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Abstract

Memory-hard functions are becoming an important tool in the design of password hashing schemes, cryptocur-
rencies, and more generic proof-of-work primitives that are x86-oriented and can not be computed on dedicated
hardware more efficiently.

We develop a simple and cryptographically secure approach to the design of such functions and show how to
exploit the architecture of modern CPUs and memory chips to make faster and more secure schemes compared
to existing alternatives such as scrypt. We also propose cryptographic criteria for the components, that prevent
cost reductions using time-memory tradeoffs and side-channel leaks. The concrete proof-of-work instantiation,
which we call Argon2, can fill GBytes of RAM within a second, is resilient to various tradeoffs, and is suitable for
a wide range of applications, which aim to bind a computation to a certain architecture. Concerning potential
DoS attacks, our scheme is lightweight enough to offset the bottleneck from the CPU to the memory bus thus
leaving sufficient computing power for other tasks. We also propose parameters for which our scheme is botnet
resistant. As an application, we suggest a cryptocurrency design with fast and memory-hard proof-of-work,
which allows memoryless verification.

1 Introduction

Adversaries, equipped with custom-based devices are now able to compute proofs-of-work of various kinds by a
great factor more efficient than regular desktops or laptops. A prominent example is the Bitcoin hardware arms
race, where the best x86-machine spends 30,000 times more energy to find a Bitcoin block than the best ASIC
mining rigs [6]. As a result, the originally egalitarian concept of a decentralized cryptocurrency fell apart with
almost 50% of computing power concentrated in a few mining factories and periodically held by a single mining
pool. Moreover, the centralized mining puts security at risk, as many attacks become possible when a single
entity controls more than about 50% of the network power. Similar situation takes place in the password hashing
and password-based key derivation, where database leaks are frequent [2] and GPU and FPGA crackers [24,32]
are popular tools. Thus the need for GPU/FPGA/ASIC-resistant schemes becomes evident.

Memory-intensive computations were proposed in 2003 as a remedy for the increasing computational power
of GPU and specialized hardware [7, 14]. The motivation behind large memory requirements is twofold. First,
the memory latency is similar across different platforms, as long as the same technology is used. Secondly, the
memory chips are rather large and thus are relatively expensive in production. For example, an energy-efficient
DRAM chip [20] occupies 550 mm2 per GB, which is equivalent to 10,000 Bitcoin hash cores.

It is evident that a memory-intensive computation is a countermeasure as long as the memory can not be
traded for time or extra computations with the reduction in the total attack cost. Such tradeoffs were explored
in the 1970s [21, 23]. For some functions it was proven that even small memory reduction causes very high,
exponential in terms of memory fraction increase in time complexity [30]. All such designs are based on the
iterative application of some internal hash function F to memory blocks.

Even though such constructions have been adapted in several proofs-of-work [14,15,19], they are not practical
enough. The problem is that they are based on the superconcentrators [30] and are usually very slow. For
instance, schemes from [30] have to hash the entire memory dozens of times, which is equivalent to about 5-10
MBytes/sec. The time constraints in web authentication and block/transaction verification in cryptocurrencies
would reduce the memory to a few MBytes, which is a weak countermeasure.

A much faster alternative was suggested by Percival as scrypt in 2009 [28], which fills the memory at 2-5
cycles per byte depending on the CPU and underlying parameters (which is up to 700 MB/sec on modern CPU).
However, scrypt has its own problems too. First, it combines several unrelated cryptographic primitives, tunable
under many parameters, and thus is difficult to analyze. Secondly, it admits a simple time-memory tradeoff,
where memory reduction by q increases the time less than by q (and linear in q). Thirdly, scrypt accesses
memory in the data-dependent pattern, which makes it vulnerable to side-channel timing attacks [10,31], which



are quite relevant in password cracking. Though scrypt became popular enough to become an IETF draft [5], its
adaptation in the Litecoin cryptocurrency [4] is not ASIC-resistant, as the ASIC mining rigs still are hundreds
of times more efficient [3].

Percival called scrypt memory-hard for its tradeoff, which he proved asymptotically under certain assumptions
on the underlying compression function. There were attempts to construct memory-hard functions that access
memory in the data-independent way [13, 18, 22], thus protecting from potential timing attacks. However, the
time-memory tradeoffs for the data-independent functions are much more dangerous, as an ASIC-equipped
adversary can create a custom chip with multiple cores, and precompute all the memory blocks he does not
store – by the time they are needed. It was demonstrated that the memory access patterns employed in [18,22]
are weak [12] and do not allow for tradeoff resistance stronger than in scrypt.

The function scrypt and later designs [22, 29] incorporated a number of tunable parameters, such as paral-
lelism, block size, the internal hash function, the number of passes over the memory and so on. No solid theory
of the design of memory-hard functions has yet appeared, so the parameters are chosen and implemented ad-hoc.
Quite many parameters are left to the users with an unknown effect on security.

Also, the advantages of running the scheme on other platforms, such as GPUs and ASIC, have not been
properly formalized. If we consider ASIC-based Bitcoin mining, the main efficiency parameter is the energy
spent per computed hash. However, the total energy consumption is difficult to estimate for memory-equipped
designs, as various memory types are quite different in static and active power consumption. Following [11,
25, 33], the authors of [12] suggest approximating the total cost with the time-area product. However, this
parameter depends on the architecture as well, as we have to know the memory latency and the ratio between
the memory area and the computational core area. Still, one could estimate the computational penalties due to
the memory reduction (computation-memory tradeoff ) and time penalties due to the memory reduction (time-
memory tradeoff ). For both estimates we assume unlimited parallelism (see [8] for a more rigorous treatment of
the parallel complexity). For each particular platform we can figure out the area requirements and parallelism
restrictions, obtain the time-area product and estimate the attack costs.

