
Complementing Feistel Ciphers?

Alex Biryukov1 and Ivica Nikolić2

1 University of Luxembourg
2 Nanyang Technological University, Singapore
alex.biryukov@uni.lu inikolic@ntu.edu.sg

Abstract. In this paper, we propose related-key differential distinguish-
ers based on the complementation property of Feistel ciphers. We show
that with relaxed requirements on the complementation, i.e. the prop-
erty does not have to hold for all keys and the complementation does
not have to be on all bits, one can obtain a variety of distinguishers. We
formulate criteria sufficient for attacks based on the complementation
property. To stress the importance of our findings we provide analysis of
the full-round primitives:
– For the hash mode of Camellia-128 without FL, FL−1 layers, dif-

ferential multicollisions with 2112 time
– For GOST, practical recovery of the full key with 31 related keys

and 238 time/data

Key words: Complementation, Feistel, Camellia, GOST

1 Introduction

It is a well established fact that the effective key size of DES[9] is 55 instead
of 56 bits. The reduction of one bit is due to the complementation property of
DES, i.e. by flipping all the bits in the key and in the plaintext, all the bits of
the ciphertext will flip as well. Hence in an exhaustive key search, one has to
try only half of the possible values for the key – the other complemented half
would produce related ciphertexts. This property applies to all Feistel ciphers
with round keys obtained as permutations of the master key bits/words, and
with a round function that starts with an XOR of a single round key.

The complementation property can be seen as a simple related-key distin-
guisher applicable to all of the keys and detectable with a single pair of plaintexts
and a corresponding pair of ciphertexts. The difference in the round keys, plain-
texts and the ciphertexts is always -1, i.e. it is in all of the bits. In this paper
we investigate the cases of ciphers with complementation properties applicable
not necessarily to all of the keys, but only to a subset i.e. weak-key class, and
with round key differences other than -1. We are aware of only one published
result that analyzes the complementation property – the work of Bouillaguet et
al.[3]. Even there the focus in not on the original property – the authors examine
the generalizations of the complementation property, and exploit self-similarity

? The paper has been published on Fast Software Encryption 2013.

of the rounds in the ciphers. Our work however targets exclusively the cases of
complementation and only Feistel ciphers.

The starting point of our analysis is the observation that if instead of the
requirement that the complementation property holds for all keys (as in the case
of DES), we can examine only a subset of keys for which it applies. This leads
to the problem of constructing a high probability differential in the key schedule
of the cipher. We give the conditions on the output difference in the differential
and obtain quite simple criteria for existence of related-key attacks based on
the complementation property. The importance of our findings is shown on the
example of two full-round Feistel ciphers: Camellia-128[1] and GOST[5]. We
analyze Camellia-128 without the non-linear layers FL,FL−1 and show how to
find a pair of keys that follow the low probability differential in the key schedule
constructed to exploit the complementation – this allows us to attack the hash
mode of this version of the cipher. Thus we obtain the first analysis on the full-
round Camellia without the FL,FL−1 in the hash mode – it requires around
2112 encryptions. Complementation property of GOST has been known (see [7,
4]), however all of the proposed key recovery attacks require impractical time
complexity. We show that if one uses several similar complementation properties,
an efficient key recovery attack on GOST exists. Our attack requires 31 related-
key pair, and only 238 time and data complexities to recover the full 256-bit key.
Thus we are able to perform the first experimental cryptanalysis of GOST on a
computer.

2 Complementation Property of Feistel Constructions

The complementation property was first observed in DES. It is based on the
observation that if one flips all of the bits of the master key and the plaintext,
then all of the bits of the ciphertext will flip as well. The foundation of these
observations for Feistel ciphers is given below. Without loss of generality we
assume that the Feistel is balanced as the case for unbalanced Feistels can be
examined similarly.

A balanced Feistel with r rounds is defined as:

Ln+1 = F (Ln,Kn)⊕Rn
Rn+1 = Ln,

where Kn is the n-th round key, P = L0||R0 is the plaintext, and C = Lr||Rr
is the ciphertext. In the vast majority of Feistel ciphers, the round function
F (L,K) can be decomposed as3:

F (L,K) = G(L⊕K),

3 The round function of DES does not strictly follow this definition due to the expan-
sion of the initial input from 32 bits to 48 bits, nonetheless our reasoning can still
be applied to DES.

2

i.e. first the round key is bitwise added to the state L, followed by some additional
non-linear and linear transformations (G is usually a Substitution-Permutation
network). We use the term classical Feistels for the ciphers that have such an F
function.

Let KS(K) be the key schedule function of the cipher, i.e. given the master
key K, the function produces Ki, i = 1, . . . , r round keys:

KS(K) = (K1, . . . ,Kr)

Further assume that all of the round keys Ki are obtained by (possibly different)
bit permutations of the master key K (as in the case of DES). If one has two
related master keys K1,K2 such that K1 ⊕K2 = −1 (with −1 we denote the
difference in all of the bits) then the following holds for all i: K1

i ⊕ K2
i = −1.

