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Abstract. We present a modular framework for the design of efficient adaptively secure attribute-based encryption
(ABE) schemes for a large class of predicates under the standard k-Lin assumption in prime-order groups; this is the
first uniform treatment of dual system ABE across different predicates and across both composite and prime-order
groups. Via this framework, we obtain concrete efficiency improvements for several ABE schemes. Our framework
has three novel components over prior works: (i) new techniques for simulating composite-order groups in prime-
order ones, (ii) a refinement of prior encodings framework for dual system ABE in composite-order groups, (iii) an
extension to weakly attribute-hiding predicate encryption (which includes anonymous identity-based encryption
as a special case).

1 Introduction

Attribute-based encryption (ABE) [39, 22] is a new paradigm for public-key encryption that enables fine-
grained access control for encrypted data. In ABE, ciphertexts are associated with descriptive values x in
addition to a plaintext, secret keys are associated with values y , and a secret key decrypts the ciphertext
if and only if P(x, y) = 1 for some boolean predicate P. Here, y together with P may express an arbitrarily
complex access policy, which is in stark contrast to traditional public-key encryption, where access is all
or nothing. The simplest example of ABE is that of identity-based encryption (IBE) [40, 7, 17] where P
corresponds to equality. The security requirement for ABE enforces resilience to collusion attacks, namely
any group of users holding secret keys for different values learns nothing about the plaintext if none of
them is individually authorized to decrypt the ciphertext. This should hold even if the adversary adaptively
decides which secret keys to ask for.

ABE in Prime-Order Groups. The goal of this work is to obtain efficient adaptively secure ABE for a
large class of predicates. We now have a fairly good understanding of how to obtain such schemes in
composite-order bilinear groups, thanks to Waters’ powerful dual system encryption methodology [42] and
recent unifying frameworks in [2, 43] for the design of dual system ABE schemes. However, these latter
frameworks only work in composite-order bilinear groups, for which group operations and especially
pairing computations are prohibitively slow. In practice, prime-order bilinear groups are preferable [23]
as they admit not only more efficient but also more compact instantiations. To mitigate the gap between
ease of theoretical design and practical efficiency, a series of works studied techniques for converting
cryptosystems relying on composite-order groups to cryptosystems based on prime-order groups [34, 35,
20, 30, 15, 14], largely in the context of dual system ABE. In addition, we have direct constructions of
dual system prime-order hierarchical identity-based encryption (HIBE) schemes in [26, 5] that bypass
a conversion from composite-order groups, but the techniques in these constructions do not seem to
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compact HIBE boolean formula k-Lin anonymous IBE wAH ZIPE

DPVS [34, 35, 30, 15] no yes yes yes yes

sparse DPVS [37] yes ? ? yes yes

QANIZK [26] yes ? yes yes ?

dual system groups [14] yes ? yes ? ?

MAC-to-(H)IBE [5] yes ? yes yes ?

this work yes yes yes yes yes

Fig. 1. Summary of previous approaches for building efficient dual system (H)IBE and ABE in prime-order groups. The first column
refers to HIBE with constant-size ciphertexts; the second refers to KP/CP-ABE for boolean formula. The third column refers to
instantiations from the general k-Lin assumption. The last two columns address extensions to stronger notions of security like
anonymity and weakly attribute-hiding inner product encryption (wAH ZIPE). Additional discussion is provided in Section 1.2.

naturally extend beyond (H)IBE. Furthermore, the prior constructions rely on fairly distinct techniques, and
efficiency improvements in one construction do not necessarily translate to a different construction and a
different predicate. In short, prior works fall short of providing a unifying and modular framework for the
design of efficient dual system ABE schemes in prime-order groups that work for a large class of predicates
(c.f. Fig. 1).

1.1 Our contributions

We present a modular framework for the design of efficient dual system ABE schemes for a large class of
predicates under the standard k-Lin assumption in prime-order groups; this is the first uniform treatment
of dual system ABE across different predicates and across both composite and prime-order groups. Via this
framework, we obtain concrete efficiency improvements for several ABE schemes. Our framework has three
novel components over prior works: (i) new techniques for simulating composite-order groups in prime-
order ones, (ii) a refinement of the encodings framework for dual system ABE for composite-order groups in
[2, 43], (iii) an extension to weakly attribute-hiding predicate encryption [28, 9] (which includes anonymous
IBE as a special case). The last two components answer the open problems left in [2, 43].

New techniques for simulating composite-order groups. The starting point of our construction is simply
a simpler choice of basis. Fix a bilinear group (G1,G2,GT ) with e : G1 ×G2 → GT of prime order p. We pick
random matrices (A,B) ←R Z

(k+1)×k
p , along with random vectors a⊥,b⊥ ∈Zk+1

p so that a⊥>
A = b⊥>

B = 0, and

we assume a⊥>
b⊥ 6= 0. Observe that1

([A]1, [b⊥]1) := (g A
1 , g b⊥

1 ) ∈G (k+1)×k
1 ×Gk+1

1

forms a basis for Gk+1
1 . Similarly,

([B]2, [a⊥]2) := (g B
2 , g a⊥

2 ) ∈G (k+1)×k
2 ×Gk+1

2

forms a basis for Gk+1
2 . In the context of dual system encryption, we use [A]1 as a basis for normal

components in the ciphertext space, and [b⊥]1 as a basis for semi-functional components. Similarly, we
use [B]2 as a basis for normal components in the secret key space, and [a⊥]2 as a basis for semi-functional
components. Indistinguishability for elements with and without random semi-functional components
follow readily from the k-Lin assumption. Moreover, we have an orthogonality property given by a⊥>

A =
b⊥>

B = 0, which tells us that the normal and semi-functional components in different spaces cancel out.

1 Following [18], we use the implicit representation notation for group elements, as explained in Section 4.1.
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We can then randomize this basis by choosing W ∈ Z
(k+1)×(k+1)
p uniformly at random and using

([W>A]1, [W>b⊥]1) for Gk+1
1 and ([WB]2, [Wa⊥]2) for Gk+1

2 . For decryption correctness, we will exploit the
following “associative” property when the new basis interacts with the original one, namely:

e([A]1, [WB]2) = e([W>A]1, [B]2) (1)

where we define the pairing operation on matrices via e([M]1, [M′]2) := e(g1, g2)M>M′
. Observe that W has

one unit of residual entropy given (W>A,WB). This will be crucial for carrying out the information-theoretic
argument in the proof of ABE security via the dual system encryption methodology [42, 2, 43].

We note that prior transformations in prime-order groups in [20, 34, 35, 30] try to simulate all of
the structure in composite-order groups (e.g. orthogonality). We simulate less structure (associativity,
c.f. Eqn. (1)), thus leading to better concrete efficiency. However, when combined with the existing
encodings framework for dual system ABE schemes in composite-order groups, we cannot even guarantee
ABE decryption correctness. We compensate for less structure while simulating composite-order groups
by imposing more structure to the encodings, which we can achieve without increasing the size of the
encodings. We will exploit the additional structure in the encodings for correctness and for security. We
now proceed to describe our encodings framework for ABE.

Modular approach for ABE. We begin with the observation that the prior composite-order ABE schemes in
[43, 2] (generalizing [32, 33]) may be modified so that master public key, secret key and ciphertext are of the
form:

mpk := (
g1, g w

1 , e(g1, g1)α
)

sky := (
g r

1 , g kE(y,α)+r ·rE(y,w)
1

)
ctx := (

g s
1, g s·sE(x,w)

1 , e(g1, g1)αs ·m
) (2)

Here, g1 is a generator of order p1 where the underlying composite group order is the product of three
primes p1, p2, p3 (for simplicity we consider the case of a symmetric bilinear group); w is a vector of length
n; and kE,rE,sE are a triple of deterministic “encoding” functions that depend on the underlying predicate
P (we refer to these functions as key encoding, receiver encoding and sender encoding respectively.)
Syntactically, this is already a refinement of the prior frameworks in [43, 2] which associates a single function
with sky given by

(y,α,w,r ) 7→ (
r, kE(y,α)+ r · rE(y,w)

)
(3)

in the exponent. The prior frameworks allow for instance for kE to be randomized. With the refinement in
place, we can now specify the restricted α-reconstruction property used for correctness:

(restrictedα-reconstruction.) For every x, y for whichP(x, y) = 1, there is a linear map Lx y such that
for all α,r ,

Lx y

(
kE(y,α)+ r · rE(y,w), r · sE(x,w)

)
=α

This means that we can recover e(g1, g1)αs given

e(g s
1, g kE(y,α)+r ·rE(y,w)

1 ) and e(g s·sE(x,w)
1 , g r

1 ),

upon which we can decrypt the ciphertext. Observe that we only need to pair the first component g s
1 of ctx

with the second component of sky and the second component of ctx with the first component g r
1 of sky .

Correctness now relies on a so-called associativity property [14], namely that for all i and all wi :

e(g s
1, g wi r

1 ) = e(g wi s
1 , g r

1 ) (4)
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To translate the scheme to prime-order groups, we carry out the following substitution:

wi 7→ Wi ∈Z(k+1)×(k+1)
p

s 7→ s ∈Zk
p , r 7→ r ∈Zk

p

g s
1 7→ [As]1, g r

1 7→ [Br]2

g wi s
1 7→ [W>

i As]1, g wi r
1 7→ [Wi Br]2

Using (1), we have

e([As]1, [Wi Br]2) = e([W>
i As]1, [Br]2)

which is exactly what we used in composite-order groups in (4). In fact, a stronger “pairwise associativity”
property holds in composite-order groups, namely for all i , j and all wi , w j :

e(g
w j s
1 , g wi r

1 ) = e(g wi s
1 , g

w j r
1 )

which is not satisfied by our prime-order techniques since Wi and W j do not commute. Restricted

α-reconstruction means that we do not need to pair g
w j s
1 with g wi r

1 during decryption, and thus the
associativity property already suffices for decryption correctness. For maximal modularity, we describe our
compiler using the framework of dual system groups introduced in [14], which allows us to simultaneously
capture prime-order and composite-order groups.

Next, we specify the privacy property which we use in the proof of ABE security:

(α-privacy.) For every x, y for which P(x, y) = 0, α is perfectly hidden given

sE(x,w), kE(y,α)+ rE(y,w)

where w ←R Z
n
p .

We stress that the privacy requirement only needs to hold in a private-key setting where the adversary does
not see w and in a one-time setting where the adversary only gets a single copy of sE(x,w),kE(y,α)+rE(y,w).
As pointed out in [43], the dual system encryption methodology can be used to boost security in a private-
key, one-time, non-adaptive setting as given by α-privacy to a full-fledged public-key, many-time, adaptive
setting as is required for ABE security. One novelty in this work over [43, 2] lies in carrying this out over
prime-order bilinear groups. In the proof, we exploit the fact that the key sky leaks no information about
w when r = 0 (c.f. Eqn. (2)). This way, we can ensure that in each step in the proof of security, at most one
secret key leaks information about w in the semi-functional space. This is important since α-privacy only
holds when w is used once. We also introduce new attribute-hiding privacy requirements for encodings in
this work (c.f. Section 7.2).

New encodings. For many predicates, the prior encodings in [43, 2] satisfy the new refinement trivially. In
addition, we introduce a number of new encodings:

– For KP-ABE for boolean formula, the prior encoding corresponding to the secret key in [43, 2] is given by

(r,α1 + r w1, . . . ,α`+ r w`)

where (α1, . . . ,α`) are random shares of α using a linear secret-sharing scheme and fresh randomness
for each secret key. This does not satisfy the syntactic refinement captured in Eqn. (3). In our scheme,
we use

(r,α′
1 + r (w1 +δ1), . . . ,α′

`+ r (w`+δ`))

where (α′
1, . . . ,α′

`
) are deterministically derived from α using the secret-sharing scheme with random-

ness fixed to 0 and (δ1, . . . ,δ`) are random shares of 0. In the ensuing KP-ABE scheme, we use the same
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functionality improvements reference

KP-ABE boolean formula 50% savings in secret key size, faster decryption Fig. 3, §B.1

CP-ABE boolean formula 50% savings in ciphertext size, faster decryption Fig. 4, §B.2

KP-ABE arithmetic formula first adaptively secure scheme §A.6

CP-ABE arithmetic formula first adaptively secure scheme §A.6

NIPE 25-50% savings in secret key and ciphertext size and in decryption time Fig. 5

weakly attribute-hiding ZIPE 25% savings in secret key and ciphertext size and in decryption time Fig. 6, §C

Fig. 2. Summary of efficiency improvements in our new ABE schemes.

δ1, . . . ,δ` across all secret keys whereas prior constructions use fresh randomness for secret-sharing
for each key. In addition, we obtain an analogous construction for CP-ABE. Here, we avoid having to
consider randomized sender encodings as in [43, 2]. The final encodings have the same sizes as the prior
ones, while satisfying the new refinement requirement. Moreover, by using associativity (c.f. Eqn. (4)),
we reduce the number of pairings for the decryption to a constant and avoid exponentiations in the
target group at the cost of cheaper exponentiations in the source groups.

– We extend the encodings for KP-ABE and CP-ABE to arithmetic branching programs, based on the
selectively secure KP-ABE for arithmetic branching programs in [25](c.f. Section A.6). Combined with
our generic framework, we obtain the first adaptively secure KP-ABE and CP-ABE for arithmetic
branching programs.

– We also present a new encoding for broadcast encryption with n users where both the receiver and
sender encoding have sublinear O(

p
n) length (c.f. Section A.7) and a simple encoding for large universe

fuzzy IBE(c.f. Section A.8).

Achieving weak attribute-hiding. In a weakly attribute-hiding scheme, we need to guarantee the privacy
of the ciphertext attribute x against collusions that are not authorized to decrypt the challenge ciphertext.
To achieve this property, we require additional properties from the underlying encoding and the underlying
group structure (extending ideas from [36, 1, 5]). We use the fact that for any vector c ∈ Zk+1

p outside the
span of A, the vector W>c is uniformly random given W>A, where W is a uniformly random matrix. We can
then use W>c to information-theoretically blind the attribute in the challenge ciphertext. For this to work,
we need to make sure that the semi-functional secret keys do not leak any additional information about
WB.