Our contributions. We propose a rigorous approach to the design of memory-hard functions and demonstrate
how to construct a scheme that maximizes the adversaries’ work on other platforms such as GPU and ASIC
in the cryptocurrency and password hashing settings. We demonstrate how to parallelize the computation
in a tradeoff-resilient way, and prove the absence of internal collisions for a permutation-based compression
function. We thoroughly discuss the need for multiple passes over the memory and figure out an optimal
number of passes for both data-dependent and data-independent instances of our proposal Argon2. Finally, we
offer a concrete proof-of-work function called Argon2 based on the data-dependent version Argon2d, which is
offered for ASIC- and botnet-resistant cryptocurrencies. It requires 2GB of memory for generation but only 1390
KB for verification, and can be computed in 2 seconds on a 2 GHz PC, while its verification takes milliseconds.

2 Definitions and concepts

We consider functions H that can be represented as directed acyclic graphs (DAGs), where each node has
in-degree at maximum k. With each node we associate a t-bit value M and a call to some function F which
takes the values of k other nodes as inputs:

Mk+1 ← F (M1,M2, . . . ,Mk). (1)

Let the graph have T nodes, then we say that it can be computed with computational complexity T and memory
complexity T , where the computational unit is the call to F and the memory unit is the output length of F .
If the computation is serial, then the time complexity equals the computational complexity. However, if some
additional computing units are available, the total time might be reduced.

We are interested to know how the the minimal computational and time complexities of computing H change
if only T/q memory can be used. We denote the penalty coefficient on the computational complexity by C(q),
and on the time complexity by T (q) so that the total computation needs C(q)T calls to F and T (q)T time.
Any concrete algorithm using T/q memory provides an upper bound on C(q) and T (q), whereas lower bounds
are difficult to obtain. In practice, lower bounds on C(q) and T (q) are a conjecture and its validity comes from
public scrutiny. Following [28], we call a function H memory-hard if both C(q) and T (q) grow at least linearly
with q assuming unlimited parallelism. Since we do not specify the adversaries, our definition is not rigorous,
but is apparently sufficient for the design and analysis purposes.

The vast majority of schemes that claim memory-hardness [13, 19, 22, 28, 29] conform to Equation 1 with
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minor corrections. They fill the memory with T blocks M1,M2, . . . ,MT as follows

M1 ← H(Input),

Mj = F (Mφ1(j),Mφ2(j), . . . ,Mφk(j)), 1 < j ≤ T,
Output← H(MT ),

(2)

where φi are some indexing functions and H is a cryptographic (memoryless) hash function. There could also
be several passes over memory, and different F can be used.

The indexing functions crucially affect the security. We distinguish two classes of them. If φ does not depend
on the input, we call the scheme data-independent. The memory addresses can be calculated by the adversaries.
Therefore, if the dedicated hardware can handle parallel memory access, the adversary can prefetch the data from
the memory. Moreover, if he implements a time-space tradeoff, then the missing blocks can be also precomputed
without losing time. In order to maximize the computational penalties, the designers proposed various formulas
for indexing functions [18,22], but several of them were found weak and admitting easy tradeoffs [12].

In the second class of schemes φ depends on the previously computed blocks. We call such schemes data-
dependent. It is popular just to use some bits of the previous block: φ(j) = Truncate(Mj−1). This prevents
the adversary from prefetching and precomputing missing data. The adversary figures out what he has to
recompute only at the time the element is needed. If we reduce the memory by q so that a missing block is
recomputed as a tree of calls to F of average depth Dq, then

T (q) = Dq + 1.

However, these schemes are vulnerable to side-channel attacks, as timing information may help to filter out
password guesses at an early stage.

3 Mode of operation

Inputs to F . Let us further define the generic scheme (2). For the moment, our scheme should not allow
parallel computation, so that the total computation time even in the presence of multiple cores should be T .
Therefore, there must be a computation chain of length T , which is equivalent to setting

φk(j) = j − 1.

Then we discuss the value of k. As k increases, we have to load more blocks from the memory so the scheme
becomes slower as F has to process more blocks. Our experiments show that in the simplest case when F simply
xors all inputs before passing them to the t-bit bijective function (permutation), the performance decreases by
30% when going from k = 2 to k = 3. The benefit would be that C(q) and D(q) also grow with k. However,
we note that on the custom hardware the adversary would not experience any time penalty if he uses the full
memory. Indeed, the adversary would just modify the memory bus to be able to read twice more and thus
reduce the time-area product. We conclude that k = 2 is optimal for full-memory adversaries, so we restrict
the further text to the following class of schemes:

M1 ← H(Input),

Mj = F (Mφ(j),Mj−1), 1 < j ≤ T,
Output← H(MT ).

(3)

Indexing functions. For the data-dependent addressing we set φ(j) = Truncate(Mj−1), where the result is
taken modulo j. We considered taking the address not from the block Mj−1 but from the block Mj−2, which
should have allowed a prefetch of the block earlier. However, not only is the gain in our implementations limited,
but also this benefit can be exploited by the adversary. Indeed, the recomputation depth D(q) is now reduced
to D(q)− 1, since the adversary has one extra timeslot, and thus the total time penalty decreases by 1. Later
we’ll see (Table 1) that this is a major change, as the adversary would be able to reduce the memory by the
factor of 5 without increasing the time-memory product.