Let P 1, P 2 be two related plaintexts such that P 1⊕P 2 = −1, i.e. L1
0⊕L2

0 = −1
and R1

0 ⊕R2
0 = −1. Then by induction for each i we get:

L1
i+1 ⊕ L2

i+1 =F (L1
i ,K

1
i)⊕R1

i ⊕ F (L1
i ,K

1
i)⊕R1

i =

G(L1
i ⊕K1

i)⊕R1
i ⊕G(L1

i ⊕−1⊕K1
i ⊕−1)⊕R1

i = R1
i ⊕R2

i = −1

R1
i+1 ⊕R2

i+1 =L1
i ⊕ L2

i = −1

Therefore L1
r ⊕ L2

r = −1, R1
r ⊕R2

r = −1 and hence there is a difference in all of
the bits of the ciphertext.

The complementation property of such ciphers allows reduction of the key
space by one bit as for the brute force of the whole key space it is sufficient to
try only one half of all possible keys – the other half will produce a compliment
ciphertext under a compliment plaintext.

The complementation property can be observed for ciphers that not nec-
essarily have a key schedule composed of bit permutations. Notice, the only
requirement on the key schedule is to produce complemented round keys.

Lemma 1 (Classical Feistel complementation). Let for an n-bit classical
Feistel cipher EK(P) with k-bit keys and a key schedule KS(K) exist a differ-
ential with probability p for KS(K) with output difference in all of the bits in
all of the round keys, i.e.

∃∆ : KS(K ⊕∆)⊕KS(K)
p−→ (−1, . . . ,−1)

Then, if p > 2−k, distinguisher for a weak-key class of size p · 2k exists for the
cipher EK(P).

Proof. Once the difference in all of the round keys is -1, the complementation
property can be applied, i.e. the differential in the state holds with probability
1. Therefore if the attacker can build a differential with the input difference in
the master keys ∆, and output difference -1 in all of the round keys, then the
differential (−1, ∆) → (−1) for the cipher EK(P) holds with probability p. To
find the right key pair that follows the differential in the key schedule one has
to try around 1/p pairs of randomly chosen master keys with input difference

3

∆, therefore the size of this weak key class is 2k · p. For any cipher, to produce
a pair of complemented plaintexts that result in complemented ciphertexts, one
has to try around 2n pairs, however even when p < 2−n, a false positive (i.e.
a complementation pair of plaintexts-ciphertexts that indicate belonging of a
key to the weak-key class) can be easily detected by trying a few more pairs of
complementing plaintexts. �

Remark 1 The complementation property holds regardless of the number of
rounds in the cipher, by increasing the number of rounds one cannot expect to
get a better resistance against this type of attacks.

Remark 2 The additional key whitenings at the beginning and at the end of
the Feistel do not influence the attack complexities, but merely change the input
difference in the plaintext and the output difference in the ciphertext.

The requirement of having the difference -1 in all of the round keys can be
replaced with the requirement of having some difference ∆ which is not nec-
essarily -1. We call this property a partial complementation. Also, instead of a
single difference ∆ one can require two differences ∆1, ∆2 that alternate, i.e. the
first round key has ∆1, the second ∆2, the third ∆1, etc. – this is an alternating
complementation.

Lemma 2 (Classical Feistel partial alternating complementation). Let
for an n-bit classical Feistel cipher EK(P) with k-bit keys and a key schedule
KS(K) exist a differential with probability p for KS(K) with alternating differ-
ences in the round keys, i.e.

∃∆ : KS(K ⊕∆)⊕KS(K)
p−→ (∆1, ∆2, ∆1, ∆2, . . . ,∆1, ∆2)

Then, if p > 2−k, distinguisher for a weak-key class of size p · 2k exists for the
cipher EK(P).

Proof. We can follow the same logic as in the proof of Lemma 1 with one ex-
ception – the initial difference in the plaintext should be (∆1, ∆2). Then in each
round, in the XOR the difference from the round key (either ∆1 or ∆2) would
cancel the difference in the state. As they alternate with the same period of two
rounds, the XOR will always produce zero difference, hence the probability of
the differential in the state would be 1. Depending if the number of rounds is
even or odd, the difference in the ciphertext would be either (∆1, ∆2) for even
rounds, or (∆2, ∆1) for odd rounds. �

Remark 3 Lemma 2 is more general then Lemma 1, as the later is a particular
case of the former for ∆1 = ∆2 = −1.

The round function of some Feistel ciphers instead of an XOR applies mod-
ular addition of the round key, i.e. F (L,K) = G(L + K). We call this type
of ciphers, modular Feistels. The (complementary) differential in the state of a
modular Feistel not necessarily holds with probability 1 – the precise probability

4

depends on the differences in the round key Ki and the state word Li as well as
on the number of rounds.

