
VLSI Implementation of Double-Base Scalar
Multiplication on a Twisted Edwards Curve

with an Efficiently Computable Endomorphism

Zhe Liu1, Husen Wang2, Johann Großschädl1, Zhi Hu3, and
Ingrid Verbauwhede1

1 LACS, University of Luxembourg, Luxembourg
{zhe.liu,johann.groszschaedl}@uni.lu

2 ESAT/COSIC and iMinds, KU Leuven, Belgium
{husen.wang,ingrid.verbauwhede}@esat.kuleuven.be

3 Central South University, P.R. China
huzhi_math@csu.edu.cn

Abstract. The verification of an ECDSA signature requires a double-
base scalar multiplication, an operation of the form k ·G+ l ·Q where
G is a generator of a large elliptic curve group of prime order n, Q is an
arbitrary element of said group, and k, l are two integers in the range
of [1, n− 1]. We introduce in this paper an area-optimized VLSI design
of a Prime-Field Arithmetic Unit (PFAU) that can serve as a loosely-
coupled or tightly-coupled hardware accelerator in a system-on-chip to
speed up the execution of double-base scalar multiplication. Our design
is optimized for twisted Edwards curves with an efficiently computable
endomorphism that allows one to reduce the number of point doublings
by some 50% compared to a conventional implementation. An example
for such a special curve is −x2 + y2 = 1 + x2y2 over the 207-bit prime
field Fp with p = 2207 − 5131. The PFAU prototype we describe in this
paper features a (16 × 16)-bit multiplier and has an overall silicon area
of 5821 gates when synthesized with a 0.13µ standard-cell library. It can
be clocked with a frequency of up to 50 MHz and is capable to perform
a constant-time multiplication in the mentioned 207-bit prime field in
only 198 clock cycles. A complete double-base scalar multiplication has
an execution time of some 365k cycles and requires the pre-computation
of 15 points. Our design supports many trade-offs between performance
and RAM requirements, which is a highly desirable property for future
Internet-of-Things (IoT) applications.

Keywords: Signature verification, Twisted Edwards curve, Endomor-
phism, Multiple-precision arithmetic, Pseudo-Mersenne prime

1 Introduction

Digital signatures are an indispensable component of modern security protocols
like TLS [6], where they are used to authenticate the server and optionally the

2 H. Wang et al.

client too. More specifically, TLS can provide server authentication by means
of a certificate that binds an identity (e.g. the server’s domain name) to a pub-
lic key. The certificate contains besides the ID and public key also a collection
of attributes, all of which is signed by a trusted third party called Certification
Authority (CA). In the initial (i.e. handshake) phase of the TLS protocol, the
client normally requests the server’s certificate, and if he manages to verify the
signature of the CA successfully, he is assured that the public key contained in
the certificate is authentic and indeed belongs to the server. The next step is
then to establish a shared secret between client and server, which can be done
through either RSA-based key transport or via Diffie-Hellman key exchange. In
any case, without prior authentication, the key establishment process would be
vulnerable to a classical Man-In-The-Middle (MITM) attack. The same holds
for Datagram TLS (DTLS) [25], a variant of TLS optimized for connectionless
datagram transport (i.e. UDP) that is widely considered as the future standard
protocol for securing the Internet of Things (IoT) [16].

The signature algorithms supported by the most recent version (i.e. version
1.2) of TLS are RSA [26], DSA [22], as well as ECDSA [14] through a separate
RFC [3]. In order to validate the server’s certificate (or its chain of certificates
[6]), the client needs to verify one or more signatures. Using RSA as signature
algorithm has the advantage that verification is relatively fast since it involves
an exponentiation by the public exponent, which is usually small (e.g. 216 + 1)
[26]. However, the downside of RSA signatures is their size and accompanying
memory and bandwidth requirements, especially at higher security levels. This
can be exemplified with [30], where RSA with a modulus length of 3248 bits is
recommended to match the security of 128-bit AES, which means an RSA sig-
nature has a length of 406 bytes. Signatures of such a size can pose a problem
for resource-constrained IoT devices that often have only a few hundred bytes
to a few kB of RAM. On the other hand, Elliptic Curve Cryptography (ECC) is
well-known for its compact key and signature sizes, which is a highly desirable
feature for resource-limited devices. For example, a 255-bit ECDSA signature
(matching the security of 128-bit AES) has a size of merely 64 bytes when it is
compressed [2], i.e. less than one sixth of the RSA signature size. However, an
inherent problem with ECDSA signatures is that, despite their small size, the
verification process is relatively computation-intensive.

The verification of an ECDSA signature requires one to perform a double-
base scalar multiplication, an operation of the form k ·G+ l ·Q, where G is a
point on an elliptic curve E that generates a large group of prime order n, Q is
an (arbitrary) element of this group, and k and l are two integers in the range
of [1, n− 1] [14]. Normally, k ·G+ l ·Q is computed in a simultaneous fashion
(i.e. with joint doublings) so that at most m doublings need to be executed in
total, where m is the bitlength of n [11]. Most previous attempts to reduce the
execution time of this operation fall into one of two categories, namely, on the
one hand, approaches that aim at minimizing the cost of a single point addition
or doubling, and, on the other hand, techniques to reduce the number of these
operations. An example for the former is EdDSA [2], a signature scheme based

VLSI Implementation of Double-Base Scalar Multiplication 3

on a twisted Edwards curve [1] that allows for a more efficient implementation
of the point arithmetic than a basic Weierstraß curve. Using a window method
to reduce the number of point additions in a double-base scalar multiplication
(as described in [11, p. 109f]) falls into the second category. Another option to
cut down the number of point operations is to exploit an efficiently computable
endomorphism as explained in [10] for variable-base scalar multiplication. Also
a combination of both approaches, namely using the twisted Edwards addition
law on so-called GLS [9] and GLV-GLS [20] curves (both of which are defined
over Fp2 and possess endomorphisms) has been investigated in [19] and [7].

In this paper we introduce families of twisted Edwards curves with an effi-
ciently computable endomorphism φ and demonstrate how said endomorphism
can be used to speed up the ECDSA verification process, whereby we focus on
hardware implementation of double-base scalar multiplication. In particular, we
will study implementation properties of the twisted Edwards curve

ET : −x2 + y2 = 1 + x2y2 (1)

(i.e. a = −1 and d = 1) over a prime field Fp, which is birationally equiva-
lent over Fp to a so-called Gallant-Lambert-Vanstone (GLV) curve [10] of the
form EW : y2 = x3 + ax (i.e. b = 0). Gallant et al. [10] were the first to de-
scribe how an efficiently-computable endomorphism φ can be used to speed up a
variable-base scalar multiplication on such curves. While the exploitation of an
endomorphism is independent of the curve representation, we are, to the best
of our knowledge, the first to provide an explicit formula for the computation
of said endomorphism on a twisted Edwards curve with a = −1 and d = 1. If
P = (x, y) is a point on the curve ET given by Equation (1), then we can com-
pute φ(P) = (αx, 1/y) where α is an element of order 4 in the underlying field
Fp. The endomorphism φ acting on the twisted Edwards curve ET is slightly
more costly than its counterpart on the corresponding GLV curve EW (because
it requires the inversion of y), but can still be computed efficiently enough to
yield a significant speed-up in practice, as we will show in this paper. In order
to accelerate a scalar multiplication k · P , the scalar k has to be split up into
two “half-length” parts k1 and k2 (as explained in e.g. [10]), and then we can
compute k ·P = k1 ·P +k2 ·φ(P) in a simultaneous fashion, which saves roughly
50% of the point doublings compared to a straightforward computation of k ·P .

