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Abstract. As Keccak has been selected as the new SHA-3 standard, Message Authentication Code
(MAC) (MAC-Keccak) using a secret key will be widely used for integrity checking and authen-
ticity assurance. Recent works have shown the feasibility of side-channel attacks against software
implementations of MAC-Keccak to retrieve the key, with the security assessment of hardware
implementations remaining an open problem. In this paper, we present a comprehensive and prac-
tical side-channel analysis of a hardware implementation of MAC-Keccak on FPGA. Different from
previous works, we propose a new attack method targeting the first round output of MAC-Keccak
rather than the linear operation θ only. The results on sampled power traces show that the un-
protected hardware implementation of MAC-Keccak is vulnerable to side-channel attacks, and
attacking the nonlinear operation of MAC-Keccak is very effective. We further discuss countermea-
sures against side-channel analysis on hardware MAC-Keccak. Finally, we discuss the impact of
the key length on side-channel analysis and compare the attack complexity between MAC-Keccak
and other cryptographic algorithms.
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1 introduction

Keccak was selected as the winner of the NIST hash function competition in October, 2012 to be the new
hash standard SHA-3 [1]. Different from previous hash functions, Keccak uses the Sponge construction
in which message blocks are absorbed and permuted iteratively [2,3,1]. A message authentication code
(MAC) is a short piece of information generated by hash functions on the message and a secret key. MAC
is important in crypto systems because it facilitates integrity checking and proof of origin for the message.
The Sponge construction allows Keccak to securely generate a MAC by hashing the concatenation of the
key and the message (P = K||M) in a cryptographic mode, called MAC-Keccak [2,3].

With the new algorithms of Keccak and MAC-Keccak, their security issues have attracted a lot of
attention. As the new hash standard, Keccak will be widely used in various cryptographic systems, and
thus its side-channel security becomes a critical issue. There exist several related work to assess the
side-channel security of MAC-Keccak. In [4], six SHA-3 candidates (including Keccak) were analyzed
for side-channel leakage for the first time. The work analyzes the possibility of attacking MAC-Keccak
at the θ step in the first round and proposes the basic attack steps. However, only general side-channel
attack feasibility for all six candidates is discussed, and no detailed leakage models or attack methods
for Keccak are given.

Some works specifically on Keccak are published after that. In [5] and [6], the side-channel vulnerabil-
ity of MAC-Keccak software implementations is analyzed and it is found that the side-channel resistance
of MAC-Keccak depends on the length of the key. The works demonstrate a practical side-channel anal-
ysis attack on MAC-Keccak implemented on a 32-bit Microblaze processor, which also attacks the θ
step. In a previous paper [7], we find side-channel leakages in hardware implementations based on the
properties of Keccak and the implementation details. We find that attackers can use the same models
and attack methods as in software implementations to conquer the hardware implementations.
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These previous works either focus on software implementations [6,5] or use the models for software
implementations to attack hardware systems [7], while no side-channel methods specifically for hardware
implementations of Keccak have been proposed. Compared to MAC-Keccak software implementations,
hardware implementations of MAC-Keccak have different operation granularity and storage methodol-
ogy, thus some previous models for software systems are not suitable for hardware implementations,
and there should be some different attacking methods for hardware implementations. Since hardware
implementations of Keccak will surely be used extensively in performance-sensitive crypto systems, their
side-channel leakage must be thoroughly assessed and more general side-channel attacking methods for
hardware implementations should be proposed. Furthermore, a good understanding of the side-channel
leakage will also facilitate secure hardware MAC-Keccak design and implementation with protections
against side-channel attacks added.

In this paper we analyze the algorithm of Keccak and design a new attack method on the first round
output of MAC-Keccak. We propose new side-channel leakage models specifically for hardware MAC-
Keccak implementations and launch practical power analysis attacks. Results show that our method
can recover the key bits efficiently. We further discuss the factors that affect side-channel leakage of
MAC-Keccak and suggest countermeasures to improve the system security.

