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Abstract

Many modern block ciphers use maximum distance separate (MDS) matrices as their
diffusion layers. In this paper, we propose a new method to verify a sort of MDS diffusion
block matrices whose blocks are all polynomials in a certain primitive block over the
finite field Fo. And then we discover a new kind of transformations that can retain MDS
property of diffusion matrices and generate a series of new MDS matrices from a given
one. Moreover, we get an equivalence relation from this kind of transformation. And MDS
property is an invariant with respect to this equivalence relation which can greatly reduce
the amount of computation when we search for MDS matrices. The minimal polynomials
of matrices play an important role in our strategy. To avoid being too theoretical, we list a
series of MDS diffusion matrices obtained from our method for some specific parameters.
Furthermore, we talk about MDS recursive diffusion layers with our method and extend
the corresponding work of M. Sajadieh et al. published on FSE 2012 and the work of S.
Wu published on SAC 2012.

Keywords: Diffusion layer, linear transformation, branch numbers, MDS matrix, mini-
mal polynomial, equivalence relation.

1 Introduction

Block ciphers are one of the most important building blocks in many cryptosystems. Modern
block ciphers are often iterations of several rounds and each round consists of a confusion
layer and a diffusion layer. From the viewpoint of mathematics, the confusion layers are
usually formed by nonlinear functions (S-boxes) while the diffusion layers are formed by
linear functions. The diffusion layers play an significant role in block ciphers as well as in
other cryptographic primitives such as hash functions. On one hand, the diffusion layers
can provide resistance against many well-known attacks on block ciphers such as differential
cryptanalysis [3] and linear cryptanalysis [19]; on the other hand, they greatly influence the
efficiency of implementations.

The security of a diffusion layer is measured by its differential branch number and the
linear branch number. The larger the two branch numbers are, the stronger a diffusion layer
is. The diffusion layers with the optimal branch numbers are called being maximum distance
separable (MDS) [18]. This name comes from the theory of error-correcting codes because



the problems about branch numbers can be transferred into some problems on the error-
correcting codes relevant to the diffusion layers. For more details about MDS codes and
MDS matrices, please refer to [4, 18, 17, 5, 13]. However, they do not become easier even
from the viewpoint of coding theory. Therefore, how to construct diffusion layers with large
branch numbers is still a challenge to the cryptosystem designers.

By now, there are two main types of diffusion layers with high efficiency: recursive dif-
fusion layers and involutory diffusion layers. As we know, the diffusion layer used in AES
cannot be implemented very efficiently, especially on hardware. Thus, in [10], J. Guo et al.
presented a new strategy for designing diffusion layers with bundle-based linear feedback shift
registers (LFSRs). From their strategy, a diffusion layer can be divided into several steps. In
each step, the last bundle is updated by a linear combination of all the bundles while other
bundles are merely obtained by shifting the state vector by one bundle (see Figure 1). A
diffusion layer designed with this strategy is called a recursive diffusion layer. In [25], M.
Sajadieh et al. extended the linear combinations in this strategy to combinations of linear
transformations. For more details about recursive diffusion layers, please consult [25, 26, 1, 6].
A diffusion layer is called involutory if its inverse mapping is the same as itself. Obviously,
this property saves the storage of systems because the encryption diffusion mapping and the
decryption diffusion mapping are identical. Most designers prefer two approaches to directly
design involutory MDS diffusion layers: constructions from Cauchy matrices [27] and con-
structions from Vandermonde matrices [15]. However, they can merely get a few special types
of involutory MDS diffusion layers. For more details about involutory diffusion layers, please
consult [11, 24, 20].
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Figure 1: Linear feedback shift register

In general, a diffusion layer can be regarded as an Fo-linear transformation over the
vector space [y for certain parameter n. However, some diffusion layers can be lifted to
some finite fields larger than Fo. For example, the diffusion layer of AES is indeed an
Fo-linear transformation over the vector space Fi?®. However, it is essentially an F g-linear
transformation over Féﬁ where ¢ is equal to 28. Notice that multiplications with elements in
Fon are still Fo-linear transformations over the vector space Fy. Thus, the diffusion layers in
AES-like ciphers are just a small part of Fo-linear transformations.