New ABE schemes. We describe several concrete new ABE schemes obtained via our new framework (c.f.
Fig. 2). Specifically, we obtain:

– ABE schemes for the inner product and non-zero inner product predicates with a 25% improvement in
secret key and ciphertext sizes and decryption time, improving upon previous constructions in [37];

– a key-policy ABE scheme for boolean formula with a 50% improvement in secret key size and faster
decryption and an analogous result for ciphertext-policy ABE, improving upon previous constructions
in [36, 30];

– the first adaptively secure key-policy and ciphertext-policy ABE schemes for arithmetic formula and
branching programs without an exponential security loss, improving upon previous constructions in
[25, 11].

Along the way, we also generalize several previous constructions for k = 2 to general k with k = 1 being
particularly relevant for practical efficiency. More generally, the parameters of our schemes under k-Lin
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reference |mpk| |sk| |ct| TDec assumption

LOS+10 [33] (`+1)|GN |+|GT | 2`|GN | (`+1)|GN |+|GT | 2`P +2`ET composite

A14, W14 [2, 43] (`+2)|GN |+|GT | (`+1)|GN | (`+1)|GN |+|GT | 2`P +`ET composite

OT10 [36] (21`+15)|G1|+|GT | (7`+5)|G2| (7`+5)|G1|+|GT | (7`+5)P +`ET DLIN

CLL+12 [15] (8`+6)|G1|+|GT | (4`+3)|G2| (4`+3)|G1|+|GT | (4`+1)P +`ET SXDH

ours (2`+1)|G1|+|GT | (2`+2)|G2| (2`+2)|G1|+|GT | 4P +4`E SXDH

(6`+2)|G1|+2|GT | (3`+3)|G2| (3`+3)|G1|+|GT | 6P +6`E DLIN

(k(k +1)`+k)|G1|+k|GT | (k +1)(`+1)|G2| (k +1)(`+1)|G1|+|GT | 2(k +1)P +2(k +1)`E k-Lin

Fig. 3. Summary of existing adaptively secure KP-ABE schemes based on symmetric bilinear groups of composite order N with
pairing e : GN ×GN → GT , or asymmetric bilinear groups of prime order p with pairing e : G1 ×G2 → GT . Here, ` is both the
universe size and the maximum number of rows in the matrix M of the access structure since all listed schemes have the one-use
restriction. We use E to denote exponentiation in GN ,G1 or G2; ET to denote exponentiation in GT ; and P to denote a pairing. For
CT, we omit the additive overhead of O(`) bits in order to transmit the attribute vector. The encryption time is O(`E +ET ) and the
key generation time is O(`E).

reference |mpk| |sk| |ct| TDec assumption

LOS+10 [33] (`+2)|GN |+|GT | (`+2)|GN | (2`+1)|GN |+|GT | (2`+1)P +`ET composite

A14, W14 [2, 43] (`+2)|GN |+|GT | (`+2)|GN | (`+1)|GN |+|GT | (2`+1)P +`ET composite

OT10 [36] (21`+15)|G1|+|GT | (7`+5)|G2| (7`+5)|G1|+|GT | (7`+5)P +`ET DLIN

Lewko12 [31] (24`+6)|G1|+2|GT | (6`+3)|G2| (6`+3)|G1|+|GT | (6`+1)P +`ET DLIN

ours (2`+3)|G1|+|GT | (2`+4)|G2| (2`+2)|G1|+|GT | 4P +4`E SXDH

(6`+8)|G1|+2|GT | (3`+6)|G2| (3`+3)|G1|+|GT | 6P +6`E DLIN

(k(k +1)(`+1)+k)|G1|+k|GT | (k +1)(`+2)|G2| (k +1)(`+1)|G1|+|GT | 2(k +1)P +2(k +1)`E k-Lin

Fig. 4. Summary of existing adaptively secure CP-ABE schemes. For CT, we omit the additive overhead of O(`) bits in order to
transmit the access structure in CP-ABE schemes. The encryption time is O(`E +ET ) and the key generation time is O(`E).

is k + 1 times those of the best composite-order schemes based on subgroup assumptions: this achieves
a “seemingly best-possible” composite-to-prime-order transformation where each composite element is
simulated using k +1 prime-order elements.

Finally, our prime-order ABE schemes are simpler to describe than prior schemes as they share the
same structure as existing composite-order schemes. In particular, we obtain the following anonymous IBE
scheme:

mpk = [A,W>
0A,W>

1A]1, [k>A]T

skid = [Br,k+ (W0 + id ·W1)Br]2 ∈G2(k+1)
2

ctid = [As, (W0 + id ·W1)>As]1, [k>As]T ·m ∈G2(k+1)
1 ×GT

where A,B ∈ Z(k+1)×k
p ,W0,W1 ∈ Z(k+1)×(k+1)

p ,s,r ∈ Zk
p ,k ∈ Zk+1

p . This scheme extends naturally to a non-
anonymous BBG-style compact HIBE [10] (this is not the case for the prime-order IBE schemes in [30, 15]).

1.2 Discussion

Comparison with prior works. A summary of the prior approaches for obtaining efficient adaptively
secure efficient dual system (H)IBE and ABE is presented in Fig. 1. The most general technique we
have for simulating composite-order groups in prime-order ones are those based on “dual pairing vector
spaces” (DPVS) [34, 35, 30, 15]. However, these techniques do not preserve the asymptotic efficiency of the

6



reference |mpk| |sk| |ct| TDec assumption

OT11 [37] (8n +23)|G1|+ |GT | (4n +5)|G2| 13|G1|+ |GT | 13P + (4n −4)E DLIN

ours (6n +2)|G1|+2|GT | (3n +3)|G2| 6|G1|+ |GT | 6P +3nE +ET DLIN

(k(k +1)n +k)|G1|+k|GT | (k +1)(n +1)|G2| 2(k +1)|G1|+ |GT | 2(k +1)P + (k +1)nE +ET k-Lin

OT11 [37] (8n +23)|G1|+ |GT | 13|G2| (4n +5)|G1|+ |GT | 13P + (4n −4)E DLIN

ours (6n +8)|G1|+2|GT | 9|G2| (3n +3)|G1|+ |GT | 6P +3nE +ET DLIN

(k(k +1)(n +1)+k)|G1|+k|GT | 3(k +1)|G2| (k +1)(n +1)|G1|+ |GT | 2(k +1)P + (k +1)nE +ET k-Lin

Fig. 5. Comparison amongst adaptively secure public-index NIPE, based on our encodings in Section A.2. We omitted schemes
with weaker security guarantees, such as the co-selective NIPE from [3].

reference |mpk| |sk| |ct| TDec assumption attribute-hiding

KSW [28] (2n +2)|GN | (2n +1)|GN | (2n +1)|GN |+ |GT | (2n +1)P composite fully

OT10 [36] (3n2 +8n +4)|G1|+ |GT | (3n +2)|G2| (3n +2)|G1|+ |GT | (3n +2)P DLIN weakly

OT11 [37] (10n +13)|G1|+ |GT | 9|G2| (4n +1)|G1|+ |GT | 9P + (4n −4)E DLIN weakly

OT12 [38] (12n +16)|G1|+ |GT | 11|G2| (5n +1)|G1|+ |GT | 11P + (5n −5)E DLIN fully

ours (2n +4)|G1|+ |GT | 4|G2| (2n +2)|G1|+ |GT | 4P +2nE SXDH weakly

(6n +8)|G1|+2|GT | 6|G2| (3n +3)|G1|+ |GT | 6P +3nE DLIN weakly

(k(k +1)(n +1)+k)|G1|+k|GT | 2(k +1)|G2| (k +1)(n +1)|G1|+ |GT | 2(k +1)P + (k +1)nE k-Lin weakly

Fig. 6. Comparison amongst adaptively secure attribute-hiding ZIPE, based on our encodings in Section A.1. We omitted the
schemes in [35, 33] based on parameterized assumptions. Note that the scheme in [28] only achieves selective security.

underlying schemes; in particular, applying them to the composite-order compact HIBE schemes in [32]
blows up the ciphertext size from constant to linear. The sparse DPVS technique [37, 41] uses subgroups
of sparse matrices with mostly zero entries to overcome this limitation; however, they substantially limit
the generality of the DPVS technique: the structure of these matrices now depend on the predicate and the
composite-order scheme (to preserve efficiency), and the analysis for correctness, efficiency and security
are more involved. The constructions in [14] fail to extend to boolean formula due to the need for additional
randomness for secret-sharing, and also do not extend to yield anonymous IBE. The direct constructions
in [26, 5] that bypass a conversion from composite-order groups do not seem to naturally extend beyond
(H)IBE: the former uses tag-based languages where tags correspond to identities, and the latter relies on
the notion of message authentication codes where messages correspond to identities. In particular, we do
not know analogues of these constructions for either the inner product predicate or CP/KP-ABE for boolean
formula.

As noted earlier, another novel contribution in this work over prior unifying frameworks in [2, 43]
(generalizing [32, 33]) for composite-order groups lies in realizing the weakly-attribute guarantee. This
is particularly challenging in composite-order groups for two reasons: (i) there is an explicit anonymity
attack on the Lewko-Waters IBE [32] in composite-order group and (ii) the attribute in the semi-functional
ciphertext is leaked in the Gp1 -component. Interestingly, we are still able to show that our prime-order
analog of the Lewko-Waters IBE is anonymous.

Organization. We recall the definition of an attribute-based encryption scheme in Section 2. We recall
the notion of dual system groups in Section 3 and describe our instantiations in Section 4. We describe
our notion of predicate encodings in Section 5 and present the instantiations in Section A. We present our
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generic ABE construction in Section 6. We handle weakly attribute-hiding predicate encryption in Section 7.
We present self-contained description of our ABE schemes for boolean span programs and weakly attribute-
hiding ZIPE scheme in Sections B and C.

2 Preliminaries

Notation. We denote by s ←R S the fact that s is picked uniformly at random from a finite set S. By PPT,
we denote a probabilistic polynomial-time algorithm. Throughout this paper, we use 1λ as the security
parameter. We use · to denote multiplication as well as component-wise multiplication.

2.1 Attribute-Based Encryption

An attribute-based encryption (ABE) scheme for a predicate P( · , · ) consists of four algorithms (Setup,Enc,
KeyGen,Dec):

Setup(1λ,X,Y,M) → (mpk,msk). The setup algorithm gets as input the security parameter λ, the attribute
universe X, the predicate universe Y, the message space M and outputs the public parameter mpk, and
the master key msk.

Enc(mpk, x,m) → ctx . The encryption algorithm gets as input mpk, an attribute x ∈X and a message m ∈M.
It outputs a ciphertext ctx . Note that x is public given ctx .

KeyGen(mpk,msk, y) → sky . The key generation algorithm gets as input msk and a value y ∈ Y. It outputs a
secret key sky . Note that y is public given sky .

Dec(mpk,sky ,ctx ) → m. The decryption algorithm gets as input sky and ctx such that P(x, y) = 1. It outputs
a message m.

Correctness. We require that for all (x, y) ∈X×Y such that P(x, y) = 1 and all m ∈M,

Pr[Dec(mpk,sky ,Enc(mpk, x,m)) = m] = 1,

where the probability is taken over (mpk,msk) ← Setup(1λ,X,Y,M), sky ← KeyGen(mpk,msk, y), and the
coins of Enc.

Security definition. For a stateful adversary A, we define the advantage function

AdvABE
A (λ) := Pr

b = b′ :

(mpk,msk) ← Setup(1λ,X,Y,M);

(x∗,m0,m1) ←AKeyGen(msk,·)(mpk);

b ←R {0,1};ctx∗ ←Enc(mpk, x∗,mb);

b′ ←AKeyGen(msk,·)(ctx∗)

− 1

2

with the restriction that all queries y that A makes to KeyGen(msk, ·) satisfies P(x∗, y) = 0 (that is, sky does
not decrypt ctx∗). An ABE scheme is adaptively secure if for all PPT adversaries A, the advantage AdvABE

A (λ)
is a negligible function in λ.

3 Dual System Groups

This section is largely adapted from [14].
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3.1 Overview

Dual system groups contain a triple of abelian groups (G,H,GT ) and a non-degenerate bilinear map e :
G×H→ GT . For concreteness, we may think of (G,H,GT ) as composite-order bilinear groups. Dual system
groups take as input a parameter 1n (think of n as the universe size in KP-ABE) and satisfy the following
properties:

(subgroup indistinguishability.) There are two computationally indistinguishable ways to sample corre-
lated (n+1)-tuples from Gn+1: the “normal” distribution, and a higher-entropy distribution with “semi-
functional components”. We sample the normal distribution using SampG and the semi-functional
components using áSampG. An analogous property holds for Hn+1, with algorithms SampH and áSampH
respectively, with an important distinction in the auxiliary input provided to the distinguisher. For
concreteness, think in terms of symmetric bilinear groups of composite order N where

SampG→ (g s
1, g sw

1 ) ∈Gn+1
N and SampH→ (g r

1 , g r w
1 ) ∈Gn+1

NáSampG→ (g s
2, g sw

2 ) ∈Gn+1
N and áSampH→ (g r

2 , g r w
2 ) ∈Gn+1

N

Here, N is the product of three primes p1, p2, p3; g1, g2 are generators of order p1, p2; and g w
1 ∈Gn

N is part
of the public parameters.

(associativity.) For all (g0, g1, . . . , gn) ∈Gn+1 and all (h0,h1, . . . ,hn) ∈Hn+1 drawn from the respective normal
distributions according to SampG and SampH, we have that for all i = 1, . . . ,n,

e(g0,hi ) = e(gi ,h0).

We require this property for correctness (c.f. Eqn. (4)).

(right subgroupH.) There is some distinguished element h∗ ∈ H, which generates the semi-functional
components in H. It is convenient to think of h∗ as being orthogonal to the normal distribution over
G (c.f. orthogonality). On the other hand, we require that h∗ is not orthogonal to the semi-functional
components in G (c.f. non-degeneracy), so that we get a random value when we decrypt a semi-
functional ciphertext with a semi-functional key.

(parameter-hiding.) Both normal distributions can be efficiently sampled given the public parameters; on
the other hand, given only the public parameters, the higher-entropy distributions contain n “units” of
information-theoretic entropy (in the semi-functional component), one unit for each of the n elements
in the (n + 1)-tuple apart from the first. In the formal statement, the hidden entropy is captured by n
random exponents (û1, . . . , ûn) shared across G andH. It is crucial here that we use the same ûi in G and
inH, so that decryption succeeds with nominally semi-functional objects.