For one instance of our scheme we use data-independent addressing. From recent research [12] we know that
some variants of addressing are vulnerable to tradeoff attacks. In short, the generic tradeoff attack from [12]
works as follows:

• The memory is partitioned into segments of length q; only the first block of every segment is stored.

• For each segment I0 that should be computed we compute the blocks φ(I0) referenced by the function φ
from this segment. Let I1 be the union of segments that contain φ(I0).
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• We apply φ to I1 in the same way until we reach the set Ik of segments such that

φ(Ik) ⊂ Ik

• Then to compute I0 we first recompute Ik, then Ik−1 and so on up to I0.

This method works well if k is small and Ik is not too large compared to I0. We conjecture that the method
does not work well if φ works like a random function, so that its images are uniformly distributed. As our
scheme should be deterministic, we make φ pseudo-random. A simplest choice would be φ(i) = H(i) (mod i)
for some cryptographic hash function H. However, this is overkill for a single index. Instead we propose to
iterate some reduced-round hash function G in the counter mode and split its output into multiple indices. For
example, we could take G(i) = F (F (i)), where F is the block generation function, which produces hundreds of
addresses at once.This approach does not give provable tradeoff bounds, but instead allows the analysis with
the tradeoff algorithms suited for data-dependent addressing.

4 Compression function F

In contrast to attacks on regular hash functions, the adversary does not control inputs to the compression func-
tion F in our scheme. Intuitively, this should relax the cryptographic properties required from the compression
function and allow for a faster primitive.

4.1 Block size

When we request a block from a random location in the memory, we most likely get a cache miss. The first
bytes would arrive at the CPU from modern RAM (DDR3 and better) within at best 10 ns, which accounts
for 20-30 cycles. In practice, however, a single load instruction may take 100 cycles and more. To amortize
this number, we exploit the fact that not only the requested bytes but also the following bytes are loaded into
cache, automatically or using the prefetch instruction. The data from L1 cache theoretically may be loaded
at 64 bytes per cycle on the Haswell architecture. Even though we have not reached this performance in our
experiments, the speed-up for large blocks is significant. The exact numbers depend highly on the compression
function. Our tests for a weak compression function (that just XORs the inputs) show that the performance
reaches 0.8 cycles per byte for the 1024-bit block and then improves only a bit with 8192-bit block giving around
0.7 cycles per byte. Taking into account that larger blocks require slower compression function (more rounds),
we decided to work with 8192-bit blocks (1 KB), though 4096-bit and 16384-bit blocks should be about that
fast.

4.2 Insecurity of an iterative compression function

Now we have to design a compression function

Z = F (X,Y ),

where X,Y, Z and Y are 8192-bit blocks. It appears that collision/preimage resistance and their weak variants
are an overkill as a design criteria for the compression function F . Our main requirement is the tradeoff-
resilience: there should be no way to produce the output block using less than 8192 bits of memory.

A naive approach would be an iterative compression function like the following:

• The input blocks of size t are divided into s shorter subblocks (columns) X1, X2, . . . , Xs and Y1, Y2, . . . , Ys.

• The output block Z is computed columnwise:

Z1 = G(X1, Y1);

Zi = G(Xi, Yi, Zi−1), i > 0.

A similar compression function is used in the hashing scheme Lyra [22] and was found vulnerable to tradeoff
attacks in [12]. The idea is to recompute the block columnwise as follows. Suppose that to recompute Z we
need to compute a tree of depth D. We compute only Z1, which is also a tree of depth D, but with smaller
function G. The recomputation of Z2 may start just after the first columns are computed in the recomputation
of Z2 so that the next columns are produced with latency of 1 call to G. In total, the recomputation takes
(D + s) calls to G instead of D calls to F . As each call to F is s calls to G, we obtain that

T (q) =
D + s

s
= 1 +D/s.
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Therefore, the time penalty is efficiently divided by s, which reduces the time-memory product significantly.
scrypt partially handles this problem by interleaving columns from the first and the second half of Z, though

we believe that a slightly different attack would still apply. To completely solve the problem, we have proposed
the design criteria for such compression function.

4.3 Design criteria

We suggest the following principles:

• The compression function must require about t bits of storage (excluding inputs) to compute any output
bit.

• Each output byte of F must be a nonlinear function of all input bytes, so that the function has differential
probability below a certain value, for example 1

4 .

These criteria ensure that the attacker is unable to compute an output bit using only a few input bits or a few
stored bits. Moreover, the output bits should not be (almost) linear functions of input bits, as otherwise the
function tree would collapse.

We have not found any generic design strategy for such large-block compression functions. It is difficult to
maintain diffusion on large memory blocks due to the lack of CPU instructions that interleave many registers
at once. A naive approach would be to apply a linear transformation with guaranteed diffusion. However, even
if we operate on 16-byte registers, a 1024-byte block would consist of 64 elements. A 64 × 64-matrix would
require 32 XORs per register to implement, which gives a penalty about 2 cycles per byte.

Instead, we propose to build the compression function on the top of some smaller transformation P . We
apply P in parallel (having a P-box), then shuffle the output registers (similarly to the ShiftRows transformation
of AES [27]) and apply it again. If P handles p registers, then the compression function may transform a block
of p2 registers with 2 rounds of P-boxes. We do not have to manually shuffle the data, we just change the inputs
to P-boxes. As an example, an implementation of the Blake2b [9] permutation processes 8 128-bit registers, so
with 2 rounds of Blake2b we can design a compression function that mixes the 8192-bit block. We stress that
this approach is not possible with dedicated AES instructions. Even though they are very fast, they apply only
to the 128-bit block, and we still have to diffuse its content across other blocks.

