush ← READ(Iflush);
23 WRITE(Iflush,dummy);
24 return;

25 else
26 Ifetch ← PATH(d, pos) ; // Fetch

27 Bfetch ← READ(Ifetch);
28 (Bout

fetch, oldval)← FETCHANDUPDATE(Bfetch, loc, val, α, pos, newpos);
29 WRITE(Ifetch,B

out
fetch);

30 Pick leaf pos′′ at recursion level d based on PRF(KN , (t, d,FlushR)) ; // Flush

31 Iflush ← PATH(d, pos′′);
32 Bflush ← READ(Iflush);
33 Bout

flush ← FLUSH(Bflush, pos′′);
34 WRITE(Iflush,B

out
flush);

35 return oldval;
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Algorithm 73: HYBOACCESSj,punct{KN}
Input : t, d, loc, val
Output : oldval
Data : KN , α,MaxDepth (Memory size S = αMaxDepth), loci−1,j

1 if d ≥ MaxDepth then
2 return 0

3 if (d = j) then
4 pos← HYBOACCESSj,punct(d+ 1, bloc/αc,dummy);

5 else
6 Pick leaf newpos at recursion level d based on PRF(KN , (t, d,FetchR)) ; // Update position map

7 pos← HYBOACCESSj,punct(d+ 1, bloc/αc, newpos) ; // Fetch

8 Ifetch ← PATH(d, pos);
9 Bfetch ← READ(Ifetch);

10 if (d = j) then
11 (Bfetch,−, oldval)← REMOVEBLOCK(Bfetch, loc, α, pos);
12 WRITE(Ifetch,Bfetch,−);

13 else
14 (Bout

fetch, oldval)← FETCHANDUPDATE(Bfetch, loc, val, α, pos, newpos);
15 WRITE(Ifetch,B

out
fetch);

16 Pick leaf pos′′ at recursion level d based on PRF(KN , (t, d,FlushR)) ; // Flush

17 Iflush ← PATH(d, pos′′);
18 Bflush ← READ(Iflush);
19 Bout

flush ← FLUSH(Bflush, pos′′);
20 WRITE(Iflush,B

out
flush);

21 return oldval;
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Algorithm 74: F 2,i,0,j,3
e

Input : s̃t
in

= ( st
in
, t), ãin

A←M = (Iin, ( B
in
, lwin))

Data : T,KE , t
∗, y, KN ,KSim, i, j

1 Compute t = dt/qoe;
2 if t > t∗ then output Reject;
3 if t = t∗ then
4 . . .

5 if i ≤ t < t∗ then
6 . . .

7 else
8 Compute (rin

1 , r
in
2 ) = PRF(KE , (lw

in, h(Iin)));
9 Compute (pkin, skin) = PKE .Gen(1λ; rin

1 );

10 Compute Bin = PKE .Decrypt(skin, B
in

);
11 Compute (rt−1

3 , rt−1
4 ) = PRF(KE , t− 1);

12 Compute (pkst, skst) = PKE .Gen(1λ; rt−1
3 );

13 Compute stin = PKE .Decrypt(skst, st
in

);
14 if t = i− 1 then
15 Compute (stout, Iout,Bout)← F j+1

o,hyb(t, stin, Iin,Bin);

16 else if t = tpos then
17 Compute (stout, Iout,Bout) = F j,punct

o (t, stin, Iin,Bin);

18 else
19 Compute (stout, Iout,Bout) = Fo(t, stin, Iin,Bin);

20 Set lwout = (t, . . . , t);
21 Compute (rout

1 , rout
2 ) = PRF(KE , (lw

out, h(Iout)));
22 Compute (pk′, sk′) = PKE .Gen(1λ; rout

1 );

23 Compute B
out

= PKE .Encrypt(pk′,Bout; rout
2 );

24 Compute (rt3, r
t
4) = PRF(KE , t);

25 Compute (pk′, sk′) = PKE .Gen(1λ; rt3);
26 Compute st

out
= PKE .Encrypt(pk′, stout; rt4);

27 Output s̃t
out

= ( st
out
, t+ 1), ãout

M←A = (Iout, ( B
out
, lwout));
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B.5.5 Partially Punctured ORAM: From Hyb2,i,0,j,1 to Hyb2,i,0,j,2

Before giving the proof details that the hybrids Hyb2,i,0,j,1 and Hyb2,i,0,j,2 are indistinguishable, we provide
first the main proof ideas. Recall that in an ORAM tree, a node (as a bucket) consists of multiple blocks of
bit string. In the following, let block∗ be the block to be fetched at time (t, d) = (i − 1, j), and pos∗ be the
corresponding position of block∗. We let tpos be the time when pos∗ is generated by PPRF; note that tpos is also
the last modification time of block∗.

We need to move from Hyb2,i,0,j,1 to Hyb2,i,0,j,2, or puncture ORAM compiled next-step program Fo. Our
main idea is to erase block∗ and pos∗ value in memory and CPU state from time t = tpos to time t = i− 1. To
simplify the exposition, let us focus on erasing block∗, and we note that the pos∗ (which is written to ORAM
recursively) can be handled analogously. In other words, consider the following simplified goal:

Hyb2,i,0,j,1′,tpos
: (A) At time tpos, instead of putting back the encryption of the fetched block∗ to

the root of the ORAM tree, an encryption of dummy value is put back instead.