3.2 Definitions

Syntax. Dual system groups consist of six randomized algorithms given by (SampP, SampGT, SampG,
SampH) along with (áSampG, áSampH):

SampP(1λ,1n): On input (1λ,1n), output public and secret parameters (pp,sp), where:

– pp contains a prime p of lengthΩ(λ), a triple of abelian groups (G,H,GT ), a non-degenerate bilinear
map e : G×H→ GT , a linear map µ defined on H, along with some additional parameters used by
SampG,SampH;

– the groups (G,H,GT ) are Zp -modules where Zp acts on G,H,GT via exponentiation;

– given pp, we can uniformly sample fromH;

– sp contains h∗ ∈H (where h∗ 6= 1), along with some additional parameters used by áSampG, áSampH;

9



SampGT : Im(µ) →GT. (As a concrete example, suppose µ :H→GT and Im(µ) =GT.)

SampG(pp): Output g ∈Gn+1.

SampH(pp): Output h ∈Hn+1.

áSampG(pp,sp): Output ĝ ∈Gn+1.

áSampH(pp,sp): Output ĥ ∈Hn+1.

The first four algorithms are used in the actual scheme, whereas the last two algorithms are used only in
the proofs of security. We define SampG0 to denote the first group element in the output of SampG, and we
define áSampG0, áSampH0 analogously.

Remark 1. Given a Zp -linear function L : Zn
p → Zp given by (w1, . . . , wn) 7→ a1w1 + ·· · + an wn (where

a1, . . . , an ∈ Zp are fixed constants), L acts on Zp -modules Gn ,Hn ,Gn
T in the natural way. For instance,

L :Gn →G is given by (g1, . . . , gn) 7→ g a1
1 · · ·g an

n . This extends also to general Zp -linear functions L :Zn
p →Zm

p

coordinate-wise.

Correctness. The requirements for correctness are as follows:

(projective.) For all h ∈H and all coin tosses s, we have SampGT(µ(h); s) = e(SampG0(pp; s),h).

(associative.) For all (g0, g1, . . . , gn) ← SampG(pp) and (h0,h1, . . . ,hn) ← SampH(pp) and for all i = 1, . . . ,n,
we have e(g0,hi ) = e(gi ,h0).

(H-subgroup.) The output of SampH(pp) is the uniform distribution over a subgroup ofHn+1.

Security. The requirements for security are as follows:

(orthogonality.) µ(h∗) = 1.

(non-degeneracy.) For all ĥ0 ← áSampH0(pp,sp), h∗ lies in the group generated by ĥ0. For all ĝ0 ←áSampG0(pp,sp), we have e(ĝ0,h∗)α is identically distributed to the uniform distribution over GT , where
α←R Zp .

(left subgroup indistinguishability.) For any adversary A, we define the advantage function:

AdvLS
A (λ) := |Pr[A(pp, g ) = 1 ]−Pr[A(pp, g · ĝ ) = 1 ]|

where

(pp,sp) ← SampP(1λ,1n); g ← SampG(pp); ĝ ← áSampG(pp,sp).

(right subgroup indistinguishability.) For any adversary A, we define the advantage function:

AdvRS
A (λ) := |Pr[A(pp,h∗,g · ĝ, h ) = 1 ]−Pr[A(pp,h∗,g · ĝ, h · ĥ ) = 1 ]|

where

(pp,sp) ← SampP(1λ,1n); g ← SampG(pp); ĝ ← áSampG(pp,sp); h ← SampH(pp); ĥ ← áSampH(pp,sp).

(parameter-hiding.) The following distributions are identically distributed

{pp,h∗, ĝ, ĥ } and {pp,h∗, ĝ · ĝ′, ĥ · ĥ
′

}

10



where

(pp,sp) ← SampP(1λ,1n);

ĝ = (ĝ0, . . .) ← áSampG(pp,sp); ĥ = (ĥ0, . . .) ← áSampH(pp,sp);

ĝ′ := (1, ĝ û1
0 , . . . , ĝ ûn

0 ) ∈Gn+1; ĥ
′

:= (1, ĥû1
0 , . . . , ĥûn

0 ) ∈Hn+1; û1, . . . , ûn ←R Zp .

4 Instantiations of DSG from k-Lin

We present a new instantiation of dual system groups under the k-Lin assumption, inspired by the
constructions in [5, 14].

Overview. The prior construction of DSG [14] (building upon [35, 36, 30, 15]) starts with a random B ←R

GLk+1(Zp ) and defines B∗ := (B>)−1 so that B>B∗ is the identity matrix; then uses B for SampG,áSampG and

B∗ for SampH, áSampH. In our construction, we may start with any pair of matrices A,B in Z(k+1)×k
p of full

rank:

– In addition, we pick a⊥,b⊥ so that a⊥>
A = b⊥>

B = 0 and a⊥>
b⊥ 6= 0; we then use (A,b⊥) forSampG,áSampG

and (B,a⊥) for SampH, áSampH.
– We achieve randomization as follows: again, pick a random W ←R Z

(k+1)×(k+1)
p and replace (A,B) with

(W>A,WB). The associativity property follows from the equation:

(W>A)>B = A>(WB)

Interestingly, the prior construction in [14] randomizes by multiplying a random W on the right, whereas
our construction multiplies a random W on the left. Together with the fact that we no longer require the fact
that B>B∗ is the identity, we substantially simplify the proof of subgroup indistinguishability.

4.1 Cryptographic assumptions

We follow the notation and algebraic framework for Diffie-Hellman-like assumptions in [18].

Prime-order bilinear groups. A generatorG takes as input a security parameterλ and outputs a description
(p,G1,G2,GT , g1, g2,e), where p is a prime of Θ(λ) bits; G1,G2 and GT are cyclic groups of order p; g1, g2 are
generators of G1 and G2 respectively; and e : G1 ×G2 →GT is a non-degenerate bilinear map. Given a ∈Zp ,
we use [a]1 to denote g a

1 , [a]2 to denote g a
2 , [a]T to denote e(g1, g2)a . This extends to vectors and matrices

in the obvious way. We define e([A]1, [B]2) := [A>B]T .

Linear assumption. Let Dk be an efficiently samplable distribution of matrices (A,a⊥) over Z(k+1)×k
p ×

Zk+1
p so that A>a⊥ = 0 and a⊥ 6= 0. In particular, we consider the distribution generated as follows: pick

a1, . . . , ak ←R Z
∗
p and set

A :=



a1

a2

. . .

ak

1 1 . . . 1


∈Z(k+1)×k

p and a⊥ :=



a−1
1

a−1
2
...

a−1
k

−1


∈Z(k+1)

p .
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This distribution captures the k-linear assumption, which stipulates that

([A] , [As]) ≈c ([A] , [z])

where s ←R Z
k
p ,z ←R Z

k+1
p in both G1 and G2.

Assumption 1 (k-Lin: the k-linear assumption in G1) For any adversary A, we define the advantage func-
tion:

Advk-Lin
A := ∣∣Pr[A((p,G1,G2,GT , g1, g2,e); [A]1 , [As]1) = 1]−Pr[A((p,G1,G2,GT , g1, g2,e); [A]1 , [z]1) = 1]

∣∣
where

(p,G1,G2,GT , g1, g2,e) ←G(1λ); (A,a⊥) ←Dk ; s ←R Z
k
p ; z ←R Z

k+1
p .

We will slightly abuse notation and also use Advk-Lin
A to denote the corresponding advantage function for

G2.

Basis lemma. The following structural lemma tells us that if we pick random (A,a⊥), (B,b⊥) ←Dk , then with
overwhelming probability, both (A,b⊥) and (B,a⊥) form a basis for Zk+1

p and a⊥,b⊥ are not orthogonal. We
will assume henceforth that this property always holds.

Lemma 1 (basis lemma). With probability 1−1/p over (A,a⊥), (B,b⊥) ←Dk , it holds that:(
a⊥ 6∈ span(B)

)∧ (
b⊥ 6∈ span(A)

)∧ (
a⊥>

b⊥ 6= 0
)
.

Proof. It is easy to see that if a⊥>
b⊥ 6= 0, then(

a⊥ 6∈ span(B)
)

and
(
b⊥ 6∈ span(A)

)
since every vector in span(A) is orthogonal to a⊥ and every vector in span(B) is orthogonal to b⊥. Observe
that

a⊥>
b⊥ = 1+

d∑
i=1

(ai bi )−1

and

Pr
[

1+
d∑

i=1
(ai bi )−1 6= 0 : a1,b1, . . . , ak ,bk ←R Z

∗
p

]
= 1−1/p.

The lemma then follows readily. ut
Remark 2. Observe that Lemma 1 is not particular to the k-Lin distribution, since a similar proof works for
any example of matrix distribution Dk presented in [18], namely Uk+1,k , k-Casc, k-SCasc and k-ILin [18,
Section 3.4].

4.2 Construction

Our construction is as follows:

SampP(1λ,1n): On input (1λ,1n), do:

– run (p,G1,G2,GT , g1, g2,e) ←G(1λ), where G(1λ) is an asymmetric prime-order group generator;

– define (G,H,GT ,e) := (Gk+1
1 ,Gk+1

2 ,GT ,e);

– sample (A,a⊥), (B,b⊥) ←Dk , along with W1, . . . ,Wn ←R Z
(k+1)×(k+1)
p ;

– define µ : Gk+1
2 →Gk

T by µ([k]2) = [
A>k

]
T ;

– set h∗ := [
a⊥]

2.
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Output

pp :=
 (p,G,H,GT ,e);

[A]1 ,
[
W>

1A
]

1 , . . . ,
[
W>

nA
]

1

[B]2 , [W1B]2 , . . . , [WnB]2

 and sp := (
a⊥,b⊥,W1, . . . ,Wn

)
.

SampGT(
[
p
]

T ): Pick s ←R Z
k
p and output

[
s>p

]
T ∈GT .

SampG(pp): Pick s ←R Z
k
p and output(

[As]1 ,
[
W>

1As
]

1 , . . . ,
[
W>

nAs
]

1

)
∈ (Gk+1

1 )n+1.

SampH(pp): Pick r ←R Z
k
p and output(

[Br]2 , [W1Br]2 , . . . , [WnBr]2

)
∈ (Gk+1

2 )n+1.

áSampG(pp,sp): Pick ŝ ←R Z
∗
p and output([

b⊥ ŝ
]

1 ,
[
W>

1b⊥ ŝ
]

1 , . . . ,
[
W>

nb⊥ ŝ
]

1

)
∈ (Gk+1

1 )n+1.

áSampH(pp,sp): Pick r̂ ←R Z
∗
p and output([

a⊥r̂
]

2 ,
[
W1a⊥r̂

]
2 , . . . ,

[
Wna⊥r̂

]
2

)
∈ (Gk+1

2 )n+1.

Correctness. We check correctness properties as follows:

(projective.) This follows readily from the fact that for all k ∈Zk+1
p ,s ∈Zk

p :

(As)>k = (A>k)>s.

(associative.) This follows readily from the fact that for all s ∈Zk
p ,r ∈Zk

p ,Wi ∈Z(k+1)×(k+1)
p :

(W>
i As)>(Br) = (As)>(Wi Br).

(H-subgroup.) This follows readily from the fact that Zk
p is an additive group.

Security. We check security properties as follows:

(orthogonality.) This follows readily from A>a⊥ = 0.

(non-degeneracy.) This follows readily from b⊥>
a⊥ 6= 0.

We establish left subgroup indistinguishability, right subgroup indistinguishability, and parameter-hiding
in the next three lemmas. The left and right subgroup indistinguishability relies on the k-Lin assumption in
prime-order groups, whereas parameter-hiding is unconditional.

Lemma 2 (left subgroup indistinguishability from k-Lin). For any adversary A, there exists an adversary B
such that:

AdvLS
A (λ) ≤Advk-Lin

B +2/p

and Time(B) ≈Time(A)+k2 ·poly(λ,n) where poly(λ,n) is independent of Time(A).

The proof is a simpler case of the proof of Lemma 3, we omit it here.
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Lemma 3 (right subgroup indistinguishability from k-Lin). For any adversary A, there exists an adversary
B such that:

AdvRS
A (λ) ≤Advk-Lin

B +2/p

and Time(B) ≈Time(A)+k2 ·poly(λ,n) where poly(λ,n) is independent of Time(A).

We may rewrite the corresponding advantage function as:

AdvRS
A (λ) := |Pr[A(pp,h∗,g · ĝ,h) = 1 ]−Pr[A(pp,h∗,g · ĝ,h · ĥ) = 1 ]|

where

(pp,sp) ← SampP(1λ,1n); s,r ←R Z
k
p ; ŝ, r̂ ←R Z

∗
p ;

h∗ := [
a⊥]

2 ;

g · ĝ :=
([

As+b⊥ ŝ
]

1 ,
[
W>

1(As+b⊥ ŝ)
]

1 , . . . ,
[
W>

n(As+b⊥ ŝ)
]

1

)
;

h :=
(
[Br]2 , [W1Br]2 , . . . , [WnBr]2

)
;

h · ĥ :=
([

Br+a⊥r̂
]

2 ,
[
W1(Br+a⊥r̂ )

]
2 , . . . ,

[
Wn(Br+a⊥r̂ )

]
2

)
.

Proof. The adversary B samples (A,a⊥) ←Dk along with W1, . . . ,Wn ←R Z
(k+1)×(k+1)
p . Recall that (B,a⊥) is a

basis for Zk+1
p , so {Br+a⊥r̂ : r ←R Z

k
p , r̂ ←R Z

∗
p } is statistically close to the uniform distribution. Adversary B

then gets as input (
(p,G1,G2,GT , g1, g2,e), [B]2 ,

[
Br+a⊥r̂

]
2

)
where either r̂ = 0 or r̂ ←R Z

∗
p , and proceeds as follows:

Simulating pp,h∗. Output

[A]1 ,
[
W>

1A
]

1 , . . . ,
[
W>

nA
]

1

[B]2 , [W1B]2 , . . . , [WnB]2

and
[
a⊥]

2

Simulating
[
As+b⊥ ŝ

]
1 ,

[
W>

i (As+b⊥ ŝ)
]

1
. Note that B does not know b⊥. Instead, B samples s̃ ←R Z

k+1
p and

outputs

[s̃]1 ,
[
W>

1s̃
]

1 , . . . ,
[
W>

n s̃
]

1 .

Observe that As+b⊥ ŝ is statistically close to the uniform vector s̃ as long as b⊥ 6∈ span(A) and ŝ ←R Zp .