While most of the previous work on exploiting endomorphisms has focussed
primarily on variable-base scalar multiplication (such as needed in ECDH key
exchange), we direct our attention to the double-base scalar multiplication car-
ried out in the verification of an ECDSA signature. When taking advantage
of φ, an m-bit double-base scalar multiplication k · G + l · Q can be performed
via four simultaneous half-length (i.e. roughly m/2-bit) scalar multiplications
of the form k1 · G + k2 · φ(G) + l1 · Q + l2 · φ(Q). Using a twisted Edwards
curve with an efficiently computable endomorphism compares very favorably
with related approaches, which are, on the one side, conventional GLV and con-
ventional twisted Edwards curves, and, on the other side, GLS and GLV-GLS
curves. When compared with conventional GLV curves given by a Weierstrass

4 H. Wang et al.

equation with e.g. a = 0 or b = 0, our curve has the advantage of a faster (and
complete) addition law4. The major advantage of our curve over a conventional
twisted Edwards curve is the existence of an efficiently computable endomor-
phism. On the other hand, when compared with GLS or GLV-GLS curves, our
curve ET has the advantage that it is defined over a conventional prime field
Fp and not over a quadratic extension field Fp2 . Extension fields are rarely sup-
ported by commodity cryptographic libraries, which hampers the use of GLS
or GLV-GLS curves in real-world applications. Furthermore, our curve has the
virtue of being more resource-friendly since it requires only arithmetic modulo
p, whereas Fp2 involves both base-field (i.e. modulo p) arithmetic and extension-
field arithmetic. Finally, it has to be taken into account that exploiting the 4-way
endomorphism on GLV-GLS curves for double-base scalar multiplication is very
expensive in terms of memory. Namely, when using the 4-way endomorphism, an
m-bit double-base scalar multiplication is performed through eight simultaneous
quarter-length (i.e. roughly m/4-bit) scalar multiplications, which requires the
pre-computation and storage of (at least) 128 points. Since a single point typi-
cally occupies between 40 and 64 bytes in memory, this approach is not suitable
for resource-constrained IoT devices.

The real-world benefit of our curve is the multitude of implementation op-
tions and trade-offs between execution time and silicon area (when thinking
about hardware implementation) or memory footprint (in the context of software
implementation) it supports. Providing many options and trade-offs is particu-
lary important for cryptographic schemes to be used in the Internet of Things
(IoT) since IoT devices come in all shapes and sizes, and have, therefore, varying
resource constraints. At one end of the spectrum are devices with extreme re-
strictions (e.g. RFID tags, sensor nodes) where every single gate and very single
byte counts. At the other end of the spectrum are devices equipped with powerful
32-bit processors and plenty of resources. Our curve offers many implementation
options that allow a designer to fine-tune an implementation according to the
requirements at hand. For example, when resources are constrained, one can
perform a double-based scalar multiplication in the straightforward fashion by
computing two simultaneous m-bit scalar multiplication, which is very economic
in terms of memory. On the other hand, if more resources are available, our
curve allows the designer to trade performance for memory or area (depending
on whether the implementation is in software or hardware) by exploiting the
efficiently-computable endomorphism. Finally, if resources are plenty, it is possi-
ble to achieve further speed-ups by combining the endomorphism with a window
method for simultaneous scalar multiplication.

4 Note that, as explained in [12], the twisted Edwards addition law can be complete
even if a is a non-square or d is a square in Fp, provided that the base point has odd
order. A complete addition law is a nice feature for signature generation because it
simplifies the integration of countermeasures against physical attacks. However, we
do not discuss issues related to signature generation further since the focus of this
paper is on signature verification. In essence, the fixed-based scalar multiplication
needed for a signature generation can be performed on our curve in exactly the same
way as on any other twisted Edwards curve (e.g. via a regular comb method [18]).

VLSI Implementation of Double-Base Scalar Multiplication 5

2 Twisted Edwards Curves with Endomorphism

2.1 Twisted Edwards Curve

Twisted Edwards curves were introduced to cryptography in 2008 [1] and are
nowadays well established and become increasingly adopted in practical appli-
cations due to their efficient addition law. Let Fp be a prime field with p > 3. A
twisted Edwards curve over Fp can be defined as

Ea,d : ax2 + y2 = 1 + dx2y2, (2)

where a and d satisfy ad(a− d) 6= 0. As specified in [1], the j-invariant of Ea,d is

j(Ea,d) =
16(a2 + 14ad+ d2)3

ad(a− d)4
.

There is a remarkable addition law on twisted Edwards curves, which can be
complete when a is a square and d a non-square in Fp [1]. Here, completeness
means the addition produces the correct result for any two points (even if one
of the points is the neutral element O = (0, 1)) on Ea,d, without exception.

2.2 GLV Method

Gallant, Lambert, and Vanstone [10] described in 2001 a new method (the so-
called GLV method) for speeding up point multiplication on certain classes of
elliptic curves, namely curves with an efficiently computable endomorphism. Let
E be an elliptic curve over a finite field Fp and let G ∈ E(Fp) have prime order
n. Assuming that an efficiently computable endomorphism φ on E exists so
that φ(G) = [λ]G ∈ 〈G〉, the GLV method replaces the computation [k]G by a
multi-scalar multiplication of the form [k1]G + [k2]φ(G), where the sub-scalars
|k1|, |k2| ≈ r1/2. Since the number of doublings is halved, this method potentially
allows for significant speedup of the point multiplication.

Gallant et al. described in [10] several families of curves featuring an ef-
ficiently computable endomorphism derived from special Complex Multiplica-
tion (CM). Let φ be a complex number and K be the extension field Q(φ).
If such an elliptic curve admits a complex multiplication by φ, then by [5,

Thm 10.14] we obtain an endomorphism φ(x, y) = (φ−2 f(x)g(x) , yφ
−3

(
f(x)
g(x)

)′
) and

φ(O) = O, where f, g are polynomial functions over Q with deg f = NK/Q(φ)
and deg g = NK/Q(φ)− 1 (here NK/Q(·) is the norm function from K to Q).

2.3 Efficient Endomorphism on Twisted Edwards Curve

The twisted Edwards curve Ea,d : ax2 +y2 = 1+dx2y2 is birationally equivalent
to some short Weierstrass curve Es : y2 = x3 + asx+ bs, whereby the birational

6 H. Wang et al.

equivalence map can be given as

ψ : Ea,d → Es, (xt, yt)→ (xs, ys) = (
c1(1 + yt)

1− yt
+ c2,

c1(1 + yt)

xt(1− yt)
), (3)

ψ−1 : Es → Ea,d, (xs, ys)→ (xt, yt) = (
xs − c2
ys

,
xs − c3
xs + c4

), (4)

with c1 = (a− d)/4, c2 = (a+ d)/6, c3 = (5a− d)/12, and c4 = (a− 5d)/12.
The original GLV method works on some elliptic curves in Weierstrass model

with special complex multiplication, e.g. curves having CM discriminant D =
−3,−4,−7,−8, etc. If there exists an efficient endomorphism φ on the curve
Es, then we can obtain an corresponding endomorphism φt on the birationally-
equivalent twisted Edwards curve Ea,d as ψ−1φψ. Thus, the GLV method is also
applicable on twisted Edwards curves with some efficient endomorphism.