In this paper, we focus on the constructions of a sort of Fa-linear MDS diffusion layers
whose blocks are all polynomials in a primitive block. We present a new method to test
whether a diffusion layer is MDS. Note that the minimal polynomials of matrices play an
important role in our method. Then, more significantly, we expand our method into a more
generalized case. We discover a new kind of transformations that retains MDS property of
diffusion matrices and can generate many MDS matrices from a fixed one. With this method,
we find out a series of MDS diffusion layers with some fixed parameters. Furthermore, we
discuss the recursive diffusion layers and involutory diffusion layers with our method and
extend the results of [25] and [26].

The rest of this paper is organized as follows. In Section 2, we introduce some defini-
tions and previous results about linear transformations, determinants, matrices and branch
numbers. In Section 3, we present our method to find out MDS diffusion layers. To avoid
being too theoretical, We also illustrate some experimental results. In Section 4, we expand
our method into a more generalized case and present a modified algorithm. In Section 5, we
discuss the recursive diffusion layers with our method and extend the results of [25] and [26].
Finally, we conclude this paper in Section 6.

2 Preliminaries

In this section, we introduce some definitions and previous results we need.

2.1 Linear Algebra

In this paper, Mgx:(F') usually denotes the set consisting of all the (s X t) matrices over the
field F.

Let F, (or GF(q)) be the finite field with ¢ elements where ¢ is a prime power and V' be
an n-dimensional [Fy-linear space. A mapping L : V — V is an [Fy-linear transformation over
V if for every u,v € Fy, for every a, 3 € V,

L(ua 4+ vfB) = uL(a) +vL(f).

From linear algebra, we know that there exists a bijection between the set consisting of all the
[Fg-linear transformation over V' and the set My, (IF4) under a fixed basis of V. Furthermore,
if we regard the two sets as two algebras, the bijection is an algebra isomorphism. Thus, in
this paper, we identify every Fy-linear transformation over V' with a matrix in M,,xp (Fy).
Specifically, if L is a matrix in My,xn(FFy), the mapping which maps every row vector x € Fy
to xL is an Fg-linear transformation over Fy uniquely determined by L, so we also denote
this linear transformation by L.

Let Fyn be an extension of IF,. Then F,» is an n-dimensional IF-linear space. Notice that
multiplication with an element in Fy» is a special F4-linear transformation over Fgn. More
precisely, for every a € Fyn, the mapping f : Fyn — Fyn defined as f(z) = ax is an Fy-linear
transformation over Fgn.

For every vector x € F}", the Hamming weight of @ is defined as the number of non-zero
coordinates of & and is denoted by wg (). Suppose y € ]F'g" for some positive integers b and
n. We may divide y into n segments, namely, y = (y1,- - ,yn) where y; € IFZ, 1=1,---,n.
Then each y; is called a bundle of y. The bundle weight of y is defined as the number of



non-zero bundles of y and is denoted by wy(y). If z € FZ” is another vector, the bundle
distance between y and z is defined as wy(y — z) and denoted by dy(y, z). Note that wy(y)
and wy(y) are distinct in most cases.

Suppose x € IFZ" be a row vector and L € My, xpm(Fy) is a matrix. Let y = L be the
image of & under the linear transformation L. From matrix theory, it is convenient to express
the multiplication of @ and L if we divide & into bundles and divide L into blocks. That is,

we may write = (@1, - ,®y) where x; € FZ, t=1,---,n and
Lin Lip -+ Lip
I— Loy Las -+ Loy
Ln 1 Ln 2 " Ln n
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where L; j € Mpxp(Fy) is a matrix, 4, = 1--- ,n. Then

¥y = (WLy2 Yn)

Liy Ly Ly,
_ Lov Los Loy,
*(w17x27”'7xn) .
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where each y; € FZ andy; =Y ;" x;L;j, j = 1,--- ,n. In this paper, the techniques dealing
with block matrices play an important role.