Simulating the challenge. Upon receiving a k-Lin challenge, B outputs[
Br+a⊥r̂

]
2 ,

[
W1(Br+a⊥r̂ )

]
2 , . . . ,

[
Wn(Br+a⊥r̂ )

]
2

where either r̂ = 0 or r̂ ←R Zp .
Observe that:

– if r̂ = 0, then we can write the output challenge as

[Br]2 , [W1Br]2 , . . . , [WnBr]2 .

which equals h; we obtain the left distribution in the statement of the lemma;

– if r̂ ←R Zp , then we can write the output challenge as[
Br+a⊥r̂

]
2 ,

[
W1(Br+a⊥r̂ )

]
2 , . . . ,

[
Wn(Br+a⊥r̂ )

]
2 .

which equals h · ĥ; we obtain the right distribution in the statement of the lemma.
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Typically, we sample ŝ, r̂ ←R Z
∗
p for áSampG(pp,sp) and áSampH(pp,sp); this yields a 2/p negligible difference

in the advantage. The lemma then follows readily. ut
Lemma 4 (parameter-hiding). The following distributions are identically distributedpp,

[
a⊥]

2 ,

[
b⊥ ŝ

]
1 ,

[
W>

1b⊥ ŝ
]

1 , . . . ,
[
W>

nb⊥ ŝ
]

1[
a⊥r̂

]
2 ,

[
W1a⊥r̂

]
2 , . . . ,

[
Wna⊥r̂

]
2

 and

pp,
[
a⊥]

2 ,

[
b⊥ ŝ

]
1 ,

[
(W>

1b⊥+ û1b⊥)ŝ
]

1 , . . . ,
[
(W>

nb⊥+ ûnb⊥)ŝ
]

1[
a⊥r̂

]
2 ,

[
(W1a⊥+ û1a⊥)r̂

]
2 , . . . ,

[
(Wna⊥+ ûna⊥)r̂

]
2


where (pp,sp) ← SampP(1λ,1n), ŝ, r̂ ←R Z

∗
p and û1, . . . , ûn ←R Zp .

Proof. Fix g1, g2, (A,a⊥), (B,b⊥), ŝ, r̂ ; that is, we prove that the statement holds for all g1, g2, (A,a⊥), (B,b⊥), ŝ, r̂ .
Set V := a⊥b⊥> ∈Z(k+1)×(k+1)

p which satisfies the following properties:

V>A = 0 and VB = 0 (5)

Va⊥ = (a⊥>
b⊥)a⊥ and V>b⊥ = (a⊥>

b⊥)b⊥ (6)

Eqn. (6) basically says that a⊥ and b⊥ are the respective eigenvectors of V and V>. Now, consider the following
“change of variables” in the first distribution, namely, replace

Wi with Wi + ûi (a⊥>
b⊥)−1V, i = 1, . . . ,n.

Clearly, this does not change the first distribution. Now, observe that[
(Wi + ûi (a⊥>

b⊥)−1V)>A
]

1
= [

W>
i A

]
1 ;[

(Wi + ûi (a⊥>
b⊥)−1V)B

]
2
= [Wi B]2

where we use (5) in the last equalities. That is, pp remains unchanged. In addition, we have[
(Wi + ûi (a⊥>

b⊥)−1V)>b⊥
]

1
= [

W>
i b⊥+ ûi b⊥]

1 ;[
(Wi + ûi (a⊥>

b⊥)−1V)a⊥
]

2
= [

Wi a⊥+ ûi a⊥]
2

where we use (6) in the last equalities. Indeed, this is exactly the second distribution. ut

5 Predicate Encodings

In this section, we describe a refinement of the predicate encodings from [43, 2] which we use in this work.
We refer to Section 1.1 for an overview of the refinement.

Predicate encodings. Fix a predicate P : X×Y→ {0,1}. A Zp -bilinear predicate encoding for P is a tuple of
deterministic algorithms (sE,rE,kE,sD,rD) satisfying the following properties:

(linearity.) For all (x, y) ∈X×Y, the functions sE(x, ·), rE(y, ·), kE(y, ·), sD(x, y, ·), rD(x, y, ·) are Zp -linear.

(restricted α-reconstruction.) For all (x, y) ∈X×Y such that P(x, y) = 1 and for all w ∈W:

sD(x, y,sE(x,w)) = rD(x, y,rE(y,w)) and rD(x, y,kE(y,α)) =α

(α-privacy.) For all (x, y) ∈X×Y such thatP(x, y) = 0, and for allα ∈Zp , the joint distribution {sE(x,w),kE(y,α)+
rE(y,w)} perfectly hides α. That is, for all α ∈ Zp , the following joint distributions2 are identically

2 Note that since kE(y, ·) is Zp -linear, we have kE(y,0)+ rE(y,w) = rE(y,w).
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distributed: {
x, y,α,sE(x,w),kE(y,α)+ rE(y,w)

}
and

{
x, y,α,sE(x,w),rE(y,w)

}
where the randomness is taken over w ←R W.

Remark 3. Given a predicate encoding as defined above, we can construct an encoding (rE′,sE′) which
achieves the notion in [43, 2] by considering:

sE′ = sE and rE′(y,α,w,r ) = (
r, kE(y,α)+ r · rE(y,w)

)
Note that rE′ leaks no information about w when r = 0 which trivially yields the w-hiding property in [43]
(aka parameter-hiding in [2]). Here, we use the fact that kE does not depend on w.

Example: equality. Fix a prime integer p. Consider the equality predicate where X=Y=Zp and P(x, y) = 1
iff x = y . The following is a predicate encoding for equality used in [6, 32]:

sE(x, (w1, w2)) := w1 +w2x rE(y, (w1, w2)) := w1 +w2 y kE(y,α) :=α
sD(x, y,c) = c rD(x, y,k) = k

When x = y , w1 +w2x = w1 +w2 y and we can reconstruct α. For α-privacy, we exploit the fact that (w1 +
w2x, w1 +w2 y) are pairwise independent when x 6= y .

6 ABE from Dual System Groups and Predicate Encodings

Starting from a predicate encoding for P, we construct an ABE for P using dual system groups. We refer to
Section 1.1 for an overview of the scheme, which is of the form:

mpk := (
g1, g w

1 , e(g1, g1)α
)

sky := (
g r

1 , g kE(y,α)+r ·rE(y,w)
1

)
ctx := (

g s
1, g s·sE(x,w)

1 , e(g1, g1)αs ·m
)

We will generate mpk using SampP(1λ,1n), where w ∈Zn
p . We will use SampG(pp) to generate the terms

(g s
1, g sw

1 ) in the ciphertext, from which we can compute (g s
1, g s·sE(x,w)

1 ) by linearity of sE(x, ·). Similarly, we

use SampH(pp) to generate the terms (g r
1 , g r w

1 ) in the secret key, from which we can compute (g r
1 , g r ·rE(y,w)

1 ).
We replace gα1 with msk←R H.

6.1 Construction

Setup(1λ,1n): On input (1λ,1n), first sample(
pp,sp

)← SampP(1λ,1n).

Pick msk←R H and output the master public and secret key pair

mpk := (
pp, µ(msk)

)
and msk.

Enc(mpk, x,m): On input x ∈X and m ∈GT , sample

(g0, g1, . . . , gn) ← SampG(pp; s), g ′
T ← SampGT(µ(msk); s)

and output3

ctx := (
C0 := g0, C1 := sE(x, (g1, . . . , gn)), C ′ := g ′

T ·m
)

.

3 See Remark 1 for an explanation of the function sE(x, (g1, . . . , gn )).

16



KeyGen(mpk,msk, y): On input y ∈Y, sample

(h0,h1, . . . ,hn) ← SampH(pp)

and output

sky := (
K0 := h0, K1 := kE(y,msk) · rE(y, (h1, . . . ,hn))

)
.

Dec(mpk,sky ,ctx ): Compute

e(g0,msk) ← e(C0,rD(x, y,K1))/e(sD(x, y,C1),K0)

and recover the message as

m ←C ′ ·e(g0,msk)−1 ∈GT .

Correctness. For all (x, y) ∈X×Y such that P(x, y) = 1, we have

e(C0,rD(x, y,K1))

= e(g0,rD(x, y,rE(y, (h1, . . . ,hn)))) ·e(g0,rD(x, y,kE(y,msk))) linearity of rD(x, y, ·) and e(g0, ·)
= e(g0,rD(x, y,rE(y, (h1, . . . ,hn)))) ·e(g0,msk) α-reconstruction

= rD(x, y,rE(y, (e(g0,h1), . . . ,e(g0,hn)))) ·e(g0,msk) e(g0, ·) and rD(x, y,rE(y, ·)) commute

= rD(x, y,rE(y, (e(g1,h0), . . . ,e(gn ,h0)))) ·e(g0,msk) associativity in DSG

= sD(x, y,sE(x, (e(g1,h0), . . . ,e(gn ,h0)))) ·e(g0,msk) α-reconstruction

= e(sD(x, y,sE(x, (g1, . . . , gn))),h0) ·e(g0,msk) e(·,h0) and sD(x, y,sE(y, ·)) commute

= e(sD(x, y,C1),K0) ·e(g0,msk)

In line 4 and line 7, we use the fact that the functions e(g0, ·), e(·,h0) and sD(x, y,sE(y, ·)) commute with
linear functions. That is, given a Zp -linear function L : Zn

p → Zp given by (w1, . . . , wn) 7→ a1w1 +·· ·+an wn ,
we have:

e(g0,L(h1, . . . ,hn)) = e(g0,ha1
1 · · ·han

n ) = e(g0,h1)a1 · · ·e(g0,hn)an = L(e(g0,h1), . . . ,e(g0,hn))

Finally, by projective, g ′
T = e(g0,msk). Correctness follows readily.

6.2 Proof of Security

We prove the following theorem:

Theorem 1. Under the left and right subgroup indistinguishability (described in Section 3), the ABE scheme
described in Section 6.1 is adaptively secure (in the sense of Definition 2.1). More precisely, for any adversary
A that makes at most q key queries against the ABE scheme, there exist adversaries B1,B2,B3 such that:

AdvABE
A (λ) ≤AdvLS

B1
(λ)+q ·AdvRS

B2
(λ)+q ·AdvRS

B3
(λ)

and

max{Time(B1),Time(B2),Time(B3)} ≈Time(A)+q ·poly(λ,n)

where poly(λ,n) is independent of Time(A).

The proof follows via a series of games, analogous to that in [14, 43, 42, 32], and outlined in Fig. 7. We first
define two auxiliary algorithms and then the semi-functional distributions, upon which we can describe the
games.

17



Auxiliary algorithms. We consider the following algorithms:

Ênc(pp, x,m;msk,t): On input x ∈X, m ∈GT , and t := (T0,T1, . . . ,Tn) ∈Gn+1, output

ctx := (
T0, sE(x, (T1, . . . ,Tn)), e(T0,msk) ·m

)
áKeyGen(pp,msk′, y ;t): On input msk′ ∈H, y ∈Y, and t := (T0,T1, . . . ,Tn) ∈Hn+1, output

sky := (
T0, kE(y,msk′) · rE(y, (T1, . . . ,Tn))

)
.

In all the proofs and figures that follow, we denote sE(x, (T1, . . . ,Tn)) by sE(x,t) for notational convenience,
and we define rE(y,t) analogously.

Auxiliary distributions.

Semi-functional master secret key.

m̂sk :=msk · (h∗)α,

where α←R Zp .

Semi-functional ciphertext.

Ênc(pp, x,m;msk, g · ĝ ),

where g ← SampG(pp) and ĝ ← áSampG(pp,sp) .

Pseudo-normal secret key.

áKeyGen(pp,msk, y ; h · ĥ ),

where fresh h ← SampH(pp) and ĥ ← áSampH(pp,sp) are chosen for each secret key.

Pseudo-SF secret key.

áKeyGen(pp, m̂sk , y ;h · ĥ),

where fresh h ← SampH(pp) and ĥ ← áSampH(pp,sp) are chosen for each secret key.

Semi-functional secret key. áKeyGen(pp,m̂sk, y ; h ),

where a fresh h ← SampH(pp) is chosen for each secret key. We note that the semi-functional key

generation algorithm is identical to the normal key generation except that it replaces msk with m̂sk as input.

Game sequence. We present a series of games. We write Advxxx(λ) to denote the advantage of A in Gamexxx.

– Game0: is the real security game (c.f. Section 2.1).

– Game1: is the same as Game0 except that the challenge ciphertext is semi-functional.

– Game2,i ,1 for i from 1 to q , Game2,i ,1 is the same as Game1 except that the first i − 1 keys are semi-
functional, the last q − i keys are normal while the i ’th key is pseudo-normal.

– Game2,i ,2 for i from 1 to q , Game2,i ,2 is the same as Game1 except that the first i − 1 keys are semi-
functional, the last q − i keys are normal while the i ’th key is pseudo-SF.
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game ciphertext (C0,C1,C ′) secret key (K0,K1) justification remark

0 (1,1,1) (1, (h∗)kE(y,0) ·1) 1 = (h∗)kE(y,0) actual scheme

1 (ĝ0,sE(x, ĝ),e(ĝ0,msk)) (1, (h∗)kE(y,0) ·1) left subgroup indist. normal to SF ctx

2.i.1 (ĝ0,sE(x, ĝ),e(ĝ0,msk)) ( ĥ0 , (h∗)kE(y,0) · rE(y, ĥ) ) right subgroup indist. normal to pseudo-normal sky

2.i.2 (ĝ0,sE(x, ĝ),e(ĝ0,msk)) (ĥ0, (h∗)kE(y,α) · rE(y, ĥ)) α-privacy pseudo-normal to pseudo-SF sky

2.i.3 (ĝ0,sE(x, ĝ),e(ĝ0,msk)) ( 1 , (h∗)kE(y,α) · 1 ) right subgroup indist. pseudo-SF to SF sky

3 (ĝ0,sE(x, ĝ), random ) (1,(h∗)kE(y,α) ·1)

Fig. 7. Sequence of games in the “semi-functional” space. We omitted the normal components: those sampled using
SampG,SampH, and we omitted e(g0,msk) ·m in C ′ and kE(y,msk) in sky . We drew a box to highlight the differences between each
game and the preceding one, and games 2.i .x refer to the i ’th secret key. The semi-functional components of the keys transition
from (h∗)kE(y,0) to (h∗)kE(y,α). For the final transition, we use the fact that e(ĝ0,msk) is statistically random given msk · (h∗)α.

– Game2,i ,3 for i from 1 to q ,Game2,i ,3 is the same asGame1 except that the first i keys are semi-functional,
the last q − i keys are normal.