To our knowledge, this is the first attempt to launch side-channel attacks on the first round output
of MAC-Keccak. Our work should provide a deeper and more precise understanding of the side-channel
leakage of Keccak. We expect our work to make a significant contribution to security evaluation of SHA-3
and help to improve its resilience to side-channel attacks.

The rest of this paper is organized as follows. In Section 2, we introduce background of Keccak.
In Section 3, we present our power leakage model and attack method on the first round output R1,
followed by the attack results. In Section 4, we discuss the attack complexity and protection methods of
MAC-Keccak. In Section 5, we conclude the paper.

2 Details of Keccak

2.1 Keccak Hash Function and MAC-Keccak

Keccak is a hash function family based on the Sponge construction, as shown in Figure 1 [2,3]. Keccak
has two phases: 1) absorbing and 2) squeezing. In the absorbing phase, the message is broken into blocks
(each block size is r bits, where r is the bit rate), which are absorbed iteratively by the permutation
function f . Each f function works on a state at a fixed length b = r+ c, where r is the bit rate while c is
capacity. In the squeezing phase, outputs are squeezed also by f functions and the length of the output
is configurable (a multiple of r bits).

f f f f f f
r

c

0P 1P 2P 3P 0z 1z 2z

Fig. 1: The sponge construction

For Keccak, MAC-Keccak is recommended by the Keccak designers [2,3]:

MAC(M,K) = H(K||M). (1)
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The default Keccak mode is Keccak-1600, with r = 1024 and c = 576 [2,3]. All of the 1600-bit
states are organized in a 3-D array, as shown in Figure 2. Each bit is addressed with three coordinates,
written as S(x, y, z), x, y ∈ {0, 1, ..., 4}, z ∈ {0, 1, ..., 63}. 2-D entities, plane, sheet and slice, and
1-D entities, lane, column and row, are also defined in Keccak and shown in Figure 2. A plane PY

contains all state bits S(x, y, z) for which y = Y ; similarly, a slice SLZ = {S(x, y, z), z = Z}; a sheet
SHX = {S(x, y, z), x = X}. A lane LX,Y contains all state bits S(x, y, z) for which x = X and y = Y ;
similarly, a column CX,Z = {S(x, y, z), x = X, z = Z}; a row RowY,Z = {S(x, y, z), y = Y, z = Z}.

0  1  2  3  4  5  6     
     

    …
     

     
     

  63

4 

3

2

1

0

y

z

0      1       2       3      4 x

Fig. 2: Terminology used in Keccak

The f permutation function of Keccak-1600 consists of 24 rounds of operations, where each round
has five sequential steps:

Ri+1 = ι ◦ χ ◦ π ◦ ρ ◦ θ(Ri), i ∈ {0, 1, · · · , 23} (2)

in which R0 is the initial input. Details of each step are described below:
− θ is a linear operation which involves 11 input bits and outputs a single bit. Each output state bit

is the XOR between the input state bit and two intermediate bits produced by its two neighbor columns.
The operation is given as follows:

S′(x, y, z) = S(x, y, z)⊕ (⊕4
i=0S(x− 1, i, z))

⊕ (⊕4
i=0S(x+ 1, i, z − 1)). (3)

The two intermediate bits are the parity of the two columns,⊕4
i=0S(x−1, i, z) and⊕4

i=0S(x+1, i, z−1),
respectively.
− ρ is a permutation over the bits of the state along the z-axis (in lanes).
− π is a permutation over the bits of the state within slices, shown in Figure 3. Only the center bit

(x = 0, y = 0) of the slice does not move. All other bits are permuted to other positions depending on
their original coordinates. We also notice that five bits of each row will be moved to different rows but
the same column. For each output row of π, one and only one bit is from the bottom row (y = 0) of the
input.
− χ is a non-linear step that contains mixed binary operations. Every bit of the output state is the

result of an XOR between the corresponding input state bit and its two neighboring bits along the x-axis
(in a row):

S′(x, y, z) = S(x, y, z)⊕ (S(x+ 1, y, z) · S(x+ 2, y, z)). (4)

− ι is a binary XOR with a round constant.
Further details of Keccak and Sponge construction can be found in [2,3,1].
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Fig. 3: π applied to a slice. Note that x = y = 0 is depicted at the center of the slice.