Usually, the computation of endomorphisms in the short Weierstrass model
is much simpler than in the twisted Edwards model. In the following, we take the
most common cases of “GLV friendly” curves (namely curves with j-invariant 0
and 1728) as examples.

J-invariant 0 Case. This class of elliptic curves has CM discriminant D = −3
and can be represented by a Weierstrass equation of the form

Eb : y2 = x3 + b (5)

over a prime field Fp with p ≡ 1 mod 3, which means Fp contains an element β of
order 3. In this case, the map φ : Eb → Eb given by (x, y) 7→ (βx, y) and O 7→ O
is an endomorphism defined over Fp. If G ∈ Eb(Fp) is a point of prime order n,
then φ(G) = λ·G = (βx, y), where λ is an integer satisfying λ2+λ+1 ≡ 0 mod n.
There are only six possible group orders for such curves for a given field Fp.

We can find a twisted Edwards curve birationally equivalent to the GLV
curve Eb with help of the equation for the j-invariant: j(Ea,d) = 0 requires
a2 + 14ad+ d2 = 0, and when we fix a to −1 then d = −7± 4

√
3. Thus, we can

obtain an endomorphism on its birationally equivalent twisted Edwards curve
Ea,d as

φt(x, y) = (
x(c5y + c6)

y + 1
,
c7y + c8
y + c9

), (6)

where c5 = 5dβ−2d+β+2
3(d+1) , c6 = dβ+2d+5β−2

3(d+1) , c7 = 5dβ+d+β+5
(5d+1)(β−1) , c8 = 5+d

5d+1 and

c9 = dβ+5d+5β+1
(5d+1)(β−1) .

J-invariant 1728 Case. Elliptic curves with a j-invariant of 1728 have CM
discriminant D = −4 and can be defined by a Weierstrass equation of the form

Ea : y2 = x3 + ax (7)

VLSI Implementation of Double-Base Scalar Multiplication 7

over a prime field Fp with p ≡ 1 mod 4, i.e. it is guaranteed that Fp contains
an element α of order 4. In this case, the map φ : Ea → Ea given by (x, y) 7→
(−x, αy) and O 7→ O is an endomorphism defined over Fp. When G ∈ Ea(Fp) is
a point of prime order n, then φ(G) = λ · G = (−x, αy), where λ is an integer
satisfying λ2 + 1 ≡ 0 mod n. There are only four possible group orders for such
curves when Fp is fixed.

Similar as before, j(Ea,d) = 1728 requires (a + d)(a2 − 34ad + d2) = 0, and
when setting a = −1, we get d = 1 or d = 17 ± 12

√
2. In the latter case, we

can obtain an endomorphism φt on the corresponding twisted Edwards model
Ea,d : −x2 + y2 = 1 + dx2y2 in the same way as in the j-invariant 0 case. More
concretely, when d = 17± 12

√
2, the endomorphism φt can be computed as

φt(x, y) = (−x((7d− 1)y + (7− d))

3α(d+ 1)(y + 1)
,

(2d− 2)y + 5 + d

(5d+ 1)y + (2− 2d)
). (8)

On the other hand, if d = 1, φt has a particularly simple formula, namely

φt(x, y) = (αx, 1/y). (9)

The computation of φt requires only one multiplication and one inversion in Fp.
Consequently, computing φt on E−1,1 : −x2+y2 = 1+x2y2 is much simpler (and
faster) than computing the endomorphism(s) on the twisted Edwards GLV-GLS
curves given in [20, Section 5].

3 Curve Generation

3.1 CM Method

Let E/Fp be our desired elliptic curve with CM discriminant D. The group order
of E/Fp is #E(Fp) = p + 1 − t, where t is the Frobenius trace. We also have
the CM equation as 4p = t2 − Ds2, where s ∈ Z. Note that the j-invariant
of such curve is also determined, and there are only 2 or 4 or 6 possible group
orders for desired curve. Thus, the goal of the curve generation is not to find curve
parameters (since we have them already), but rather to find a prime field Fp, and
then a twisted Edwards curve defined over Fp (given by a = −1 and some fixed
d) which contains a large cyclic subgroup and meets other security requirements.
This contrasts with the “traditional” approach for curve generation where the
field Fp is fixed and one has to find suitable curve parameters.

3.2 Example Curve

We choose elliptic curve with CM discriminant D = −4 as our example. If we
fix a = −1 for efficiency reasons [1], then by the analysis in Section 2.3, the
possible value of d is 1 or 17± 12

√
2. We finally choose d = 1 since in this case

the endomorphism on E−1,1 has a very simple formula as analyzed before.
Our example curve is

E−1,1/Fp : −x2 + y2 = 1 + x2y2,

8 H. Wang et al.

where the prime p = 2207−5131. Note that p ≡ 1 mod 4, then E−1,1 is ordinary.
The group order #E−1,1(Fp) = 8 · n, where n = 0xFFFFFFFFFFFFFFFFFFF
FFFFFFE090B67A2AE9D8EC7DD7009F95 is a 204-bit prime. Thus our curve
is at around 100-bit security level. The embedding degree of E−1,1/Fp with
respect to n is n− 1, which means that it is resistant to the FR-MOV attack.

There is an efficient endomorphism φt on E−1,1 as

φt(x, y) = (α · x, 1/y),

where α = 0x5135DD9F4EBC5D1835EFB3D377F3A4A1FCB1E2DEC2911FF
2B59A satisfies α2 + 1 ≡ 0 mod p. And we can check that φt(G) = [λ]G for
G ∈ E−1,1(Fp) with λ = 0xA1D776BEDB1ECFFCE5ABB8F12F8223CC0F494
D461EC0F724D06, here λ2 + 1 ≡ 0 mod n.

4 Double-Base Scalar Multiplication

As mentioned before, double-base scalar multiplication is the most time-consum-
ing operation of ECDSA signature verification and, therefore, deserves efficient
implementation and optimization. Formally, double-base scalar multiplication is
an operation of the form k · G + l · Q and computes the sum of two scalar
products, where G is fixed and Q is an arbitrary point. In the following, we
review several approaches for performing the double-base scalar multiplication
and describe how to speed up this operation by exploiting an endomorphism.
For convenience, we assume that both scalars k and l are exactly m bits long.

Two Single Scalar Multiplications. The most straightforward method to
perform the double-base scalar multiplication is to do the two single scalar mul-
tiplications separately and then add up the results. The first scalar multiplication
k · G takes a fixed and a-priori-known point as input, which can be efficiently
performed through the fixed-base comb method as described in [11, Section
3.3.2]. This single scalar multiplication requires roughly m/w point doublings

and m(2w−1)
w·2w point additions when using 2w − 1 pre-computed points, where w

is the window size. The second scalar multiplication, l ·Q, is performed with an
arbitrary base point Q not known in advance. When using a binary method, this
arbitrary-base scalar multiplication requires to execute m point doublings and
m/2 point additions in average. In total, the double-base scalar multiplication

requires roughly m+m/w point doublings and m/2 + m(2w−1)
w·2w point additions.