– Game3: is the same as Game2,q,3, except that the challenge ciphertext is a semi-functional encryption of
a random message in GT .

InGame3, the view of the adversary is statistically independent of the challenge bit b. Hence,Adv3(λ) = 0. We
complete the proof by establishing the following sequence of lemmas. In particular, the proofs of lemmas 5,
6, 8, 9 are the same as those of lemmas 1, 2, 5, 6 in [14, Section 4].

Lemma 5 (normal to SF ciphertext: Game0 to Game1). For any adversary A that makes at most q key
queries, there exists an adversary B1 such that

|Adv0(λ)−Adv1(λ)| ≤AdvLS
B1

(λ)

and Time(B1) ≈Time(A)+q ·poly(λ,n) where poly(λ,n) is independent of Time(A).

Proof. The adversary B1 gets as input

(pp,t),

where t is either g or g · ĝ and

g ← SampG(pp), ĝ ← áSampG(pp,sp),

and proceeds as follows:

Setup. Pick msk←R H and output

mpk := (
pp, µ(msk)

)
.

Key Queries. On input the j ’th secret key query y , output

sky ← áKeyGen(pp,msk, y ;SampH(pp)).

Ciphertext. Upon receiving a challenge attribute x∗ and two equal-length messages m0,m1, pickβ←R {0,1}
and output

ctx∗ ← Ênc(pp, x∗,mβ;msk,t).

Guess. When A halts with output β′, B1 outputs 1 if β=β′ and 0 otherwise.
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Observe that when t = g, ctx∗ is properly distributed as Enc(mpk, x∗,mβ) from projective, the output is
identical to that in Game0; and when t = g · ĝ, the output is identical to that in Game1. We may therefore
conclude that: |Adv0(λ)−Adv1(λ)| ≤AdvLS

B1
(λ). ut

Lemma 6 (normal to pseudo-normal keys: Game2,i−1,3 to Game2,i ,1). For i = 1, . . . , q, for any adversary A

that makes at most q key queries, there exists an adversary B2 such that

|Adv2,i−1,3(λ)−Adv2,i ,1(λ)| ≤AdvRS
B2

(λ)

and Time(B2) ≈Time(A)+q ·poly(λ,n) where poly(λ,n) is independent of Time(A). (We note that Game2,0,3

is identical to Game1.)

Proof. The adversary B2 gets as input

(pp,h∗,g · ĝ,t),

where t is either h or h · ĥ and

h ← SampH(pp), ĥ ← áSampH(pp,sp),

and proceeds as follows:

Setup. Pick msk←R H, α←R Zp and set m̂sk :=msk · (h∗)α. Output

mpk := (
pp, µ(msk)

)
.

Key Queries. On input the j ’th secret key query y , output

sky ←


áKeyGen(pp,m̂sk, y ;SampH(pp)) if j < iáKeyGen(pp,msk, y ;t) if j = iáKeyGen(pp,msk, y ;SampH(pp)) if j > i

.

Ciphertext. Upon receiving a challenge identity x∗ and two equal-length messages m0,m1, pick β←R {0,1}
and output

ctx∗ ← Ênc(pp, x∗,mβ;msk,g · ĝ).

Guess. When A halts with output β′, B2 outputs 1 if β=β′ and 0 otherwise.

Observe that when t = h, the output is identical to that in Game2,i−1,3; and when t = h · ĥ, the output is
identical to that in Game2,i ,1. We may therefore conclude that: |Adv2,i−1,3(λ)−Adv2,i ,1(λ)| ≤AdvRS

B2
(λ). ut

Lemma 7 (pseudo-normal to pseudo-SF keys: Game2,i ,1 to Game2,i ,2). For i = 1, . . . , q, we have

|Adv2,i ,1(λ)−Adv2,i ,2(λ)| = 0.

Proof. Observe that the only difference between Game2,i ,1 and Game2,i ,2 lies in that we replace msk in
Game2,i ,1 with m̂sk in Game2,i ,2 as input for the i ’th secret key query, where msk ←R H, α ←R Zp and

m̂sk :=msk · (h∗)α. Thus, it suffices to establish the following:

Claim. For all α, all x ∈ X and y ∈ Y, where P(x, y) = 0, the following distributions are identically
distributed:

{pp,msk, (h∗)α, Ênc(pp, x,mβ;msk,g · ĝ), áKeyGen(pp, msk , y ;h · ĥ)} and

{pp,msk, (h∗)α, Ênc(pp, x,mβ;msk,g · ĝ), áKeyGen(pp, msk · (h∗)α , y ;h · ĥ)}.
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We defer the proof of the claim for now, and first explain how the lemma follows from the claim. Given
(pp,msk, (h∗)α), we can output mpk := (pp,µ(msk)) and generate the first i −1 semi-functional secret keys,
and the remaining q − i normal secret keys usingáKeyGen(pp,msk · (h∗)α, y ;SampH(pp)) and áKeyGen(pp,msk, y ;SampH(pp))

respectively.
This would in turn imply that Game2,i ,1 and Game2,i ,2 are statistically indistinguishable. We note that

this holds even if the adversary chooses y adaptively after seeing the challenge ciphertext ctx∗ , or if the
challenge x∗ is chosen after the adversary sees sky . ut

Proof (of claim). By linearity, we have:

Ênc(pp, x,mβ;msk,g · ĝ) = Ênc(pp, x,mβ;msk,g) · Ênc(pp, x,1;msk, ĝ)áKeyGen(pp,msk, y ;h · ĥ) = áKeyGen(pp,msk, y ;h) · áKeyGen(pp,1, y ; ĥ)áKeyGen(pp,msk · (h∗)α, y ;h · ĥ) = áKeyGen(pp,msk, y ;h) · áKeyGen(pp, (h∗)α, y ; ĥ)

Therefore, it suffices to show that:

{pp,msk, (h∗)α, Ênc(pp, x,1;msk, ĝ), áKeyGen(pp, 1 , y ; ĥ)} and

{pp,msk, (h∗)α, Ênc(pp, x,1;msk, ĝ), áKeyGen(pp, (h∗)α , y ; ĥ)}

are identically distributed.

By parameter-hiding, we may replace (pp,h∗, ĝ, ĥ ) with (pp,h∗, ĝ · ĝ′, ĥ · ĥ
′

), which means it suffices to
show that:

{pp,msk, (h∗)α, Ênc(pp, x,1;msk, ĝ · ĝ′), áKeyGen(pp, 1 , y ; ĥ · ĥ
′
)} and

{pp,msk, (h∗)α, Ênc(pp, x,1;msk, ĝ · ĝ′), áKeyGen(pp, (h∗)α , y ; ĥ · ĥ
′
)}

are identically distributed. At this point, we expand the expressions for Ênc and áKeyGen:

Ênc(pp, x,1;msk, ĝ · ĝ′) = (ĝ0,sE(x, ĝ) · sE(x, ĝ′), e(ĝ0,msk))

= (ĝ0,sE(x, ĝ) · ĝ sE(x,û)
0 , e(ĝ0,msk))

where û denotes the vector û := (û1, . . . , ûn) and thus sE(x, ĝ′) = sE(x, ĝ û
0 ) = ĝ sE(x,û)

0 .

áKeyGen(pp,1, y ; ĥ · ĥ
′
) = (ĥ0,rE(y, ĥ) · ĥrE(y,û)

0 )áKeyGen(pp, (h∗)α, y ; ĥ · ĥ
′
) = (ĥ0,kE(y, (h∗)α) · rE(y, ĥ) · ĥrE(y,û)

0 )

Since h∗ lies in the group generated by ĥ0, we have kE(y, (h∗)α) = kE(y, (h0)α
′
) = ĥkE(y,α′)

0 for some α′ ∈
Zp ; the claim then follows readily from α′-privacy, that is, rE(y, û) and kE(y,α′) + rE(y, û) are identically
distributed. ut

Lemma 8 (pseudo-SF to SF keys: Game2,i ,2 to Game2,i ,3). For i = 1, . . . , q, for any adversary A that makes at
most q key queries, there exists an adversary B3 such that

|Adv2,i ,2(λ)−Adv2,i ,3(λ)| ≤AdvRS
B3

(λ)

and Time(B3) ≈Time(A)+q ·poly(λ,n) where poly(λ,n) is independent of Time(A).

Proof. The proof is completely analogous to Lemma 6, except we use m̂sk instead of msk to generate the i ’th
key query. That is, B3 is exactly the same as B2, with the following change:
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Key Queries. On input the j ’th secret key query y , output

sky ←


áKeyGen(pp,m̂sk, y ;SampH(pp)) if j < iáKeyGen(pp, m̂sk , y ;t) if j = iáKeyGen(pp,msk, y ;SampH(pp)) if j > i

.

Observe that when t = h, the output is identical to that in Game2,i ,3; and when t = h·ĥ, the output is identical
to that in Game2,i ,2. We may therefore conclude that: |Adv2,i ,2(λ)−Adv2,i ,3(λ)| ≤AdvRS

B3
(λ). ut

Lemma 9 (final transition: Game2,q,3 to Game3). For any adversary A, we have

|Adv2,q,3(λ)−Adv3(λ)| = 0.

Proof. First, we sample (msk,m̂sk) in both games as follows: pick m̂sk ←R H, α←R Zp and set msk := m̂sk ·
(h∗)−α. We may then simulate key set-up and answer key queries given just (pp,m̂sk) as follows:

Setup. Observe that

µ(msk) =µ(m̂sk) ·µ((h∗)−α) =µ(m̂sk)

where in the last equality, we use orthogonality µ(h∗) = 1. Output

mpk :=
(
pp, µ(m̂sk)

)
.

Key Queries. On input the j ’th secret key query y , output

sky ← áKeyGen(pp,m̂sk, y ;SampH(pp)).

Now, observe that the challenge ciphertext in Game2,q,3 is given by:

Ênc(pp, x∗,mβ;msk,g · ĝ) = (C0,C1,C ′
2 ·mβ),

where (C0,C1) depend only on g · ĝ = (g0 · ĝ0, . . .), and C ′
2 is given by:

C ′
2 = e(g0 · ĝ0,msk) = e(g0 · ĝ0,m̂sk · (h∗)−α) = e(g0 · ĝ0,m̂sk) · e(ĝ0,h∗)−α ,

where in the last equality, we use linearity and the fact that e(g0, (h∗)−α) = 1. Recall that (pp,m̂sk,g · ĝ) are all
statistically independent of α←R Zp . Then, by non-degeneracy, given m̂sk, all of the secret keys, along with
(C0,C1) in the challenge ciphertext, the quantity

e(ĝ0,h∗)−α

is uniformly distributed over GT . This implies the challenge ciphertext is identically distributed to a semi-
functional encryption of a random message in GT , as in Game3. We may then conclude that: |Adv2,q,3(λ)−
Adv3(λ)| = 0. ut

7 Extension to Weakly Attribute-Hiding

We present an extension of our framework to weakly attribute-hiding predicate encryption [28, 9]. A
predicate encryption scheme has the same syntax as an ABE in Section 2.1 except the attribute x on the
ciphertext is not public; for security, we require in addition that x remains hidden from the adversary.
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7.1 Security definition

For a stateful adversary A, we define the advantage function

AdvPE
A (λ) := Pr

b = b′ :

(mpk,msk) ← Setup(1λ,X,Y,M);

(x∗
0 , x∗

1 ,m0,m1) ←AKeyGen(msk,·)(mpk);

b ←R {0,1};ctx∗
b
←Enc(mpk, x∗

b ,mb);

b′ ←AKeyGen(msk,·)(ctx∗
b

)

− 1

2

with the restriction that all queries y that A makes to KeyGen(msk, ·) satisfies P(x∗
0 , y) = P(x∗

1 , y) = 0 (that
is, sky does not decrypt the challenge ciphertext). A predicate encryption scheme is adaptively secure and
weakly attribute-hiding if for all PPT adversaries A, the advantage AdvPE

A (λ) is a negligible function in λ.4

7.2 Attribute-Hiding Encodings

We say that a Zp -bilinear predicate encoding (c.f. Section 5) for P : X×Y → {0,1} is attribute-hiding if it
satisfies the following additional properties:

(x-obliviousα-reconstruction.) sD(x, y, ·) and rD(x, y, ·) are independent of x.

(attribute-hiding.) For all (x, y) ∈X×Y such that P(x, y) = 0, the joint distribution of {sE(x,w),rE(y,w)} is
uniformly random. That is, the following distributions are identically distributed:{

x, y,sE(x,w),rE(y,w)
}

and
{

x, y,r
}

where the randomness is taken over w ←R W and r ←R Z
|sE(·)|+|rE(·)|
p .

7.3 Attribute-Hiding Dual System Groups

Recall from the introduction in Section 1.1 that to realize weakly attribute-hiding predicate encryption,
we will use the fact that for any vector c ∈ Zk+1

p outside the span of A, the vector W>c ∈ Zk+1
p is uniformly

random given W>A ∈ Z(k+1)×k
p , provided WB remains hidden. We can then use W>c to completely blind the

attribute in the challenge ciphertext (c.f. Lemma 17). We also need to make sure that the semi-functional
secret keys do not leak any additional information about WB (c.f. Lemma 17). The former is captured by
G-uniformity, and the latter by H-hiding. In particular, the secret keys in the predicate encryption scheme
satisfy the following properties:

– the distribution of normal secret keys is completely determined given
B,W1B, . . . ,WnB and leaks no additional information about W1, . . . ,Wn ;

– the distribution of semi-functional secret keys is completely determined given A,W>
1A, . . . ,W>

nA and leaks
no additional information about W1, . . . ,Wn .

Additional properties. We assume that pp in dual system groups has a ppG-component which is sufficient
to run SampG. We then require dual system groups to satisfy the following additional properties.

(H-hiding) There is an (inefficient) randomized procedure SampH∗ that given ppG and h∗, outputs a
distribution identical to that of

h · (h∗)(0,v̂)

where h ← SampH(pp), v̂ ←R Z
n
p .

4 In a fully attribute-hiding scheme, the adversary is also allowed key queries y for which P(x∗
0 , y) =P(x∗

1 , y) = 1, in which case the
challenge messages m0,m1 must be equal.
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(G-uniformity) The following distributions are identically distributed{
ppG,h∗, g · ĝ

}
and

{
ppG,h∗, g′

}
where

(pp,sp) ← SampP(1λ,1n); g = (g0, . . .) ← SampG(pp); ĝ = (ĝ0, . . .) ← áSampG(pp,sp); g′ ←R {g0ĝ0}×Gn .