For the official VHDL implementation Version 3.1 provided online by keccak.noekeon.org [8] and other
widely used hardware implementation [9], each round takes one clock cycle and the five steps of a round
(θ, ρ, π, χ and ι) are all implemented in combinational circuits. In this paper we focus on the final output
of the first round for power analysis.

2.2 MAC-Keccak Parameters Used in This Paper

MAC-Keccak allows the use of a variable-length key, which is concatenated with the message and then
broken down into message blocks (each at the bit rate, and the last one is padded according to a certain
rule [2]). We start with a key length of 320 bits (i.e., the key fills the bottom plane in the input state,
and the message length is 1024− 320 = 704 bits). We will discuss the effects of key length on attacks in
Section 4.3.

For these settings, the key bits that fill the first plane (denoted as the K plane) of the input state are
unknown and the other four planes (denoted as the M planes) that contain message bits and padding
bits are known to the attackers. For the θ operation, each bit of θout in the M planes involves eight bits
of M and two bits of K.

In this paper, we use the same traces as [7] provided online [10]. These traces are sampled from an
implementation of [8] on an SASEBO-GII board. More details of the implementation can be found in
[7]. We note here that we use both mutual information [11] and CPA for analysis, their results are very
similar and we only present and discuss the CPA results in this paper.

3 Side-channel power analysis on the first round output R1

Previous papers [7,6,5,4] about side-channel attacks of Keccak all focus on the θ operation of the first
round because it involves key bits directly and it’s the first step of Keccak. It has also been discussed
in [7] that leakages of θ may still exist in hardware systems because of the mathematical properties of
Keccak. Meanwhile, the leakages of θ mentioned in [7] are mainly caused by the leakages of state register
activity and it has also been pointed out that the correlation between the first round output Hamming
weight and the power consumption is very strong. Thus in this section, we’ll try to find attacking methods
utilizing the first round result R1 directly.

3.1 Side-Channel Leakages of R1

We denote the first round output of Keccak as R1, and denote the content of state register Reg before the
end of first round as I. Then the Hamming distance of Reg at the end of first round is HD(I,R1). For
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unprotected Keccak, the initial state I of state register Reg can be either 0, R0 or the result of last Keccak
operation. For the implementation we referred for design [12], the state register Reg is initialized to 0
and thus the Hamming distance is actually HW (R0). In this section, we focus on this implementation,
and we will discuss other situations in Section 4. We show the correlation result between HW (R0) and
power in Figure 4.
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Fig. 4: One Keccak power trace and the correlation between HW (R1) and power.

Figure 4(a) shows one power trace and Figure 4(b) is the correlation result between HW (R1) and
power consumption. It shows that the correlation between HW (R1) and power is very strong and this
leakage definitely can be used by an attacker to extract secret information. We will use Hamming distance
and Hamming weight as selection functions in this paper for analysis.

First of all, we focus on DPA and use one single bit R1(x1, y1, z1) for analysis, where x1, y1 ∈
{0, 1, · · · , 4} and z1 ∈ {0, 1, · · · , 63}. The corresponding selection function for this bit is:

HD(I(x1, y1, z1), R1(x1, y1, z1)) = HW (R1(x1, y1, z1)).