An efficient algorithm for computing the differential probability of modular
addition was presented by Limpaa and Moriai in [8]. Our further analysis is
based on this algorithm, however, due to space constraints we would not provide
its description. Let (X)m be the m rightmost (least significant) bits of an n-bit
word X and let |X| be the Hamming weight, i.e. the number of bits with value
1, of the word X.

Lemma 3 (Modular Feistel alternating complementation4). Let for an
r-round n-bit modular Feistel cipher EK(P) with k-bit keys and a key sched-
ule KS(K) exist a differential with probability p for KS(K) with alternating
differences in the round keys, i.e.

∃∆ : KS(K ⊕∆)⊕KS(K)
p−→ (∆1, ∆2, ∆1, ∆2, . . . ,∆1, ∆2)

Then, if p·2−d r2 e(|(∆1)n−1|+|(∆2)n−1|) > 2−k and 2−d
r
2 e(|(∆1)n−1|+|(∆2)n−1|) > 2−n,

distinguisher for a weak-key class of size p · 2k exists for the cipher EK(P).

Proof. In modular ciphers, we have to compute the probability of the differential
in the state as well. As in r rounds, there are5 d r2e round keys with ∆1 difference,
and the same number of keys with difference ∆2, it is sufficient to find only
the probability of one round (with both ∆1 and ∆2). The differences from the
incoming round key and the state word should cancel, thus avoid any incoming
difference in the SP network of the round function. Hence, by Algorithm 2 of [8],
γ should be equal to zero, and the maximal probability of one round is reached
when the incoming differences in the round key Ki and the state word Li (or
in the notation from [8], α = β) are the same – in this case the probability of
modular addition is 2−|(∆1)n−1| or 2−|(∆2)n−1|. Taking into account the number
of rounds, one obtains the claimed probability. The second requirement in the
Lemma is to ensure that the probability of the differential in the state is not
bellow 2−n. �

The variations of the complementation property presented above are indeed
related-key differential distinguishers for ciphers. In both classical and modular
Feistels, the size of the weak-key class depends only on the probability of the
differential in the key schedule. However, to find and detect if a specific key
belongs to the weak-key class differs between these two families, as for classical
Feistels, the probability of the differential in the state is 1, whereas for modular
Feistels, this probability might be lower. Hence, in the case of former one has to
try around 2P different pairs of keys and encrypt one pair of plaintexts, while
in the case of modular Feistels, for each of the 2P pairs of related-key has to
encrypt 2Q pairs of plaintexts (2−P , 2−Q are the probabilities of the differential
in the key schedule and in the state).

4 One of our anonymous reviewers has informed us that a similar idea was used against
DESX in Kelsey et al. [6].

5 When r is odd, there are d r
2
e round keys with difference ∆1, and d r

2
e−1 round keys

with ∆2.

5

3 The Case of Camellia-128

In this section we show how to apply the complementation property (Lemma 1)
to Camellia-128[1] in the hash mode. We analyze the full-round Camellia-128
without the non-linear layers, i.e. we assume FL,FL−1 to be identity functions.

3.1 Description

Camellia is a classical Feistel cipher with a non-linear key schedule defined as
follows. The 128-bit master key KL is split into two keys L,R, i.e. KL = L||R
– both L and R are seen as 8-byte vectors. Further, these keys are fed to a
4-round Feistel-like transformation with an additional keys feedback after the
second round (see Fig.1). Formally, the key schedule can be described as:

L1||R1 = KL (1)

L2 = F (L1 ⊕Σ1)⊕R1; R2 = L1 (2)

L3 = F (L2 ⊕Σ2)⊕R2; R3 = L2 (3)

L3 = L3 ⊕ L1; R3 = R3 ⊕R1 (4)

L4 = F (L3 ⊕Σ3)⊕R3; R4 = L3 (5)

L5 = F (L4 ⊕Σ4)⊕R4; R5 = L4 (6)

KA = L5||R5 (7)

where Σi are word constants. In the sequel, we omit the addition of the constants
as they play no role in our analysis. The function F is an SP network, with the S-
layer defined as application of eight 8x8 S-boxes, and P-layer is a multiplication
of the eight-byte input with 8x8 byte matrix P . All the round keys Ki used in
the state are obtained from the two keys KL and KA with rotations on various
amounts, e.g. K4 = KL≪15,K15 = KA≪95, etc.

3.2 Complementing Camellia-128

From the description of Camellia-128 it follows that two different keys KL,KA

are used, the first key being also the only input to the key schedule. Since the
round keys are produced from these two keys with various rotations it follows
that the differences in KL,KA have to be invariant of rotations and thus -1.
Therefore, we need the differential∆KL → (∆KL, ∆KA) to be (−1)→ (−1,−1).