As mentioned in Section 1, minimal polynomials of matrices play a significant role in this
paper. So we are presenting some knowledge about minimal polynomials. Let F' and E be
two fields such that F* C F or E C F. For a square matrix H € M;y,(E), a polynomial
f(z) € Flz] is called an annihilator polynomial of H in F[z] if f(H) = O, where Oy is the
zero matrix in My, (F'). For example, from Hamilton-Cayley theorem, we know that the
characteristic polynomial of H is an annihilator polynomial of H in E[z]. A polynomial
g(x) € F[z] is called the minimal polynomial of H in F[z] if g(x) is the monic annihilator
polynomial of H in F[z] with the lowest degree. The minimal polynomial of H is usually
denoted by mpg(z). In fact, the minimal polynomial of a matrix has some relation to its
annihilator polynomials.

Proposition 1 ([22]). The minimal polynomial of a matriz A divides all the annihilator
polynomials of it.

For two matrices A, B € Myxp(F), we say that A is similar to B (or B is similar to A)
if there exists a nonsingular matrix P € Mpx(F) such that P"'AP = B. An elementary
property of minimal polynomial is stated in the following lemma.

Proposition 2 ([22]). Two similar matrices have the same minimal polynomial.
In matrix theory, there is a proposition useful to us.

Proposition 3 ([8]). The minimal polynomial and the characteristic polynomial of a matriz
over a field F' have the same irreducible factors in F|x].



According to Proposition 1 and 3, we may test the factors of the characteristic polynomial
of H one by one to seek the minimal polynomial of H. But along with the increase of the
degree of characteristic polynomial, the amount of computation for this approach will sky-
rocket rapidly. Thus, for those matrices with large sizes, we need other methods to compute
their minimal polynomials. For example, the following proposition brings us an effective
approach.

Proposition 4 ([8]). Let A: V — V be linear. Suppose W1, --- Wy, are subspaces of V' such
that V.=Wi + -+ Wy, A(W;) C W; for all i, and the restriction of A to W; has minimal
polynomial m;(x). Then the minimal polynomial of A on'V is lem(my,--- ,my).

In Proposition 4, lem(my, - - - ,my) denotes the least common multiple of mq, -+, my. As
we mentioned, Proposition 4 leads to an algorithm for computing the minimal polynomial of
any square matrix A € M, x,(F). Pick any column vector v # 0 in V = E™ and consider
the sequence of vectors {v, Av, A%v,---}. They span a subspace of V that is denoted by W,
so W = {f(A)v : f(x) € E[x]}. The nice feature of W is that A(W) C W, so A makes
sense as a linear operator on W. To determine the minimal polynomial of A on W, find the
smallest positive integer d such that the vectors v, Av, - - - , A% are linearly dependent. Since
v, Av, - -+, A% 1y are linearly independent, the linear relation

bg1 A+ by Av+bov =0

with b; € £, i =1,--- ,d — 1 implies that b; =0, i =1,--- ,d — 1. Hence for every nonzero
polynomial f(x) € E[z] with degree less than d, f(A)v # 0, and then f(A) # O, as an
operator on W where O,, denotes the zero matrix in My, x,(E), which means the minimal
polynomial of A acting on W has degree at least d. There is a linear dependence relation on
the set v, Av, -+, A%, and the coefficient of A% in the relation must be nonzero since the
other vectors are linearly independent. We can make the coefficient of A%v to be 1, say

A+ g 1 A+ AvF v =10
where ¢; € E, 1 =0,1,--- ,d — 1. This tells us the polynomial
m(z) =2+ g2+ F ez 4

satisfies m(A)v = 0, so for every f(z) € E[x] we have m(A)f(A)v = f(A)m(A)v = f(A)0 =
0. Since every element in W is f(A)v for some f(x), so m(A) annihilates all the elements
in W. Thus m(A) is just the minimal polynomial of A acting on W. Incidentally, this also
shows dimW = d and W has basis v, Av,--- , A% v, Set W, = W and my(z) = m(z). If
Wiy # V| pick a column vector ve ¢ Wi and run through the same argument for the subspace
Wo of V spanned by the vectors {va, Avg, A%vg,---} to get a minimal polynomial msy(z) for

A on Wo. Since vy ¢ W1, dim(Wy + Wa) > dimW;. If Wi + Wa # V| proceed this procedure.