As discussed in Section 2.1, R1(x1, y1, z1) = ι0(x1, y1, z1) ⊕ χout(x1, y1, z1), where ι0 stands for the
constant number of ι operation in the first round, which is public to users. Thus attacking R1 is also
attacking χ operation result χout. Meanwhile, every bit of χout(x1, y1, z1) is decided by three bits of
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πout(x1, y1, z1):

χout(x1, y1, z1) = πout(x1, y1, z1)⊕ (πout(x1 + 1, y1, z1)

·πout(x1 + 2, y1, z1)). (5)

For Keccak, π and ρ operations only change the position of bits while keep their value unchanged. Thus
each bit of πout(x1, y1, z1) can be mapped to one bit of θout. If we assume that πout(x1, y1, z1), πout(x1 +
1, y1, z1) and πout(x1 + 2, y1, z1) are mapped to θout(x

0
0, y

0
0 , z

0
0), θout(x

1
0, y

1
0 , z

1
0) and θout(x

2
0, y

2
0 , z

2
0) re-

spectively, then we have:

χout(x1, y1, z1) = θout(x
0
0, y

0
0 , z

0
0)⊕(θout(x10, y

1
0 , z

1
0)

·θout(x20, y20 , z20)). (6)

Thus each bit of R1 can be treated as the operation result of three bits of θout. As shown in Section
2.1 and [7], each θout bit involves two or three key bits. It has also been shown in [7] that each bit of
θout can leak XOR relationship of these two or three bits. Thus by attacking one bit of R1, attackers
should be able to extract three XORs and each XOR includes two or three key bits. For example, for
θout(x

0
0, y

0
0 , z

0
0), the attacker can extract:

If y00 = 0 :
S(x00 − 1, 0, z00)⊕ S(x00, 0, z

0
0)⊕ S(x00 + 1, 0, z00 − 1)

If y00 = 1 :
S(x00 − 1, 0, z00)⊕ S(x00 + 1, 0, z00 − 1)

.

For πout(x1, y1, z1), the corresponding coordinates of θout, (x00, y
0
0 , z

0
0), can be obtained by running

the reverse of π and ρ, which we denote as π−1 and ρ−1 here.
For DPA attacks on R1 which utilizes leakage of one single bit, the signal to noise ratio (SNR) should

be very low. Meanwhile, the redundancy of attacking bit by bit is very high, because there are only 320
different 2-bit XORs and 320 different 3-bit XORs while there are 1, 600 bits for R1 and each bit of
R1 will involve three XORs. In the following part, we will present a more efficient and more practical
method for attacking R1.

3.2 Practical Attacks on R1

It is inefficient to attack R1 bit by bit because of the high redundancy, and it will require a large number
of traces because of the low SNR. Meanwhile, we notice that five bits in each row of πout operate on
each other to generate χout, which means that five bits in each row of χout actually involve only five bits
of θout, instead of 5× 3 bits. Thus if we attack on five bits in one row together, the redundancy will be
much lower than attacking bit by bit. What’s more, the SNR of leakage for one row should be definitely
higher than the leakage of one bit. We run correlation power analysis based on 500, 000 traces and show
the correlation results of one row (R1([0 : 4], 4, 0)) and one bit (R1(0, 4, 0)) in Figure 5.

For one row, the maximum correlation between HW (R1([0 : 4], 4, 0)) and power consumption is about
0.042; while for one single bit it is about 0.022. It’s obvious that the leakage of one row is much stronger
than the leakage of one bit. Meanwhile, there are 320 rows in Keccak and by attacking row by row,
attackers only need to attack 320 times instead of run the attacks 1600 times in attacking bit by bit. For
side-channel attacks targeting one row each time, the selection function is:

HD(I(X, y, z), R1(X, y, z)) = HW (R1(X, y, z)),

X = [0 : 4], y ∈ {0, 1, 2, 3, 4}, z ∈ {0, 1, · · · 63}. (7)

As shown in Figure 3 and Section 2.1, five bits of each row of ρout are all permuted to all different
planes. What’s more, each row of πout has one and only one bit from bottom plane of ρout. Thus there
is one and only one bit in each row of πout coming from the bottom plane of θout, and this bit involves
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Fig. 5: The correlation between five bits vs. one bit of R1 and power

three key bits instead of two. Thus, by attacking one row of R1, attackers can extract one 3-bit XOR
and four 2-bit XORs.