The easiest way to build such differential is by providing a differential trail,
i.e. besides specifying the input and output differences, fixing as well the inter-
mediate differences after each transformation in the key schedule. Note that from
the condition on the differential it follows that∆L1 = ∆R1 = ∆L5 = ∆R5 = −1,
i.e. each byte of these words has the fixed difference −1 (or ff in the hexadecimal
representation). Therefore, in the first and the fourth round of the key schedule,
the number of active bytes has to be maximal, i.e. eight active bytes will enter
the S-layer. It is tempting to go with a trail that has no active bytes (or one

6

s P

s P

L1 R1

L2 R2

s P

s P

L3 R3

L4 R4

L3 R3

L5 R5

S1

S2

S3

S4

F1

F2

F3

F4

L1

L2

L3

L4

-1 -1

-1 -1

Fig. 1. The key schedule of Camellia-128 with the (−1,−1) → (−1,−1) differential.
The gray values are the differences.

active byte) in both the second and third round, hence obtain a trail of the form
(we write only the round-by-round active bytes entering the F function):

8→ 0→ 0→ 8 or 8→ 1→ 1→ 8

However, these types of trails are not possible due to the matrix multiplication
P , i.e. P-layer. For example, if we require no active bytes in the second round,
then this means the output of the F function in the first round has canceled
with the -1 difference in R1, i.e. if we denote with ã = (a1, . . . , a8) the output
difference of the S-boxes in the function F of the first round, then the above
condition can be expressed as:

P · ã⊕ (−1) = 0⇒ ã = (0, 0, 0, 0,−1,−1,−1,−1)

The solution vector ã has difference only in 4 bytes out of 8, while all the bijective
S-boxes are active, i.e. we get a contradiction. Therefore, the second round of the
key schedule cannot have zero active bytes. A similar situation can be observed
when the second (or the third) round has only 1 active byte.

7

The above result suggests that the minimal number of active bytes in the key
schedule is 8+2+2+8 = 20. Theoretically, this can lead to a trail with probability
2−6·20 = 2−120 > 2−128 when all the active S-boxes hold with probability 2−6.
Due to the specific input and output differences in the active S-boxes in the
first and the fourth rounds, this is not achievable – the differential probability
of these S-boxes is 2−7. Therefore if we assume the differential is composed of a
single trail only, its probability would always be lower than 2−128.

Further we try to find the actual probability of the differential taking into
account all possible differential trails that compose it. All the trails can be di-
vided into two groups: trails that have the same path (i.e. they have the same
position of the active bytes, but different values for the differences), and trails
that have different path.

Let S̃i be a possible output difference of the S-layer at round i, and F̃i be
an output difference of the F function at round i. Note, both S̃i, F̃i are 8 byte
vectors – S̃i = (s1

i , . . . , s
8
i), F̃i = (f1

i , . . . , f
8
i). Also, let Fi be the actual output

of the F function at round i. We will use S(x) to denote the S-layer, and ∆Li to
denote the difference of the left state at round i, hence S(∆Li) = S̃i. From the
definition of the round function it holds F (∆Li) = P · S(∆Li) = P · S̃i = F̃i.

For S̃1, S̃2, S̃3, S̃3 the following conditions apply (see Fig.1):

– S̃1 is produced when -1 difference in L1 goes through the S-layer:

S̃1 = S(−1) (8)

– S̃2 is produced with an XOR of F̃1 and the difference -1 in R1, followed by
the S-layer:

S̃2 = S(F̃1 ⊕ (−1)) = S(P · S̃1 ⊕ (−1)) (9)

– S̃3 is produced with application of the S-layer to ∆L3:

S̃3 = S(∆L3)) = S(P · S̃2) (10)

Additionally, when F̃3 is XOR-ed to ∆R3, the output difference -1 is obtained
in R5:

F̃3 ⊕∆R3 = P · S̃3 ⊕ P · S̃1 = −1 (11)

– S̃4 is produced when -1 difference in R5 goes through the S-layer:

S̃4 = S(−1) (12)

Additionally, when F̃4 is XOR-ed to ∆L3, the output difference -1 is obtained
in L5:

F̃4 ⊕∆L3 = P · S̃4 ⊕ P · S̃2 = −1 (13)

The probability of the differential can be computed as the sum of probabilities
of all differential trails defined with 4 intermediate differences:∑

(S̃1,S̃2,S̃3,S̃4)| (8),(9),(10),(11),(12),(13) are satisfied

2−7(|S̃1|+|S̃2|+|S̃3|+|S̃4|) (14)

8

where |S̃i| denotes the number of active bytes in S̃i. In the following, we try to
simplify the conditions and to achieve formula for computing the above proba-
bility.