Since V is finite-dimensional, eventually we will get a sequence of subspaces Wy, Wy, --- | W
where A(W;) C W, for i =1,--- ,k and Wy + --- + W) = V. Then the minimal polynomial
of A on V is the least common multiple of m;(z),--- ,my(x) from Proposition 4.



2.2 Diffusion Layers

The diffusion layers in block ciphers and hash functions are essentially Fo-linear transforma-
tions, so sometime we just call them linear transformations or just diffusion matrices.
Now we present the definitions of the branch numbers.

Definition 1 (Differential Branch Number). Let L € My,xpn(F2) be a diffusion matriz for
certain positive integers b and n. The differential branch number of L is defined as

By(L) = mg;rbgll#o{wb(w) +wy(L(zx))},

where each bundle of vectors in F§* is in F and L(x) = xL if we write x as a row vector in
Fy

Definition 2 (Linear Branch Number). Let L € My xpn(F2) be a diffusion matriz for certain
positive integers b and n. The linear branch number of L is defined as

Bi(L) = meﬁggg#o{wb(w) +uy(LT (2))},

where each bundle of vectors in FS" is in S and LT is the transposition of L and L™ (x) = =L
if we write © as a row vector in F4.

The larger the branch numbers are, the stronger the diffusion layer is against differential
and linear cryptanalyses.

We may consider the branch numbers from the viewpoint of coding theory. It is not hard
to verify that the set {(z,zL)|x € F}"} is a Fo-linear code with length 2bn, namely, a Fo-
linear subspace of F2". Let C, denote this code. The dimension of Cf, is bn and a standard
generator matrix of it is (I, L) where I, is the identity matrix in My, xp,(F2). Then it is
easy to discover that By(L) is equal to the minimum bundle weight of all nonzero codewords
in C, while B;(L) is equal to the minimum bundle weight of all nonzero codewords in the
dual code of Cp. Unfortunately, if we only regard C as a Fo-linear code with length 2bn
over Fo, it is hard to handle the bundle weight or bundle distance explicitly. Therefore, in [5]
M. Blaum et al. treated Cf, as a Fs-linear group code over Fg with length 2n and dimension
bn. With this notion, it is clear that the differential branch number of L is just equal to the
minimum distance d of Cr. From coding theory, we know d < 2n —logy |Cr| +1=n+1
which is called the Singleton bound (see [18]). The codes attaining the Singleton bound are
called maximum distance separable (MDS) codes. So the diffusion layers attaining this bound
are also called MDS and they are the optimal primitives in cryptosystems.

Definition 3 (MDS Diffusion Layer). Let L € My, xpn(F2) be a diffusion matriz for certain
positive integers b and n where b is the length of bundles. Then L is called a MDS diffusion
layer if Bg(L) =n+ 1.

In the rest of this subsection, we recall some previous results useful for this paper. The
proofs of these results are similar to those about the ordinary MDS linear codes.
The result of [5] may be redescribed as the following proposition.



Proposition 5. Let L € My,xpn(F2) be a diffusion matrixz for certain positive integers b and
n where b is the length of bundles. Suppose L is divided into n? blocks such that

Lii Lip -+ Lig
I — Loy Las -+ Loy
Ln 1 Ln,2 te Ln,n

)

where L; j € Myxp(F2), 4,5 =1,--- ,n. Then L is MDS if and only if every submatriz of L
consisting of some of these blocks is nonsingular.

Proposition 6 ([9]). A linear diffusion layer D has a mazximum differential branch number
if and only if it has a maximum linear branch number.

2.3 Equivalence Relation

For two sets X and Y, a relation from X to Y is a subset R C X x Y. If (x,y) € R, we say
y is R-related to x and usually write zRy. Especially, if X =Y, we call R a relation on X.