From Hyb2,i,0,j,1 to Hyb2,i,0,j,1′,tpos
, we wish to change the step computation at time t = tpos to F j,punct′

o .
This step is non-trivial for the following reason: although block∗ to be fetched at (t, d) = (i−1, j) is encrypted,
we cannot leverage its semantic security since the PRF key KE used to generate the ciphertext is hardwired
in the program, and the security of CiO does not hide these hardwired values. In particular, block∗ might be
searched in Fetch step or be moved to another node in Flush step from time t = tpos to time t = i − 1, where
both steps must first decrypt all memory input with the private key, which is generated from KE . Specifically,
following cases need to decrypt (and re-encrypt) block∗:

Fetch step searches for another block, and block∗ is on the searching path. Because block∗ is not matched,
it is decrypted and re-encrypted in the same bucket.
Flush step flushes the path pos′′, and block∗ is not moved. Similar to Fetch, block∗ is decrypted and re-
encrypted in the same bucket.
Flush step flushes the path pos′′, and block∗ is moved from one bucket to another bucket. block∗ is decrypted
and then re-encrypted in two different buckets.

Therefore, in the worst case, the adversary actually has knowledge of the position pos∗ to be fetched, the access
pattern at this point is actually deterministic and hence cannot be simulated.

In order to argue that we can indeed switch to Hyb2,i,0,j,1′,tpos
, the trivial approach is to hardwire input of the

next time t′pos that decrypts block∗, but there might exist another next time of t′pos that decrypts block∗, and so
on. This would mean that we need to hardwire Ω(T ) information inside the program, making the construction
not time-succinct. Instead, we will show, via the series of hybrids presented below, that we can erase the
corresponding part of the ciphertexts one after another, while having only constant amount of information
hardwired in every hybrid.

Partially Punctured Hybrids Our key idea to do so is to add one partially puncturing procedure (B) code
to the ORAM program as a helper, which hardwires the block∗ in plaintext and “erases” it whenever this block
is decrypted in the memory accesses from time t = tpos to time t = i− 1. Consider

Hyb2,i,0,j,1′′,tpos+1: (A) At time tpos, instead of putting back the encryption of the fetched block∗

to the root of the ORAM tree, an encryption of dummy value is put back instead.
(B) At time t ≥ tpos + 1, if the input state or memory contains block∗, then replace it by dummy
value before performing the computation.

Since we do not put back block∗ at time tpos, block∗ does not exist after time tpos, and thus the (B) code is never
executed. Therefore, the programs in Hyb2,i,0,j,1′,tpos

and Hyb2,i,0,j,1′′,tpos+1 have identical computation trace,
and the two hybrids are indistinguishable by the security of CiO. So, our goal reduces to move from Hyb2,i,0,j,1

to Hyb2,i,0,j,1′′,tpos+1.
Towards this, we will first remove the (A) code and add the (B) code only, and we will argue they are

indistinguishable by IND-CPA security later. Next, we add the (B) code gradually and parametrize the (B)
code by its time step condition, and consider hybrids Hyb2,i,0,j,1,z with only the (B) code added:
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Hyb2,i,0,j,1,z: (B) At time t ≥ z, if the input state or memory contains block∗, then replace it by
dummy value before performing the computation.

Note that when z = i−1, the (B) code is ineffective, since computation at time step i−1 is already simulated.
Thus, Hyb2,i,0,j,1 and Hyb2,i,0,j,1,i−1 are indistinguishable by CiO security.

We next argue indistinguishability of Hyb2,i,0,j,1,z and Hyb2,i,0,j,1,z−1, where the difference is at time step
z − 1. If the input at time step z − 1 does not contain block∗, then the computation trace is identical and
the hybrids are indistinguishability by CiO security. Now, if the input at time step z − 1 contains block∗,
the key observation here is that since we have the (B) code added for time step t ≥ z, when we modify the
[block∗]out at time z − 1 to dummy value, it does not effect the computation after any time z. Therefore, to
show that Hyb2,i,0,j,1,z and Hyb2,i,0,j,1,z−1 are indistinguishable, we need to replace the (encrypted) [block∗]out

in Hyb2,i,0,j,1,z−1 by (encryption of) dummy value. We hardwire the plaintext and ciphertext at time z − 1,
and this allows us to replace the (encrypted) [block∗]out by (encryption of) dummy value with PPRF and PKE
security.

Now, we have erased block∗ from the output at time t = z − 1, but Hyb2,i,0,j,1,z−1 is to erase block∗ from
the input. Intuitively, any computation step from time t = tpos to time t = i− 1 does not “compute” on block∗,
and block∗ is transferred literally from input to output through Fo. We claim the overall output at time t = z−1
are always identical by analyzing following cases in CP-ORAM:

In Fetch step, block∗ is always in the same bucket, and it implies that erasing block∗ from input and erasing
block∗ from output are identical.
In Flush step, if block∗ is not moved, then erasing block∗ from input and erasing block∗ from output are
identical.
In Flush step, if block∗ is on the flushing path and is moved from one bucket to another bucket, then erasing
input buckets and erasing output buckets yield the identical result, where both buckets have no block∗.

Note this “commute property of erasure” is implied by CP-ORAM construction and the definitions of block∗

and tpos.
What we have done allow us to move from Hyb2,i,0,j,1 to Hyb2,i,0,j,1,tpos+1, which has the partially punctur-

ing procedure injected. The difference between Hyb2,i,0,j,1,tpos+1 and Hyb2,i,0,j,1′′,tpos+1 is the (A) code, which
is to replace the (encrypted) [block∗]out at time step tpos by (encryption of) dummy value (with the helper (B)
code added). This is the same task as above, and can be handled by the same hybrids.