7.4 Attribute-Hiding Requirements

We show that our instantiation satisfies the additional attribute-hiding requirements in Section 7.3 when
ppG is defined to be:

ppG := (
(p,G,H,GT ,e); [A]1 ,

[
W>

1A
]

1 , . . . ,
[
W>

nA
]

1 , [B]2
)

.

Recall that A>a⊥ = B>b⊥ = 0, and that by Lemma 1, we may assume that both (A,b⊥) and (B,a⊥) form a basis
for Zk+1

p and that b⊥>
a⊥ 6= 0.

Lemma 10. The instantiation satisfiesH-hiding.

Proof. We may rewrite h · (h∗)(0,v̂) as:

h · (h∗)(0,v̂) :=
(
[Br]2 ,

[
W1Br+a⊥v̂1

]
2 , . . . ,

[
WnBr+a⊥v̂n

]
2

)
where r ←R Z

k
p , v̂ := (v̂1, . . . , v̂n) ←R Z

n
p . For i = 1, . . . ,n, consider the following change of basis to Wi Br+a⊥v̂i : A>

b⊥>

 (Wi Br+a⊥v̂i ) =
 AW>

i Br+A>a⊥v̂i

b⊥>
(Wi Br+a⊥v̂i )

=
 (W>

i A)>Br

b⊥>
Wi Br+b⊥>

a⊥v̂i

 .

Note that b⊥>
Wi Br + b⊥>

a⊥v̂i is uniformly random over Zp . This means that Wi Br + a⊥v̂i is identically
distributed to a random vector ui subject to the constraint A>ui = (W>

i A)>Br. Given ppG, we may then
(inefficiently) sample from the distribution h · (h∗)(0,v̂) as follows:

– pick r ←R Z
k
p to compute Br;

– for i = 1, . . . ,n, sample a uniformly random vector ui subject to the constraint
A>ui = (W>

i A)>Br.

– output ([Br]2 , [u1]2 , . . . , [un]2).

And the lemma follows. ut
Lemma 11 (G-uniformity). The following distributions are identically distributed:{

[A]1 ,
[
W>

1A
]

1 , . . . ,
[
W>

nA
]

1 , [B]2 ;
[
a⊥]

2 ;
[
As+b⊥ ŝ

]
1 ,

[
W>

1(As+b⊥ ŝ)
]

1 , . . . ,
[
W>

n(As+b⊥ ŝ)
]

1

}
and{

[A]1 ,
[
W>

1A
]

1 , . . . ,
[
W>

nA
]

1 , [B]2 ;
[
a⊥]

2 ;
[
As+b⊥ ŝ

]
1 , [z1]1 , . . . , [zn]1

}
where W1, . . . ,Wn ←R Z

(k+1)×(k+1)
p ; s ←R Z

k
p , ŝ ←R Z

∗
p ; z1, . . . ,zn ←R Z

k+1
p .

Proof. Observe that As + b⊥ ŝ 6∈ span(A), and therefore for each i = 1, . . . ,n, W>
i (As + b⊥ ŝ) is uniformly

distributed, even given W>
i A. ut

7.5 Weakly Attribute-Hiding PE

Starting from an attribute-hiding encoding and an attribute-hiding dual system group, we can construct
a predicate encryption scheme as described in Section 6.1, with the following modification: we put ppG
instead of pp in mpk (which suffices for SampG and Enc). We show that the ensuing scheme is weakly
attribute-hiding:
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game ciphertext (C0,C1,C ′) secret key (K0,K1) justification remark

0 (1,1,1) (1, (h∗)kE(y,0) ·1) 1 = (h∗)kE(y,0) actual scheme

1 (ĝ0,sE(x, ĝ),e(ĝ0,msk)) (1, (h∗)kE(y,0) ·1) left subgroup indist. normal to SF ctx

2.i.1 (ĝ0,sE(x, ĝ),e(ĝ0,msk)) ( ĥ0 , (h∗)kE(y,0)· rE(y, ĥ) ) right subgroup indist. normal to pseudo-normal sky

2.i.2 (ĝ0,sE(x, ĝ),e(ĝ0,msk)) (ĥ0, (h∗)kE(y,α)+rE(y,v̂i ) · rE(y, ĥ)) attribute-hiding encoding pseudo-normal to pseudo-SF sky

2.i.3 (ĝ0,sE(x, ĝ),e(ĝ0,msk)) ( 1 , (h∗)kE(y,α)+rE(y,v̂i ) · 1 ) right subgroup indist. pseudo-SF to SF sky

3 (ĝ0,sE(x, ĝ), random ) (1,(h∗)kE(y,α)+rE(y,v̂i ) ·1)

4 (ĝ0, random ,random) (1,(h∗)kE(y,α)+rE(y,v̂i ) ·1) G-uniformity,H-hiding

attribute-hiding encoding

Fig. 8. Sequence of games in the “semi-functional” space for weakly attribute-hiding PE. We omitted the normal components: those
sampled using SampG,SampH, and we omitted e(g0,msk)·m in C ′ and kE(y,msk) in sky . We drew a box to highlight the differences
between each game and the preceding one, and games 2.i .x refer to the i ’th secret key. The semi-functional components of the keys

transition from (h∗)kE(y,0) to (h∗)kE(y,α)+rE(y,v̂i ), with a fresh v̂i ←R Z
n
p for the i ’th key. For the last second transition, we use

the fact that e(ĝ0,msk) is statistically random given msk · (h∗)α. In the final transition, we use the fact that C1 (including normal
components) is statistically random.

Theorem 2. Under the left and right subgroup indistinguishability (described in Section 3), the predicate
encryption scheme described above is adaptively secure and weakly attribute-hiding (in the sense of Defini-
tion 7.1). More precisely, for any adversaryA that makes at most q key queries against the predicate encryption
scheme, there exist adversaries B1,B2,B3 such that:

AdvPE
A (λ) ≤AdvLS

B1
(λ)+q ·AdvRS

B2
(λ)+q ·AdvRS

B3
(λ)+negl(λ)

and

max{Time(B1),Time(B2),Time(B3)} ≈Time(A)+q ·poly(λ,n)

where poly(λ,n) is independent of Time(A).

The proof follows via a series of games, outlined in Fig. 8.

Auxiliary distributions. The auxiliary algorithms and distributions are the same as in Section 6.2 with the
following modifications: (1) pseudo-SF and semi-functional secret keys have additional h∗-components, (2)
Ênc and áKeyGen get as input ppG instead of pp (neither algorithm needs to run SampH).

Pseudo-SF secret key.

áKeyGen(ppG, m̂sk , y ; h · ĥ · (h∗)(0,v̂) ),

where fresh h ← SampH(pp), ĥ ← áSampH(pp,sp), and v̂ ←R Z
n
p are chosen for each secret key.

Semi-functional secret key.

áKeyGen(ppG,m̂sk, y ; h · (h∗)(0,v̂) ),

where a fresh h ← SampH(pp) and v̂ ←R Z
n
p are chosen for each secret key.

Game sequence. We proceed exactly as in Section 6.2 with the same auxiliary algorithms but with the
following modifications: (1) the distributions of pseudo-SF and semi-functional secret keys have additional
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h∗-components, (2) the challenge ciphertext uses the attribute x∗
b as defined in the security experiment,

and (3) we append an extra game Game4 where we switch x∗
b to random at the end:

– Game0: is the real security game (c.f. Section 7.1).

– Game1: is the same as Game0 except that the challenge ciphertext is semi-functional.

– Game2,i ,1 for i from 1 to q , Game2,i ,1 is the same as Game1 except that the first i − 1 keys are semi-
functional, the last q − i keys are normal while the i ’th key is pseudo-normal.

– Game2,i ,2 for i from 1 to q , Game2,i ,2 is the same as Game1 except that the first i − 1 keys are semi-
functional, the last q − i keys are normal while the i ’th key is pseudo-SF.

– Game2,i ,3 for i from 1 to q ,Game2,i ,3 is the same asGame1 except that the first i keys are semi-functional,
the last q − i keys are normal.

– Game3: is the same as Game2,q,3, except that the challenge ciphertext is a semi-functional encryption of
a random message in GT .

– Game4: is the same as Game3, except we replace x∗
b in the challenge ciphertext with a random attribute

x∗ ←R X.

In Game4, the view of the adversary is statistically independent of the challenge bit b. Hence, Adv4(λ) = 0.
We complete the proof by establishing the following sequence of lemmas.

Lemma 12 (normal to SF ciphertext: Game0 to Game1). For any adversary A that makes at most q key
queries, there exists an adversary B1 such that

|Adv0(λ)−Adv1(λ)| ≤AdvLS
B1

(λ)

and Time(B1) ≈Time(A)+q ·poly(λ,n) where poly(λ,n) is independent of Time(A).

The proof is exactly as Lemma 5.

Lemma 13 (normal to pseudo-normal keys: Game2,i−1,3 to Game2,i ,1). For i = 1, . . . , q, for any adversary A
that makes at most q key queries, there exists an adversary B2 such that

|Adv2,i−1,3(λ)−Adv2,i ,1(λ)| ≤AdvRS
B2

(λ)

and Time(B2) ≈Time(A)+q ·poly(λ,n) where poly(λ,n) is independent of Time(A). (We note that Game2,0,3

is identical to Game1.)

Proof. The proof is completely analogous to Lemma 6, except we will additional use h∗ to generate the first
i −1 semi-functional keys:

Key Queries. On input the j ’th secret key query y , output

sky ←


áKeyGen(ppG,m̂sk, y ;SampH(pp) · (h∗)(0,v̂ j ) ) if j < iáKeyGen(ppG,msk, y ;t) if j = iáKeyGen(ppG,msk, y ;SampH(pp)) if j > i

Observe that when t = h, the output is identical to that in Game2,i−1,3; and when t = h · ĥ, the output is
identical to that in Game2,i ,1. We may therefore conclude that: |Adv2,i−1,3(λ)−Adv2,i ,1(λ)| ≤AdvRS

B2
(λ). ut

Lemma 14 (pseudo-normal to pseudo-SF keys: Game2,i ,1 to Game2,i ,2). For i = 1, . . . , q, we have

|Adv2,i ,1(λ)−Adv2,i ,2(λ)| = 0.

Proof. It suffices to establish the following:
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Claim. For all α, all x ∈ X and y ∈ Y, where P(x, y) = 0, the following distributions are identically
distributed:

{pp,msk, (h∗)α, Ênc(ppG, x,mβ;msk,g · ĝ), áKeyGen(ppG, msk , y ; h · ĥ) } and

{pp,msk, (h∗)α, Ênc(ppG, x,mβ;msk,g · ĝ), áKeyGen(ppG, msk · (h∗)α , y ; h · ĥ · (h∗)(0,v̂) )}.

The remaining proof is identical to the one for Lemma 7 except that we will use the knowledge of h∗ to
generate the first i −1 semi-functional secret keys. ut
Proof (of claim). The process is similar to the proof of Lemma 7 until we expand the expressions for Ênc andáKeyGen:

Ênc(ppG, x,1;msk, ĝ · ĝ′) = (ĝ0,sE(x, ĝ) · sE(x, ĝ′), e(ĝ0,msk))

= (ĝ0,sE(x, ĝ) · ĝ sE(x,û)
0 , e(ĝ0,msk))

where û denotes the vector û := (û1, . . . , ûn) and thus sE(x, ĝ′) = sE(x, ĝ û
0 ) = ĝ sE(x,û)

0 ;

áKeyGen(ppG,1, y ; ĥ · ĥ
′
) = (ĥ0,rE(y, ĥ) · ĥrE(y,û)

0 )áKeyGen(ppG, (h∗)α, y ; ĥ · ĥ
′ · (h∗)(0,v̂)) = (ĥ0,kE(y, (h∗)α) · rE(y, ĥ) · ĥrE(y,û)

0 · (h∗)rE(y,v̂)).

Since h∗ lies in the group generated by ĥ0, we may replace h∗ with ĥη0 for some η ∈Zp , then

áKeyGen(ppG, (h∗)α, y ; ĥ · ĥ
′ · (h∗)(0,v̂)) = (ĥ0,rE(y, ĥ) · (ĥ0)kE(y,ηα)+rE(y,û)+rE(y,ηv̂))

The claim then follows readily from attribute-hiding encoding, that is, sE(x, û) and rE(y, û)} are uniformly
distributed. ut
Lemma 15 (pseudo-SF to SF keys: Game2,i ,2 to Game2,i ,3). For i = 1, . . . , q, for any adversary A that makes
at most q key queries, there exists an adversary B3 such that

|Adv2,i ,2(λ)−Adv2,i ,3(λ)| ≤AdvRS
B3

(λ)

and Time(B3) ≈Time(A)+q ·poly(λ,n) where poly(λ,n) is independent of Time(A).

Proof. The proof is completely analogous to Lemma 13, except we use m̂sk instead of msk along with
additional h∗ to generate the i ’th key query. That is, B3 is exactly the same as B2, with the following change:

Key Queries. On input the j ’th secret key query y , output

sky ←


áKeyGen(ppG,m̂sk, y ;SampH(pp) · (h∗)(0,v̂ j )) if j < iáKeyGen(ppG, m̂sk , y ;t · (h∗)(0,v̂i ) ) if j = iáKeyGen(ppG,msk, y ;SampH(pp)) if j > i

.

Observe that when t = h, the output is identical to that inGame2,i ,3; and when t = h·ĥ, the output is identical
to that in Game2,i ,2. We may therefore conclude that: |Adv2,i ,2(λ)−Adv2,i ,3(λ)| ≤AdvRS

B3
(λ). ut

Lemma 16 (second last transition: Game2,q,3 to Game3). For any adversary A, we have

|Adv2,q,3(λ)−Adv3(λ)| = 0.

Proof. The proof is completely analogous to Lemma 9, except we will additional use h∗ to generate the all
the semi-functional keys:

Key Queries. On input the j ’th secret key query y , output

sky ← áKeyGen(ppG,m̂sk, y ;SampH(pp) · (h∗)(0,v̂ j ) ).
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We may then conclude that: |Adv2,q,3(λ)−Adv3(λ)| = 0. ut
Lemma 17 (final transition: Game3 to Game4). For any adversary A, we have

|Adv3(λ)−Adv4(λ)| = 0.

Proof. First, we sample (msk,m̂sk) in both games as follows: pick m̂sk ←R H, α←R Zp and set msk := m̂sk ·
(h∗)−α.