Note that although both S̃1 = S(−1) and S̃4 = S(−1) are produced when (-1)
goes through the S-layer, a randomly chosen difference S̃1 and a difference S̃4 are
not necessarily the same (in fact they are different with a very high probability).
To distinguish them we will use S(−1)L1

for the former and S(−1)R5
for the

later.
Further we reduce the conditions on all S̃i to conditions only on S̃2, S̃3. From

(11) and the linearity of the matrix multiplication P it follows that

P · S̃3 ⊕ P · S̃1 = P · (S̃3 ⊕ S̃1) = −1

This leads to:
S̃3 = P−1(−1)⊕ S̃1 (15)

Similarly, from (12) and (13) we get:

S̃2 = P−1(−1)⊕ S(−1)R5
(16)

Taking into account (15), the condition (9) can be expressed as:

S̃2 = S(P · S̃1 ⊕ (−1)) = S(P · (S̃3 ⊕ P−1(−1))⊕ (−1)) = (17)

= S(P · S̃3 ⊕ (−1)⊕ (−1)) = S(P · S̃3) (18)

Let us summarize our findings. We get that for S̃2, S̃3 defined as:

S̃2 = P−1(−1)⊕ S(−1)R5 (19)

S̃3 = P−1(−1)⊕ S(−1)L1
(20)

two additional conditions have to hold:

S̃2 = S(P · S̃3) (21)

S̃3 = S(P · S̃2) (22)

In S̃1, S̃4 there are always 8 active S-boxes. The number of active S-boxes in
S̃2, S̃3 is defined by the above conditions. As P is linear, we can compute the
value of the vector P−1(−1), i.e.

P−1(−1) = (0, 0, 0, 0, ff, ff, ff, ff) (23)

Since the S-boxes in Camellia are bijective, the vector S(−1) always has 8 active
S-boxes. Therefore from (19),(20) we can conclude that the first 4 elements of
S̃2, S̃3 have to be non-zero, thus the number of active S-boxes in round 2 and 3 is
at least 4 (the first 4 bytes must be active). Additionally, regarding the number
and position of the active S-boxes, since there are always at least 4 active S-
boxes in S̃2 and S̃3, the conditions (21),(22) can always be satisfied (the branch
number of P is 4).

9

Finally, we can give the probability of the differential (−1,−1)→ (−1,−1):∑
(S̃2,S̃3) satisfy (19), (20), (21), (22)

2−7(8+|S̃2|+|S̃3|+8) (24)

Recall that a differential is a collection of trails that take the same path (have
the same position of the active bytes) and trails that take different path. We
group all trails that take the same path into one single truncated trail. Then
a differential is a collection of truncated trails and hence its probability is the
sum of probabilities of the truncated trails. To define a truncated trail we just
have to fix the position of the actives S-boxes in the four rounds of the key
schedule. With Ti we denote the truncated difference entering the round function
of round i. Then a truncated trail can be defined as T1, T2, T3, T4. An actual
trail with S̃1, . . . , S̃4 belongs to a truncated trail if the position of the active
S-boxes in Si coincide with the position of the active S-boxes in Ti. Obviously
T1 = T4 = (1, 1, . . . , 1) as all the S-boxes in the first and the fourth round are
active. For the probability of the differential we get:∑
(T2,T3)

2−7(8+|T2|+|T3|+8)#{(S̃2, S̃3)|S̃2 ∈ T2, S̃3 ∈ T3, S̃1, S̃2 satisfy (19), (20), (21), (22) }

(25)
Hence, to find the probability of the differential, we only have to count the
number of possible differential trails (that satisfy a set of conditions) in all
possible truncated trails T2, T3 of the form (1, 1, 1, 1, x5, x6, x7, x8), xi ∈ {0, 1}.
To proceed further we define the notion of compliance.

Definition 1. Two differences ∆1, ∆2 comply through the function f(x) if there
exist x such that f(x⊕∆1)⊕ f(x) = ∆2.

This notion is introduced to check if some input difference ∆1 at function f(x)
can produce output difference ∆2.

Observation 1 Two randomly chosen differences ∆1, ∆2 comply through the
S-boxes of Camellia with probability 127

255 ≈ 2−1.

Every input difference to the S-box can go to 127 output differences or approx-
imately to 27 out of 28 − 1 possible, which is around 2−1.

As an example, let us compute the number of possible trails for the case
when T2, T3 have all 8 active bytes. From the properties of the S-boxes used in
Camellia we have that each input byte difference (including the difference ff)
can go to 127 or approximately6 27 distinct output differences. Since we have

6 We can approximate with 27 as one of the output differences happens twice, which
means that although we increase the number from 127 to 128, on the other hand we
decrease the probability for this difference from 2−6 to 2−7, hence the two rounding
errors compensate one another. This fact can easily be checked if one takes instead
of bytes, 7-bit nibbles. Then the maximal differential probability of 7x7 S-box can
be 26.

10

8 active input bytes in S(−1)L1
and in S(−1)R5

, there are in total 27·8 = 256

differences for S̃2 and S̃3 (see the definitions (19),(20)). As S̃2 has 8 active bytes,
the following condition has to hold:

(d1, . . . , d8) = P−1(−1)⊕ (s1
R5
, . . . , s8

R5
) (26)

= (0, 0, 0, 0, ff, ff, ff, ff)⊕ (s1
R5
, . . . , s8

R5
), (27)

where all di are non-zero. Hence, out of all 256 this condition satisfy 256 · (1 −
127−4) ≈ 256 differences, or approximately all. A similar conclusion can be
obtained regarding (20).