Lemma B.54. Let PKE be an IND-CPA secure public key encryption scheme, CiO be a computation-trace
indistinguishability obfuscation scheme in the RAM model, PRF be a secure puncturable PRF scheme; then the
hybrids Hyb2,i,0,j,1 and Hyb2,i,0,j,2 are computationally indistinguishable.

Proof. Formally, we define fourth-layer hybrids Hyb2,i,0,j,1,z for tpos < z ≤ i − 1, Hyb2,i,0,j,1′,z for tpos <
z ≤ i− 1, Hyb2,i,0,j,1,tpos,z for tpos < z ≤ i− 1 and hybrids are proceeded as follows.

Hyb2,i,0,j,1 ≈Hyb2,i,0,j,1,i−1 ≈ . . .Hyb2,i,0,j,1,z . . . ≈Hyb2,i,0,j,1,tpos+1 ≈Hyb2,i,0,j,1′,tpos+1 ≈Hyb2,i,0,j,1′,tpos

≈ . . . Hyb2,i,0,j,1,tpos,z . . . ≈ Hyb2,i,0,j,2

Hyb2,i,0,j,1,z ≈ Hyb2,i,0,j,1′,z ≈ Hyb2,i,0,j,1,z−1

Some additional notations used in Hyb2,i,0,j,1′,z are listed in Table 8.

Hyb2,i,0,j,1,z In this hybrid, the program is replaced by F 2,i,0,j,1,z
e defined in Algorithm 75. F 2,i,0,j,1,z

e erases
the part in the plaintext of the input bits corresponding to block∗ by partially puncturing procedure that searches
and erases block∗ at time t, z ≤ t ≤ i − 1, and it also calls F j,2o,hyb at time i − 1. Recall vector Bin is a vector
of nodes on an ORAM tree path, where each node is a bucket that stores several blocks of memory, and the
partially puncturing procedure is to search and erase only block∗ from Bin. In addition, this procedure uses the
original (standard) representation in the ORAM data structure, which denotes an empty slot in a bucket by an
empty symbol. Note that at time t where z < t ≤ i − 1, the memory content which corresponds to block∗ has
already been erased, and thus the program just executes the “normal” Fo function in the sense that it is indeed
generating the “real” access pattern with respect to a particular memory which has block∗ erased.
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Hybrid tpos z − 1 z If decrypts z − 1 i− 1

Hyb2,i,0,j,1 honest honest honest honest honest pos∗,
simulated data

Hyb2,i,0,j,1,i−1 honest honest honest honest hardwire pos∗,
simulated data

. . .
Hyb2,i,0,j,1,z honest honest erase [block∗]in erase [block∗]in hardwire pos∗,

simulated data

Hyb2,i,0,j,1′,z honest hardwire [block∗]out erase [block∗]in hardwire [block∗]in

erase [block∗]in
hardwire pos∗,
simulated data

Hyb2,i,0,j,1′′,z honest hardwire [block∗]out

erase [block∗]out
erase [block∗]in erase [block∗]in hardwire pos∗,

simulated data

Hyb2,i,0,j,1,z−1 honest erase [block∗]in erase [block∗]in erase [block∗]in hardwire pos∗,
simulated data

. . .
Hyb2,i,0,j,1′′,tpos+1 hardwire [block∗]out

erase [block∗]out
erase [block∗]in erase [block∗]in erase [block∗]in hardwire pos∗,

simulated data

Hyb2,i,0,j,1′,tpos
erase [block∗]out honest honest honest hardwire pos∗,

simulated data
. . .
Hyb2,i,0,j,1,tpos,z

erase [block∗]out honest erase [pos∗]in erase [pos∗]in hardwire pos∗,
simulated data

. . .
Hyb2,i,0,j,2 erase [block∗]out

erase [pos∗]out
honest honest honest hardwire pos∗,

simulated data

Table 7: The hybrid series from Hyb2,i,0,j,1 to Hyb2,i,0,j,1′,tpos
, then to Hyb2,i,0,j,2, with the important instruc-

tions in the next-step program that are related to the erasure of block∗ in the ORAM tree
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Notation Definition
h∗z The index of the node which contains block∗ at time t = z

(If time t = z has no block∗ in the memory input, then let h∗z be root index ε.)

b∗z The plaintext of the node with index h∗z at time t = z

b
∗
z The ciphertext of the node b∗z at time t = z

b
∗−
z The ciphertext the same node b∗z except that block∗ is erased

Table 8: Additional notations for the Hyb2,i,0,j,1′,z

Hyb2,i,0,j,1′,z In this hybrid, the program is replaced by F 2,i,0,j,1′,z
e defined in Algorithm 76. F 2,i,0,j,1′,z

e is

similar to F 2,i,0,j,1′,z
e , except for the following changes.

At t = z− 1, the bucket of the output ciphertext corresponding to block∗, namely B
out

[h∗z−1], is replaced
by a hardwired ciphertext b

∗
z−1.

At t ≤ z, an explicit check is imposed so that the private decryption key corresponding to time t = z−1 and
h = h∗z−1 have never be used. To keep the program working correctly, we need to hardwire the plaintext
b∗z−1 corresponding to b

∗
z−1 so that Fo can run with the correct input.

We expand vector notation of PRF and PKE decryption to an equivalent loop form, which is easier to
denote this special hardwired condition along with other honest computations.