As a result, we get an invertible transformation Q() that applies to 8192-bit blocks. To get a compression
function, we apply a simple feedback:

F (X,Y ) = Q(X ⊕ Y )⊕X ⊕ Y.

The resulting function is not collision-resistant, but apparently we do not need this property.

5 Parallelism

As modern CPUs have several cores possibly available for hashing, it is tempting to use these cores to increase
the bandwidth, the amount of filled memory, and the CPU load.

The simplest way to use p parallel cores (used by scrypt) is to compute and hash together p independent
calls to a memory-hard function MF :

H ′(X) = H(MF (X, 0)||MF (X, 1)|| · · · ||MF (X, p)),

where H is a cryptographic hash function. If a single call uses m memory units, then p calls use pm units.
However, this method admits a trivial tradeoff: an adversary just makes p sequential calls to H using only m
memory in total, which keeps the time-area product constant.

We suggest the following solution for p cores. Consider the class of schemes given by Equation (3). We view
the memory as p lanes of T blocks each and operate as follows:

Mi,1 ← H(Input||i||1), 1 ≤ i ≤ p
Mi,2 ← H(Input||i||2), 1 ≤ i ≤ p
Mi,j = F (Mφ(i,j),Mi,j−1), 1 ≤ i ≤ p, 1 < j ≤ T,

Output← H(M1,T ||M2,T || . . . ||Mp,T ).

(4)

To ensure the dependency between lanes, we allow the indexing function φ(i, j) to reference blocks from other
lanes. We split each lane into l segments I1, I2, . . . , Il, and use the following rules for φ(i, j):

1. φ(i, j) does not refer to Mi,j−1.
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2. In I1 of each lane φ(i, j) refers only to the same segment.

3. In Ik, k > 1, φ(i, j) may refer to Ik of the same lane and to Ij of all lanes for all j < k.

This idea is easily implemented in software with p threads and l synchronisation points. It is easy to see that
the adversary can use less memory when computing Il, for instance by computing Il sequentially from lane 1
to lane p. Then his time is multiplied by (1 + p−1

l ), whereas the memory use is multiplied by (1− p−1
pl ), so the

time-memory product is modified as

TMnew = TM

(
1− p− 1

pl

)(
1 +

p− 1

l

)
.

For 2 ≤ p, l ≤ 10 this value is always between 1.05 and 3. We have selected l = 4 as this value gives low
synchronisation overhead while imposing time-area penalties on the adversary who reduces the memory even
by the factor 3/4. We note that values l = 8 or l = 16 could be chosen.

If the compression function is collision-resistant, then one may easily prove that block collisions are highly
unlikely. However, we employ a permutation-based compression function, which has simple invariants. We
avoid block collisions by introducing additional rule:

4. First block of Ik can not refer to the last block of Ik−1 in any lane.

For the following theorem we need some consecutive enumeration of blocks. We use the following: first we
enumerate blocks of I1 of lane 1, then of I1 of lane 2, and so on, then I2 of all lanes, etc.

Theorem 1. Let Π be a hash function, which operates according to Eq. (4) and uses the indexing function
under the rules 1-4 (above). Let F (X,Y ) = P (X ⊕ Y )⊕X ⊕ Y be its internal compression function such that

• P (Z)⊕ Z is collision-resistant, i.e. it is hard to find a, b such that P (a)⊕ a = P (b)⊕ b.

• P (Z)⊕Z is 4-generalized-birthday-resistant, i.e. it is hard to find distinct a, b, c, d such that P (a)⊕P (b)⊕
P (c)⊕ P (d) = a⊕ b⊕ c⊕ d.

Then all the blocks Mi are different.

Proof. As H is assumed collision-resistant, the first two blocks of each lane of I1 are all distinct. Consider the
other blocks.

Suppose the proposition is wrong, and let (Ma,Mb) be a block collision such that x < y and y is the smallest
among all such collisions. As P (Z)⊕ Z is collision resistant, the collision occurs in Z, i.e.

Zx = Zy.

Let rx = φ(x), ry = φ(y), and let px, py be previous block (second input to F ) indices for Mx,My. Then we get

Mrx ⊕Mpx = Mry ⊕Mpy .

As we assume 4-generalized-birthday-resistance, some arguments are equal. Consider three cases:

• rx = px. This is forbidden by rule 1.

• rx = ry. We get Mpx = Mpy . As px, py < y, and y is the smallest yielding such a collision, we get px = py.
However, by construction px 6= py for x 6= y.

• rx = py. Then we get Mry = Mpx . As ry < y and px < x < y, we obtain ry = px. Since py = rx < x < y,
we get that x and y are in the same segment, we have two options:

– py is the last block of a segment. Then y is the first block of the next segment in this lane. Since rx
is the last block of a segment, and x < y, x must be in the same slice as y, and x can not be the first
block in a segment by the rule 4. Therefore, ry = px = x− 1. However, this is impossible, as ry can
not belong to the same segment as y.

– py is not the last block of a segment. Then rx = py = y − 1, which implies that rx ≥ x. The latter
is forbidden.

Thus we get a contradiction in all cases. This ends the proof.

We note that the proof easily generalizes to multi-pass schemes, where the same rules apply to the second
and later passes (except for the first segment rules, which do not apply).

6



p lanes

l segments

H

M1,1

Mp,1

H
Input

Output

Figure 1: Our idea for tradeoff-resistant parallelism: p lanes and l synchronisation points.