Now let us focus on (21),(22). The probability that S̃2 comply with S̃3 from
(21) can be computed as:

1. the probability that P · S̃3 is 8 byte difference – it is approximately 1. In the
general case, when S̃2 has i active bytes, the probability is approximately
2−8·(8−i).

2. the probability that each of the differences in 8 bytes of S̃2 and P ·S̃3 comply.
This is 2−8, while in the general case it is 2−i for differences in i bytes.

Therefore, for a randomly chosen differences the probability of (21) is 2−8. A
similar reasoning can be applied to (22). Hence, out of all possible S̃2, S̃3 there
are 256 ·256 ·2−8 ·2−8 = 296 differences that satisfy all four conditions. Therefore,
for T2 = T3 = (1, 1, 1, 1, 1, 1, 1, 1), the probability of the differential is at least:

296 · 2−7(8+8+8+8) = 296 · 2−224 = 2−128 (28)

If we take into account all possible T2, T3 for the probability of the differential
we get:∑

i,j

2−7(8+i+j+8)Ci−4
4 · Cj−4

4 2112−8·(8−i)−8·(8−j)2−8(8−i)−i2−8(8−j)−j ≈ (29)

≈ 2−128 (30)

Thus, by Lemma 1, the size of the weak key class is 2128 · 2−128 = 1. For this
key K, the complementation property holds, i.e. KS(K⊕ (−1))⊕KS(K) = −1,
and taking into account the whitening keys, we get that for any plaintext P , it
holds

EK⊕(−1)(P) = EK(P).

Note that the size of the weak key class is too small for any attack on the
cipher, however it is sufficient for an attack on the hash function mode of the
cipher. As a compression function, we can choose the standard Davies-Meyer
compression mode:

C(H,M) = EM (H)⊕H (31)

Let K be the key value for which the (−1,−1)→ (−1,−1) differential in the key
schedule holds. For the compression function we get that for any H the following
holds:

C(H,K ⊕ (−1))⊕ C(H,K) = EK⊕(−1)(H)⊕H ⊕ EK(H)⊕H = 0 (32)

11

Therefore if we can find the correct key K (which is indeed the correct message
M , as M = K in the hash mode), we can produce collisions for the compression
function of Camellia. Note, as H can be arbitrary, this leads to collisions for the
whole hash function. To find the exact value of the key K we use the conditions
(19)-(22) combined into the algorithm:

1. Create a set S̃ of all possible differences P−1(−1)⊕ S(−1) – the size of the
set is 256

2. Create a set SR of pairs of differences (δ2, δ3), δ2, δ3 ∈ S̃ such that δ2 complies
with P · δ3 and δ3 complies with P · δ2 - the size of this set is 296

3. Choose a random pair (δ2, δ3) from SR

4. Produce the value of L1 (and the corresponding F1) that converts -1 into
the δ3 ⊕ P−1(−1), i.e. S(L1 ⊕ (−1)) ⊕ S(L1) = δ3 ⊕ P−1(−1). As δ3 has 8
active S-boxes, and for each active S-box there are 2 different values (A and
A⊕ (−1)), for a fixed δ3 there are 28 possible values of (L1, F1)

5. Produce similarly the values of (L4, F4) from δ2
6. Produce F3 = L4 ⊕ F3 = L4 ⊕ F1, and L3 = F−1(F3). Check if F (L3 ⊕ P ·
δ2)⊕ F (L3) = P · δ3. If not, go to step 3

7. Produce F2 = L3, and L2 = F−1(F2). Check if F (L2⊕P ·δ3)⊕F (L2) = P ·δ2.
If not, go to step 3

8. Output the key (L1, R1) = (L1, F (L1)⊕ L2)

The probability of steps 6,7 is 2−56 each and there are 22(48+8) possible (L1, F1)
and (L4, F4). Hence, after repeating step three 296 times and steps four-five 2112

times, one key candidate will be produced. Thus the complexity of the algorithm
is 2112.

Note that with an effort of 2112 we can produce one collision for the compres-
sion function of Camellia-128 (without FL,FL−1). Once we have the correct
message M , we can produce collision for any input chaining value. This means
that for any messages M1,M3 (the M3 block is used as message padding), we can
produce a collision for the hash function of Camellia-128 . The colliding pairs are
(M1||M ⊕ (−1)||M3) and (M1||M ||M3). Therefore, to produce q collisions with
the same fixed difference between the message words (the difference is (0||−1||0)
we need 2112 calls to the hash function7. On the other hand, for the generic case,
producing such collisions (they are indeed called differential q multicollisions,

see [2]), one needs around q2
q−2
q+2 128 calls to the hash function. Hence, producing

256 differential multicollisions requires 28 · 2 254
258 128 ≈ 2134 encryptions whereas

for the hash function of Camellia-128 without the non-linear layers FL,FL−1

in the Davies-Meyer mode, they can be produced with 2112 calls to the hash
function.