Suppose R is a relation on a set X. Then we call R an equivalence relation if it has the
following three properties.

e reflexivity: for every z € X, zRuz;
e symmetry: for all z,y € X, xRy implies yRz;
e transitivity: for all z,y, 2z € X, xRy and yRz imply zRz.

And in this case, we usually say x is equivalent to y if xRy. For a € X, the subset of X
consisting of all the element equivalent to a is called an equivalence class containing a and is
usually denoted by @ or [a].

For a set X, {A;}icr is a collection of subsets of it. Then {A;};cs is called a partition of
X lfAzﬂAj = for all # j and U;erA; = X.

Actually, every equivalence relation on a set X corresponds to a partition of X.

Proposition 7 ([21]). If “=” is an equivalence relation on a set X, then the equivalence
classes form a partition of X. Conversely, given a partition {A; : i € 1} of X, there is an
equivalence relation on X whose equivalence classes are the blocks A;.

3 Our Strategy for Constructing MDS Block Diffusion Ma-
trices

In this section, we present our method for constructions a sort of MDS diffusion layers.

First of all, we state a lemma about block matrices that is often treated as an exercise
in the textbooks of matrix theory. Because it is not very trivial and for completeness of this
paper, we give the proof of this lemma here.



Lemma 1. Let F be a field, L € Mppxpn(F') be a block matrixz for some positive integers b
and n such that

Ly Ligp -+ Lig
I Lo1v Las -+ Loy
Ln,l Ln,2 o Ln,n
where L ; € Mpxp(F), 1,5 =1,--- ,n and they commute pairwise. Then
det(L) = det (Z(—1)7(“iz"'i")”(jm"'j”)Ln,j1Liz,jz - 'Lin,jn) ’ (1)

where det(L) denotes the determinant of L, the sum on the right side consists of all the
products of n blocks having distinct row indices and distinct column indices and a sign,
T(i1i2 - - - in) denotes the number of inverse-ordered pairs in the permutation (iyig - - - i, ) where
an inverse-ordered pair is a pair whose number on the left side is larger than its number on
the right side. In other words, if we let

dets(L) = Z(_1)T(ili2min)—*_‘r(]’m“.jn)l’il,jl Liy gy -+ Lig s (2)
which is the determinant of the block matrix L if we regard all of its blocks L; j, 1,5 = 1,---,n
as entries and regard L as a (n X n) matriz (we call dets(L) the symbolic determinant of L),
then

det(L) = det(dset(L)).

Proof. To prove det(L) = det(dets(L)), we use induction on n.
In case when n = 1, we do not need to prove anything.
To clarify the general case, we illustrate the case when n = 2 for simplicity. When n = 2,

Linw L1
L= ’ ). 3
< Loqv Lo > 3)

From the multiplication of block matrices, we get

< Iy Oy > ( I, O ) < Lix Lip > _ < Liqn Lip > (4)
Loy Iy Oy L1 Loy Lo Oy LigLeo—LiaLlay )’
where I;, denotes the identity matrix in My, (F') and Oy denotes the zero matrix in My (F).
By calculating the determinants of both sides of equation (4) we get

det(LLl) det(L) = det(LLl) det(LLlLQQ — L172L271). (5)

If det(L1,1) # 0, the equation (1) is proved immediately. If det(L;;) = 0, we have to use a
trick. Specifically, we can regard L as a matrix over the polynomial ring F'[z] where z is an
indeterminant of F' and substitute xl, + L1 for Ly in L. From this viewpoint, equation
(5) becomes

det(w[b + Ll,l) det(L) = det(flf[b + Ll,l) det((:n]b + L171)L272 — L172L2,1). (6)



Note that det(xly + Li1,1), det(L), det(zly + Li1,1) and det((«l + L1,1)La2 — L12L2,) all
become polynomials in F[z] now. Obviously, det(xI, + L1 1) # 0, so

det(L) = det((.ﬁﬂ, + Ll’l)LZQ — L1’2L2’1). (7)

If two polynomials are equal, their corresponding coefficients are equal too. So if we assign
x = 0 in the equation (7), we prove the equation (1) in case when n = 2.