The attacking method discussed in Section 3.1 and 3.2 can be used to attack the first round output of
Keccak, R1. We run CPA on the traces using our method and results show that the proposed method can
efficiently recover the secret key information. We give an example to demonstrate the attacking method
and the results.

Example 1. For the row R1([0 : 4], 4, 0), based on π−1 and ρ−1, we can get mapping relationship as
following:


πout(0, 4, 0)↔ θout(2, 0, 2)
πout(1, 4, 0)↔ θout(3, 1, 9)
πout(2, 4, 0)↔ θout(4, 2, 25)
πout(3, 4, 0)↔ θout(0, 3, 23)
πout(4, 4, 0)↔ θout(1, 4, 62)

.

As θout(2, 0, 2) is on the bottom plane, it involves P (2, 0, 2), P (1, 0, 2) and P (3, 0, 1), three key bits.
The other four θout bits each involves two key bits. Using this attack model, for each row of R1 we can
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recover one XOR of three key bits and four XORs of two key bits. In this example, we can recover:

kg1 = P (2, 0, 2)⊕ P (1, 0, 2)⊕ P (3, 0, 1)

kg2 = P (2, 0, 9)⊕ P (4, 0, 8)

kg3 = P (3, 0, 25)⊕ P (0, 0, 24)

kg4 = P (4, 0, 23)⊕ P (1, 0, 22)

kg5 = P (1, 0, 62)⊕ P (2, 0, 61)

.

Using the Hamming weight power model HW (R1([0 : 4], 4, 0)) to run CPA, the correlation result
between HW (R1([0 : 4], 4, 0)) and power for different key guesses is shown in Figure 6(a), where the
Y-axis is the correlation value and X-axis is the enumeration (key guess) of [kg5 kg4 kg3 kg2 kg1], with
kg5 as the most significant bit.
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Fig. 6: CPA trace on R1

For Figure 6(a), the highest correlation value (negative) is −0.042, and is indeed at the correct guess.
We can see that our attack model can effectively distinguish a group of five correct results of key bits’
operations from each row. The correlation result shown in Figure 6(a) is quite different from the previous
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block ciphers (e.g., AES, DES) where the correct key would give a much higher correlation than other
incorrect keys. This is because MAC-Keccak does not have modules similar to S-box which has very high
nonlinearity, therefore the difference between key guesses is not as large as in block ciphers.

Figure 6(b) shows the attack success rate of the row R1([0 : 4], 4, 0) based on our method. It shows
that the attacker needs about 35, 000 traces to recover the corresponding key bits relationships, which
include one XOR result of three key bits and four XOR results of two key bits, with a success rate of
100%.

In Example 1, we use the row R1([0 : 4], 4, 0) as an example to demonstrate the CPA result and
success rate of attacking the hardware implementation of MAC-Keccak based on our attack method.
We note here that CPA on other rows has similar results. The above analysis and Example 1 shows
that by attacking one row of R1 attackers can obtain relationship between key bits, but not key bits
directly. Multiple rows must be utilized together to obtain key bits. In our attack method, the piecemeal
information obtained from attacking each row has to be stitched together to retrieve the key bits.

Example 2. If we attack on row R1([0 : 4], 2, 8) using the same method as Example 1, we can recover:

kg′1 = P (1, 0, 7)⊕ P (0, 0, 7) ⊕ P (2, 0, 6)

kg′2 = P (1, 0, 2)⊕ P (3, 0, 1)

kg′3 = P (2, 0, 41)⊕ P (4, 0, 40)

kg′4 = P (3, 0, 0)⊕ P (0, 0, 63)

kg′5 = P (4, 0, 54)⊕ P (1, 0, 53)

.

Combining with the result of attacking R1([0 : 4], 4, 0) in Example 1, we can see that kg′2 (P (1, 0, 2)⊕
P (3, 0, 1)) is part of kg1 (P (2, 0, 2)⊕P (1, 0, 2)⊕P (3, 0, 1)), thus they can be combined together to recover
P (2, 0, 2).

