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Abstract

The multiple ideal query (MIQ) model was introduced by Goyal, Jain and Ostrovsky [Crypto’10]
as a relaxed notion of security which allows one to construct concurrently secure protocols in the
plain model. The main question relevant to the MIQ model is how many queries must we allow
to the ideal world adversary? The importance of the above question stems from the fact that if
the answer is positive, then it would enable meaningful security guarantees in many application
scenarios, as well as, lead to resolution of long standing open questions such as fully concurrent
password based key exchange in the plain model.

In this work, we continue the study of the MIQ model and prove severe lower bounds on the
number of ideal queries per session. Following are our main results:

1. There exists a two-party functionality that cannot be securely realized in the MIQ model
with only a constant number of ideal queries per session.

2. There exists a two-party functionality that cannot be securely realized in the MIQ model
by any constant round protocol, with any polynomial number of ideal queries per session.

Both of these results are unconditional and even rule out protocols proven secure using a
non-black-box simulator. We in fact prove a more general theorem which allows for trade-off
between round complexity and the number of ideal queries per session. We obtain our negative
results in the following two steps:

1. We first prove our results with respect to black-box simulation, i.e., we only rule out
simulators that make black-box use of the adversary.

2. Next, we give a technique to “compile” our negative results w.r.t. black-box simulation
into full impossibility results (ruling out non-black-box simulation as well) in the MIQ
model. Interestingly, our compiler uses ideas from the work on obfuscation using tamper-
proof hardware [GIS+10, GO96], even though our setting does not involve any hardware
tokens.
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1 Introduction

The notion of secure computation is central to cryptography. Introduced in the seminal works of
[Yao86, GMW87], secure multi-party computation allows a group of (mutually) distrustful parties
P1, . . . , Pn, with private inputs x1, . . . , xn, to jointly compute any functionality f in such a manner
that the honest parties obtain correct outputs and no group of malicious parties learn anything
beyond their inputs and prescribed outputs.

The classical results for secure computation are only in the stand-alone setting where security
holds only if a single protocol session is executed in isolation. Unfortunately, as it has become
increasingly evident over the last two decades, stand-alone security does not suffice in real-world
scenarios where several protocol sessions may be executed concurrently – a typical example being
protocols executed over modern networked environments such as the Internet.

Background: Concurrently Secure Computation. Towards that end, the last decade has
a seen a significant effort by the cryptographic community towards obtaining protocols that are
concurrently composable, i.e., protocols that remain secure even when executed concurrently over
an insecure network. For example, we could require security under concurrent self-composition
(which is the focus of this work): a protocol should remain secure even when there are multiple
copies executing concurrently. The framework of universal composability (UC) [Can01] was intro-
duced to capture the setting of concurrent general composition, where a protocol may be executed
concurrently not only with several copies of itself but also with other arbitrary protocols.

General positive results for UC secure computation are known based on various trusted setup
assumptions, such as a common random string [Can01, CF01, CLOS02, BCNP04, CPS07, Kat07,
LPV09]. Whether a given set of players is actually willing to trust an external entity, however, is
debatable. Indeed, a driving goal in cryptographic research is to eliminate the need to trust other
entities. As such, positive results for concurrently-secure computation in the plain model (which is
the main focus of this work) are highly desirable, both from a theoretical and practical viewpoint.

Negative Results for Concurrent Composition. Unfortunately, in the plain model, by and
large, most of the results have been negative. UC secure protocols for most functionalities of interest
were ruled out in [CF01, CKL03, PR08, KL11]. These impossibility results were extended to the
setting of general composition by Lindell [Lin03] who proved that security under concurrent general
composition implies UC security. Later, Lindell [Lin04] established broad negative results even for
the setting of concurrent self-composition by showing equivalence of concurrent self-composition
and general composition for functionalities where each party can “communicate” to the other via
its output. Following the work of Barak et al. [BPS06] and Goyal [Goy12], recently Agrawal et al.
[AGJ+12] and Garg et al. [GKOV12] ruled out essentially all non-trivial two-party functionalities
for concurrent self-composition, even in the setting where the inputs of honest parties are fixed in
advance for all the protocol sessions.

On the positive side, it is known how to realize zero-knowledge and related functionalities, with
security in similar models (e.g., [DNS98, RK99, KP01, PRS02, BPS06, Lin08]). The recent work
of Goyal [Goy12] obtains positive results for a broader class of functionalities; however, (in keeping
with the negative results mentioned above) these results are only relevant to the restricted setting
where an honest party uses the same, static input in all of the sessions.
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The Search for Relaxed Security Notions. While the above discussion paints a rather bleak
picture of state of the art on concurrent security, fortunately, there is a brighter side. Indeed,
several prior works have studied relaxations of the standard definition of secure computation that
bypass the above negative results, yet provide strong and meaningful security guarantees in the
concurrent setting. A well studied notion is that of security w.r.t. super-polynomial simulation
[Pas03, PS04, BS05, LPV09, CLP10, GGJS12, LP12] which intuitively guarantees that a real-world
adversary does not learn any more information than what can be computed in super-polynomial
time in the ideal world. Another notion is that of input-indistinguishable computation [MPR06,
GGJS12] which intuitively guarantees that an adversary cannot decide which input (out of possibly
many inputs leading to the same output) is used by the honest party in the protocol.

Recently, Goyal, Jain and Ostrovsky [GJO10] introduced the multiple ideal query (MIQ) model
for concurrent self-composition where the ideal world adversary is allowed to make more than one
output query per session to the ideal functionality. The exact number of queries allowed is a
priori fixed by a parameter λ. In our view, the main advantage of this notion over the previously
discussed notions is that it provides an (arguably) intuitive, easy to understand, security guarantee.
In particular, in this model, one can precisely measure the amount of “extra” information that the
adversary can potentially learn. The security guarantee is provided with standard polynomial time
simulation (and adversary) and follows the ideal/real world security formalization. Furthermore,
for functionalities such as password-based key exchange, the MIQ definition in fact implies the
previous standard definition [GL01] when λ = O(1).

The MIQ model has also proven relevant in the related setting of resettability. Goyal and Sahai
[GS09] introduced the notion of resettable secure computation and construct such protocols in the
model where the ideal adversary can “reset” the trusted party at any point. This gives the ideal
adversary the power to query the trusted party multiple times (per session in the real world). This
allows them to get a general positive result for all PPT computable functionalities in the plain
model in the resettable ideal world setting.

The multiple ideal query model has also proven relevant as technical tool. In particular, the
recent positive results of Goyal [Goy12] can be seen as obtained using the following two step
paradigm. First, very roughly, Goyal constructs a protocol secure in the multiple ideal query
model. Then, the additional queries made to the ideal trusted party are eliminated by constructing
an “output predictor”.

We believe the study of the MIQ model is well motivated: both because the guarantee provided
in the concurrent setting is interesting and non-trivial on its own, as well as the connection it has
to constructing secure protocols in other related settings.