Interleaving Method. A method to speed up the computation of k ·G+ l ·Q is
to perform them in a simultaneous (or interleaved) fashion by using a technique
known as Shamir’s Trick [11, p. 109]. This method first computes the sum of
G and Q, i.e. S = G+Q. Then, the scalars k and l are scanned from the most
significant bit downward in a simultaneous way. Using this method, the number
of point doubling can be reduced, so that a double-base scalar multiplication
requires roughly m point doublings and 3m/4 point additions on average.

VLSI Implementation of Double-Base Scalar Multiplication 9

Joint Sparse Form. Solinas [31] proposed a joint sparse form (JSF) represen-
tation of a pair of integers, which has the minimal joint Hamming weight. This
representation can thus be used to speed up double-base scalar multiplication
k ·G+l ·Q by pre-computing S = G+Q and D = G−Q. When taking advantage
of JSF representation for the scalars k and l, a double-base scalar multiplication
performed in an interleaved fashion requires roughly m point doublings and m/2
point additions (resp. subtractions) [11, Section 3.3.3].

(Sliding) Window Method. Another approach to reduce the number of point
additions in a double-base scalar multiplication is to use a window method. Given
the fixed window width w, a double-scalar multiplication first generates a look-
up table with points i ·G+j ·Q for all i, j ∈ [0, 2w−1], and then scans w columns
of the scalars k and l. This method requires storage of 22w−1 points and then a
double scalar multiplication can be performed with roughly (m/w− 1) ·w point

doublings and m(22w−1)
w·22w − 1 point additions. The window method can be further

improved by using a “sliding” window; in this case, only 22w − 22(w−1) points
are actually needed for the look-up table, and the number of point additions is
reduced to m

w+(1/3) [11].

Double-Base Scalar Multiplication with Endomorphism

A maximum of m point doublings can be saved for a double-base scalar multipli-
cation when using the above described approaches. In the following, we present
a strategy to further reduce the number of point doublings by some 50% using
an efficiently computable endomorphism.

The main idea is to compute a double-base scalar multiplication, i.e., k ·G+
l ·Q, through four simultaneous scalar multiplications k1 ·G, k2 ·φ(G), l1 ·Q and
l2 · φ(Q), where k1, k2, l1 and l2 are roughly m/2 bits long. Algorithm 1 shows
the computation of double-base scalar multiplication exploiting an efficiently-
computable endomorphism. We first split the scalar k into two parts k1 and k2
using [11, Algorithm 3.74], where k1 and k2 have roughly half of the bitlength of
k; the second scalar l can be decomposed into l1 and l2 in the same way. Then,
we calculate the points φ(G) and φ(Q) from G and Q by using the formula in
Section 2, which requires one inversion and a few multiplications. After that,
we generate the look-up table with 15 points (line 4). Finally, the four scalar
multiplications k1 ·G+k2 ·φ(G) + l1 ·Q+ l2 ·φ(Q) is performed simultaneously,
i.e. in an interleaved fashion. A double-base scalar multiplication using Algorithm
1 requires approximately m/2 point doubling and 15m/32 + 11 point additions
including the overhead for the generation of the look-up table.

5 Hardware Architecture and Implementation

As mentioned earlier, we adopt a pseudo-Mersenne prime of the form p = 2k− c
for our implementation, where c is chosen to fit into one word of the target

10 H. Wang et al.

Algorithm 1. Double-base scalar multiplication using an endomorphism

Input: Two m-bit scalars k and l, the fixed base point G and an arbitrary point Q on
the curve E(Fp) with endomorphism.

Output: Double-base scalar multiplication k ·G+ l ·Q.
1: Use [11, Algorithm 3.74] to find (k1; k2) of k and (l1; l2) of l.
2: Compute φ(G), φ(Q) using G and Q.
3: G = (k1 > 0)?G : −G; φ(G) = (k2 > 0)?φ(G) : −φ(G); Q = (l1 > 0)?Q : −Q;
φ(Q) = (l2 > 0)?φ(Q) : −φ(Q);

4: Generate look-up table T with 15 points such that T [i− 1] = [(i� 3)&1] · φ(Q) +
[(i� 2)&1] ·Q+ [(i� 1)&1] · φ(G) + (i&1) ·G for 1 ≤ i ≤ 15.

5: Let k1 = |k1|, k2 = |k2| , l1 = |l1|, l2 = |l2| and h = max{k1, k2, l1, l2}.
6: R =∞.
7: for i from h by 1 down to 0 do
8: R← 2R;
9: s← 8 · l2i + 4 · l1i + 2 · k2i + k1i;

10: if s > 0 then
11: R← R+ T [s− 1].
12: end if
13: end for
14: return R.

platform (i.e. c can be at most 16 bits in our case since we use a 16-bit datapath).
The basic idea of fast reduction using a pseudo-Mersenne prime is to apply
the congruence relation 2k ≡ c mod p repetitively during the reduction process.
Suppose z = zH2k + zL is a 2k-bit integer, such as obtained as result of a
multiplication of two k-bit integers. We can reduce z with respect to p as follows

z = zH2n + zL mod p ≡ zHc+ zL mod p (10)

Now z is already only slightly longer than k bits since c is small. To complete
the reduction z mod p, we perform the multiplication by c in the same way and
then at most one subtraction of p is needed to get a result that is at most k bits
long. Our implementation uses the pseudo-Mersenne prime p = 2207 − 5131.

Notation. We use the following notation in this paper:

– n: the operand size (i.e. n = 207).
– w: the word size of the underlying processor (i.e. w = 16).
– m: bitlength of the scalar, i.e. the bitlength of the order of the generator G.
– A, B: two operands; A[i : j] represents bits at position i to j of operand A.
– R: product A ·B, which is twice long as operand A or B.

Our implementation adopts the idea of incomplete modular reduction as
discussed, for example, in [33], which means the arithmetic functions described
in the following subsections do not not necessarily reduce the result to an integer
in the range of [0, p − 1], but only ensure that the result is smaller than 2n so
that it fits into n/w words. Also, all arithmetic functions accept incompletely
reduced inputs of n/w words.

VLSI Implementation of Double-Base Scalar Multiplication 11

Note that all arithmetic operations (except the Montgomery inverse5) we
discuss in the following can be easily implemented in a highly regular fashion so
that their execution time is completely independent of the actual value of the
operands. Such constant execution time helps to thwart certain implementation
attacks like timing analysis. Even though signature verification does not involve
any secret values (and can, therefore, not leak any secrets), it still makes sense
to implement the underlying field arithmetic in a regular way so that it can also
be used for signature generation.

5.1 Modular Multiplication and Squaring

The modular multiplication is performed in three basic steps as shown in Al-
gorithm 2. First, a conventional multi-precision multiplication is performed in a
word-wise fashion based on the product-scanning technique as described in e.g.
[11]. Then, we multiply the most significant 209 bits of the product by c and add
the result to least significant 207 bits, which yields a result of (at most) 226 bits
length. Finally, we multiply the most significant 19 bits by c and add the product
to least significant 207 bits; the result is now at most 208 bits and, therefore, fits
into m words. In order to achieve constant execution time, we always execute
both reduction steps, even when the result is already fully reduced after the first
step.