We may then simulate key set-up and answer key queries given just

{ppG,h∗,m̂sk} and SampH∗ (fromH-hiding)

as follows:

Setup. Observe that

µ(msk) =µ(m̂sk) ·µ((h∗)−α) =µ(m̂sk)

where in the last equality, we use orthogonality µ(h∗) = 1. Output

mpk :=
(
ppG, µ(m̂sk)

)
.

Key Queries. On input the j ’th secret key query y , output

sky ← áKeyGen(ppG,m̂sk, y ;SampH∗(ppG,h∗)).

Now, observe that the challenge ciphertext in Game3 is given by:

Ênc(ppG, x∗
b ,m;m̂sk,g · ĝ) = (C0,C1,C ′

2 ·m) = (g0ĝ0,sE(x∗
b ,g · ĝ),C ′

2 ·m),

where (C0,C1) depend only on g·ĝ = (g0 ·ĝ0, . . .), and C ′
2 ·m is uniformly distributed overGT . ByG-uniformity,

we may replace {ppG,h∗, g · ĝ } with {ppG,h∗, g′ } and obtain

C0 = g0ĝ0, C1 = sE(x∗
b ,g′)

where g′ ←R {g0ĝ0} ×Gn . The lemma then follows readily from attribute-hiding encoding, that is, C1 is
uniformly distributed over G|sE(·)|. We may then conclude that: |Adv3(λ)−Adv4(λ)| = 0. ut

Acknowledgments. We thank Eike Kiltz and Jiaxin Pan for insightful discussions, and the anonymous
reviewers for helpful feedback on the write-up.
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A Instantiations of Predicate Encodings

We present Zp -bilinear predicate encodings for a large class of predicates that have been considered in the
literature. For any vector u, we denote by ui the i th coordinate of u. We denote by 0 the vector whose all
coordinates are 0. The encodings in Sections A.1, A.2, A.3, A.4 are the same as those in [43].

A.1 Inner Product (ZIPE)

Predicate [28]. Here, X=Y :=Zn
p and

P(x,y) = 1 iff x>y = 0

First encoding (short secret keys) [6].

– W :=Zp ×Zn
p ;

– sE(x, (u,w)) := ux+w ∈Zn
p

– rE(y, (u,w)) := w>y ∈Zp

– kE(y,α) :=α ∈Zp

– sD(x,y,c) := c>y

– rD(x,y,d) := d

Note that this encoding is actually an attribute-hiding encoding, as defined in Section 7.2.

(x-obliviousα-reconstruction.) sD(x,y, ·) and rD(x,y, ·) are independent of x.

(attribute-hiding.) For all x,y such that x>y 6= 0, (sE(x, (u,w)),rE(y, (u,w))) := (ux + w,w>y) is uniformly
distributed, when the randomness is taken over (u,w) ←R W.

Second encoding (short ciphertext) [10].

– W :=Zp ×Zp ×Zn
p ;

– sE(x, (u0,u1,w)) := u1 +x>w ∈Zp

– rE(y, (u0,u1,w)) := (u0y+w,u1) ∈Zn+1
p

– kE(y,α) := (0,α) ∈Zn+1
p

– sD(x,y,c) := c

– rD(x,y, (d,d ′)) := x>d+d ′

A.2 Non-Zero Inner Product (NIPE)

Predicate [3]. Here, X=Y :=Zn
p and

P(x,y) = 1 iff x>y 6= 0

The constructions exploit the following simple algebraic fact: given x,y,ux+w,y>w,

– if x>y 6= 0, then we can recover u.

– if x>y = 0, then u is perfectly random.
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First encoding (short ciphertext).

– W :=Zn
p ;

– sE(x,w) := x>w ∈Zp

– rE(y,w) := w ∈Zn
p

– kE(y,α) :=αy ∈Zn
p

– sD(x,y,c) := c · (x>y)−1

– rD(x,y,d) := x>d · (x>y)−1

Second encoding (short secret keys).

– W :=Zp ×Zn
p ;

– sE(x, (u,w)) := ux+w ∈Zn
p

– rE(y, (u,w)) := (w>y,u) ∈Z2
p

– kE(y,α) := (0,α) ∈Z2
p

– sD(x,y,c) := c>y · (x>y)−1

– rD(x,y, (d ,d ′)) := d · (x>y)−1 +d ′

A.3 Spatial Encryption

Predicate [8]. Here, X :=Zn
p ,Y :=Zn×`

p and

P(x,Y) = 1 iff x ∈ span(Y)

Here, span refers to the linear span of a collection of column vectors. Recall from [8] that spatial encryption
generalizes HIBE.

Supporting delegation. Consider a predicate P that supports delegation, namely, there is a partial ordering
≤ on Y such that for all x ∈X, the predicate P(x, ·) is monotone, i.e.

(y ≤ y ′)∧P(x, y) = 1 =⇒ P(x, y ′) = 1.

For instance, in HIBE, y ≤ y ′ iff y ′ is a prefix of y . A bilinear encoding (sE,rE) for such a predicate supports
delegation if given y, y ′ such that y ≤ y ′, we can efficiently compute a linear map L such that for all α,w,r ,
L maps (w,rE(y ′,w)+ r ·kE(α,w)) to rE(y,w)+ r ·kE(α,w). Note that we can always rerandomize the output
due to linearity of receiver encoding.

Encoding (short ciphertext) [8, 10, 32, 12].

– W=Zp ×Zn
p ;

– sE(x, (u,w)) := u +w>x ∈Zp

– rE(α,Y, (u,w)) := (w>Y,u) ∈Z`+1
p

– kE(Y,α) := (0,α) ∈Z`+1
p

– sD(x,Y,c) := c

– rD(x,Y, (d,d ′)) := d>a+d ′, where a ∈Z`p is such that x := Ya.

α-privacy relies on the fact that if x ∉ span(Y), then w>x is statistically independent of w>Y for a random
w ←R Z

n
p .
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A.4 Doubly Spatial Encryption

Predicate [24]. Here, X :=Zn
p ×Zn×`

p ,Y :=Zn×`′
p and

P((x0,X),Y) = 1 iff (x0 + span(X))∩ span(Y) 6= ;

Encoding [24].

– W=Zp ×Zn
p ;

– sE((x0,X), (u,w)) := (w>X,u +w>x0) ∈Z`+1
p

– rE(Y, (u,w)) := (w>Y,u) ∈Z`′+1
p

– kE(Y,α) := (0,α) ∈Z`′+1
p

– sD((x0,X),Y, (c,c ′)) := c>a+ c ′

– rD((x0,X),Y, (d,d ′)) := d>b+d ′,
where a ∈Z`p and b ∈Z`′p are such that x0 +Xa = Yb.

α-privacy relies on the fact that if (x0 + span(X)) ∩ span(Y) = ; then w>x0 is statistically independent of
w>X,w>Y for a random w ←R Z

n
p .

A.5 Attribute-Based Encryption (ABE) for boolean span programs

We define (monotone) access structures using the language of (monotone) span programs [27].

Definition 1 (access structure [4, 27]). A (monotone) access structure for attribute universe [n] is a pair
(M,ρ) where M is a `×`′ matrix over Zp and ρ : [`] → [n]. Given x = (x1, . . . , xn) ∈ {0,1}n , we say that

x satisfies (M,ρ) iff 1> ∈ span〈Mx〉,
Here, 1> := (1,0, . . . ,0) ∈ Z1×`′ is a row vector; Mx denotes the collection of vectors {M j : xρ( j ) = 1} where M j

denotes the j ’th row of M; and span refers to linear span of collection of (row) vectors over Zp .

That is, x satisfies (M,ρ) iff there exists constants ω1, . . . ,ω` ∈Zp such that∑
j :xρ( j )=1

ω j M j = 1> (7)

Observe that the constants {ω j } can be computed in time polynomial in the size of the matrix M via Gaussian
elimination. In order to achieve perfect α-privacy, we need to impose a one-use restriction, that is, ρ is a
permutation and ` = n. By re-ordering the rows of M, we may assume WLOG that ρ is the identity map,
which we omit in the rest of this section.

KP-ABE Predicate [22, 39]. Here, X := {0,1}`,Y :=Z`×`′p and

P(x,M) = 1 iff x satisfies M

Encoding.

– W :=Z`p ×Z`′−1
p .

– sE(x, (w,u)) := (x1w1, . . . , x`w`) ∈Z`p
– rE(M, (w,u)) :=

(
M1

(
0
u

)
+w1, . . . ,M`

(
0
u

)
+w`

)
∈Z`p .

– kE(M,α) :=
(
M1

(
α
0

)
, . . . ,M`

(
α
0

))
∈Z`p

– sD(x,M,c) :=∑`
j=1ω j c j where ω1, . . . ,ω` are computed as in (7)

– rD(x,M,d) :=∑`
j=1 x jω j d j

32



Correctness. Suppose P(x,M) = 1. Observe that

rD(x,M,kE(M,α)) = 1>
(
α
0

)
=α

rD(x,M,rE(M, (w,u))) = 1>
(

0
u

)
+ ∑̀

j=1
x jω j w j =

∑̀
j=1

x jω j w j = sD(x,M,sE(x, (w,u)))

Privacy. Suppose P(x,M) = 0. We have

sE(x, (w,u)) = (x1w1, . . . , x`w`)

rE(M, (w,u))+kE(M,α) =
(
M1

(
α
u
)
+w1, . . .M`

(
α
u
)
+w`

)
Privacy follows readily from the fact that:

– {M j

(
α
u
)

: x j = 1} reveal no information about α since 1> ∉ span(Mx);

– {M j

(
α
u
)

: x j = 0} are masked by w j .

CP-ABE Predicate [22, 16]. As before with X and Y switched, so that

P(M,x) = 1 iff x satisfies M

Encoding.

– W :=Z`p ×Z`′−1
p ×Zp .

– sE(M, (w,u,u′
0)) := (w1 +M1

(
u′

0u

)
, . . . , w`+M`

(
u′

0u

)
) ∈Z`p .

– rE(x, (w,u,u′
0)) := (u′

0, x1w1, . . . , x`w`) ∈Z`+1
p

– kE(x,α) := (α,0) ∈Z`p .

– sD(M,x,c) :=∑`
j=1 x jω j c j where ω1, . . . ,ω` are computed as in (7)

– rD(M,x, (d ′,d)) := d ′+∑`
j=1ω j d j

Correctness. Suppose P(M,x) = 1. Observe that

rD(M,x,kE(x,α)) = α+ ∑̀
j=1

ω j ·0 =α

rD(M,x,rE(x, (w,u,u′
0)) = u′

0 +
∑̀
j=1

x jω j w j = 1>
(
u′

0u

)
+ ∑̀

j=1
x jω j w j = sD(M,x,sE(M, (w,u,u′

0))

Privacy. Suppose P(M,x) = 0. We have

sE(M, (w,u,u′
0)) =

(
M1

(
u′

0u

)
+w1, . . .M`

(
u′

0u

)
+w`

)
rE(x, (w,u,u′

0))+kE(x,α) = (u′
0 +α, x1w1, . . . , x`w`)

Privacy follows readily from the fact that:

– α is masked by u′
0;

– {M j

(
u′

0u

)
: x j = 1} reveal no information about v since 1> ∉ span(Mx);

– {M j

(
u′

0u

)
: x j = 0} are masked by w j .
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A.6 Attribute-Based Encryption (ABE) for arithmetic span programs

We use the terminology of arithmetic span programs, which captures both boolean as well as arithmetic
formula and branching programs [25].

Definition 2 (arithmetic span program [25]). An arithmetic span program (V,ρ) is a collection of row
vectors V= {(y>

j ,z>
j ) : j ∈ [`]} in Z1×`′

p and ρ : [`] → [n]. We say that

x ∈Zn
p satisfies (V,ρ) iff 1> ∈ span〈xρ( j )y>

j +z>
j 〉,

where 1> := (1,0, . . . ,0) ∈Z`′p and span refers to linear span of a collection of row vectors.

That is, x satisfies (V,ρ) iff there exists constants ω1, . . . ,ω` ∈Zp such that

∑̀
j=1

ω j (xρ( j )y>
j +z>

j ) = 1>. (8)

In order to achieve perfect α-privacy, we need to impose a one-use restriction, that is, ρ is a permutation
and `= n. By re-ordering the coordinates in V, we may assume WLOG that ρ is the identity map, which we
omit in the rest of this section.

KP-ABE Predicate [25]. Here, X :=Z`p ,Y := {(y>
j ,z>

j ) : j ∈ [`]} and

P(x,V) = 1 iff x satisfies V

Encoding.

– W :=Z`p ×Z`p ×Z`′−1
p .

– sE(x, (w,v,u)) := (x1w1 + v1, . . . , x`w`+ v`) ∈Z`p .

– rE(V, (w,v,u)) :=
(
y>

1

(
0
u

)
+w1, . . . ,y>

`

(
0
u

)
+w`, z>

1

(
0
u

)
+ v1, . . . ,z>

`

(
0
u

)
+ v`

)
∈Z2`

p

– kE(V,α) :=
(
y>

1

(
α
0

)
, . . . ,y>

`

(
α
0

)
, z1

(
α
0

)
, . . . ,z`

(
α
0

))
∈Z2`

p .

– sD(x,V,c) :=∑`
j=1ω j c j , where ω1, . . . ,ω` are computed as in (8)

– rD(x,V, (d,d′)) :=∑`
j=1ω j (x j d j +d ′

j )

Correctness. Suppose P(x,V) = 1. Observe that

rD(x,V,kE(V,α)) = 1>
(
α
0

)
=α

rD(x,V,rE(V, (w,v,u))) = 1>
(

0
u

)
+ ∑̀

j=1
ω j

(
x j w j + v j

)= sD(x,V,sE(x, (w,v,u)))

Privacy. Suppose P(x,V) = 0. Write

β j := y>
j

(
α
u
)

and γ j := z>
j

(
α
u
)

Then, we have

sE(x, (w,v,u)) = (x1w1 + v1, . . . , x`w`+ v`)

rE(V, (w,v,u))+kE(V,α) = (β1 +w1, . . . ,β`+w`,γ1 + v1, . . . ,γ`+ v`)

Privacy follows readily from the fact that:

– {x jβ j +γ j : j ∈ [`]} reveal no information about α since 1> ∉ span〈x j y>
j +z>

j 〉;

34



– given (x j , x jβ j +γ j ), we can simulate

(x j w j + v j ,β j +w j ,γ j + v j )

using the relation x j w j + v j = x j (β j +w j )+ (γ j + v j )− (x jβ j +γ j ).