6 Optimizing tradeoff resilience

6.1 Tradeoff basics

In the case of data-dependent schemes the adversary can reduce the time-memory product if the time penalty
due to the recomputation is smaller than the memory reduction factor. The time penalty is determined by the
depth D of the recomputation tree, so the adversary wins as long as

D(q) + 1 ≤ q.

In contrast, the time penalty grows much slower the data-independent schemes in our model, as the missing
blocks can always be precomputed. Regarding the time-area product, the total area decreases until the area
needed to host multiple cores for recomputation matches the memory area. Suppose that the logic for G takes
Acore of area (measured, say, in mm2), and the memory amount that we consider (say, 1 GB), takes Amemory
of area. The adversary reduces the total area as long as:

C(q)Acore +Amemory/q ≤ Amemory.

The maximum memory bandwidth Bwmax may be an additional constraint on the scheme performance in
tradeoffs. We discuss this in more details in Appendix A.

6.2 Tradeoffs for multi-pass schemes

So far the only generic tradeoff attacks on schemes in Equation (3) were reported in [12]. Using the so called
ranking method (for the sake of completeness we describe it in Appendix C), the authors obtained the results
on C(q) and D(q), which are given in Table 1.

We made some modifications to the algorithm given in [12] to cover multi-pass schemes, since we are
interested in whether these schemes offer better tradeoff-resilience under the same time constraints.

Memory 1
2

1
3

1
4

1
5

1
6

1
8

1
10

C(q) 1.71 2.95 6.3 16.6 55 877 214.2

T(q) 2.7 3.5 4.8 6.7 9.2 16.7 27.6

Table 1: Computation penalties (C(q)) and time penalties (T (q) = D(q)+1) for the ranking tradeoff attack [12].

Suppose we make k passes with T blocks each following the scheme (3), so that after the first pass any
address in the memory may be used. Then this is equivalent to running a single pass with kT iterations such
that φ(j) ≥ j−T . The time-space tradeoff would be the same as in a single pass with T iterations and additional
condition

φ(j) ≥ j − T

k
.

We have modified the function φ in the ranking algorithm (Appendix C) and obtained the results in Tables 2,3.
We conclude that for the data-dependent schemes several passes do increase the time-area product for the
adversary who uses tradeoffs. Indeed, suppose we run a scheme with memory A with one pass for time T , or on
A/2 with 2 passes. If the adversary reduces the memory to A/6 GB (i.e. by the factor of 6) for the first case,
the time grows by the factor of 9.2, so that the time-area product is 1.55AT . However, if in the second setting
the memory is reduced to A/6 GB (i.e. by the factor of 3), the time grows by the factor of 15.3, so that the
time-area product is 2.3AT . For other reduction factors the ratio between the two products remains around 2.
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Memory fraction 1
2

1
3

1
4

1
5

1
6

1 pass 1.7 3 6.3 16.6 55

2 passes 15 410 19300 220 225

3 passes 3423 222 232

Table 2: Computation/read penalties (C(q) for the ranking tradeoff attack.

Memory fraction 1
2

1
3

1
4

1
5

1
6

1 pass 2.7 3.5 4.8 6.7 9.2

2 passes 6.7 13.3 27.8 48 74

3 passes 21.7 57 104 − −

Table 3: Time penalties (T (q) = D(q) + 1) for the ranking tradeoff attack.

7 Our proposal Argon2

Now we summarize our developments in a new design Argon2.

7.1 Specification

We suggest two schemes: Argon2d with data-dependent addressing and Argon2i with data-independent ad-
dressing. They are based on Eq.(4) with the following corrections:

• The block size is 8192 bits (see Section 4.1);

• The compression function is based on the Blake2b permutation (see Section 4.3);

• Argon2d makes one pass over memory;

• Argon2i makes three passes over memory;

• Both variants use 2, 4, or 8 lanes depending on the available number of CPU cores (1, 2, and 4, respectively)
and 4 synchronisation points following the indexing rules in Section 5.

• Indices for Argon2i are produced by running F (F ()) in the counter mode, so that each call to double-F
produces 256 32-bit indices.

Argon2d is optimized for settings where the adversary does not get regular access to system memory or CPU,
i.e. he can not run side-channel attacks based on the timing information, nor can he recover the password much
faster using garbage collection [17]. These settings are more typical for backend servers and cryptocurrency
minings. For practice we suggest the following settings:

• Cryptocurrency mining, that takes 0.1 seconds on a 2 Ghz CPU using 1 core — Argon2d with 2 lanes and
250 MB of RAM;

• Backend server authentication, that takes 0.5 seconds on a 2 GHz CPU using 4 cores — Argon2d with 8
lanes and 4 GB of RAM.

Argon2i is optimized for more dangerous settings, where the adversary possibly can access the same machine,
use its CPU or mount cold-boot attacks. We use three passes to get entirely rid of the password in the memory.
We suggest the following settings:

• Key derivation for hard-drive encryption, that takes 3 seconds on a 2 GHz CPU using 2 cores — Argon2i
with 4 lanes and 6 GB of RAM;

• Frontend server authentication, that takes 0.5 seconds on a 2 GHz CPU using 2 cores — Argon2i with 4
lanes and 1 GB of RAM.
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7.2 Compression function

Compression function F is built upon the Blake2b round function P (fully defined in [9]). P operates on the
128-byte input, which can be viewed as 8 16-byte registers (see details below):

P (A0, A1, . . . , A7) = (B0, B1, . . . , B7).