The output state R1 consists of 320 rows, and these 320 rows can be attacked in parallel and their
results have to be utilized together to recover the key bits. For 320 rows, we can obtain 320 3-bit XORs
and 1280 2-bit XORs in total. For these 1280 2-bit XORs, the redundancy is very high and there are only
320 distinct 2-bit XORs with each appearing four times. We can extract all these XORs in two groups
as follows: {

KG1 = {S(x− 1, 0, z)⊕ S(x, 0, z)⊕ S(x+ 1, 0, z − 1)}
KG2 = {S(x− 1, 0, z)⊕ S(x+ 1, 0, z − 1)}

for x ∈ {0, 1 · · · 4}, z ∈ {0, 1 · · · 63}.
Because each of the 320 3-bit XORs from group KG1 contains one extra key bit than one 2-bit XOR

from group KG2, we can combine them to recover all of the 320 key bits immediately. Note that we can
also insert the recovered key bits back into 2-bit XORs to recover other key bits. For the case where the
key length is greater than 320 bits, we will discuss the extension of our approach in Section 4.3.

According to the above discussions and examples, we conclude the attack method using R1 as fol-
lowing:

1. Attack one row (Example 1):
– For one row R1(X, y0, z0), locate the corresponding θout bit for each bit of πout(X, y0, z0) accord-

ing to π−1 and ρ−1.
– For each bit of θout, make assumption of the XOR of the corresponding key bits and combine

the assumption with known bits (P and M) to calculate this θout (πout) bit.
– Combine all the related θout (πout) bits to generate R1(X, y0, z0), and run CPA for all the possible

XOR assumptions of key bits based on the selection function in (7).
– Find the XOR assumption with the greatest correlation value and it’s the attack result for this

row.
2. Repeat Step 1 to attack other rows and combine their results to recover the key bits, like in Example

2.
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In summary, we can see that our method of attacking R1 can recover all the key bits and this shows
that an unprotected MAC-Keccak hardware implementations is vulnerable to side-channel attacks. This
attack method is very different from the previous attacks on software implementations because software
implementations have all the steps executed in serial and the intermediate results (e.g., the compression
step in θ and the output of θ) can be used to recover the key bits information directly. For hardware
implementations, all five steps of a single round of MAC-Keccak are executed in one clock cycle and there
is no register activity directly related to the intermediate key-dependent states of the linear operation
output.

4 Discussion of Attacks and Countermeasures

In Section 3, we describe our method of attacking the first round output R1 to recover the key bits. It is
effective to attack hardware implementations of MAC-Keccak when the key size is 320. In this section,
we discuss how to decrease the leakages of R1 to protect MAC-Keccak against side-channel attacks, how
the key length affects side-channel attacks, and the complexity of attacking Keccak compared to that of
attacking other ciphers.

4.1 Discussion of Initial State in Keccak Implementations

This paper uses the traces sampled on one kind of implementation which resets the state register to
all 0s before Keccak operation. Besides this kind of implementation, there are other commonly used
implementations for Keccak, such as initializing the state register to the first round input P , or keeping
the state register with the result of the last Keccak operation. For such situations, the Hamming distance
model will be different.

If the state register is initialized to the first round input P , then the Hamming distance model for
one bit will simply be:

HD(P (x1, y1, z1), R1(x1, y1, z1))). (8)

The bottom plane of P (K plane) contains all the 320 key bits while the top four planes of P is known
by the attackers (message bits and padding bits). Thus attacking on bit R1(x1, 0, z1) in the bottom plane
will involve another key bit P (x1, y1, z1) which makes the key guess a little more complex. Thus it is
preferable to attack the bits (rows) in the tops four planes. In this case, attacking these 256 rows on the
top four planes gives us a similar relationship to that we have found in the previous section - 1024 2-bit
XORs with 320 distinct ones and 256 3-bit XORs:

KG′1 = {S(x− 1, 0, z)⊕ S(x, 0, z)⊕ S(x+ 1, 0, z − 1)},
x ∈ {1, 2, 3, 4}, z ∈ {0, 1 · · · 63};

KG′2 = {S(x− 1, 0, z)⊕ S(x+ 1, 0, z − 1)},
x ∈ {0, 1 · · · 4}, z ∈ {0, 1 · · · 63}.