Algorithm 2. Modular multiplication for p = 2207 − c
Input: Two integers A[207 : 0], B[207 : 0], and modulus p
Output: R = A ·B mod p
1: R = A ·B
2: R = R[415 : 207] · c+R[206 : 0] {The 1st reduction}
3: R = R[225 : 207] · c+R[206 : 0] {The 2nd reduction}

A modular squaring can be done more efficiently thanks to the symmetry of
partial products. Thus, it is possible to save the computation of (nearly) half of
the partial products.

5.2 Modular Inversion

Modular inversion is the most time-consuming field arithmetic operation. Tradi-
tionally, the Extended Euclidean Algorithm (EEA) [11], Fermat’s technique [11],
and the Montgomery modular inversion algorithm [15, 28] are used to compute
an inverse. Our inversion is mainly based on the Montgomery modular inverse,
but has been optimized for the pseudo-Mersenne prime p = 2n − c.
5 The scalar multiplication performed in a signature generation process requires a

constant-time inversion for the projective-to-affine conversion, which can be imple-
mented based on Fermat’s theorem as described in the appendix.

12 H. Wang et al.

Algorithm 3. Optimized Montgomery Modular Inversion for 2n − c
Input: a ∈ [1, 2n) and is odd, p > 2 is a n bits prime, precomputed T = 2(−2n) mod p;
Output: R ∈ [1, 2n), where R = a−1 mod p
1: //Phase I
2: u = −p, v = a, r = 0, s = 1, k = 0
3: while (1) do
4: x = u+ v {Both u and v are always odd number}
5: y = r + s
6: tlzx = DET (x) {Trailing zero detection}
7: if x == 0 then
8: break;
9: else if x < 0 then

10: u = x >> tlzx {Right-shift operation can be done in parallel with u+ v}
11: r = y
12: s = s << tlzx {Left-shift operation can be done in parallel with r + s}
13: else
14: v = x >> tlzx
15: s = y
16: r = r << tlzx
17: end if
18: k = k + tlzx
19: end while
20: //phase II
21: s = s · 2(2n−k) mod p
22: s = s · T mod p
23: return R = s

As shown in Algorithm 3, our inversion consists of phases; phase I and phase
II. In phase I, we firstly perform two additions, and then update the variables
{u, v, r, s, k} according to the sign flag of x. The trailing zero detection (DET)
and right-shift operation x >> tlzx can be done in parallel with the addition
of u + v. Furthermore, the left-shift operation of s << tlzx and r << tlzx can
be done in parallel with the addition of y = r + s. In phase II, we perform two
ordinary multiplications to get the modular inverse. The input a is set to be odd,
but even if initially a is even, it can be easily changed to be odd via a modular
subtraction p− a. The core idea behind our optimized inversion is to remove all
trailing zeros of (u + v) in every iteration, which keeps u and v always odd so
that (u+ v) converges to zero quickly.

Compared to the Multibit Shifting method proposed by Savaş et al in [29],
we remove all those iterations for shift operation (i.e. the iterations when u or v
is even in [15, Algorithm MONTINVER]) and adopt the idea from [21] to avoid
a complex comparison step by using the sign flag of x. More specifically, the
number of total iterations in Phase I of [15] is in the range of [n, 2n], with 50%
shift operations inside. For comparison, the number of iterations of our algorithm
is in the range of [0.5n, n] since no such shift-operation iterations are required.
Furthermore, the optimized inversion can be even faster if we keep track of the

VLSI Implementation of Double-Base Scalar Multiplication 13

length of variables {u, v, r, s} to save cycles for addition, since the word lengths
decrease linearly with the number of iterations.

5.3 Modular Addition and Subtraction

An addition modulo p = 2207 − c can be performed in three steps. First, a
conventional multi-precision addition R = A + B is performed in a word-wise
fashion. Then, for reduction, we reduce the 209-bit result to 208 bits by using
Equation (11). To ensure constant execution time, we perform the addition step
and the reduction step for all possible inputs, even if no reduction is required.

R = R[209 : 207] · 2207 +R[206 : 0] mod p = R[209 : 207] · c+R[206 : 0] (11)

For modular subtraction, a conventional multi-precision subtraction R = A−B
is performed through word-wise subtract-with-borrow operations. As the 208-
bit input B can be bigger than 2p, the result of the subtraction may be smaller
than −2p and, thus, up to two addition steps will be needed. As shown in Equa-
tion (12), the first addition step will guarantee that R > −p. If R is still negative,
another addition step as shown in Equation (13) will make R a positive number
in the range of [0, 2208). To ensure constant execution time, we perform one sub-
traction and two additions for all possible inputs, but when R is positive after
the subtraction, the words of the subtrahend with be masked out (i.e. set to 0)
so that the value of R does not change.

R = R+ 2p (12)

R = R+ p (13)

5.4 Hardware Architecture

Controller
Program

ROM

16*16
Mult

Add/Sub

SRAM1

SRAM2

F207 Coprocessor

MULT R3, R1, R2

ADD R4, R6, R2

MSQ R5, R1

SUB R4, R5, R3

...

Program

INV R4, R5

...

Fig. 1. Hardware architecture

14 H. Wang et al.

The hardware architecture, as shown in Fig 1, consists of a micro-controller,
a program ROM, an Fp-coprocessor, which we call Prime-Field Arithmetic Unit
(i.e. PFAU), and two dual ports SRAMs. The program ROM is used to command
sequences that execute high-level functions such as pre-computations, point ad-
dition, point doubling, etc. This section focuses on the ALU.

The architecture of the ALU and other important modules is shown in Fig-
ure 2, where one (16 × 16)-bit multiplier, one 3-input adder, a trailing-zero de-
tection module (tlz), a left-shifting module (lshifter), and a right-shifting
module (rshifter) are depicted. We decided to implement a 16-bit datapath
since previous research has shown that this allows one to achieve a good trade-off
between performance and silicon area. The ALU supports the word-level instruc-
tions needed for modular multiplication, modular squaring, modular inversion,
modular addition and modular subtraction. The critical path goes from the in-
put registers of the multiplier to the output registers of the adder. The input
from mult to the adder is 33 bits long due to the fact that we need to double
some partial products when performing a modular squaring.

The optimized modular inversion requires the tlz, lshifter, rshifter mod-
ules. Using the implementation technique from [23], the tlz module can output
the number of trailing zeros of a word (16 bits) in one clock cycle. To obtain
the trailing zeros in a 208-bit operand, we can perform a zero detection word
by word. If the number of trailing zeros exceeds one word, the detection process
will take more than one cycle, but the probability is only 2−16 that we have a
number with 16 trailing zeros (in fact, the probability is 2−15 in our case since x
is always even in Algorithm 3). The lshifter and rshifter receive the output
of tlz perform the corresponding number of shifts on the 16-bit number input.
As mentioned before, the shift operation in the modular inverse can be done in
parallel with the addition.