4 The Case of GOST

In this section we show how the partial complementation property (Lemma 3)
of GOST can be used to launch a practical related-key recovery attack on the

7 Actually, the number is smaller, as one hash function call requires much larger num-
ber of operations compared to the steps of our algorithm.

12

full-round cipher. We note that the mentioned below complementation properties
have been known and exploited in attacks on GOST[7, 4]. However, to the best of
our knowledge, all the attacks on GOST that recover the full key, are impractical.

4.1 Description of GOST

GOST is a modular 32-round Feistel cipher with 256-bit key. The key schedule
of GOST is trivial. The master key K is divided into eight 32-bit words Ki, i =
1, . . . , 8 and in each of the four groups of 8 rounds, the round keys RKj , j =
1, . . . , 32 are permutation of the key words Ki, i.e.

(RK1, . . . , RK8) = (K1, . . . ,K8) (33)

(RK9, . . . , RK16) = (K1, . . . ,K8) (34)

(RK17, . . . , RK24) = (K1, . . . ,K8) (35)

(RK25, . . . , RK32) = (K8, . . . ,K1) (36)

4.2 Complementing GOST

As GOST is a modular Feistel, Lemma 3 can be applied to this cipher. The
round keys do not allow the choice of different alternating ∆1, ∆2 as each of the
key words Ki is used in both even and odd rounds. For example, K1 is used
in rounds 1, 9, 17, and 32. Therefore, one has to choose ∆1 = ∆2 = ∆, i.e. all
of the keys Ki have the same difference ∆. The differential in the key schedule
holds with probability p = 1. To maximize the probability of the differential in
the state, one has to choose ∆ = 231 – in this case the size of the class is 2256,
i.e. the complementation is applicable to all of the keys.

One can maintain the same size of the weak-key class (all keys), but reduce
the probability of the differential in the state. For example, when ∆1 = ∆2 =
∆ = 2i, i = 0, . . . , 30, then the partial complementation property is still appli-
cable to all keys, but detecting this property requires more data, i.e. instead of
the previous one pair of plaintexts and ciphertexts, by Lemma 3 now one needs
1/2−16(1+1) = 232 pairs. This weakens the distinguisher, but allows key recovery
attacks. Let ∆ = 2m,m < 31. If in some round i, one knows the value of the
state S that is modularly added to the the round key RKi (in the state/key
pair, the m-th bit has the difference 1), then under the assumption that the
differences have canceled, one can find the exact value RKm

i of the m-bit of the
round key RKi, i.e. if S is known, and

(S +RKi)⊕ ((S ⊕ 2m) + (RKi ⊕ 2m)) = 0,

then the value RKm
i of the m-th bit of RKi can be computed as:

RKm
i = Sm ⊕ 1. (37)

It is trivial to check that only under such values of RKm
i and Sm the differences

would cancel. For m = 31, i.e. when the difference is in the most significant bit,

13

then the cancellation always occurs, hence one cannot find the exact value of the
most significant bit with this approach.

The above single-bit recovery can be applied sequentially to all the bits of
the round key RKi, thus the whole RKi can be recovered. Once the i-th round
key is known, one can compute the state of the cipher in the next round and
thus repeat the same process but for the round key RKi+1. Hence this domino
effect allows to recover all of the round keys resulting in a full key recovery of the
master key. The attack presented below is a related-key attack with 31 related-
key pairs. For the secret master key K with the key words Ki, K = (K1, . . . ,K8),
the related keys Ki are defined as Ki = (K1 ⊕ 2i, . . . ,K8 ⊕ 2i), i = 0, . . . , 30.
The algorithm can be formulated as:

1. For each of the 31 related-key pairs (K,Ki), i = 0, . . . , 30 create 232 pairs of

plaintexts (P ij , P
i
j⊕2i) and obtain the corresponding ciphertexts (Cij , C̃

i
j), j =

0, . . . , 232 − 1.
2. For each i, i = 0, . . . , 30, find the pair of ciphertexts that have the required

difference 2i, i.e. find ji, such that Ciji ⊕ C̃
i
ji

= 2i, i = 0, . . . , 30. The corre-

sponding plaintext pairs are (P iji , P
i
ji
⊕ 2i). In total there are 31 such pairs.

3. For each round r = 1, . . . 8, recover the key word Kr.
(a) For each k, k = 0, . . . , 30, the k-bit of Kr can be recovered from the

knowledge of incoming state. In the first round, the value of the state is
known, i.e. P kjk , and therefore Kk

r = P kjk ⊕ 1 (see (37)). In total, 31 out
of 32 bits of Kr are recovered.

(b) Guess the most significant bit of Kr, and compute the values of the 31
states for the next round – this can be performed as one knows both the
state and the round key.