Now we suppose equation (1) is true for 1,2,--- ,n — 1. From the multiplication of block
matrices, we get

Iy Oy -+ Oy I, Oy - O Ly Lip -+ Li,
Loy I, -+ Oy Oy Lig -+ Oy I Oy
—Lp1 Oy -+ I Oy Oy --- Lia Oy
(8)
where A € My, 1)xpm—1)(F). Let U, V, W denote

I Op -+ Oy I, O, - O Lin Lio - Lip

—Lo1 Iy -+ O Oy Lix -+ Oy Oy

—Lp1 Oy - I Oy Oy --- Li1a Oy

respectively. Then we can write the equation (8) as UV L = W. On one hand, by taking
symbolic determinant of both sides of UV L = W, we get

dets(UV L) = dets(W). 9)
From the definition of symbolic determinant, we can easily get
dets(UV L) = dets(U)dets(V)dets(L). (10)

Thus we have
dets(U)dets(V)dets(L) = dets(W). (11)

By computing the symbolic determinants of the both sides of equation (11), we get
Ly"'dety(L) = Ly 1dety(A). (12)
Then by taking the determinants of both sides of equation (12), we have
det(Ly1)" " det(dets(L)) = det(L1,1) det(dets(A)). (13)
On the other hand, by directly taking the determinants of both sides of UV L = W, we get
det(U) det(V) det(L) = det(UV L) = det(W). (14)
By computing the determinants of both sides of equation (14), we have

det(LLl) n—l det(L) = det(Ll,l) det(A) (15)



From the induction hypothesis, we know det(dets(A)) = det(A). Thus,
det(L11)" " det(dets(L)) = det(Ly 1) "' det(L). (16)

If det(L1,1) # 0, we get det(dets(L)) = det(L), and the equation (1) is proved immediately.
If det(Ly,1) = 0, we just need to use the same technique as in case when n = 2. Specifically,
we also regard L as a matrix over the polynomial ring F'[z] where x is an indeterminant of
F and substitute xI + L1 for L ; in L. Finally, by assigning x = 0, we complete the proof
of equation (1).

O

Remark 1. Another expression of the determinant of L often arises in many papers, that is
det(L) = det ( Z (_1)7—(0(1)0(2)“.U(n))Ll,U(l)LZ,U(Q) T Ln,a(n)) ) (17)
O'GS’VL

where Sy, is the symmetric group on n elements. It is easy to see that equation (17) is just
a special case of equation (1), because in equation (17) the permutation of row indices is
(12---n) and 7(12---n) = 0.

Let L € Mppxpn(F2) be a diffusion matrix for certain positive integers b and n where b is
the length of bundles, and L be divided into n? blocks such that

Lin Lio -+ Lip
I — Loy Las -+ Loy
Ln,l Ln,2 te Ln,n
where L; ; € Myxp(F2), 4,5 = 1,--- ,n. From Proposition 5, in order to judge whether L

is MDS, we need to check the determinants of all the submatrices of L. composed of some
of these blocks. If one wants to calculate these determinants by Lemma 1, all of the blocks
L;j,i,j=1,2,---,n, need to commute pairwise. But pairwise commutativity is such a high
requirement that most sets of matrices cannot meet it. Therefore, in this paper, we focus
on a specific sort of matrices whose blocks are all polynomials of a certain primitive block.
In detail, we only consider such a situation when each block L;;, i,5 = 1,2,--- ,n of the
diffusion matrices is a polynomial in certain A € My p(F2). In [25] and [26], M. Sajadieh et
al. and S. Wu et al. also mentioned this situation. In comparison with their strategies, ours
has such advantages:

e They just discussed the recursive diffusion layers, while we consider more general dif-
fusion layers as well as recursive ones.

e They just found out the conditions for MDS diffusion layers but didn’t point out how
to construct the building primitive A (denoted by L in their papers), while we figure
out not only the conditions for MDS diffusion matrices but also the constructions of A
explicitly.

e We use some techniques to increase the efficiency of search algorithms.