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Add

16 16

16
36

36

16*16 Mult

Q

Q
SET

CLR

D

33

rshifter tlz lshifter

1616 16

Fig. 2. ALU architecture

VLSI Implementation of Double-Base Scalar Multiplication 15

All operations except modular inversion are designed for constant time, which
also means worst-case calculation cycles. The execution time of modular inver-
sion are evaluated based on the average number of Phase I iterations, with two
additions per iteration and two modular multiplications in Phase II.

Microcode Based Architecture An alternative implementation option, which
allows one to significantly reduce the ALU area, is to adopt a microcode based
architecture, as mentioned in e.g. [13, 32, 24]. The ALU described in these works
only supports word-size operations, such as 16 bits addition, subtraction, multi-
plication, NOT, AND, OR and XOR. When following this approach, a microcode
represents a sequence of commands sent to the ALU to perform certain oper-
ations such as modular multiplication, modular addition, etc. Every operation
corresponds to a sequence of commands, which will be stored in ROM. Thus,
complex control logic for the field arithmetic, which is needed in the case of a
hardwired in ALU, is mitigated to an upper software layer, which finally ends up
in more ROM area for microcode storage. Considering that the size of ROM can
be well optimized, this method can result in an overall area saving, but at the
expense of a certain performance loss because due to inefficiency. Taking [13] as
an example, the described implementation needs at least 32 clock cycles to per-
form a 192-bit modular addition, without considering constant execution time.
In summary, if one is willing to sacrifice some speed for a less complex ALU,
then a microcode-based architecture may be an excellent option. According to
our experiments, we could reduce the ALU area by roughly 30% when following
a microcode approach.

6 Implementation Results

We implemented the arithmetic processor in Verilog and synthesized it with
Design Compiler 2013.12 using the UMC 0.13µ 1P8M Low Leakage Standard
cell Library with typical values (i.e. voltage of 1.2V and temperature of 25◦C).
The area (in gate equivalents, GE) after placement and routing is calculated
by dividing the overall area by the area of a single two-input NAND gate. The
design has been synthesized for a clock frequency of 50MHz, which is more than
sufficient for common IoT devices such as FRID tags or sensor nodes.

6.1 Execution Time of Field Arithmetic

As mentioned in the previous section, we implemented the multiplication, squar-
ing, addition and subtraction to have constant execution time. Table 1 summa-
rizes the execution times of the five basic arithmetic operations modulo the prime
2207 − 5131. The modular addition takes exactly 30 cycles, which is faster than
the modular subtraction. Our constant-time modular multiplication executes in
exactly 192 cycles, whereas the modular squaring has an execution time of 120
clock cycles, which means the squaring requires merely 60% of the multiplication

16 H. Wang et al.

cycles. Thanks to the optimized Montgomery modular inversion proposed in Al-
gorithm 3, our inversion requires 4452 clock cycles in average, which corresponds
to only 23 multiplications.

Table 1. Execution time of field arithmetic operation using 16 × 16 multiplier over
p = 2207 − 5131 (in clock cycles)

Operation Mul Sqr Inv Add Sub

This work 198 120 4452 30 43

6.2 Trade-offs between Performance and Memory

Table 2 reports the execution time and RAM requirements of double-base scalar
multiplication for several different approaches as outlined in Section 4, as well as
a combination of endomorphism and window method. Compared to the imple-
mentation using (1), a double-base scalar multiplication using a combination of
(1) and (2) requires the same number of point doubling while it saves approxi-
mately 1/4 of the point additions. The number of point additions can be further
reduced by using a combination of (1) and (3) with a look-up table of 22w − 1
points. Taking the window width w = 2 as an example, one can save roughly
1/16 of the point additions compared to the implementation with a combination
of (1) and (2). In relation to a combination of (1) and (3), the number of point
doublings can be further reduced by some 50% using the technique of (4) with
the same RAM occupation. A small number of point additions may potentially
be saved by using a combination of (3) + (4). However, one has to consider that
the look-up table will increase exponentially and a combination of (3) and (4)
is only able to save point additions when n is big enough. For example, given
w = 2, a double-base scalar multiplication using a combination of (3) and (4)
requires a look-up table of 255 points and even requires more point doublings
and point additions. Taking both performance and RAM requirements into ac-
count, the technique (4) (i.e. endomorphism) is the best choice to speed up the
double-base scalar multiplication on resource-constraint platforms.

6.3 High-Speed Version vs Memory-Efficient Version

A double-base scalar multiplication k ·G+l ·Q using endomorphism φ requires to
compute four simultaneous scalar multiplications of the form k1 ·G+k2 ·φ(G)+
l1 · Q + l2 · φ(Q). In order to analyze the trade-offs between performance and
RAM requirements in more detail, we study two implementations; the first one is
optimized for performance, while the second is optimized for low RAM footprint.
We describe the details of these implementations using the curve −x2 + y2 =
1 + x2y2 over p = 2207 − 5131 as follows.

VLSI Implementation of Double-Base Scalar Multiplication 17

Table 2. Comparison of execution time (including the generation of look-up table) and
RAM requirements of double-base scalar multiplication using different approaches.

Method Storage Pnt Dbl Pnt Add

(1) 3 m 1 + 3m/4

(1) + (2) 4 m 2 +m/2

(1) + (3) 22w − 1 (22(w−1) − 2w−1) +m− w (3 · 22(w−1) − 2w−1 − 1) + m·22w−1
w·22w

(4) 24 − 1 m/2− 1 11 + 15m
32

(3) + (4) 24w − 1 (24(w−1) − 2w−1) +m/2− w (15 · 24(w−1) + 2w−1 − 5) + m·(24w−1)

2w·24w

(1): Interleaved; (2): JSF; (3): Window; (4): Endomorphism.

Speed-Optimized. The speed-optimized implementation requires a look-up
table containing 15 points, of which 11 points (except G, Q, φ(G) and φ(Q))
will be generated by a sequence of point additions. In order to take the advan-
tage of the efficient point addition formula on a twisted Edwards curve (i.e. the
7M mixed addition formulae based on [12]), we store these points in extended
affine coordinate of the form (U, V,W), where U = (x + y)/2, V = (y − x)/2,
W = xy (in our case d = 1). A straightforward method to get the affine form of
these points would require 11 inversions. For reducing the number of inversions,
we perform the 11 inversions in a simultaneous way based on the observation
that 1/x = y(1/xy) and 1/y = x(1/xy) [11, page 44]. With the help of three
temporary variables, the 11 inversions can be computed by only one inversion
and 83 multiplications. Given an affine point, the extended affine coordinates
(U, V,W) can be obtained by performing one addition, one subtraction and one
multiplication. In the main loop, a pre-computed point in extended affine coor-
dinates will be used as operand in each iteration (i.e. line 7-13 of Algorithm 1).
As a result, our speed-optimized double-base scalar multiplication requires an
execution time of 365,082 clock cycles with a RAM footprint of 1612 bytes.

For comparison, a double-base scalar multiplication without exploiting the
endomorphism (i.e. using just the straightforward simultaneous approach along
with a JSF representation of the scalars) has a execution time of 454179 cycles,
i.e. using the endomorphism yields a speed-up of roughly 20%.