Hyb2,i,0,j,1′,tpos In this hybrid, the program is replaced by F 2,i,0,j,1′,tpos
e defined in Algorithm 78, which re-

moves the plaintext corresponding to block∗ inside the ORAM access function OACCESSj,punct′ (Algorithm 79).

Hyb2,i,0,j,1,tpos,z In this hybrid, the program is replaced byF 2,i,0,j,1,tpos,z
e defined in Algorithm 80. F 2,i,0,j,1,tpos,z

e

is similar to F 2,i,0,j,1′,tpos
e except the erasure of the part in the plaintext of the input bits corresponding to pos∗.

Recall that value pos∗ is generated in the j-th recursion level and also stored in the position map, which is
outsourced to the (j + 1)-th level of ORAM recursively. Let loc∗ be the location of the memory cell storing
pos∗ in the (j + 1)-th level ORAM, so pos∗ can be found deterministically in the ORAM tree as follows: with
loc∗, search the block with the format (bloc∗/αc, ·, v) in the (j + 1)-th ORAM tree, and then pos∗ must be
stored in the (loc∗ mod α)-th cell in v. In this hybrid, our additional procedure hardwires loc∗, searches and
erases pos∗ with the unique symbol dummy for all time t, z ≤ t ≤ i− 1 and recursion level d = j + 1.

Analysis In the remaining of this subsection, we will complete the proof of the lemma. We applied Theo-
rem 5.2 several times, and it allows arbitrary modification in the hybrid program as long as the computation
trace remains identical.

From Hyb2,i,0,j,1 to Hyb2,i,0,j,1,i−1: The difference is at time i−1, but the output simulated by F j,2o,hyb, which
hardwires pos∗, has the identical computation trace. By Theorem 5.2, these two hybrids are computationally
indistinguishable.

From Hyb2,i,0,j,1,z to Hyb2,i,0,j,1′,z: Since F 2,i,0,j,1′,z
e is obtained by hardwiring the same outputs computed

from F 2,i,0,j,1,z
e , the computations defined by the two programs have identical computation trace. Therefore,

by Theorem 5.2, the hybrids are computationally indistinguishable.

From Hyb2,i,0,j,1′,z to Hyb2,i,0,j,1,z−1: The indistinguishability is established via a series of intermediate
hybrids, which will be described as follows:
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Algorithm 75: F 2,i,0,j,1,z
e

Input : s̃t
in

= ( st
in
, t), ãin

A←M = (Iin, ( B
in
, lwin))

Data : T,KE , t
∗, y, z, block∗, KN ,KSim, i, j

1 Compute t = dt/qoe;
2 if t > t∗ then output Reject;
3 if t = t∗ then
4 . . .

5 if i ≤ t < t∗ then
6 . . .

7 else
8 Compute (rin

1 , r
in
2 ) = PRF(KE , (lw

in, h(Iin)));
9 Compute (pkin, skin) = PKE .Gen(1λ; rin

1 );

10 Compute Bin = PKE .Decrypt(skin, B
in

);
11 Compute (rt−1

3 , rt−1
4 ) = PRF(KE , t− 1);

12 Compute (pkst, skst) = PKE .Gen(1λ; rt−1
3 );

13 Compute stin = PKE .Decrypt(skst, st
in

);
14 if (z ≤ t ≤ i− 1) and (d = j) then
15 foreach bucket b in Bin do search and erase block∗ from b (and thus Bin);

16 if t = i− 1 then
17 Compute (stout, Iout,Bout)← F j,2o,hyb(t, stin, Iin,Bin);

18 else
19 Compute (stout, Iout,Bout) = Fo(t, stin, Iin,Bin);

20 Set lwout = (t, . . . , t);
21 Compute (rout

1 , rout
2 ) = PRF(KE , (lw

out, h(Iout)));
22 Compute (pk′, sk′) = PKE .Gen(1λ; rout

1 );

23 Compute B
out

= PKE .Encrypt(pk′,Bout; rout
2 );

24 Compute (rt3, r
t
4) = PRF(KE , t);

25 Compute (pk′, sk′) = PKE .Gen(1λ; rt3);
26 Compute st

out
= PKE .Encrypt(pk′, stout; rt4);

27 Output s̃t
out

= ( st
out
, t+ 1), ãout

M←A = (Iout, ( B
out
, lwout)) ;
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Algorithm 76: F 2,i,0,j,1′,z
e

Input : s̃t
in

= ( st
in
, t), ãin

A←M = (Iin, ( B
in
, lwin))

Data : T,KE , t
∗, y, z, block∗, h∗z−1, b

∗
z−1, b

∗
z−1, KN ,KSim, i, j

1 Compute t = dt/qoe;
2 if t > t∗ then output Reject;
3 if t = t∗ then
4 . . .

5 if i ≤ t < t∗ then
6 . . .

7 else
8 foreach h ∈ [ | B in| ] do // We expand the vector notation and only modify red-underlined condition.