10



In this section and following sections, we will explain the advantages of our method.
As mentioned in the previous paragraphs, we will focus on the block diffusion layers whose
blocks are all polynomials in certain block A € Mjyp(F2). Let each block L;; = fi;(A),

where f; j(x) € Fo[z], 4,5 = 1,2,--- ,n. In this paper, we call the polynomial matrix
fia@)  fig(z) - fin(2)
:f.?’.l(x) ‘.f.?’?(x) o f?i”(x) € Myxn(Fa[z])

fn,l(fE) fn,2($) fn,n(l‘)

the external matrix of L. For MDS property, we need to check every determinant of the
submatrices consisting of some of the blocks of the diffusion matrix. Of course, we can con-
ventionally calculate these determinants. Alternatively, we may calculate them with Lemma
1 because all of the blocks are obviously pairwise commutative. For example, to calculate
the determinant of the submatrix

Liyx Lip Li3
B=| Lao1 Lop L23 |,
L3y Lzo L33

we may work out the symbolic determinant dets(B) firstly, and then calculate det(dets(B)).
Note that dets(B) is also a polynomial in A. Actually, the symbolic determinant of every
submatrix consisting of those blocks is a polynomial in A. This is an important clue for
us. Actually, if we know the minimal polynomial of A, there is a more efficient technique to
determine whether such submatrices are nonsingular. Let us look at the following lemma.

Lemma 2. Let F be a field, A € Mpxp(F), ma(z) be the minimal polynomial of A in the
polynomial ring F[z], g(x) € F|x]. Then det(g(A)) # 0 if and only if GCD(g(x),ma(z)) = 1,
where GCD(g(x),ma(x)) denotes the greatest common divisor of g(x) and ma(z).

Proof. To begin with, if the greatest common divisor of a family of polynomials is equal to
1, we say they are coprime.

Suppose g(A) is nonsingular. Assume GCD(g(z), ma(z)) = d(x) and deg(d) > 1. Then
there exists u(x),v(z) € F|x] such that g(z) = u(z)d(x), ma(z) = v(z)d(z). Consequently,
we have g(A) = u(A)d(A), ma(A) = v(A)d(A). From Op = ma(A) = v(A)d(A) and deg(v) <
deg(ma), we get v(A) # Op. And then we get d(A) is singular, otherwise v(A) would be
equal to Op. Because g(A) = u(A)d(A) and g(A) is nonsingular, we get d(A) is nonsingular.
A contradiction! Thus, GCD(g(z), ma(x)) must be 1.

Conversely, suppose GCD(g(z),ma(x)) = 1. Then there exists u(z),v(z) € F[z] such
that g(z)u(x) + ma(z)v(z) = 1. If we assign x = A, we get g(A)u(A) = I,. Thus g(A) is
nonsingular. O

As mentioned before, the symbolic determinant of every submatrix consisting of those
blocks of the diffusion matrix L is a polynomial in A. From Lemma 2, instead of calculating
the determinant of every such submatrix, we present a new technique: to judge whether
such a submatrix is nonsingular, the only thing we need to do is to calculate the symbolic
determinant and to check whether the symbolic determinant (treated as a polynomial in x)
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is coprime with m4(x). For example, for a submatrix of L

(I A
L+ A Ib+A2 ’

we firstly calculate dets(H) = I + A, and then check whether GCD(1 + z,ma(x)) = 1. It
is faster than calculating the determinant of H directly. However, one should note that in
order to exploit this technique, we have to know the minimal polynomial of A in advance.
This is not a trivial task. Meanwhile our goal is to definitely obtain a series of MDS diffusion
layers which requires us to clearly figure out the building block A. In other words, we need
a matrix A € Mpyp(F2) together with its minimal polynomial ma(z) € Falx].