In this work, we continue the study of the MIQ model.

Our Question: How many Queries? The main question relevant to the MIQ model is how
many queries must we allow to the ideal world adversary? Note that if we allow a large number of
queries, then the security guarantee may quickly degrade and become meaningless; in particular,
the adversary may be able to learn the input of the honest party in the worse case. On the other
hand, if the number of allowed queries is very small, say 1+ε per session, then the security guarantee
is very close to that of the standard definition.

To exemplify this further, consider the oblivious polynomial evaluation functionality [NP99,
NP06] where two parties wish to jointly evaluate a polynomial over a point. The input of party P1

is a polynomial Q, while the input of P2 is a point α. At the end of the protocol, the party P2 gets
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Q(α) as the output. This is a natural functionality with applications to list intersection, mutual
authentication, metering on the web, etc (see [NP06] for more details on these).

Now, note that if we only allow, say, 2 queries to a malicious P2 in the ideal world (per real
world session), then as long as Q is a high-degree polynomial, the security guarantee for P1 is still
quite meaningful. Instead of a single point, now a malicious adversary may learn the output on
two points of its choice (from an exponential domain of points). The adversary still does not learn
any information about what the polynomial evaluates to on rest of the (exponential) domain. On
the other hand, if we allow too many queries (exceeding the degree of the polynomial), then the
ideal world adversary may be able to learn the entire polynomial Q thus rendering the security
guarantee meaningless.

The only known positive results in the MIQ model are due to [GJO10, GGJ13]. Goyal et. al.
[GJO10] provide a construction where the average number of queries in the ideal world per real
world session is a constant (with the constant depending upon the adversary). This was further
improved in a recent result [GGJ13] which provides a construction where the average number of
ideal queries in any session are (1 + 1

poly(n)).
If the guarantee on the number of queries per session is only in expectation, this means that in

some sessions, the ideal adversary may still be able to make a large number of queries (while keeping
the number of queries low in other sessions). Considering the oblivious polynomial evaluation
example above, this means that the security in some sessions may be completely compromised.
Furthermore, consider the problem of concurrent password based key exchange [KOY01, GL03,
CHK+05, BCL+05, GJO10]. An interesting question that has remained open so far is designing a
concurrent password based key exchange in the plain model where different pair of parties share
different (but correlated) passwords. Indeed, this is the most natural setting for password based key
exchange (PAKE) and all currently known construction either do not provide concurrent security
or are not in the plain model. We note that a positive result in the MIQ model where the number
of queries per sessions is a strict constant would directly imply a positive result for this problem.1

This raises the following natural question:
“Do there exist concurrent secure protocols in the MIQ model where the number of ideal queries

per session is a strict constant?”
As discussed, the importance of the above question stems from the fact that if the answer is

positive, then it would enable meaningful security guarantees in many application scenarios (e.g.,
oblivious polynomial evaluation), as well as, lead to resolution of long standing open questions such
as concurrent password based key exchange in the plain model.

1.1 Our Results

In this work, we continue the study of the MIQ model and prove severe unconditional lower bounds
on the number of ideal queries per session. Following are our main results:

1. There exists a two-party functionality that cannot be securely realized in the MIQ model
with only a constant number of ideal queries per session.

1The first positive result for concurrent PAKE in the plain model provided by Goyal et. al. [GJO10] was for
the single password setting where there is a single global correct password which every party is required to use for
authentication. The single password restriction stems from their solution requiring a constant number of ideal queries
per session on an average.
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2. There exists a two-party functionality that cannot be securely realized in the MIQ model by
any constant round protocol, with any polynomial number of ideal queries per session.

Both of these results are unconditional and even rule out protocols proven secure using a non-
black-box simulator. We in fact prove a more general theorem that provides a trade-off between
the round-complexity and the number of ideal queries per session.

Let ceil1(x) = dxe. For y ≥ 2, let ceily(x) be recursively defined as ceily(x) = dx · ceily−1(x)e.
Our main result is stated as follows:

Theorem 1 (Informal) There exists a two-party functionality f such that for any d = d(k) and
n = n(k) that satisfy nd = poly(k), no n-round protocol Π securely realizes f in the MIQ model
with at most λ = ceild(1 + 1

n) number of queries per session.

Application to concurrent precise zero-knowledge. While our main results concern with
the MIQ model, interestingly, they also find applications in the setting of precise simulation [MP06].
Recall that in the setting of precise simulation, we wish to ensure that the resource utilization of the
simulator is “close” to the resource utilization of the adversary in the real world interaction. The
resource being studied is typically the running time, however, previous works have also considered
a more general setting where the resource in question can be, e.g., memory. One can consider a
general setting, where instead of focusing only on a particular resource (such as time), we consider
many resources at the same time, such as memory, cache, power, etc. A general question we may
ask is whether it is possible to perform simulation that achieves precision for each of these resources
simultaneously.

To be more concrete, say we have a concurrent adversary interacting with the prover in many
sessions and making use of k different resources (each resource may be utilized by the adversary
at any arbitrary point). A natural question is: can one obtain a zero-knowledge simulator such
that its utilization of each resource is only within a constant factor of the adversary? Our negative
results directly imply a negative answer for this question as well where the number of resources is
equal to the number of sessions. In other words, viewing the ideal functionality query in session
i as a utilization of the i-th resource, we directly have that the simulator will end up going over
a constant factor for at least one of the resources. Similarly, our results also imply a severe lower
bound for constant round protocols: there exists a resource whose utilization will, in fact, not be
within any polynomial factor of the adversary’s utilization.

Independent of our work, Pass [Pas12] has been able to obtain a positive result in the stand-
alone setting for the above problem. In particular, [Pas12] gives a construction where the simulator
is able to be precise in multiple resources simultaneously in the standalone setting.

1.2 Our Techniques

In this section, we give an overview of our techniques. We obtain our negative results in the
following two steps:

1. We first prove our results with respect to black-box simulation, i.e., we only rule out simulators
that make black-box use of the adversary.

2. Next, we give a technique to “compile” our negative results w.r.t. black-box simulation into
full impossibility results (ruling out non-black-box simulation as well) in the MIQ model.
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Interestingly, our compiler uses ideas from the work on obfuscation using tamper-proof hard-
ware [GIS+10, GO96], even though our setting does not involve any hardware tokens. We
believe these techniques may find applications elsewhere.

Below, we discuss each of these steps separately.