9 if (t ≥ z) and (lwin[h] = z − 1) and (h = h∗z−1) then
10 Set Bin[h∗z−1] = b∗z−1 ;

11 else
12 Compute (rin

1 , r
in
2 ) = PRF(KE , (lw

in[h], h));
13 Compute (pkin, skin) = PKE .Gen(1λ; rin

1 );

14 Set Bin[h] = PKE .Decrypt(skin, B
in

[h]);

15 Compute (rt−1
3 , rt−1

4 ) = PRF(KE , t− 1);
16 Compute (pkst, skst) = PKE .Gen(1λ; rt−1

3 );

17 Compute stin = PKE .Decrypt(skst, st
in

);
18 if (z ≤ t ≤ i− 1) and (d = j) then
19 foreach bucket b in Bin do search and erase block∗ from b (and thus Bin);

20 if t = i− 1 then
21 Compute (stout, Iout,Bout)← F j,2o,hyb(t, stin, Iin,Bin);

22 else
23 Compute (stout, Iout,Bout) = Fo(t, stin, Iin,Bin);

24 Set lwout = (t, . . . , t);
25 Compute (rout

1 , rout
2 ) = PRF(KE , (lw

out, h(Iout)));
26 Compute (pk′, sk′) = PKE .Gen(1λ; rout

1 );

27 Compute B
out

= PKE .Encrypt(pk′,Bout; rout
2 );

28 if t = z − 1 then set B
out

[h∗z−1] = b
∗
z−1;

29 Compute (rt3, r
t
4) = PRF(KE , t);

30 Compute (pk′, sk′) = PKE .Gen(1λ; rt3);
31 Compute st

out
= PKE .Encrypt(pk′, stout; rt4);

32 Output s̃t
out

= ( st
out
, t+ 1), ãout

M←A = (Iout, ( B
out
, lwout)) ;
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Algorithm 77: F 2,i,0,j,1′′,z
e

Input : s̃t
in

= ( st
in
, t), ãin

A←M = (Iin, ( B
in
, lwin))

Data : T,KE , t
∗, y, z, block∗, h∗z−1, b

∗−
z−1, KN ,KSim, i, j

1 Compute t = dt/qoe;
2 if t > t∗ then output Reject;
3 if t = t∗ then
4 . . .

5 if i ≤ t < t∗ then
6 . . .

7 else
8 Compute (rin

1 , r
in
2 ) = PRF(KE , (lw

in, h(Iin)));
9 Compute (pkin, skin) = PKE .Gen(1λ; rin

1 );

10 Compute Bin = PKE .Decrypt(skin, B
in

);
11 Compute (rt−1

3 , rt−1
4 ) = PRF(KE , t− 1);

12 Compute (pkst, skst) = PKE .Gen(1λ; rt−1
3 );

13 Compute stin = PKE .Decrypt(skst, st
in

);
14 if (z ≤ t ≤ i− 1) and (d = j) then
15 foreach bucket b in Bin do search and erase block∗ from b (and thus Bin);

16 if t = i− 1 then
17 Compute (stout, Iout,Bout)← F j,2o,hyb(t, stin, Iin,Bin);

18 else
19 Compute (stout, Iout,Bout) = Fo(t, stin, Iin,Bin);

20 Set lwout = (t, . . . , t);
21 Compute (rout

1 , rout
2 ) = PRF(KE , (lw

out, h(Iout)));
22 Compute (pk′, sk′) = PKE .Gen(1λ; rout

1 );

23 Compute B
out

= PKE .Encrypt(pk′,Bout; rout
2 );

24 if t = z − 1 then set B
out

[h∗z−1] = b
∗−
z−1;

25 Compute (rt3, r
t
4) = PRF(KE , t);

26 Compute (pk′, sk′) = PKE .Gen(1λ; rt3);
27 Compute st

out
= PKE .Encrypt(pk′, stout; rt4);

28 Output s̃t
out

= ( st
out
, t+ 1), ãout

M←A = (Iout, ( B
out
, lwout)) ;
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1. F 2,i,0,j,1′,z
e {KE{(z − 1, h∗z−1)}, h∗z−1, b

∗
z−1, b

∗
z−1}. In the first hybrid, the input (z − 1, h∗z−1) is punc-

tured from the PRF key KE . The pseudorandomness computed from KE is hardwired in the program.
Since the computation defined by this program has identical computation trace as that in Hyb2,i,0,j,1′,z ,
the two hybrids are computationally indistinguishable by Theorem 5.2.

2. F 2,i,0,j,1′,z
e {KE{(z − 1, h∗z−1)}, h∗z−1, b

∗
z−1, b; r

∗ ∗
z−1
}. In the next hybrid, we replace the hardwired

ciphertext by a ciphertext encrypted with true randomness. The indistinguishability is guaranteed by the
selective security of PPRF.

3. F 2,i,0,j,1′,z
e {KE{(z−1, h∗z−1)}, h∗z−1, b

∗
z−1, b; r

∗ ∗−
z−1
}. Next, we change the hardwired ciphertext b; r∗

∗
z−1

to its counterpart b; r∗
∗−
z−1

with block∗ erased. The indistinguishability is guaranteed by the IND-CPA

security of the PKE because F 2,i,0,j,1′,z
e would never use the private key of (z − 1, h∗z−1).

4. F 2,i,0,j,1′,z
e {KE , h

∗
z−1, b

∗
z−1, b

∗−
z−1}. Then, we un-puncture the PRF. The indistinguishability is guaran-

teed by the security of the puncturable PRF.

5. F 2,i,0,j,1′,z
e {KE , h

∗
z−1, b

∗−
z−1}. We remove Line 10 and the honest plaintext b∗z−1 that contains block∗

(Algorithm 77). The computation defined by this program has identical computation trace as the previous
hybrid, and two hybrids are computationally indistinguishable by Theorem 5.2. Note that, to show two
traces are identical, we observe the only difference is the input bucket b∗z−1 was replaced by b∗−z−1 which

is decrypted from b
∗−
z−1. For all z ≤ t ≤ i − 1, however, the input to Fo always has block∗ erased in

advance, and it follows that double-erasing yields the identical input Bin.