Memory-Optimized. A look-up table with 15 extended affine points requires
has a RAM consumption of 45 field elements in total. Instead of generating a
look-up table with extended affine points, the memory-optimized implementa-
tion generates a look-up table with standard affine x, y coordinates in order
to reduce RAM requirements. In the process of look-up table generation, we
adopt the point addition formula with Z1 = 1 and Z2 = 1 [12, Section 3.1]
and directly convert the projective representation into standard affine represen-
tation for each point. In total, the look-up table generation requires 11 point
additions, 11 inversions and 22 multiplications. On the other hand, in the main
loop of double-base scalar multiplication, we still use the efficient point addition
formula for twisted Edwards curve (i.e. the 7M mixed addition formulae based

18 H. Wang et al.

on [12]). Thus, we compute the extended affine representation of an affine point
on-the-fly, which requires one multiplication, one addition and one subtraction
for each iteration. As a consequence, our memory-optimized double-base scalar
multiplication requires an execution time of 415,392 clock cycles with a RAM
consumption of only 1222 bytes, which corresponds to a saving of 33% for the
look-up table (780 instead of 1170 bytes) and 24% in total (i.e. 1222 instead of
1612 bytes), by sacrificing only about 12.1% of performance.

6.4 Comparison with Other Implementations

Table 3. Comparison of execution time, area and RAM consumption with related
work over prime fields. Most of the work used a 16-bit datapath.

Time (Cycles)
Implementations Order

Sig. Ver.
ALU (GEs) SRAM (Bytes)

Chen et al [4] 256 562K 1124K1 n.a. n.a.

Lai et al [17]2 176 93, 399 186, 7981 n.a. n.a.

Lai et al [17]2 256 252, 067 504, 1341 n.a. n.a.

Satoh et al [27] 192 1, 362, 906 2, 725, 8121 9, 456 n.a.

Satoh et al [27] 224 2, 048, 166 4, 096, 3321 10, 800 n.a.

Furbass et al [8]3 192 502K 1004K1 21, 769 n.a.

Hutter et al [13]3 192 859, 188 1, 718, 3761 2, 3714 256

Wenger et al [32] 192 1377K 2645K 4, 3544 422

Plos et al [24] 192 863, 109 1, 726, 2181 3, 6084 256

This work5 (HS) 204 182, 653 365, 082 5, 821 1, 612

This work5(ME) 204 182, 653 415, 392 5, 821 1, 222
1: Estimated results from the execution time of signature implementation.
2: Four 32 bits multipliers used.
3: 0.35µm technology library used.
4: Microcode based architecture used, more ROM are required.
5: Execution time of fixed-base scalar multiplication (for signature generation) and
double-base scalar multiplication (for verification).

Table 3 shows our implementation results and a comparison with related
work over prime fields. All related implementations (except Lai et al [17]) used a
16-bit datapath as in our work. We perform the fixed-base scalar multiplication
(needed for signature generation) on the chosen twisted Edwards curve using a
constant-time comb method with w = 4 as described in [18]). Note that signa-
ture generation requires a constant-time inversion, which we compute on basis
of Fermat’s theorem with an addition chain that can be evaluated by only 206
modular squarings and 14 modular multiplications (listed in the appendix). Our
implementation requires an execution time of 182, 653 and 365, 082 clock cycles
for (constant-time) scalar multiplication and speed-optimized double-base scalar
implementation, respectively, and consumes an area of 5821 GEs. On the other

VLSI Implementation of Double-Base Scalar Multiplication 19

hand, the memory-oriented implementation needs 415, 392 clock cycles, while
consuming only 1.2 kB of RAM. Since most of the previous implementations
only reported the execution time of signature generation, we estimate the cycle
count of verification (i.e. double-base scalar multiplication) by simply multiply-
ing the generation time by two. As shown in the Table 3, our implementation is
at least three times faster than all the previous works using the same word size.
In terms of area, the implementations from [27] and [17] support both prime
and binary field arithmetic and, thus, have a large area. On the other hand,
the authors of [13, 32, 24] optimized their implementation with the help of a
microcode-programmable structure (for field arithmetic) and, thus, their imple-
mentations require extra instruction decoding modules and have higher ROM
consumption in order to save area in the control logic. Our implementation does
not include the area for SRAM since it varies for different process technologies
and depends significantly on whether one has a RAM generator available or
not. Besides, the needed SRAM may come from shared memory and just be
temperately occupied during signature generation or verification.

7 Conclusions

In this work, we first introduced a special twisted Edwards curve with an ef-
ficiently computable endomorphism and described how said endomorphism be
exploited to speed up double-base scalar multiplication. As second contribution,
we presented an area-optimized VLSI design of PFAU, an arithmetic unit fea-
turing a (16 × 16)-bit multiplier that has an overall silicon area of 5821 gates
when synthesized with a 0.13µ standard-cell library. Our PFAU can be clocked
with a frequency of up to 50 MHz and is capable to perform a constant-time
multiplication in a 207-bit prime field in only 198 clock cycles. We used PFAU
as a vehicle to explore different trade-offs between memory and execution time,
whereby we used the twisted Edwards curve −x2 + y2 = 1 + x2y2 over the 207-
bit prime field Fp with p = 2207 − 5131 as case study. In a speed-optimized
setting, our implementation requires an execution time of 182, 653 and 365, 082
clock cycles for constant-time fixed-base scalar multiplication and double-base
scalar multiplication, respectively. In addition, we showed that our curve sup-
ports various trade-offs between execution time and memory requirements, which
gives a designer plenty options to optimize double-base scalar multiplication for
different requirements.

References

1. D. J. Bernstein, P. Birkner, M. Joye, T. Lange, and C. Peters. Twisted Edwards
curves. In S. Vaudenay, editor, Progress in Cryptology — AFRICACRYPT 2008,
volume 5023 of Lecture Notes in Computer Science, pages 389–405. Springer Ver-
lag, 2008.

2. D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y. Yang. High-speed
high-security signatures. Journal of Cryptographic Engineering, 2(2):77–89, Sept.
2012.

20 H. Wang et al.

3. S. Blake-Wilson, N. Bolyard, V. Gupta, C. Hawk, and B. Möller. Elliptic Curve
Cryptography (ECC) Cipher Suites for Transport Layer Security (TLS). Internet
Engineering Task Force, Network Working Group, RFC 4492, May 2006.

4. G. Chen, G. Bai, and H. Chen. A high-performance elliptic curve cryptographic
processor for general curves over GF(p) based on a systolic arithmetic unit. IEEE
Transactions on Circuits and Systems II: Express Briefs, 54(5):412–416, 2007.

5. D. A. Cox. Primes of the Form x2 + ny2. John Wiley & Sons, 1989.
6. T. Dierks and E. K. Rescorla. The Transport Layer Security (TLS) Protocol

Version 1.2. Internet Engineering Task Force, Network Working Group, RFC 5246,
Aug. 2008.

7. A. Faz-Hernández, P. Longa, and A. H. Sánchez. Efficient and secure algorithms for
GLV-based scalar multiplication and their implementation on GLV-GLS curves. In
J. Benaloh, editor, Topics in Cryptology — CT-RSA 2014, volume 8366 of Lecture
Notes in Computer Science, pages 1–27. Springer Verlag, 2014.

8. F. Furbass and J. Wolkerstorfer. ECC processor with low die size for RFID ap-
plications. In IEEE International Symposium on Circuits and Systems (ISCAS
2007), pages 1835–1838. IEEE, 2007.