Compression function F (X,Y ) operates on two 1024-byte blocks X and Y . It first computes R = X ⊕ Y .
Then R is viewed as a 8 × 8-matrix of 16-byte registers R0, R1, . . . , R63. Then P is first applied rowwise, and
then columnwise to get Z:

(Q0, Q1, . . . , Q7)← P (R0, R1, . . . , R7);

(Q8, Q9, . . . , Q15)← P (R8, R9, . . . , R15);

. . .

(Q56, Q57, . . . , Q63)← P (R56, R57, . . . , R63);

(Z0, Z8, Z16, . . . , Z56)← P (Q0, Q8, Q16, . . . , Q56);

(Z1, Z9, Z17, . . . , Z57)← P (Q1, Q9, Q17, . . . , Q57);

. . .

(Z7, Z15, Z23, . . . , Z63)← P (Q7, Q15, Q23, . . . , Q63).

Finally, F outputs Z ⊕R:

F : (X,Y ) → R = X ⊕ Y P−→ Q
P−→ Z → Z ⊕R.

P
P

P

X Y

R

Q

P P P

Z

Blake2b
round

Figure 2: Compression function F in Argon2.

7.3 Argon2 vs scrypt

Here we summarize the advantages of Argon2 over scrypt:

• Simplicity. Argon2 uses only a single external primitive – Blake2, whereas scrypt needs PBKDF,
Salsa20/8, and SHA-256 [28] (with some other alternatives often suggested). Argon2 does not involve
a stack of subprocedures; on the contrary, it uses only the Blake2-based permutation as a subroutine.
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Argon2d (1 pass) Argon2i (3 passes)
Thr. Perf. Bandw. Perf. Bandw.

cpb (GB/s) cpb (GB/s)
1 1.23 2.94 3.6 3
2 0.75 4.8 2.1 5.15
4 0.68 5.3 1.8 6
8 0.61 5.9 1.7 6.35

Table 4: Performance (in cycles per memory byte filled) and memory bandwidth of Argon2 with 1 GB of RAM
on Core i7-4500U (4x1.8 GHz). Bandwidth is computed assuming that single pass load/stores 2GB.

The only sophisticated part of Argon2 is the block indexing rule for multi-threaded use; it can be further
simplified if not a permutation but a cryptographic compression function is used. Most of the parameters
of Argon2 are fixed, so that it can be used out-of-the-box with little tuning; only the level of parallelism
and the memory size have to be specified.

• Performance. One-pass Argon2 is 50% faster than scrypt. Two-pass, two-thread Argon2 is as fast as
scrypt.

• Parallelism. Argon2 parallelizes its computation in the tradeoff-resilient way, thus increasing the time-
memory and the time-area products if the memory is reduced, whereas the parallelized scrypt lets the
parallel computation be serialized and keep the time-memory product constant.

• Tradeoff resilience. Argon2d offers better tradeoff resilience compared to scrypt while also being faster.
We compare the time-memory product change for two instances that run equally fast on our machine
(using Eq. (6) and Table 3):

Memory 1
2

1
3

1
4

1
5

1
6

2-pass 2-lane
Argon2d

3.3 4.4 6.9 9.6 12.3

scrypt 0.62 0.5 0.44 0.4 0.38

The two-threaded scrypt runs faster, but its tradeoff resilience is much worse as the computation may be
serialized easily (Section 5).

8 Cryptocurrency proof-of-work based on Argon2

8.1 Overview

As a concrete application, we suggest a cryptocurrency proof-of-work based on Argon2. We aim to make this
PoW unattractive for botnets, so we suggest using 2 GB of RAM, which is very noticeable (and thus would
likely alarm the user), while being bearable for the regular user, who consciously decided to use his desktop for
mining. We further require it to occupy no more than 2 cores. Thus we can use Argon2d with 4 lanes. Here
also the strong tradeoff resistance of the scheme is crucial. To strengthen the resistance to tradeoff attacks, we
propose to make 3 passes over memory. On our 1.8 GHz machine this scheme runs in 2 seconds.

We can estimate the resistance to tradeoff attacks of our proposal from Tables 2 and 3. The ranking method
with reduction by 2 applied to 1-lane, 3-pass Argon2d yields the average depth of the recomputation tree is 20.7,
thus the time penalty is 21.7. So we conclude that the time-memory product will grow at least by the factor of
7, and the same holds for the time-area product. Therefore, tradeoffs are not helpful when implementing this
Proof-of-Work on ASIC, which should reduce the relative efficiency of potential ASIC mining rigs and allow
more egalitarian mining process. Even if someone decides to use large botnets (10,000 machines and more), all
the botnets machines would have to use the same 2 GB of memory, otherwise they would suffer huge penalty
(3423 for reducing the memory by the factor of 2).

Using the 50-nm DRAM implementation [20], an ASIC mining chip would occupy at least 1100 mm2, which
is equivalent to about 30000 SHA-256 cores in the best Bitcoin 40-nm ASICs [1]. Thus the ASIC energy
advantage over CPU will decrease by the factor of 215.

Even though the amount of required RAM (2GB) is small enough for desktops and laptops, in many appli-
cations it is advisable to be able to perform verification of the proof-of-work on the lightweight mobile devices.
Thus it is desirable to allow the memoryless verification of the PoW. Following [15], we suggest using Merkle
hash trees for the verification. As a straightforward implementation of this idea results in an interactive protocol,
we apply a well-known Fiat-Shamir heuristic to make the protocol non-interactive.
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8.2 Memoryless non-interactive verification.

Hash trees. Hash trees are widely used in distributed systems, and the protocol works as follows. A prover
P commits to T blocks M [1],M [2], . . . ,M [T ] by computing the hash tree where the blocks M [i] are at leaves at
depth log T and nodes compute hashes of their branches. For instance, for T = 4 and hash function G prover
P computes and publishes

Φ = G(G(M [1],M [2]), G(M [3],M [4])).