Impossibility for Black-box Simulation. Recall that in order to prove security of a two-party
computation protocol, we need to demonstrate that for every real world adversary A that controls
one of the parties, there exists an ideal world adversary (or simulator S) who can simulate the view
of A. Typically, the simulator S works by extracting the input a used by A and then querying the
ideal functionality with a to receive the correct output; this output is then used to complete the
simulation of A’s view.2 Now, further recall that the only advantage that a black-box simulator
has over the real adversary is the ability to rewind. In other words, a black-box simulator extracts
the input of A by rewinding. However, in the concurrent setting, extracting the input of A in each
session is a non-trivial task. In particular, given an adversarial scheduling, it may happen that in
order to extract the input of A in a given session s, the simulator S rewinds past the beginning
of another session s′ (that is interleaved inside the protocol messages of session s). When this
happens, A may change its input in session s′. Thus, the simulator S would be forced to query the
ideal functionality more than once for the session s′. Indeed, as shown in [Lin04], this intuition can
be formalized to obtain a black-box impossibility result for concurrent self-composition w.r.t. the
standard definition of secure computation, where only one query per session is allowed.

We now briefly explain how the above intuition can be further extended to achieve a black-
box impossibility result even when the simulator is allowed to make multiple queries to the ideal
functionality. For concreteness, let us consider the (simplified) case where the simulator is allowed
a fixed constant C number of queries per session. Note that in order to obtain the desired negative
result, we need to construct a concurrent adversary A that can force any black-box simulator S to
make more than C queries for at least one session. We now briefly discuss how to construct such
an adversary. Let n be the round complexity of the protocol, where n is any polynomial in the
security parameter.

Consider the following static adversarial scheduling of messages. Consider an “outer” session
(say) s. We will call it a session at level 0. Now, between every round of messages in the outer
session, place a new complete protocol session. We will call these n sessions to be at level 1. Next,
we again place a new complete protocol session between every round of messages in each session at
level 1. Note that this creates n2 sessions at level 2. Repeat this process recursively until we reach
level C, where there are exactly nC sessions. Thus, in total, we have m = nC+1−1

n−1 sessions, which
is polynomial in the security parameter.

Now, as discussed earlier, a black-box simulator S must perform at least one rewinding in order
to extract the input of A in the “outer” session s. Suppose that S rewinds the ith round of session
s. Then, this immediately implies that the ith session at level 1 is executed at least twice, which
in turn means that S will be forced to query the ideal functionality twice for that session. Now,
note that S will need to extract A’s input in each of these two executions in order to complete
them successfully. Thus, assuming that (even if) S rewinds different rounds in each of these two
executions, we have that there exist two sessions at level 2 that are each executed three times.

2Note that since the output depends on the honest party’s input, for many natural functionalities, it is easy to
see that S must query the ideal functionality on A’s input in order to obtain a “valid” output. Indeed, the validity
of the output may be publicly verifiable, or in particular, may be verifiable given A’s auxiliary input.
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Continuing this argument inductively, we can show that for every level i, there exists at least one
session that is executed i + 1 times. As a result, we obtain that there exists a session s∗ at level
C that is executed C + 1 times. If the adversary chooses a different input in each of the C + 1
executions, we have that S must query the ideal functionality C + 1 times for session s∗. Thus, we
conclude that the black-box simulator S, who is only allowed C queries, must fail.3

From Black-Box to Non-Black-Box. We now discuss a compilation technique to transform
our negative results for black-box simulation into full impossibility results that rule out non-black-
box simulation as well.

Recall that the main advantage that a non-black-box simulator has over a black-box simulator
is that the former can make use of the adversary’s code. Then, our high-level approach is to
“nullify” this advantage by making use of secure program obfuscation. We note, however, that
general program obfuscation is known to be impossible [BGI+01]. Towards this end, our key idea
is to use positive results on program obfuscation using stateless tamper-proof hardware tokens by
Goyal et. al. [GIS+10]. In the obfuscation with hardware model, one can take the given program
and convert it into an obfuscated program using an obfuscation key k. The obfuscated program, for
execution, would require oracle access to a hardware token having the obfuscation key k. We denote
the functionality of the token (required to run the obfuscated program) by ftoken (parameterized
by the key k).

Very roughly, our idea is to implement the “token functionality” ftoken of [GIS+10] using two-
party computation. An important point is that ftoken is “robust” to any polynomial number of
queries; thus, it is particularly suited to the MIQ model. In more detail, we obtain our negative
result in the following three steps described at a very high level (see Section 4 for details and further
intuition):

Toy Experiment: Let Π be any protocol for the ftoken functionality and let A be any concurrent
adversary for Π that rules out black-box simulators that make at most λ queries per session.
We first consider a toy experiment involving three parties, namely, Alice, Bob and David.
In this experiment, Alice and Bob interact in multiple ideal world executions of the token
functionality ftoken. At the same time, Bob and David are involved in concurrent real-world
executions of Π where Bob and David follow the same scheduling of messages as defined by
adversary A. Furthermore, the adversary Bob is allowed to reset David at any point during
their interaction.

David, who has a secret input secret is instructed to reveal secret to Bob if all the executions
of Π are completed “successfully”. The goal of Bob is to successfully complete its interaction
with David and learn the value secret. Then, the main idea in this experiment is that, by
relying on our black-box impossibility result, we show that no adversarial Bob can succeed in
learning secret, except with negligible probability.

Ideal World: In the second step, we eliminate David from the above experiment by obfuscating
his next-message function in the ftoken-hybrid model and give it as an auxiliary input to Bob
(while the corresponding obfuscation “key” is given to Alice). This results in a scenario where
Alice and Bob are the only parties, who interact in multiple ideal world executions of ftoken.
From the security of obfuscation, we can argue that this experiment can be reduced to the toy
experiment; as such, no adversarial Bob can learn secret, except with negligible probability.

3We remark that in order to prove our general result, a more tight analysis is necessary; see the technical sections.
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Real World Experiment: We finally consider the real world experiment, which is the same as
previous step, except that all the ideal world invocations of ftoken are now replaced with real-
world executions of protocol Π. It is not difficult to see that in this experiment, an adversary
Bob can simply play a “man-in-the-middle” between Alice and David (since Bob has David’s
obfuscated code); as a result, Bob can learn secret with probability 1.

From above, it follows that the adversary Bob in the real world experiment is a ppt concurrent
adversary for Π whose view cannot be simulated by any simulator that makes at most λ queries
per session, thus yielding us the desired result. We refer the reader to the technical sections for
more details.

2 Preliminaries

2.1 Our Model

In this section, we present our security model. Throughout this paper, we denote the security
parameter by k.

Concurrently Secure Computation in the MIQ model. We define our security model by
extending the standard real/ideal paradigm for secure computation. Roughly speaking, we consider
a relaxed notion of concurrently secure computation where the ideal world adversary is allowed to
make an a priori fixed number (denoted as λ = λ(k), where k is the security parameter) of output
queries to the ideal functionality for each session. Note that in contrast, the standard definition for
concurrently secure computation only allows for one output query per session to the ideal adversary.
We now give more details.

In this work, we consider a malicious, static adversary. The scheduling of the messages across
the concurrent executions is controlled by the adversary. We do not require fairness and hence in
the ideal model, we allow a corrupt party to receive its output in a session and then optionally block
the output from being delivered to the honest party, in that session. We consider a static adversary
that chooses whom to corrupt before execution of the protocol. Finally, we consider computational
security only and therefore restrict our attention to adversaries running in probabilistic polynomial

time. We denote computational indistinguishability by
c≡.