9. S. D. Galbraith, X. Lin, and M. Scott. Endomorphisms for faster elliptic curve
cryptography on a large class of curves. In A. Joux, editor, Advances in Cryptology
— EUROCRYPT 2009, volume 5479 of Lecture Notes in Computer Science, pages
518–535. Springer Verlag, 2009.

10. R. P. Gallant, R. J. Lambert, and S. A. Vanstone. Faster point multiplication
on elliptic curves with efficient endomorphism. In J. Kilian, editor, Advances in
Cryptology — CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science,
pages 190–200. Springer Verlag, 2001.

11. D. R. Hankerson, A. J. Menezes, and S. A. Vanstone. Guide to Elliptic Curve
Cryptography. Springer Verlag, 2004.

12. H. Hişil, K. K.-H. Wong, G. Carter, and E. Dawson. Twisted Edwards curves
revisited. In J. Pieprzyk, editor, Advances in Cryptology — ASIACRYPT 2008,
volume 5350 of Lecture Notes in Computer Science, pages 326–343. Springer Ver-
lag, 2008.

13. M. Hutter, M. Feldhofer, and T. Plos. An ECDSA processor for RFID authen-
tication. In Radio Frequency Identification: Security and Privacy Issues, pages
189–202. Springer, 2010.

14. D. Johnson, A. J. Menezes, and S. A. Vanstone. The elliptic curve digital signature
algorithm (ECDSA). International Journal of Information Security, 1(1):36–63,
July 2001.

15. B. S. Kaliski. The Montgomery inverse and its applications. IEEE Transactions
on Computers, 44(8):1064–1065, 1995.

16. S. L. Keoh, S. S. Kumar, and H. Tschofenig. Securing the Internet of things: A
standardization perspective. IEEE Internet of Things Journal, 1(3):265–275, June
2014.

17. J.-Y. Lai and C.-T. Huang. A highly efficient cipher processor for dual-field elliptic
curve cryptography. IEEE Transactions on Circuits and Systems II: Express Briefs,
56(5):394–398, 2009.

18. Z. Liu, E. Wenger, and J. Großschädl. MoTE-ECC: Energy-scalable elliptic curve
cryptography for wireless sensor networks. In I. Boureanu, P. Owezarski, and
S. Vaudenay, editors, Applied Cryptography and Network Security — ACNS 2014,
volume 8479 of Lecture Notes in Computer Science, pages 361–379. Springer Ver-
lag, 2014.

VLSI Implementation of Double-Base Scalar Multiplication 21

19. P. Longa and C. H. Gebotys. Efficient techniques for high-speed elliptic curve
cryptography. In S. Mangard and F.-X. Standaert, editors, Cryptographic Hardware
and Embedded Systems — CHES 2010, volume 6225 of Lecture Notes in Computer
Science, pages 80–94. Springer Verlag, 2010.

20. P. Longa and F. Sica. Four-dimensional Gallant-Lambert-Vanstone scalar multipli-
cation. In X. Wang and K. Sako, editors, Advances in Cryptology — ASIACRYPT
2012, volume 7658 of Lecture Notes in Computer Science, pages 719–739. Springer
Verlag, 2012.

21. R. Lórencz and J. Hlaváč. Subtraction-free almost Montgomery inverse algorithm.
Information Processing Letters, 94(1):11–14, 2005.

22. National Institute of Standards and Technology (NIST). Digital Signature Stan-
dard (DSS). FIPS Publication 186-4, available for download at http://nvlpubs.

nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf, July 2013.
23. V. G. Oklobdzija. An algorithmic and novel design of a leading zero detector

circuit: Comparison with logic synthesis. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 2(1):124–128, 1994.

24. T. Plos, M. Hutter, M. Feldhofer, M. Stiglic, and F. Cavaliere. Security-enabled
near-field communication tag with flexible architecture supporting asymmetric
cryptography. IEEE Transactions on Very Large Scale Integration (VLSI) Sys-
tems, 21(11):1965–1974, 2013.

25. E. K. Rescorla and N. G. Modadugu. Datagram Transport Layer Security Version
1.2. Internet Engineering Task Force, Network Working Group, RFC 6347, Jan.
2012.

26. R. L. Rivest, A. Shamir, and L. M. Adleman. A method for obtaining digital
signatures and public key cryptosystems. Communications of the ACM, 21(2):120–
126, Feb. 1978.

27. A. Satoh and K. Takano. A scalable dual-field elliptic curve cryptographic proces-
sor. IEEE Transactions on Computers, 52(4):449–460, 2003.

28. E. Savaş. The Montgomery modular inverse—Revisited. IEEE Transactions on
Computers, 49(7):763–766, 2000.

29. E. Savaş, M. Naseer, A.-A. Gutub, and Ç. K. Koç. Efficient unified Montgomery in-
version with multibit shifting. IEE Proceedings–Computers and Digital Techniques,
152(4):489–498, 2005.

30. N. P. Smart, editor. ECRYPT II Yearly Report on Algorithms and Keysizes (2011-
2012). European Network of Excellence in Cryptology (ECRYPT II), Sept. 2012.
Deliverable D.SPA.20, available for download at http://www.ecrypt.eu.org/

documents/D.SPA.20.pdf.
31. J. A. Solinas. Low-weight binary representations for pairs of integers. Techni-

cal Report CORR 2001-41, Centre for Applied Cryptographic Research (CACR),
University of Waterloo, Waterloo, Canada, 2001.

32. E. Wenger, M. Feldhofer, and N. Felber. Low-resource hardware design of an elliptic
curve processor for contactless devices. In Information Security Applications, pages
92–106. Springer, 2011.

33. T. Yanık, E. Savaş, and Ç. K. Koç. Incomplete reduction in modular arithmetic.
IEE Proceedings – Computers and Digital Techniques, 149(2):46–52, Mar. 2002.

A Constant-time Inversion over p = 2207 − 5131

The constant time inversion modulo p = 2207 − 5131 can be evaluated via only
206 modular squarings and 14 modular multiplications. One can compute a =

22 H. Wang et al.

z−1 ≡ z2
207−5133 mod p by the following steps (where the annotations after the

denote the value of the exponent and the cost in each step).

z3 ← z2 · z # 3, 1S + 1M

z6 ← z2
1

3 # 6, 1S

z15 ← z2
1

6 · z3 # 15, 1S + 1M

z31 ← z2
1

15 · z # 25 − 1, 1S + 1M

t0 ← z2
4

31 # 29 − 24, 4S

t1 ← t2
4

0 · z15 # 29 − 1, 1M

t2 ← t2
9

1 # 218 − 29, 9S

t3 ← t2 · t1 # 218 − 1, 1M

t4 ← t2
5

3 · z31 # 223 − 1, 5S + 1M

t5 ← t2
23

4 · t4 # 246 − 1, 23S + 1M

t6 ← t2
46

5 · t5 # 292 − 1, 46S + 1M

t7 ← t2
92

6 · t6 # 2184 − 1, 92S + 1M

t8 ← (t2
14

7 · z15 · z6)2
4

(2198 − 214 + 21) · 24, 18S + 2M

t9 ← (t8 · t2)2
5

· t0 · z3 # 2207 − 5133, 5S + 3M