Here the group KG′2 is the same as KG2 shown before, while the group KG′1 is partial of KG1. We
plug in each of the 2-bit XORs in KG′2 into a corresponding 3-bit XOR of KG′1 and will recover 256
key bits first. These 256 bits will be all the key bits except for the 64 bits in L0,0, i.e., {P (x, y, z), x =
0, y = 0}. We then use the recovered 256 key bits and plug them back into the 2-bit XORs KG′2 to
recover the remaining 64 key bits. Thus, we can see that the attack method we propose in this paper is
also applicable to implementations with Reg initialized to other known values instead of 0.

For some other implementations with the state register keeps the result of last Keccak operation, the
initial state of Reg is partially known by the attacker - the 256 bits of the output of the last Keccak
operation. The known bits are I([0 : 3], 0, [0 : 64]) while they are in the first four lanes. According the
the properties of ρ and π, by attacking these 256 bits, attackers can recover 192 different 2-bit XORs
and 64 different 3-bit XORs and this can still leak a lot of information to attackers.
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4.2 Protections of Keccak

As discussed in Section 4.1, the attackers will be able to extract some secret information if the initial
state bits are known by the attackers. Thus the simplest countermeasure is to initialize the initial state
to random numbers rand before the MAC-Keccak operations. In cryptographic systems, the random
numbers rand are unknown to the attackers and this can help to decrease side-channel leakages. The
only overhead of this method is from the random number generator.

To verify this assumption, we implement a 1600-bit random number generator based on a linear-
feedback shift register (LFSR) and use the random numbers to initialize the state register Reg before the
MAC-Keccak operations. We collect 400, 000 traces and run Pearson’s correlation to look for correlation
between HW (R1) and power. Results show that for such a simple protection method, the correlations
between HW (R1) and power is only about 0.06, much smaller than the unprotected implementation
(which reaches 0.5). The correlation is about 10 times less than the unprotected implementation, and
therefore attackers will need about 100 times the number of traces to achieve the same success rate[13,14]
as on unprotected implementation. We note here that this leakage is not decreased to 0 because combi-
national circuits activity will also incur leakages of R1 and these leakages cannot be eliminated by this
random number countermeasure.

Of course, initializing the state register with random numbers is a naive method which can help
to decrease the leakages, not to eliminate all leakages. This method can be used as an add-on scheme
together with other countermeasures. To totally eliminate the side-channel leakages, one currently used
countermeasure is secret sharing protection [15,16]. Another simple countermeasure is to increase the
length of key. We will discuss attacks for different key lengths in the next section.

4.3 Discussion about the Key Length

In this paper, we simplify the MAC-Keccak settings by assuming that the key length is 320 bits, which
is just the size of one plane such that there will be no operation between key bits in the same column.
Previous work [5] discusses the effect of the key length on side-channel attacks. Here we will summarize
the effect of key length on side-channel attacks under our leakage model and attack method.

For key-length ≤ plane-size, the key bits will occupy no more than one plane and there is no
operation between the key bits in the same column. We can attack on R1 to recover all the key bits, as
discussed in Section 3.

When plane-size < key-length ≤ 2 ∗ plane-size, the key bits occupy more than one plane. There will
be operations between key bits from different planes. We can recover XORs of different numbers of key
bits. For example, assume the key is 640 bits, thus the key bits take two planes P0 and P1. Then we can
recover higher-dimension key bits XORs by attacking all the rows of R1:

KG∗1 ={S(x− 1, 0, z)⊕ S(x− 1, 1, z)⊕ S(x, 0, z)

⊕ S(x+ 1, 0, z − 1)⊕ S(x+ 1, 1, z − 1)}
KG∗2 ={S(x− 1, 0, z)⊕ S(x− 1, 1, z)⊕ S(x, 1, z)