We now proceed to describe the ideal and real world experiments and then give our security
definition.

Ideal model. We first define the ideal world experiment, where there is a trusted party for
computing the desired two-party functionality f . Let there be two parties P1 and P2 that are
involved in multiple sessions, say m = m(k). An adversary may corrupt either of the two parties.
As in the standard ideal world experiment for concurrently secure computation, the parties send
their inputs to the trusted party and receive the output of f evaluated on their inputs. The
main difference from the standard ideal world experiment is that the adversary is allowed to make
λ output queries (with possibly different inputs of its choice) in each session. The ideal world
execution (parameterized by λ) proceeds as follows.

I. Inputs: P1 and P2 obtain a vector of m inputs, denoted ~x and ~y respectively. The adversary
is given auxiliary input z, and chooses a party to corrupt. Without loss of generality, we
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assume that the adversary corrupts P2 (when the adversary controls P1, the roles are simply
reversed). The adversary receives the input vector ~y of the corrupted party.

II. Session initiation: The adversary initiates a new session by sending a start-session message
to the trusted party. The trusted party then sends (start-session, i) to P1, where i is the index
of the session.

III. Honest parties send inputs to trusted party: Upon receiving (start-session, i) from the
trusted party, honest party P1 sends (i, xi) to the trusted party, where xi denotes P1’s input
for session i.

IV. Adversary sends input to trusted party and receives output: Whenever the adversary
wishes, it may send a message (i, `, y′i,`) to the trusted party for any y′i,` of its choice. Upon
sending this pair, it receives back (i, `, f(xi, y

′
i,`)) where xi is the input value that P1 previ-

ously sent to the trusted party for session i. The only limitation is that for any i, the trusted
party accepts at most λ tuples indexed by i from the adversary.

Adversary instructs trusted party to answer honest party: When the adversary sends a
message of the type (output, i, `) to the trusted party, the trusted party sends (i, f(xi, y

′
i,`))

to P1, where xi and y′i,` denote the respective inputs sent by P1 and adversary for session i.

VIII. Outputs: The honest party P1 always outputs the values f(xi, y
′
i,`) that it obtained from

the trusted party. The adversary may output an arbitrary (probabilistic polynomial-time
computable) function of its auxiliary input z, input vector ~y and the outputs obtained from
the trusted party.

The ideal execution of a function f with security parameter sec, input vectors ~x, ~y and auxiliary
input z to S, denoted idealf,S(k, ~x, ~y, z), is defined as the output pair of the honest party and S
from the above ideal execution.

Definition 1 (λ-Ideal Query Simulator) Let S be a non-uniform probabilistic (expected) ppt
machine representing the ideal-model adversary. We say that S is a λ-ideal query simulator if it
makes at most λ output queries per session in the above ideal experiment.

Real model. We now consider the real model in which a real two-party protocol is executed
(and there exists no trusted third party). Let f be as above and let Π be a two-party protocol for
computing f . Let A denote a non-uniform probabilistic polynomial-time adversary that controls
either P1 or P2. The parties run concurrent executions of the protocol Π, where the honest party
follows the instructions of Π in all executions. The honest party initiates a new session i with input
xi whenever it receives a start-session message from A. The scheduling of all messages throughout
the executions is controlled by the adversary. That is, the execution proceeds as follows: the
adversary sends a message of the form (i,msg) to the honest party. The honest party then adds
msg to its view of session i and replies according to the instructions of Π and this view. At the
conclusion of the protocol, an honest party computes its output as prescribed by the protocol.
Without loss of generality, we assume the adversary outputs exactly its entire view of the execution
of the protocol.
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The real concurrent execution of Π with security parameter k, input vectors ~x, ~y and auxiliary
input z to A, denoted realΠ,A(k, ~x, ~y, z), is defined as the output pair of the honest party and A,
resulting from the above real-world process.

Security Definition. Having defined the ideal and real models, we now give our security defini-
tion.

Definition 2 (λ-Secure Concurrent Computation in the MIQ Model) A protocol Π is said
to λ-securely realize a functionality f under concurrent self composition in the MIQ model if for
every real model non-uniform ppt adversary A, there exists a non-uniform (expected) ppt λ-ideal
query simulator S such that for all polynomials m = m(k), every pair of input vectors ~x ∈ Xm,
~y ∈ Y m, every z ∈ {0, 1}∗s,

{idealf,S(k, ~x, ~y, z)}k∈N
c≡ {realΠ,A(k, ~x, ~y, z)}k∈N

2.2 Obfuscation with Tamper-Proof Hardware Tokens

In this work, we use ideas from the area of obfuscation using tamper-proof hardware tokens. In
particular, we use the positive result of Goyal et al. [GIS+10] on secure program obfuscation using
stateless tamper-proof hardware tokens. Below, we give an abstract overview of the scheme of
[GIS+10] that we will use in our negative results. We remark that the discussion below hides most
of the internal details of the scheme of [GIS+10]. We refer the reader to [GIS+10] for the details of
the scheme.

Obfuscation in Token Hybrid Model. In order to obfuscate a circuit C, the sender executes
the following steps:

• Sample a token instance T ← SampleT. The token instance has some secret values hardwired
inside it. We will denote the secret values as a key K (that is drawn from some distribution
K). In other words, sampling of the token instance just involves to sampling the key K from
the distribution K.

• Compute the obfuscated program O(C)← Obfuscate(C,K)

To compute C(x) on any input x, the obfuscated program O(C) makes tC queries of various types
to the token T , where each q is drawn from some distribution Q. Here, tC , denoted as the query
parameter of the obfuscation scheme, is an integer that depends on the size of the circuit C that is
obfuscated.

Obfuscating Stateful Programs. The above description is only relevant to obfuscating stateless
circuits C. We note that it is also possible to obfuscate the programs of stateful (or reactive)
machines M in the above scheme by using standard techniques. The basic idea is that obfuscated
code O(M) is computed in such a manner that its output on any given input x consists of both
M(x) and an authenticated encryption of its resultant state after the computation of M(x).

We now recall the following security lemma from [GIS+10] (informally stated):

Lemma 1 ([GIS+10]) Assuming the existence of one-way functions, (SampleT, Obfuscate) is a
(stateful) program obfuscation scheme in the token-hybrid model with the following properties. For
any adversary having the obfuscated program O(C) along with oracle access to the token, there
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exists an ideal world simulator having only black-box access to the circuit C, such that, the output
distribution of the simulator is computationally indistinguishable from that of the adversary.

The Token Functionality. A key idea that is used in our negative results is to implement the
working of the hardware token T via a two-party secure computation protocol. To this end, we
abstract the working of the token T as the following two-party functionality ftoken, that we will
refer to as the “token functionality”.