CP-ABE Predicate. As before with X and Y switched, so that

P(V,x) = 1 iff x satisfies V

Encoding.

– W :=Z`p ×Z`p ×Z`′−1
p ×Zp .

– sE(V, (w,v,u,u′
0)) := (β1 +w1, . . . ,β`+w`,γ1 + v1, . . . ,γ`+ v`) ∈ Z2`

p , where βi := y>
i

(
u′

0u

)
and γi := z>

i

(
u′

0u

)
are the i ’th shares of u′

0.

– rE(x, (w,v,u,u′
0)) := (u′

0, x1w1 + v1, . . . , x`w`+ v`) ∈Z`+1
p .

– kE(x,α) := (α,0) ∈Z`+1
p .

– sD(V,x, (c,c′)) :=∑`
j=1ω j (x j c j + c ′j ) where ω1, . . . ,ω` are computed as in (8)

– rD(V,x, (d ′,d)) := d ′+∑`
j=1ω j d j

Correctness. Suppose P(V,x) = 1.
Observe that

rD(V,x,kE(x,α)) = α+ ∑̀
j=1

ω j ·0 =α

rD(V,x,rE(x, (w,v,u,u′
0))) = u′

0 +
∑̀
j=1

ω j
(
x j w j + v j

)= 1>
(
u′

0u

)
+ ∑̀

j=1
ω j

(
x j w j + v j

)= sD(V,x,sE(V, (w,v,u,u′
0)))

Privacy. Suppose P(V,x) = 0. We have

sE(V, (w,v,u,u′
0)) = (β1 +w1, . . . ,β`+w`,γ1 + v1, . . . ,γ`+ v`)

rE(x, (w,v,u,u′
0))+kE(V,α) = (u′

0 +α, x1w1 + v1, . . . , x`w`+ v`)

Privacy follows readily from the fact that:

– α is masked by u′
0;

– {x jβ j +γ j : j ∈ [`]} reveal no information about u′
0 since 1> ∉ span〈x j y>

j +z>
j 〉;

– given (x j , x jβ j +γ j ), we can simulate

(β j +w j ,γ j + v j , x j w j + v j )

using the relation x j w j + v j = x j (β j +w j )+ (γ j + v j )− (x jβ j +γ j ).

A.7 Broadcast encryption

We obtain a family of encodings for broadcast encryption parameterized by t ∈ [n] that yields public
parameters size O(t +n/t ), ciphertext size O(t ) and secret key size O(n/t ), generalizing the ideas in [21, 29].
For simplicity of notation, we assume that n is a multiple of t .
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Predicate [19]. Here, X := {0,1}n ,Y := [n] and

P(x, i ) = 1 iff xi = 1

That is, x is the characteristic vector of a subset of [n]. It is convenient to rewrite the predicate as follows:
X := ({0,1}n/t )t ,Y := [t ]× [n/t ] and

P((x1, . . . ,xt ), (i1, i2)) = 1 iff x>
i1

ei2 = 1

where (i1, i2) is the unique pair of integers satisfying i = (i1 −1) ·n/t + i2 and 0 < i2 ≤ n/t , and (e1, . . . ,en/t ) is
the standard basis of Zn/t

q .

Encoding.

– W :=Zt
p ×Zn/t

p .

– sE(x, (w,u)) := (w1 +x>
1u, . . . , wt +x>

t u) ∈Zt
p

– rE((i1, i2), (w,u)) := wi1 ·ei2 +u ∈Zn/t
p

– kE((i1, i2),α) :=α ·ei2 ∈Zn/t
p

– sD(x, (i1, i2),c) := ci1

– rD(x, (i1, i2),d) := x>
i1

d

Correctness. Suppose P(x, (i1, i2)) = 1. Observe that

rD(x, (i1, i2),kE((i1, i2),α)) = α ·x>
i1

ei2 =α
rD(x, (i1, i2),rE((i1, i2), (w,u))) = wi1 +x>

i1
u = sD(x, (i1, i2),sE(x,w))

Privacy. Privacy follows readily from the fact that:

– For all j 6= i1, w j +x>
j u reveals no information about u;

– If x>
i1

ei2 = 0, then α is perfectly hidden given xi1 , (α+wi1 ) ·ei2 +u, and wi1 +x>
i1

u.

A.8 Fuzzy IBE (large universe)

Predicate. [39] Here, X := Sn
p ,Y := Sn

p × [n] where Sn
p denote all n-element subsets of Zp for some fixed n

and

P(X , (Y ,k)) = 1 iff |X ∩Y | ≥ k

Note that this is more general than the standard notion of fuzzy IBE since we allow the threshold k to vary
with the secret key.

Encoding. The idea is as follows: we apply Shamir’s k-out-of-n secret-sharing to α to obtain n shares
(α1, . . . ,αn). In addition, we pick a random degree 2n − 1 polynomial (or any 2n-wise-independent hash
function) T (·). Then we set

– sE({x1, . . . , xn},w) := (T (x1), . . . ,T (xn))

– rE(({y1, . . . , yn},k),w)+kE(({y1, . . . , yn},k),α) := (T (y1)+α1, . . . ,T (yn)+αn).

Now, whenever |{x1, . . . , xn}∩ {y1, . . . , yn}| ≥ k, we recover k of α1, . . . ,αn , from which we could recover α.
Otherwise, at least n−k+1 of the values T (y1), . . . ,T (yn) are completely hidden given T (x1), . . . ,T (xn), which
completely mask n−k+1 of the sharesα1, . . . ,αn , upon whichα is completely hidden via the secret-sharing
property.
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To realize the secret sharing of α for any threshold k, we pick u := (u1, . . . ,uk ) ←R Z
k
p and we define

Qu(z) :=
k−1∑
j=1

u j z j and for all i ∈ [n], αi :=α+Qu(yi ).

For the 2n-wise-independent hash function, we pick v := (v1, . . . , v2n) ←R Z
2n
p and define

Tv(z) :=
2n−1∑
j=0

v j z j .

For any k-element subset S ⊆ X ∩Y and for any x ∈ S, the interpolation polynomials are defined by

∆S,x (z) :=

∏
x ′∈S,x ′ 6=x

(
z −x ′)

∏
x ′∈S,x ′ 6=x

(x −x ′)
.

We use the fact that for any polynomial P of degree at most k −1, we have P (z) = ∑
x∈S

P (x)∆S,x (z).

– W :=Zk
p ×Z2n

p .

– sE(X , (u,v)) := (Tv(x1), . . . ,Tv(xn)) ∈Zn
p .

– rE((Y ,k), (u,v)) := (Tv(y1)+Qu(y1), . . . ,Tv(yn)+Qu(yn)) ∈Zn
p .

– kE((Y ,k),α) := (α, . . . ,α) ∈Zn
p

– sD(X , (Y ,k),c) := ∑
i :xi∈S

ci∆S,xi (0), where S is a k-element subset s.t. S ⊆ X ∩Y .

– rD(X , (Y ,k),d) := ∑
j :y j∈S

d j∆S,y j (0).

Correctness. Suppose P(X , (Y ,k)) = 1 and any k-element subset S ⊆ X ∩Y , observe that

rD(X , (Y ,k),kE((Y ,k),α)) = ∑
j :y j∈S

α∆S,y j (0) =α

in the second equality, we use the fact that
∑

j :y j∈S
α∆S,y j (z) =α is a constant polynomial, that is,

∑
j :y j∈S

∆S,y j (0) =
1; and

rD(X , (Y ,k),rE((Y ,k), (u,v))) = ∑
j :y j∈S

Tv(y j )∆S,y j (0)+ ∑
j :y j∈S

Qu(y j )∆S,y j (0)

= ∑
i :xi∈S

Tv(xi )∆S,xi (0)

= sD(X , (Y ,k),sE(X , (u,v)))

in the second equality, we use the fact that
∑

j :y j∈S
Qu(y j )∆S,y j (0) =Qu(0) = 0.

Privacy. Privacy follows readily from the fact that Tv(·) is a 2n-wise-independent hash function and that the
secret sharing has threshold k.

B Concrete ABE schemes

We provide a self-contained description of our KP-ABE and CP-ABE schemes for boolean span programs
obtained by instantiating our main construction in Section 6 with our encoding in Section A.5; note that we
removed terms from mpk that are not required for encryption.
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B.1 KP-ABE scheme

Setup(1λ,1`): On input (1λ,1`), sample

(A,a⊥), (B,b⊥) ←Dk , W1, . . . ,W`,U2, . . . ,U`′ ←R Z
(k+1)×(k+1)
p , k ←R Z

k+1
p

and output the master public and secret key pair

mpk := (
[A]1 ,

[
W>

1A
]

1 , . . . ,
[
W>
`A

]
1 , e([A]1 , [k]2)

) ∈ (G (k+1)×k
1 )`+1 ×Gk

T

and

msk := ( k, B,W1, . . . , W`, U2, . . . , U`′ ) ∈Z(k+1)
p ×Z(k+1)×k

p × (Z(k+1)×(k+1)
p )`+`

′−1.

Enc(mpk,x,m): On input an attribute vector x := (x1, . . . , x`) ∈ {0,1}` and m ∈GT , pick s ←R Z
k
p and output

ctx :=
(

C0 := [As]1 , C1 := [
x1W>

1As
]

1 , . . . , C` := [
x`W>

`
As

]
1

, C ′ := e(g1, g2)k>As ·m
)
∈ (Gk+1

1 )`+1 ×GT .

KeyGen(mpk,msk,M): On input a boolean span program M, where M ∈Z`×`′p , pick r ←R Z
k
p and output

skM :=



K0 := [Br]2

K1 := [
(k‖U2Br‖· · ·‖U`′Br)M>

1 +W1Br
]

2
...

K` := [
(k‖U2Br‖· · ·‖U`′Br)M>

`
+W`Br

]
2

 ∈ (Gk+1
2 )`+1.

Dec(mpk,skM,ctx): If x satisfies M, compute ω1, . . . ,ω` ∈Zp such that∑
j :x j=1

ω j M j = 1.

Then, compute

e(g1, g2)k>As ← e(C0,
∏

j :x j=1
K
ω j

j ) ·e(
∏

j :x j=1
C

−ω j

j ,K0),

and recover the message as m ←C ′/e(g1, g2)k>As ∈GT .

B.2 CP-ABE scheme

Setup(1λ,1`): On input (1λ,1`), sample

(A,a⊥), (B,b⊥) ←Dk , W1, . . . ,W`,V ←R Z
(k+1)×(k+1)
p , k ←R Z

k+1
p

and output the master public and secret key pair

mpk := (
[A]1 ,

[
W>

1A
]

1 , . . . ,
[
W>
`A

]
1 ,

[
V>A

]
1 , e([A]1 , [k]2)

) ∈ (G (k+1)×k
1 )`+2 ×Gk

T

and

msk := ( k, B, W1, . . . , W`, V ) ∈Z(k+1)
p ×Z(k+1)×k

p × (Z(k+1)×(k+1)
p )`+1.
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Enc(mpk,M,m): On input a boolean span program M, where M ∈ Z`×`′p , and a message m ∈ GT , pick5

U2, . . . ,U`′ ←R Z
(k+1)×(k+1)
p , s ←R Z

k
p and output

ctM :=



C0 := [As]1

C1 := [
(V>As‖U>

2As‖· · ·‖U>
`′As)M>

1 +W>
1As

]
1

...

C` := [
(V>As‖U>

2As‖· · ·‖U>
`′As)M>

`
+W>

`
As

]
1

C ′ := e(g1, g2)k>As ·m


∈ (Gk+1

1 )`+1 ×GT .

KeyGen(mpk,msk,x): On input an attribute vector x := (x1, . . . , x`) ∈ {0,1}`, pick r ←R Z
k
p and output

skx :=
(

K0 := [Br]2 , K1 := [x1W1Br]2 , . . . , K` := [x`W`Br]2 , K`+1 := [k+VBr]2 ,
)
∈ (Gk+1

2 )`+2.

Dec(mpk,skx,ctM): If x satisfies M, compute ω1, . . . ,ω` ∈Zp such that∑
j :x j=1

ω j M j = 1.

Then, compute

e(g1, g2)k>As ← e(C0,K`+1 ·
∏

j :x j=1
K
ω j

j ) ·e(
∏

j :x j=1
C

−ω j

j ,K0),

and recover the message as m ←C ′/e(g1, g2)k>As ∈GT .

C Concrete weakly attribute-hiding ZIPE scheme

We provide a self-contained description of our weakly attribute-hiding ZIPE scheme, obtained by instanti-
ating our main construction in Section 7 with our encoding in Section A.1.

Setup(1λ,1n): On input (1λ,1n), sample

(A,a⊥), (B,b⊥) ←Dk , U,W1, . . . ,Wn ←R Z
(k+1)×(k+1)
p , k ←R Z

k+1
p

and output the master public and secret key pair

mpk := (
[A]1 ,

[
U>A

]
1 ,

[
W>

1A
]

1 , . . . ,
[
W>

nA
]

1 , e([A]1 , [k]2)
) ∈ (G (k+1)×k

1 )n+2 ×Gk
T

and

msk := ( k, B, U, W1, . . . , Wn ) ∈Z(k+1)
p ×Z(k+1)×k

p × (Z(k+1)×(k+1)
p )n+1.

Enc(mpk,x,m): On input an attribute vector x := (x1, . . . , xn) ∈Zn
p and m ∈GT , pick s ←R Z

k
p and output

ctx :=
(

C0 := [As]1 , C1 := [
(x1U>+W>

1)As
]

1 , . . . , Cn := [
(xnU>+W>

n)As
]

1 , C ′ := e(g1, g2)k>As ·m
)
∈ (Gk+1

1 )n+1 ×GT .

KeyGen(mpk,msk,y): On input an attribute vector y := (y1, . . . , yn) ∈Zn
p , pick r ←R Z

k
p and output

sky := (
K0 := [Br]2 , K1 := [

k+ (y1W1 +·· ·+ ynWn)Br
]

2

) ∈ (Gk+1
2 )2.

5 Since there is only one ciphertext in the security experiment, having Enc instead of Setup pick U2, . . . ,U`′ yields exactly the same
distribution.
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Dec(mpk,sky,ctx): Compute

e(g1, g2)k>As ← e(C0,K1) ·e(
n∏

j=1
C

−y j

j ,K0),

and recover the message as m ←C ′/e(g1, g2)k>As ∈GT .
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