6. At this point, the computation trace defined by F 2,i,0,j,1′,z
e {KE , h

∗
z−1, b

∗−
z−1} is identical to that in

Hyb2,i,0,j,1,z−1, and two hybrids are computationally indistinguishable by Theorem 5.2. It is based on the
“commute property of erasure”, where any computation step from time tpos to i− 1 does not “compute”
on block∗, and block∗ is transferred literally from the input to the output through Fo. Therefore, erasing
block∗ from output is identical to erasing block∗ from the input.

From Hyb2,i,0,j,1′,tpos+1 to Hyb2,i,0,j,1′,tpos: By the same argument from Hyb2,i,0,j,1′,z to Hyb2,i,0,j,1′′,z , we
can see that Hyb2,i,0,j,1′,tpos+1 is indistinguishable from Hyb2,i,0,j,1′′,tpos+1. Note that the only difference be-

tween Hyb2,i,0,j,1′′,tpos+1 and Hyb2,i,0,j,1′,tpos
is the erasure of block∗ in F 2,i,0,j,1′,tpos

e (which is implemented in
OACCESSj,punct′), and they have identical computation trace. By Theorem 5.2, the two hybrids are computa-
tionally indistinguishable.

From Hyb2,i,0,j,1′,tpos to Hyb2,i,0,j,2: Our task here is to remove the information corresponding to pos∗ from
the position map which has pos∗ stored in the next recursion layer of the ORAM tree. The approach is similar to
above, as we need to remove this information that pos∗ is accessed for each time z in the next layer of ORAM
tree. To show these two hybrids are computationally indistinguishable, we therefore define Hyb2,i,0,j,1,tpos,z

similar to Hyb2,i,0,j,1,z , and the argument is analogous to that from Hyb2,i,0,j,1 to Hyb2,i,0,j,1′,tpos
. The sketched

proof is briefly presented as follows:
Hyb2,i,0,j,1′,tpos

≈ Hyb2,i,0,j,1,tpos,z with z = i− 1 is analogous to the series of hybrids from Hyb2,i,0,j,1 to
Hyb2,i,0,j,1,i−1. The indistinguishability is guaranteed by the indistinguishability of CiO (Theorem 5.2).
Hyb2,i,0,j,1,tpos,z ≈ Hyb2,i,0,j,1,tpos,z−1 for time z that tpos < z ≤ i− 1 is analogous to the series of hybrids
from Hyb2,i,0,j,1,z to Hyb2,i,0,j,1,z−1. The indistinguishability is guaranteed by the indistinguishability of
CiO (Theorem 5.2), the selective security of PPRF, the IND-CPA security of PKE , and the “commute
property of erasure” of ORAM construction.
Hyb2,i,0,j,1,tpos,z ≈Hyb2,i,0,j,2 with z = tpos +1 is analogous to the series of hybrids from Hyb2,i,0,j,1,tpos+1

to Hyb2,i,0,j,1′,tpos
. The indistinguishability is guaranteed by the indistinguishability of CiO (Theorem 5.2),

the selective security of PPRF, and the IND-CPA security of PKE .
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These hybrids and arguments are one-to-one mapping to their previous analogous, the only difference is that
we erase the memory cell loc∗ storing pos∗ (rather than the memory block block∗ contains pos∗). The details
are omitted here.

Algorithm 78: F 2,i,0,j,1′,tpos
e

Input : s̃t
in

= ( st
in
, t), ãin

A←M = (Iin, ( B
in
, lwin))

Data : T,KE , t
∗, y, tpos, KN ,KSim, i, j

1 Compute t = dt/qoe;
2 if t > t∗ then output Reject;
3 if t = t∗ then
4 . . .

5 if i ≤ t < t∗ then
6 . . .

7 else
8 Compute (rin

1 , r
in
2 ) = PRF(KE , (lw

in, h(Iin)));
9 Compute (pkin, skin) = PKE .Gen(1λ; rin

1 );

10 Compute Bin = PKE .Decrypt(skin, B
in

);
11 Compute (rt−1

3 , rt−1
4 ) = PRF(KE , t− 1);

12 Compute (pkst, skst) = PKE .Gen(1λ; rt−1
3 );

13 Compute stin = PKE .Decrypt(skst, st
in

);
14 if t = i− 1 then
15 Compute (stout, Iout,Bout)← F j,2o,hyb(t, stin, Iin,Bin);

16 else if t = tpos then
17 Compute (stout, Iout,Bout) = F j,punct′

o (t, stin, Iin,Bin) ;
// F j,punct′

o = CP-ORAM.Compile(F,OACCESSj,punct′)

18 else
19 Compute (stout, Iout,Bout) = Fo(t, stin, Iin,Bin);

20 Set lwout = (t, . . . , t);
21 Compute (rout

1 , rout
2 ) = PRF(KE , (lw

out, h(Iout)));
22 Compute (pk′, sk′) = PKE .Gen(1λ; rout

1 );

23 Compute B
out

= PKE .Encrypt(pk′,Bout; rout
2 );

24 Compute (rt3, r
t
4) = PRF(KE , t);

25 Compute (pk′, sk′) = PKE .Gen(1λ; rt3);
26 Compute st

out
= PKE .Encrypt(pk′, stout; rt4);