Denote by ftoken the token functionality with the key K hardwired inside the description of its
circuit. The input and output interface of the functionality ftoken is described as follows:

Inputs: Party P1 gets a token key K ← K as input, while P2 gets a query q ← Q as input.

Outputs: P1 gets no output, while P2 gets ftoken(K; q).

Note that ftoken is a deterministic functionality. We now state a lemma regarding the unpredictabil-
ity of outputs of ftoken. We note that this lemma is implicit in [GIS+10].

Lemma 2 (Unpredictability of Output of ftoken [GIS+10]) There exists a distribution Q (with
super-logarithmic min-entropy) from which a query q can be sampled with the following properties.
Any adversary A, given oracle access to the functionality ftoken(K; ·) (where K is sampled at ran-
dom from K) with the restriction that it is allowed to query ftoken(K; ·) on any string except q, can
output ftoken(K; q) with only negligible probability.

Proof Sketch. Observe queries of Type 1 in the obfuscation scheme of [GIS+10]. For a large
enough randomly chosen input x, the resulting query q has at least super-logarithmic min-entropy.
Note that the output of ftoken(K; q) consists of a message-authentication code (MAC) on a message
that has full information about q. Hence, the lemma follows from the unforgeability of the MAC
scheme. We refer the reader to [GIS+10] for details.

3 Impossibility of Concurrently Secure Computation in the MIQ
Model with Black-Box Simulation

In this section, we prove impossibility results for concurrently secure computation in the MIQ model
with respect to black-box simulation.

Let ceil1(x) = dxe. For y ≥ 2, let ceily(x) be recursively defined as ceily(x) = dx · ceily−1(x)e.
Our general result, stated below, shows a trade-off between the query parameter λ and the round-
complexity n of the protocol:

Theorem 2 There exists a functionality f such that for any d = d(k) and n = n(k) that satisfy
nd = poly(k), no n-round protocol Π λ = ceild(1 + 1

n)-securely realizes f in the MIQ model with
respect to black-box simulation.

Note that ceild(1+ 1
n) ≥ d+1. Thus, we obtain the following general corollary when substituting

d with λ:

Corollary 1 There exists a functionality f such that for any λ = λ(k) and n = n(k) that satisfy
nλ = poly(k), no n-round protocol Π λ-securely realizes f in the MIQ model with respect to black-box
simulation.
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By plugging in n = poly(k) and λ = O(1) above, we get the following as a sub-corollary,
ruling out general positive results in the MIQ model when a (black-box) simulator is allowed only
a constant number of ideal queries per session:

Corollary 2 There exists a functionality f that cannot be O(1)-securely realized in the MIQ model
with respect to black-box simulation.

Finally, by plugging in n = O(1) and d = log(k) in Theorem 2, we obtain the following corollary
ruling out constant-round protocols in the MIQ model:

Corollary 3 There exists a functionality f that cannot be securely realized in the MIQ model by
any O(1)-round protocol w.r.t. black-box simulation, even if a (black-box) simulator is allowed any
(fixed) poly(k) ideal queries per session.

We now proceed to the proof of Theorem 2. In fact, we will prove something stronger, as stated
below. We first give the following definition:

Definition 3 (λ-special black-box adversary) Let λ = λ(k) and Π = (P1, P2) be a protocol for
functionality f . A ppt concurrent adversary A for Π that corrupts party P2 is said to be λ-special
adversary if the following holds:

• A outputs accept with probability 1 in the real-world execution with P1.

• Except with negligible probability, no λ-ideal query black-box simulator can send a query to A
such that it outputs accept.

It is easy to see that Theorem 2 is implied by the following theorem:

Theorem 3 For every d = d(k) and n = n(k)-round protocol Π for the ftoken functionality, if
nd = poly(k), then there exists a λ-special adversary for Π, where λ = ceild(1 + 1

n).

We prove the above theorem for the ftoken functionality.

3.1 Proof of Theorem 3

Our proof builds on ideas from Lindell’s black-box lower bound for the round complexity of
bounded-concurrent self-composition [Lin04]. In what follows, we will follow the notation and
terminology used in [Lin04]. Some of the text below is taken from [Lin04].

We will prove the theorem assuming one-way functions. Note that this suffices since secure
coin-tossing (even in the stand-alone setting) implies one-way functions. Therefore, if one-way
functions do not exist, then it is easy to see that coin-tossing already suffices to prove Theorem 3.

Now, assuming one-way functions, we will prove Theorem 3 for the token functionality ftoken,
as defined in Section 2.2. Our proof will be according to the following outline:

I. First, given any d = d(k) and an n-round protocol Π (s.t. nd = poly(k)) for ftoken, we will
construct a real-model adversary A who corrupts party P2 and interacts with honest P1 in
m = nd+1−1

n−1 concurrent sessions with a specific static schedule. By construction, our A will
output accept with probability 1 in a real-world execution.
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II. Next, we assume for contradiction that with non-negligible probability, there exists a λ(=
ceild(1 + 1

n))-ideal query black-box simulator S that manages to send a query to A such that
A outputs accept. We will argue some special properties about S; most notably that there
must exist a session at level i < d where S does not rewind A.

III. Using the above observation, (following standard techniques from [CKL03, Lin04]) we finally
construct a new adversary A′ who interacts with an honest P2 and learns its private input with
non-negligible probability. Since this is impossible in the ideal world (from the stand-alone
security of Π), we reach a contradiction.

We now proceed to give details. Let us assume for contradiction that there exists an n-round
protocol Π that λ(= ceild(1+ 1

n))-securely realizes ftoken under concurrent self-composition. Without
loss of generality, we assume that the first message in Π is sent by party P2.

In the first part of the proof, we will describe a ppt concurrent adversary A and a specific
static message schedule for m = nd+1−1

n−1 concurrent executions of Π. Before proceeding further, we
first describe how the inputs of the parties P1 and P2 are chosen for the m sessions. Recall the
description of the token functionality ftoken from Section 2.2. Let Q denote a distribution on the
token queries with super-logarithmic min-entropy (see Lemma 2). Then, in each session i ∈ [m],
the inputs of P1 and P2 are Ki and qi respectively, where each token key Ki is drawn at random
from K, and each qi is drawn at random from Q.

Part I. Adversary A. Adversary A is provided as auxiliary input a random string z ∈ {0, 1}k,
as well as token keys K1, . . . ,Km as defined above. A schedules the protocol messages of the m
sessions of Π in the following manner.

Adversarial schedule. Let s denote the first protocol execution initiated by A. We will call it the
session at level 0 (i.e., the “outer level”). Now, between every two consecutive rounds of messages
in session s, place a new complete protocol session. Let these n nested sessions be denoted as
s1, . . . , sn. We will call them as sessions at level 1. Now, for every session si at level 1, we again
place a new complete protocol session between every round of messages in si. Note that this creates
n2 sessions denoted as si,1, . . . , si,n at level 2. Repeat this process recursively until we reach level
d (i.e., the “inner-most level”), where there are exactly nd sessions s1,...,1, . . . , sn,...,n. Thus, in

total, we have exactly nd+1−1
n−1 = poly(k) sessions. Figure 1 gives a pictorial representation of the

adversarial schedule.