Prover stores all blocks and all intermediate hashes. In order to prove that he knows, say, M [5] for T = 8, (or
to open it) he discloses the hashes needed to reconstruct the path from M [5] to Φ:

open(M [5]) = (M [5],M [6], g78 = G(M [7],M [8]),

g1234 = G(G(M [1],M [2]), G(M [3],M [4])),Φ),

so that the verifier can make all the computations. If G is collision-resistant, it is hard to open any block in
more than one possible way. We suggest using the 256-bit Blake2b for G, as it is already used in Argon2.

Interactive PoW verification. Let us denote the Argon2 hash function that we use in the protocol by H.
To fill 2GB of RAM, we need T = 221 memory blocks, so 3T = 222.5 blocks are generated during the 3 passes.
Let us enumerate them in some way from 1 to 3T so that block M [i] is computed using the previous block
M [prev(i)] and the “random” block M [φ(i)]. In the first step of the protocol the prover publishes the input I,
the hash digest H(I) and the Merkle tree root Φ of the blocks M [1],M [2], . . . ,M [3T ]. In order to verify that
the prover has computed H, the verifier V selects D random values i1, i2, . . . , iD < 3T and asks P to open
M [ij ] and the blocks needed to compute M [ij ]: M [prev(ij)] and M [φ(ij)] for all j ≤ D. An honest prover is
supposed either to store all 3T blocks and the entire Merkle tree (the total memory requirements are around
4T ), or to recompute them once the request is made (then T memory and 3T extra computations are needed).
We note that the root of the tree can be computed with negligible memory (around log T hashes).

A prover may theoretically cheat by computing a different function H ′ 6= H. For example, he can produce
some blocks M [i′] (which we call inconsistent) not as specified by H (e.g. by simply computing M [i′] = G(i′))
so that the preimage of M [i] is not among the blocks used to compute the hash tree. In contrast to the verifiable
computation approach, our protocol allows a certain number of inconsistent blocks. Instead, we are to prove
the following properties:

• If the number of incosistent blocks does not exceed εT for some ε, the new function H ′ remains memory-
hard, and the time and computational penalties for a memory-reducing prover translate from H to H ′

slightly weakened.

• The probability γ that εT or more inconsistent blocks evade detection by the verifier can be made arbi-
trarily low by selecting proper D.

Thus we will demonstrate that either the prover has to compute a memory-hard function (not differing too
much in penalties from H) or he will be caught with probability at least 1− γ.

Let us prove the first property. The inconsistent blocks cut the functional graph of H in εT points. One
may expect that the resulting graph(s) can be computed using far less memory. However, this intuition is
incorrect. As noticed in [15], εT inconsistent blocks can be modelled as giving εT extra memory to the prover
(i.e. the prover could have calculated these blocks consistently and just stored them). The computational and
time penalties imposed on the memory-reducing prover would be calculated as

CH′(q) = CH

(
q

qε+ 1

)
;

DH′(q) = DH

(
q

qε+ 1

)
.

Let us give an example. Let us set ε = 1
4 , which is equivalent to T/4 memory additionally available for the

prover. If he attempts to compute H using 1/4 of total memory and also cheat by having T/4 inconsistent blocks,
his time penalty would be T (1/4 + 1/4) = 21.7 (Table 3). Thus this memory reduction does not reduce the
time-memory product, as the time-memory product increases by the factor of 5. For further memory reductions
the win might be better (as the time penalty never exceeds D(4)), but the high computational penalties (232

for using 1/4 of memory, cf. Table 2) make this advantage inexploitable: there could be no such parallelism in
practice.

Now let us bound the cheating probability by the value γ. To ensure that, the random D blocks must
interleave with a pre-selected εT blocks (out of 3T total blocks) with probability at least 1− γ. Thus we obtain
the following condition on D:

(1− ε/3)D ≤ γ ⇔ D ≥ log1−ε/3 γ.
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We suggest two parameter sets:

• Set 1: ε = 1/4, γ = 2−64, where cheating is infeasible.

• Set 2: ε = 1/8, γ = 1/100, where cheating might work in 1% of blocks but the time and computational
penalties are so high that it is worthless.

We get

D1 ≥ log2−0.13 2−64 ≈ 509.8;

D2 ≥ log2−0.06 2−6.64 ≈ 108.1.

Thus it is sufficient to request 510 blocks in the first case and 109 blocks in the second case. Each opening consists
of 3 blocks and log 3T = 23 32-byte hashes per block, thus in total the verifier receives about 510∗3·(1+23/32) =
2630 KBytes in Set 1 and 562 KB in set 2. The actual tag size should be even smaller as M [i] and M [prev(i)]
usually share most of the path to the hash tree root.

Non-interactive verification. Finally, we apply the Fiat-Shamir approach [16] to convert an interactive
protocol into a non-interactive one. For this we simply require that the indices i1, i2, . . . , iD be taken from
applying G to Φ multiple times. As we need log 3T = 23 bits per index, in total we apply the hash function
(510 · 23)/256 ≤ 46 times in set 1 (10 times in Set 2). The output strings join to form 510 23-bit indices, each
referring to a block produced while computing H.

To summarize, together with the output hash, the prover publishes the hash tree root Φ, which determines
510 (resp., 109) memory blocks to open. These blocks are also opened and published, altogether forming a
memory-hard Proof-of-Work. As noted earlier, the prover either stores all intermediate blocks and the entire
hash tree (which totals to 4T blocks) or recomputes H and the hash tree (thus spending 3T extra calls to F ).