27 Output s̃t
out

= ( st
out
, t+ 1), ãout

M←A = (Iout, ( B
out
, lwout)) ;

B.6 Proof Sketch of Theorem 8.1 (Security forRE-PRAM)

The aboveRE-PRAM is built in the same manner as that ofRE-RAM. Both of them depend on three levels of
compilers, ORAM/OPRAM, PKE , and finally CiO-RAM/PRAM. To argue the security ofRE-PRAM, we use
similar proof techniques to go through hybrids except that we insert an additional layer to deal with each CPU
agent respectively.
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Algorithm 79: OACCESSj,punct′{KN}
Input : t, d, loc, val
Output : oldval
Data : KN , α,MaxDepth (Memory size S = αMaxDepth), loci−1,j

1 if d ≥ MaxDepth then
2 return 0

3 Pick leaf newpos at recursion level d based on PRF(KN , (t, d,FetchR)) ; // Update position map

4 pos← OACCESS(d+ 1, bloc/αc, newpos) ; // Fetch

5 Ifetch ← PATH(d, pos);
6 Bfetch ← READ(Ifetch);
7 if (d = j) then
8 (Bfetch,−, oldval)← REMOVEBLOCK(Bfetch, loc, α, pos);
9 WRITE(Ifetch,Bfetch,−);

10 else
11 (Bout

fetch, oldval)← FETCHANDUPDATE(Bfetch, loc, val, α, pos, newpos);
12 WRITE(Ifetch,B

out
fetch);

13 Pick leaf pos′′ at recursion level d based on PRF(KN , (t, d,FlushR)) ; // Flush

14 Iflush ← PATH(d, pos′′);
15 Bflush ← READ(Iflush);
16 Bout

flush ← FLUSH(Bflush, pos′′);
17 WRITE(Iflush,B

out
flush);

18 return oldval;

Let Real be the real security game in which the adversary is given ENCReal, and Ideal be the security game
in which the adversary is given ENCIdeal. The intermediate hybrids between Real and Ideal are similar to those
in Appendix B.5. Roughly, we have the following hybrids Real = Hyb0 ≈ Hyb1 ≈ Hyb2,t∗ ≈ . . . ≈ Hyb2,0

= Ideal.
Let F xe , Πx

e , and ENCx be the stateful function, computation system, and encoding in Hybx respectively.

Hyb1 In this hybrid, F 1
e hardwires the output st = (halt, y). It always returns ⊥ if t > t∗. At time t∗, the

special CPU agent returns st = (halt, y). From Hyb0 to Hyb1, Π0
e and Π1

e have the same computation traces,
and thus by applying CiO-PRAM, ENC and ENC1 are computationally indistinguishable.

Hyb2,i In this hybrid, at time t, i ≤ t ≤ t∗, F 2,i
e ’s access pattern is a simulated access pattern provided by the

OPRAM simulator, and the output state is replaced by an encryption of a special symbol dummy. From Hyb1

to Hyb2,t∗, we directly apply CiO-PRAM to claim that ENC1 and ENC2,t∗ are computationally indistinguishable
due to Trace〈Π1

e〉 = Trace〈Π2,t∗
e 〉. However, from Hyb2,i to Hyb2,i−1, we define the next layer Hyb2,i,k in

which k is indexed by a CPU.

Hyb2,i,k In this hybrid at time t = i− 1, F 2,i,k
e ’s access pattern is a simulated access pattern provided by the

OPRAM simulator if CPU A < k, while its access pattern is a real access pattern if CPU A ≥ k. For the time i
and CPU k, we consider the following cases.

If CPU k is not a representative to access its corresponding memory location lock, Hyb2,i,k and Hyb2,i,k+1

are identical.
If CPU k is a representative to access its corresponding memory location lock and that memory block of
lock is stored at the OPRAM tree path pos∗, we need to argue that F 2,i,k

e and F 2,i,k+1
e are computational

indistinguishable. Therefore, we define the four layer hybrids Hyb2,i,k,0,j later where j is the recursive
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Algorithm 80: F 2,i,0,j,1,tpos,z
e

Input : s̃t
in

= ( st
in
, t), ãin

A←M = (Iin, ( B
in
, lwin))

Data : T,KE , t
∗, y, tpos, loc∗, KN ,KSim, i, j

1 Compute t = dt/qoe;
2 if t > t∗ then output Reject;
3 if t = t∗ then
4 . . .

5 if i ≤ t < t∗ then
6 . . .

7 else
8 Compute (rin

1 , r
in
2 ) = PRF(KE , (lw

in, h(Iin)));
9 Compute (pkin, skin) = PKE .Gen(1λ; rin

1 );

10 Compute Bin = PKE .Decrypt(skin, B
in

);
11 Compute (rt−1

3 , rt−1
4 ) = PRF(KE , t− 1);

12 Compute (pkst, skst) = PKE .Gen(1λ; rt−1
3 );

13 Compute stin = PKE .Decrypt(skst, st
in

);
14 if (z ≤ t ≤ i− 1) and (d = j + 1) then
15 foreach bucket b in Bin do
16 search for block of the form (bloc∗/αc, ·, v),
17 and erase the (loc∗ mod α)-th cell in v (and thus in Bin) with symbol dummy;

18 if t = i− 1 then
19 Compute (stout, Iout,Bout)← F j,2o,hyb(t, stin, Iin,Bin);