A’s strategy. Let Π1, . . . ,Πm denote the m protocol executions, where Πi denotes the ith session
started by A. (That is, Π1, . . . ,Πm is the ordered list of protocol sessions, based on when each
session starts.) We now describe the strategy of A in each of the m protocol sessions.
A replaces its input q1 in the first session Π1 with q′1, where q′1 is sampled from the distribution

Q using auxiliary input z as the randomness. A starts the execution of Π1 using q′1 as its input
and behaves honestly (running the code of honest P2). Later, when any session Πi (i ∈ {2, . . . ,m})
starts (as per the schedule), A collects the partial transcript Ti of the protocol messages (across
all sessions) generated so far and applies a pseudo-random function (PRF) F with a random key
k to the transcript.4 It then replaces its input qi in session Πi with q′i, where q′i is sampled from

4The key k for the PRF must be included in the auxiliary input of A. We omit it from the description for simplicity
of exposition.
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distribution Q using Fk(Ti) as the randomness. A behaves honestly (by running the code of P2) in
Πi using q′i as its input.

In any session i ∈ [m], if the output σi received by A is such that σi 6= ftoken(Ki, q
′
i) (i.e., the

output is incorrect5) then A sends ⊥, outputs all the output values received from the protocol
sessions completed so far, and aborts. On the other hand, if A receives correct answers in all the m
sessions, then it outputs accept, along with all its inputs and output values from all the sessions.

This completes the description of adversary A. It is easy to see that since A behaves honestly
in each protocol session, it outputs accept with probability 1 in a real-world execution with honest
P1.

Part II. Properties of Simulator S. Now, assume for contradiction that with non-negligible
probability, there exists a λ-ideal query black-box simulator S that sends a query to A such that
A outputs accept. Recall from the construction of the adversary A that it outputs accept only
when it receives correct outputs in all of the m sessions. In other words, A outputs accept only if
S successfully completes an entire execution of m sessions with A. We will now claim some specific
properties about the working of S.

Towards that end, first recall that a black-box simulator only has oracle access to the real world
adversary. This oracle represents the next-message function of A that gets as input the history
of the interaction in the form of a query α, and outputs the next message that A would in an
interaction where it sees this history. If A would abort after receiving a prefix of the messages in
an oracle query, then the oracle’s response to the query is ⊥.

We now argue a specific property of all the oracle queries where A does not abort.

Claim 1 For every i ∈ [m], let Φi denote the set of all oracle queries sent by S to A which includes
a full transcript of session Πi and where A does not abort. Let Ti denote the transcript prefix before
the start of session Πi. Then, except with negligible probability, at most λ unique prefixes Ti appear
in the queries α ∈ Φi.

Proof. The proof of this claim follows from Lemma 2 and the collision-resistance property of
pseudo-random functions. To begin, we first note that except with negligible probability, S does
not make two queries α and α′ containing Ti and T ′i such that Ti 6= T ′i but Fk(Ti) = Fk(T

′
i ). This

is easy to see since otherwise we can construct a machine M that distinguishes a pseudo-random
function from a random function. Thus, for the remainder of the proof, we make the assumption
that such queries α and α′ are never made by S.

The claim now follows easily from Lemma 2. Note that S is allowed to query the ideal function-
ality at most λ times for session i. Now, suppose for contradiction that with non-negligible proba-
bility, there exist λ+1 different transcript prefixes Ti,1, . . . , Ti,λ+1 that appear in the queries α ∈ Φi.
Then, using S and A, we can construct an adversary B for the token functionality who makes at
most λ queries to ftoken(Ki, ·), but outputs λ+ 1 values ftoken(Ki, q

′
i,1), . . . , ftoken(Ki, q

′
i,λ+1), where

each q′i,j is sampled from the distribution Q using randomness Fk(Ti,j). Since with non-negligible
probability, each Fk(Ti,j) is unique, it follows that with non-negligble probability, each q′i,j is unique
as well. Thus, B is a valid adversary for ftoken(Ki, ·), yielding us a contradiction to Lemma 2.

Next, we claim that S must extract A’s input in each execution of Πi that has a unique prefix Ti,
and where A does not abort. (Note that there may be multiple executions of Πi due to rewinding
by S in sessions “enclosing” Πi.)

5Recall that ftoken is a determinisitic functionality.
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Claim 2 For every i ∈ [m], in every execution of Πi that has a unique prefix Ti and where A does
not abort, except with negligible probability, S must query the ideal functionality ftoken on A’s input
q′i in that execution of Πi.

Proof. Recall from the construction of A that it checks whether its output σi at the end of an
execution of Πi with prefix Ti is the correct value ftoken(Ki, q

′
i), where q′i is A’s input in that

execution sampled from Q using randomness Fk(Ti). (Note that A can checks the correctness of
output since it receives the token key Ki as auxiliary input.) Then, it follows easily from Lemma 2
that S must query the ideal functionality ftoken on q′i since otherwise, we can construct an adversary
B that has oracle access to ftoken(Ki, ·) and with non-negligble probability, correctly predicts the
value ftoken(Ki, q

′
i) without ever querying ftoken(Ki, ·) on input q′i. The details follow in a similar

manner to the proof of previous claim and are omitted.
Thus, it follows from the previous claim that S extracts A’s input in each protocol session

where A does not abort. This brings us to our final and most important claim about S. Let Ψs

denote the subset of all the queries from S to A that contain any message in session s. We claim
the following:

Claim 3 There exists a session s∗ at level ` < d such that:

• There does not exist a pair of queries α, α′ ∈ Ψj that contain the same transcript prefix Ts∗,
but contain two different round r messages msgr, msg′r in session s∗ for some r ∈ [n].

• S queries the ideal functionality ftoken on A’s input in s∗ (as defined by the prefix Ts∗).

Proof. (Sketch) Note that the above lemma essentially states that there exists an execution of
session s∗ at level j < d where S extracts A’s input without rewinding A. Then, let us assume for
contradiction that S extracts A’s input in each session i ∈ [m] by rewinding A. Further suppose
that S succeeds in extracting A’s input in each session by rewinding only once per session.6

Now, let us view the schedule as an n-ary tree where the root at level 0 denotes the outer
session and the nd nodes at level d denote the innermost sessions. Then, first note that since the
outer session is rewound at least once, it follows that the n sessions at level 1 are executed in total
n + 1 times. In other words, there exists a session (say) si at level 1 that is executed at least
ceil1(1 + 1

n) times, each time with a different prefix (this is because the last message of the prefix
must be different in order for the rewinding in session s to be successful). Now, it follows from
Claim 2 that S will need to extract A’s input in each of these executions in order to complete
them successfully. Then, focusing on the sub-tree with root si, we have that the n child nodes of
si are executed in total (n + 1)ceil1(1 + 1

n) times. In other words, there exists a child node of si
at level 2 that is executed at least ceil2(1 + 1

n) times, each time with a different prefix. Continuing
this argument inductively, it follows that at every level j, there exists at least one session that is
executed ceilj(1 + 1

n) times. As a result, we obtain that there exist at least one session at level d
that is executed ceild(1 + 1

n) times, every time with a different prefix. However, this contradicts
Claim 1.