⊕ S(x+ 1, 0, z − 1)⊕ S(x+ 1, 1, z − 1)}
KG∗3 ={S(x− 1, 0, z)⊕ S(x− 1, 1, z)

⊕ S(x+ 1, 0, z − 1)⊕ S(x+ 1, 1, z − 1)}

for x ∈ {0, 1 · · · 4}, z ∈ {0, 1 · · · 63}.
In this case, we can recover 320 5-bit XORs KG∗1, 320 5-bit XORs KG∗2 and 320 different 4-bit XORs

KG∗3 in total. Similar to the method used when the key size is no greater than 320 key bits, we can use
all these XORs results to recover the entire K.

When key-length > 2× plane-size, the key bits will occupy more than two planes and no complete
rows contain only message bits. Attackers can attack bit by bit using DPA as discussed in Section 3.1.
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4.4 How to Detect the Key Length

In the previous sections of this paper, we assume that the key length is known to the attackers, which
does not hold in most applications. Usually, the attackers have no information about the length of the
key used. Therefore it is a vital problem to get the key length for a black box MAC-Keccak system.

In [4], the authors propose to get the key length by performing differential power analysis (DPA).
They start with the first message bit and repeatedly attack the next message bit until there is no
correlation in a directly subsequent point in time. This method is effective because they target software
implementations which have all the operations expanded and the intermediate variables can be used for
attacks. For hardware systems, their method is no longer applicable and we should find a better method
for hardware systems instead.

We denote the key length as lk, the message length as lm, and the appended length as la. Thus we
have the following equation:

lk + lm + la = nb ∗ r (9)

in which nb is the number of blocks and r is the bit rate defined in Section 2.1. It is easy for the attackers
to detect the number of blocks nb, because this number will directly affect the length of operation, and
the shape of the power waveform can also show the number of MAC-Keccak operations.

According to the appending rules of Keccak, 0 ≤ la < r, and this number varies according to the
value of lk + lm in which lm is controllable by the attackers. Thus the strategy to get the key length is
the following. Start from lm = 1 and increase lm, there exists a number α:

– For lm = α, the corresponding nb is λ;
– For lm = α+ 1, the corresponding nb is λ+ 1.

Then the key length is λ ∗ r − lm. Using this method, the attackers only needs to change the length
of messages to detect the key length.

4.5 Discussion about the Attack Complexity

Our previous results show that unprotected hardware implementations of MAC-Keccak are vulnera-
ble, and attackers can use the leakage of R1 to recover all the key bits. However, compared to other
cryptographic algorithms, MAC-Keccak is actually much more secure against side-channel attacks. For
example, previous papers showed that for unprotected AES, the attackers need only several thousands
traces to recover the key bytes [17]. For previous hash functions, like HMAC-based SHA-2 function, only
4000 traces are needed for successful side-channel attacks [18], while for unprotected MAC-Keccak, we
need 35, 000 traces to get the five key bits operation results when attacking one row. When the key length
is 320 bits, the attacker has to attack 320 rows to get the entire key, which is much more complex than
previous cryptographic algorithms like AES and DES, where the number of attack iterations would be
just 16 or 6.

In addition, previous block ciphers and hash functions based on them only have limited flexibility of
key length, like AES-128 and AES-256. The attack methods for different key lengths are similar, using
the divide-and-conquer approach. However, for MAC-Keccak, the key length is variable and the security
level can be improved simply by increasing the key length, i.e., the difficulty for side-channel analysis
will increase dramatically as well.

5 conclusion

In this paper, we propose a side-channel analysis method and power model specifically for hardware
implementations of MAC-Keccak. Our method targets the first round output of Keccak and results
show that our method is effective and efficient. Our work demonstrates that unprotected hardware
implementations of MAC-Keccak are vulnerable to side-channel attacks. At the same time, our results
show that compared to previous block ciphers and hash functions, MAC-Keccak is more resistant to
side-channel attacks. In the future, we will investigate Keccak implementations resilient to side-channel
attacks and develop more efficient countermeasures.
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