20 else if t = tpos then
21 Compute (stout, Iout,Bout) = F j,punct′

o (t, stin, Iin,Bin) ;
// F j,punct′

o = CP-ORAM.Compile(F,OACCESSj,punct′)

22 else
23 Compute (stout, Iout,Bout) = Fo(t, stin, Iin,Bin);

24 Set lwout = (t, . . . , t);
25 Compute (rout

1 , rout
2 ) = PRF(KE , (lw

out, h(Iout)));
26 Compute (pk′, sk′) = PKE .Gen(1λ; rout

1 );

27 Compute B
out

= PKE .Encrypt(pk′,Bout; rout
2 );

28 Compute (rt3, r
t
4) = PRF(KE , t);

29 Compute (pk′, sk′) = PKE .Gen(1λ; rt3);
30 Compute st

out
= PKE .Encrypt(pk′, stout; rt4);

31 Output s̃t
out

= ( st
out
, t+ 1), ãout

M←A = (Iout, ( B
out
, lwout)) ;
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level.
Hyb2,i,k = Hyb2,i,k,0,0 ≈ . . . ≈ Hyb2,i,k,0,dmax

≈ Hyb2,i,k,0′,dmax
≈ . . . ≈ Hyb2,i,k,0′,0 = Hyb2,i,k+1.

In the construction, the access pattern of the OPACCESS depends on the paths (stored in the public state
stto) that each CPU wants to access. Note that the access pattern is fully determined by stto revealed in the
execution. So, we do not erase its content in the hybrids and further guarantee the correctness of the execution.
The content in the first half is simulated, while in the second half is real. In other words, we generate simulated
path for each CPU, and store them in stto to simulate the access pattern of OPACCESS.

As BCP-OPRAM is a generalization of CP-ORAM, it is not hard to see that the puncturing argument gen-
eralized to work for BCP-OPRAM as well. It suffices to information-theoretically hide the values of the paths
pk’s to simulate the access pattern, and this can be done by injecting a puncturing code. This can be done CPU
by CPU. Namely, for each pk accessed by CPU k, we can inject a puncturing code at the corresponding time
step t′k that the value pk is generated, to remove the generation of pk. Moreover, we can move to this punctured
hybrid by a sequence of partially punctured hybrids as before (Appendix B.5.4), by gradually puncturing the
value of pk backwards in time, per time step and per CPU. Upon reaching this punctured hybrid, we can switch
pk to a simulated one, undo the puncturing, and move to the next CPU. The argument from Hyb2,i,k,0,j to
Hyb2,i,k,0,j+1 is identical to that in Appendix B.5.4.

B.7 Proof of Theorem 9.4 (Security for VE)

Proof. Let AdvβA be the advantage of the adversary A in the hybrid Hybβ .

Hyb0 This is the real security experiment. The challenger chooses randomness r1, r2, r3, and computes
(vk, sk) ← SIG.Gen(1λ; r1), and ENC ← CiO.Obf(Π̂; r3). Note that here F has (r1, r2, sk) hardcoded. The
challenger then returns (ENC, vk) to the adversary A. The adversary wins the game if it returns (π̃, ỹ) so that
VE .Verify(vk, π̃, ỹ) = 1 and ỹ 6= P (x).

Hyb1 The challenger chooses randomness r1, r2, r3, and computes (vk, sk) ← SIG.Gen(1λ; r1), y = P (x),
σ = SIG.Sign(sk, y; r2), and ENC ← CiO.Obf(Π̂′; r3), where F̂ ′ (corresponds to Π̂′) has σ (rather than
(r1, r2, sk)) hardcoded; see Algorithm 81.

Algorithm 81: F̂ ′ // this program is used in Hyb1

Input : ŝt
in

= (stin, t), ain

Data : T, σ
1 Compute (stout, aout) = F (stin, ain);
2 if stout 6= (halt, ·) then
3 Set ŝt

out
= (stout, t+ 1);

4 else
5 if y = ⊥ then
6 Set ŝt

out
= stout;

7 else
8 Set ŝt

out
= (stout, σ);

9 Set aout = ⊥;

10 Output ŝt
out
, aout;

160



Analysis Our goal here is to show Adv0
A ≤ negl(λ). To achieve this goal, we prove the following lemmas.

Lemma B.55. If CiO is a secure indistinguishability obfuscation for computation scheme in the RAM / PRAM
model, then we have |Adv0

A − Adv1
A| ≤ negl(λ).

Proof. Assume there is an adversary A, who can distinguish the two hybrids with non-negligible probability.
By average argument, there exist r1, r2 such that A can distinguish Hyb[r1,r2]

0 from Hyb[r1,r2]
1 . That means A

can distinguish CiO(Π̂) from CiO(Π̂′).

Lemma B.56. If SIG is a secure digital signature scheme, then we have Adv1
A ≤ negl(λ).

Proof. Assume there is an adversary A who wins the game in Hyb1. Based on such adversary A, we show
how to construct a forger B to break the unforgeability of SIG as follows.
B internally simulates a copy of Hyb1. Upon receiving vk from B’s SIG challenger, B chooses F and x,

and computes y = F (x). Now B queries its challenger with message y to obtain the corresponding signature σ.
Then, based on F and σ, B constructs F̂ ′, and returns ENC ← CiO.Obf(Π̂′) and vk to the adversary A.
Whenever A returns (ỹ, π̃), B returns (ỹ, σ̃) = (ỹ, π̃) to SIG challenger.
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