Part III. Adversary A’ for breaking stand-alone security of P2. We will now construct an
adversary A’ that interacts with an honest P2 in an execution of Π and obtains P2’s input query
q ∈ Q with non-negligible probability to contradict the stand-alone security of ftoken.

6It is easy to see that more rewindings by S only facilitate our proof.

16



Recall that it follows from Claim 3 that there exists a session s∗ at level j < d such that in
every execution of s∗, S extracts A’s input without rewinding. Since A honestly plays the role
of party P2 in each session (see description of A), it follows that S must be able to extract the
input of an honest P2 as well. Then, adversary A’ works as follows. It simply runs the black-box
simulator S and emulates the role of P2 in each session s 6= s∗ by using random queries q ∈ Q as
inputs for P2. Further, A samples keys Ks ← K for each session s 6= s∗ and uses them to answer
the ideal functionality queries of S. Finally, A′ forwards the messages of S in (the first execution
of) session s∗ to the external honest party P2, and returns P2’s responses to S. S runs and at some
point, queries the ideal functionality on the input of P2 in (the forwarded execution of) session
s∗. A receives this query from S and thus obtains the input of the external party P2, which is a
contradiction.

Full details of the construction of A′ follow in the same manner as in [Lin04], and are therefore
omitted.

4 Full Impossibility of Concurrently Secure Computation in the
MIQ Model

Recall that the impossibility results presented in Section 3.1 are only relevant to black-box simula-
tion. In this section, we present full impossibility results for concurrently secure computation in the
multiple ideal query model, i.e., we now rule out non-black-box simulation as well. Interestingly, we
rely on the black-box impossibility results from Section 3.1 in order to obtain our full impossibility
results.

More concretely, we present a technique to “compile” our impossibility results w.r.t. black-box
simulation into full impossibility results, thus ruling out non-black-box simulation as well. We now
state our main theorem of this section:

Theorem 4 Let λ = λ(k) and Π be any protocol for the ftoken functionality. If there exists a ppt
λ-special black-box adversary A for Π, then there exists a ppt concurrent adversary B for Π whose
view cannot be simulated by any (potentially non-black-box) ppt λ-ideal query simulator.

Recall that we proved our impossibility results in Section 3.1 by constructing a λ-special black-
box adversary A for any n-round protocol for ftoken with λ = ceild(1 + 1

n), where d is such that
nd = poly(k). Thus, by combining Theorem 3 with the above theorem, we immediately obtain the
following corollaries:

Corollary 4 For any d = d(k) and n = n(k) that satisfy nd = poly(k), there exists no n-round
protocol Π that λ-securely realizes ftoken in the MIQ model for λ = ceild(1 + 1

n).

Corollary 5 For any λ = λ(k) and n = n(k) that satisfy nλ = poly(k), there exists no n-round
protocol Π that λ-securely realizes ftoken in the MIQ model.

Corollary 6 The functionality ftoken cannot be O(1)-securely realized in the MIQ model.

Corollary 7 The functionality ftoken cannot be λ-securely realized in the MIQ model by any O(1)-
round protocol for any λ = poly(k).

We now proceed to give a formal proof of Theorem 4.
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4.1 Proof of Theorem 4

Let λ = λ(k) and Π be any protocol for the ftoken functionality. Then, given any λ-special black-
box adversary A for Π, we now show how to construct a λ-special adversary B for Π. We use
ideas from obfuscation using stateless tamper-proof hardware tokens [GIS+10] in order to show
this transformation.

We start by giving the outline of the proof:

I. We first consider a toy experiment involving three parties, namely, Alice, Bob and David, where
Alice and David are honest parties, and Bob is the adversary. (This will be the case throughout
our proof.) In this experiment, Alice and Bob interact in multiple ideal world executions of the
functionality ftoken. At the same time, Bob and David are involved in concurrent real-world
executions of Π where Bob and David follow the same scheduling of messages as defined by
adversary A. Furthermore, the adversary Bob is allowed to reset David at any point during
their interaction.

David, who has a secret input secret is instructed to reveal secret to Bob if all the executions
of Π are completed “successfully”. (We define this precisely later.) The goal of Bob is to
successfully complete its interaction with David and learn the value secret. Then, by relying
on our black-box impossibility result, we will show that no adversarial Bob can succeed in
learning secret, except with negligible probability.

II. In the second step, we will use ideas from [GIS+10] to obfuscate David’s program in the ftoken-
hybrid model and give it as an auxiliary input to Bob. This results in a scenario where Alice
and Bob are the only parties, who interact in multiple ideal world executions of ftoken. We
will show that in this ideal world experiment, no adversarial Bob cannot learn secret, except
with negligible probability.

III. We finally consider the real world experiment, which is the same as step II, except that all the
ideal world invocations of ftoken are now replaced with real-world executions of protocol Π.
We will show that in the real experiment, an adversarial Bob can learn secret with probability
1.

Our adversary B is simply the adversary Bob in step III. Note that from steps II and III, it
immediately follows that B is a ppt concurrent adversary for Π whose view cannot be simulated
by any λ-ideal query simulator, thus yielding us the proof of Theorem 4.

We now proceed to describe each of the above three steps in details. We first setup some
notation that is common to the three steps.

Notation. Let m be the number of sessions that adversary A schedules for protocol Π. Let
K1, . . . ,Km denote a set of token keys, where each Ki is drawn at random from the distribu-
tion K. Let q1, . . . , qm be a set of query strings for the token functionality, where each qi is drawn
at random from the distribution D (as defined in Lemma 2). Finally, let secret be a random string
in {0, 1}k.

(Toy) Experiment I: Restating the Black-Box Impossibility Result. Consider the follow-
ing scenario involving three parties, namely, Alice, Bob and David. Alice is given an input vector
(K1, . . . ,Km), while David is given an input vector ((K1, q1), . . . , (Km, qm); secret). Here, the input
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values are chosen in the manner as described above. We describe the interaction between Alice and
Bob, and Bob and David, separately.

Interaction between Alice and Bob. Alice and Bob are interacting in m ideal world executions of
the functionality ftoken, where Alice plays the role of P1 using input vector (K1, . . . ,Km) and Bob
plays the role of P2 using any inputs of its choice. In each of these m ideal world executions, the
adversary Bob is allowed to query the token functionality λ times using any inputs of its choice.