The encryption of the initial 232 pairs of plaintexts for each i, guarantees
that with a high probability one can find a pair of ciphertexts with the same
difference – hence this pair follows the differential in the state. For each round,
one has to guess only a single bit (the most significant bit) of the round key,
thus step 3 has to be repeated at most 28 times. Therefore the time complexity
of the full key-recovery attack is 2 · (31 ·232 +28) ≈ 238 encryptions and a similar
data complexity of 238 chosen plaintexts.

The low complexities allow to perform an experimental cryptanalysis of
GOST on a computer. We have followed the attack algorithm described above
and were able to verify our approach by recovering the full 256-bit key – our
unoptimized implementation ran for one day on a single Intel i5 core. As the key
recovery can be parallelized, another implementation was able to recover the full
key in around 7 hours using four Intel i5 cores.

5 Conclusion

We have shown a potential vulnerability in Feistel ciphers based on the com-
plementation property that results in relatively easily detectable related-key dif-
ferential attacks. Two such attacks on full-round Feistel primitives, the hash

14

mode of Camellia-128 without FL,FL−1, and the block cipher GOST, have
been presented in this paper.

We have deduced a simple criteria for cryptanalysis of classical Feistel ciphers:
if for the key schedule there exists a high probability differential that produces
alternating differences in the round keys then the cipher is vulnerable to related-
key attacks, regardless of the number of rounds in the state. Moreover, from the
analysis of Camellia-128 without FL,FL−1, one can conclude that even if such
differential has a low probability, but a pair of keys following the differential
could be found, the hash mode of the cipher is still vulnerable.

The Feistel ciphers that use modular addition of the round keys in the state
are less susceptible to this type of attacks as the data required to detect the
complementation property depends on the number of rounds as well. However,
from the analysis of GOST one can see that, when the alternating differences in
the round keys have a low Hamming weight, such ciphers are potential targets
of complementation weaknesses as well. Our related-key attack on GOST was
confirmed experimentally.

We believe that our attacks based on the complementation property might
be launched on several other existing Feistel primitives, i.e. this paper does not
exhaust the possible targets. Thus the approach presented here can be seen as
simple tool for cryptanalysis of current Feistel primitives, but also an important
security threat that should be taken into account when designing new primitives
based on Feistel.

Acknowledgement

The authors would like to thank anonymous reviewers of FSE 2013 for their
helpful comments. Ivica Nikolić is supported by the Singapore National Research
Foundation under Research Grant NRF-CRP2-2007-03.

References

1. K. Aoki, T. Ichikawa, M. Kanda, M. Matsui, S. Moriai, J. Nakajima, and T. Tokita.
Camellia: A 128-bit block cipher suitable for multiple platforms - design and anal-
ysis. In D. R. Stinson and S. E. Tavares, editors, Selected Areas in Cryptography,
volume 2012 of Lecture Notes in Computer Science, pages 39–56. Springer, 2000.

2. A. Biryukov, D. Khovratovich, and I. Nikolić. Distinguisher and related-key attack
on the full AES-256. In S. Halevi, editor, CRYPTO, volume 5677 of Lecture Notes
in Computer Science, pages 231–249. Springer, 2009.

3. C. Bouillaguet, O. Dunkelman, G. Leurent, and P.-A. Fouque. Another look at
complementation properties. In S. Hong and T. Iwata, editors, FSE, volume 6147
of Lecture Notes in Computer Science, pages 347–364. Springer, 2010.

4. I. Dinur, O. Dunkelman, and A. Shamir. Improved attacks on full GOST. In
A. Canteaut, editor, FSE, volume 7549 of Lecture Notes in Computer Science, pages
9–28. Springer, 2012.

5. Government Committee of the USSR for Standards. GOST, Gosudarstvennyi Stan-
dard 28147-89,”Cryptographic Protection for Data Processing Systems”. 1989.

15

6. J. Kelsey, B. Schneier, and D. Wagner. Related-key cryptanalysis of 3-WAY, Biham-
DES, CAST, DES-X, NewDES, RC2, and TEA. In Y. Han, T. Okamoto, and
S. Qing, editors, ICICS, volume 1334 of Lecture Notes in Computer Science, pages
233–246. Springer, 1997.

7. Y. Ko, S. Hong, W. Lee, S. Lee, and J.-S. Kang. Related key differential attacks
on 27 rounds of XTEA and full-round GOST. In B. K. Roy and W. Meier, editors,
FSE, volume 3017 of Lecture Notes in Computer Science, pages 299–316. Springer,
2004.

8. H. Lipmaa and S. Moriai. Efficient algorithms for computing differential properties
of addition. In M. Matsui, editor, FSE, volume 2355 of Lecture Notes in Computer
Science, pages 336–350. Springer, 2001.

9. National Bureau of Standards. Data Encryption Standard. U.S. Department of
Commerce, FIPS pub. 46, January 1977.

16