We note that our proof-of-work can be easily combined with the standard concept of difficulty [26], where
some fixed number of trailing zeros must be present in the hash value to become a currency winning block. In
this case the natural strategy is to recompute the blocks and the tree for the verification only if a valid currency
block is produced, so the total overhead is negligible.
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10 Conclusion

In this paper we developed a rigorous approach to the design of memory-hard functions, which would maximize
their running costs on custom hardware. We showed how to implement parallelism in a tradeoff-resilient way
using threads and synchronisation points. We outlined design criteria for the internal compression function
and the indexing functions. We designed a concrete proposal with both data-dependent and data-independent
addressing, which is faster, simpler and more tradeoff-resilient than existing alternatives like scrypt. Finally, we
showed how to design a memory-hard proof-of-work with efficient and memory-light verification for cryptocur-
rencies.

We can outline several interesting directions for future work. First, one can try to design a GPU-oriented
memory-hard function following our methodology so that high memory latency is not a problem. Secondly, new
and better tradeoff algorithms are needed, for multi-pass schemes in particular. Finally, the link between the
time-area products, time and computational penalties, and the attack costs should be investigated in detail.
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A Memory bandwidth in tradeoff attacks

The maximum memory bandwidth Bwmax is a hypothetical upper bound on the memory bandwidth on the
adversary’s architecture. Suppose that for each call to G an adversary has to load R(q) blocks from the memory
on average, where q is the memory reduction factor. Therefore, the adversary can keep the execution time the
same as long as

R(q)Bw ≤ Bwmax,

where Bw is the bandwidth achieved by a full-space implementation.

Lemma 1.
R(q) = C(q).
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Proof. Let Aj be the computational complexity of recomputing M [j]. If M [j] is stored, then Aj = 0. When
we have to compute a new block M [i], then the computational complexity Ci of computing M [i] (measured in
calls to F ) is calculated as

Ci = Aφ2(i) + 1.

and the total computational penalty is calculated as

C(q) =

∑
i<T (Aφ2(i) + 1)

T
.

Let Rj be the total number of blocks to be read from the memory in order to recompute M [j]. The total
bandwidth penalty is calculated as

R(q) =

∑
i<T Rφ2(i)

T
.

Let us prove that
Rj = Aj + 1. (5)

by induction.

• We store M [0], so for j = 0 we have R0 = 1 and A0 = 0.

• If M [j] is stored, then we read it and make no call to F , i.e.

Aj = 0; Rj = 1.

• If M [j] is not stored, we have to recompute M [j − 1] and M [φ2(j)]:

Aj = Aj−1 +Aφ2(j) + 1 = Rj−1 − 1 +Rφ2(j) − 1 + 1 =

= (Rj−1 +Rφ2(j))− 1 = Rj − 1.

The last equation follows from the fact that the total amount of reads for computing M [j] is the sum of
necessary reads for M [j − 1] and M [φ2(j)].

Therefore, we get

C(q) =

∑
i<T (Aφ2(i) + 1)

T
=

∑
i<T Rφ2(i)

T
= R(q).

B scrypt

Here we describe a simplified version of scrypt, which is used for the time-area comparison with Argon2. One-
threaded scrypt first fills the memory as

M [1]← H(Input);

M [i]← G(M [i− 1]), 1 < i < T.

Here H is cryptographic hash function, and G is a transformation, which is not cryptographically strong. Then
we initialize X ←M [T ] and do a pseudo-random walk:

X ← G(X ⊕M [X (mod T )]).

Finally, we output H(X).

Tradeoff for scrypt It is well known (and recently formalized in [19]) that there is a simple tradeoff for scrypt.
Indeed, suppose that we store every q-th memory block. Then on each step in the second phase we have to
recompute (q− 1)/2 blocks on average. Since the total number of calls to G is 2T , we get the following formula
for penalties:

C(q) = T (q) =
2T + T (q − 1)/2

2T
=
q + 3

4
. (6)
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C Ranking tradeoff method

The idea of the ranking method [12] is as follows. When we generate a memory block Ml, we make a decision,
to store it or not. If we do not store it, we calculate the access complexity of this block — the number of calls
to F needed to compute the block, which is based on the access complexity of Ml−1 and Mφ(l). The detailed
strategy is as follows:

1. Select an integer q (for the sake of simplicity let q divide T ).

2. Store Mkq for all k;

3. Store all ri;

4. Store the T/q highest access complexities. If Mi refers to a block from this top list, we store Mi.

The memory reduction is a probabilistic function of q. The results are given in Table 1.
We conclude that for data-dependent one-pass schemes the adversary is always able to reduce the memory

by the factor of 4 and still keep the time-area product almost the same.

D Cheat detection

In the second set of parameters cheating is rare though still possible. As the inputs to H are public, any other
user can run it on his own machine if he has sufficient memory. However, even he gets a different result, which
signals of cheating, he still has to communicate this news to the other users and convince them that the original
block is incorrect.

We suggest a simple protocol that marks the cheated hashes invalid and does not require human interaction
or any other consensus. Suppose that a user U runs H on some input I and finds out that H(I) 6= H0,
the published hash digest of I. We suggest U to run another iteration of the verification protocol using 2D
block requests instead of D, and to publish the new tag, which becomes twice as large. If the tag is valid, a
cryptocurrency protocol should accept it and mark the malicious block as invalid.

It is again possible that U cheats as well, but the cheating probability is changed from γ to γ2. To detect
this “second-order” cheat, yet another user should run the verification protocol with 4D block requests and so
on.
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