Interaction between Bob and David. At the same time, Bob and David are interacting in m real-
world concurrent executions of protocol Π, where Bob plays the the role of P1 with any inputs of
its choice and David plays the role of P2 by simply running the code of the λ-special adversary A.7

Bob and David are instructed to assume the identities of Alice and Bob, respectively, in these
sessions. The messages of the m sessions follow the same schedule as defined by the adversary A.
Furthermore, the adversary Bob is allowed to reset David at any point during their interaction.
That is, at any point during their interaction, Bob can choose to “rewind” David to an earlier state
and create new threads of execution.

In each session i ∈ [m], David verifies whether his output yi = ftoken(Ki, qi) (where qi is the
input of David in that session, chosen in the same manner as A would); if this is not the case, then
David aborts the interaction with Bob and outputs ⊥ (i.e., David does not continue any remaining
sessions with Bob). If all of the m sessions are completed successfully, then David sends secret to
Bob (as the only additional message outside of the m concurrent executions of Π).

We now claim the following lemma:

Lemma 3 Bob outputs secret in Experiment I with negligible probability.

The proof of the above lemma follows in a straightforward way from the observation that if Bob
outputs secret with non-negligible probability, then there exists a λ-ideal query black-box simulator
for the λ-special adversary A, which contradicts our assumption on A. This simulator is simply
the description of the party Bob.

Experiment II: Ideal World. We now eliminate the party David from the above toy experiment
by using techniques from [GIS+10]. Note that eliminating David results only in interactions between
Alice and Bob, which is indeed our desired setting of concurrent self-composition. Very roughly,
in order to eliminate David, we would like to obfuscate David’s next message function and give it
as auxiliary input to Bob. However, recall that general program obfuscation is impossible in the
plain model [BGI+01]. Our key idea then is to use positive results on secure program obfuscation
using tamper-proof hardware tokens, and adapt them to our setting. In particular, we will use the
positive results of Goyal et al. [GIS+10] on secure program obfuscation using a stateless hardware
token that implements the ftoken functionality. We now give more details. Some of the notation
used below is as defined in Section 2.2

Eliminating David. Consider the next message function NMF of party David as described in Exper-
iment I. Sample a key K ← K. Compute the obfuscation of NMF in the ftoken-hybrid model, where
ftoken has the key K hardwired. The resulting program, denoted as O(NMF)← Obfuscate(K,NMF),
is given as auxiliary input to Bob. The key K, on the other hand, is given as an additional input
to Alice.

7In particular, if A chooses to ignore the inputs q1, . . . , qm and choose fresh inputs “on-the-fly”, then David follows
the same strategy.
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Ideal World Experiment. Experiment II, or in other words, the ideal world experiment is defined
in the same manner as Experiment I, except that we eliminate the party David in the manner as
described above. Note that in order to evaluate the program O(NMF) on any input, Bob would
need to answer the queries q of O(NMF) to the token functionality ftoken(K, ·). In particular, recall
from Section 2.2 that the obfuscated code O(C) for a program C makes tC queries to the token
functionality, where tC (referred to as the query parameter) depends on the size of the circuit C.
Then, in the ideal world experiment, we have Alice and Bob engage in tNMF ·m · n additional ideal
executions of ftoken, where tNMF is the query parameter for the obfuscation scheme of [GIS+10]
as determined by the circuit description of NMF, m is the number of sessions that adversary A
schedules, and n is the round complexity of protocol Π. In each of these tNMF ·m · n executions,
Alice uses the key K as input, while Bob is allowed to use any inputs of its choice. Further, in each
of these tNMF ·m ·n ideal executions, Bob is allowed to query the token functionality λ times using
any inputs of its choice.

Thus, overall the ideal world experiment between Alice and Bob consists of the following:

• m “main” ideal executions of ftoken, where in each session i ∈ [m], Alice uses key Ki as input,
while Bob is allowed to use any inputs of its choice.

• tNMF ·m · n “auxiliary” ideal executions of ftoken, where in each session, Alice uses key K as
input, while Bob is allowed to use any inputs of its choice.

Further, as explained above, in each of the m+ tNMF ·m ·n ideal executions of ftoken, Bob is allowed
to query the ideal functionality λ times using any inputs of its choice.8

We now claim the following:

Lemma 4 Bob outputs secret in Experiment II with negligible probability.

Proof. The proof of the above lemma comes from the following simple observation. It follows from
the security of the obfuscation scheme of Goyal et al. (see Lemma 1) that giving the obfuscated code
O(NMF) and the tNMF ·m ·n ideal executions of ftoken as described above (or rather any polynomial
number of ideal executions of ftoken with key K) to the adversary Bob is the same as giving Bob
oracle access to the next-message function of party David. Thus, the view of Bob is computationally
indistinguishable in Experiments I and II. Then, the above lemma follows immediately from Lemma
3.

Experiment III: Real World. We now describe the final experiment, which is the real world
experiment between Alice and Bob. This experiment is essentially the same as Experiment II,
except that each ideal world execution of ftoken is now replaced with a real world execution of
protocol Π between Alice and Bob. In more detail, the interaction between Alice and Bob consists
of the following:

• m “main” executions of protocol Π, where the messages of the m executions are scheduled in
the same manner as defined by the adversary A. In each i ∈ [m] main session, Alice uses the
keys Ki as her input.

• tNMF ·m · n “auxiliary” executions of protocol Π that are scheduled by Bob in the manner,
as described below. In each of these auxiliary sessions, Alice uses key K as her input.

8Note that this is the case since we are considering λ-secure concurrent computation.
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In more detail, the real world experiment is described by the following programs:

Alice’s program: Alice is given input the keys K1, . . . ,Kn for the m “main” sessions, and key K
for the tNMF ·m · n “auxiliary” sessions.

Alice behaves honestly according to the protocol Π and responds honestly to all protocol invo-
cations made by Bob by using the code of P1.

Bob’s program: Bob is given as auxiliary input the obfuscated program O(NMF), where NMF is
the next-message function of David (as described above). Let secret be the secret value hardwired
in O(NMF).

For i = 1, . . . ,m · n, do:

1. Upon receiving the ith message from Alice in m main sessions, say ai, suspend (temporarily)
the ongoing session. Run the code O(NMF) on input ai.

9 Whenever O(NMF) makes a query
q, start a new auxiliary session of Π with Alice, and run the code of P2 honestly using input
q. Since O(NMF) makes tNMF different queries, in total, tNMF auxiliary sessions of Π are
executed sequentially by Bob.

2. If i < m · n, then on receiving the output di from O(NMF) outputs, resume the suspended
“main” session and send di to Alice as the response to ai. Otherwise, output the value
di = secret.

Lemma 5 Bob outputs the value secret in Experiment III with probability 1.

The proof of the above lemma follows immediately from the description of Bob.

Completing the Proof of Theorem 4. The adversary B is simply the adversary Bob in Ex-
periment III as described above. The proof of Theorem 4 then follows immediately from Lemma 4
and 5.
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