To show our main guideline and avoid getting into the complicated situation too early, we
merely consider a special case in this section, namely, when the minimal polynomial of the
primitive block is irreducible in Fy[z], and leave the general case to Section 4. For example,
suppose

g(z) =ap+arx+---+ ap_12°" "t + 2P

is a monic irreducible polynomial in Fo[z]. Then the companion matrix of g(x) is

0 - 0 —ag

Iy
—ap—1

(of course we know —a; = a; here). It is well known that g(x) is just the characteristic
polynomial of A in Fa[z]. From Hamilton-Cayley theorem ([23]), we know g(A) = Op. Then
ma(x) | g(x). But g(z) has only two monic factors, namely 1 and g(x) itself, and 1 is surely
not the annihilator polynomial of any matrix. So g(x) must be the minimal polynomial of
A in Fylz]. Hence, we have attained a matrix A € Mpyp(F2) together with its irreducible
minimal polynomial ma(z) € Fax].

When the minimal polynomial of a primitive block A is irreducible in Fa[z], it is obvious
that a polynomial f(z) € Fo[z] is coprime with m(x) if and only if f(x) # 0 mod m4(x).
Hence, we get an easier way to check whether a polynomial in A is nonsingular: for a
polynomial f(x) € Fo[z], f(A) is nonsingular if and only if f(z) # 0 mod ma(z). From the
above statement, for a given primitive block A € Myy,(F2) whose minimal polynomial m 4 (x)
is irreducible in Fa[z], the external matrices of MDS diffusion matrices L are just determined
by m(z) but not by A itself or b. More Specifically, if A € Mpyp(Fz2) and A" € My (Fa)
are two primitive blocks having the same irreducible minimal polynomial, the polynomial

matrix
fia(z)  fiz(x) - fin(z)
al@) foale) e L@ e g )
fn,l(:z) fn,Q(x) fn,n(x)

makes

fii(A)  fia(4) - fin(A)
f21(A)  fa2(A) - fan(A)

fn,l(A) fn,Z(A) fn,n(A)

12



MDS if and only if it makes

fii(A)  fip(A) - fin(4)
f21(A")  fap(A) - fan(4)

fn,l(Al) fn,Q(A/) fn,n(A/)

MDS.
In summary of the above statements, now we present Algorithm 1 that can find out all
MDS diffusion matrices L such that

o L € My,xpn(F2) for the given parameters b and n;

e L can be divided to n? blocks and each block L;; € Myxp(F2) is a polynomial in a given
primitive block A € Mjpyp(F2) whose minimal polynomial is an irreducible polynomial
in FQ [l’]

In Algorithm 1, from Step 7 to Step 32 we intend to check all the matrices L € My, xpn(F2)
whose entries are polynomials in A but not 0. Note that because m4(x) = g(x), all polyno-
mials in A are in the sense of modulo g(z). At an algebraic standpoint, we consider these
<§2(53}>
Fy[z] is a primary ideal domain and g(z) is an irreducible element in Fylz], < g(z) > is a
maximal ideal of Fao[z]. Consequently, Fo[z]/< g(x) > is a field and actually isomorphic to
Fom where m is the degree of g(x). From Step 10 to Step 32, our aim is to check whether the
determinant of every square submatrix of a fixed matrix L; is nonzero. Here, to improve the
efficiency, we make use of another technique which was already mentioned in [12]. In order to
make sure all the square submatrices of L; is nonsingular, we might check them one by one.

For example, we might firstly check 1 (n x n) submatrices of L; and secondly check ( 1)2

n
n—

entries in the quotient ring where < g(z) > denotes the ideal generated by g(x). Since

((n—1) x (n—1)) submatrices and go on. There are (2)2 (r x r) submatrices for each r and

totally
" /n\? 2n
r n
r=1
submatrices of Lj. The number of these submatrices is too large. Therefore, in this paper,
we do not check them one by one. Instead, we firstly check the (n x n) submatrices of L;. For
each (n x n) submatrices (of course there is only 1 such submatrix), if it passes the test, we
will compute the inverse of it (by means of elementary operations) and check all the entries
of the inverse matrix. This is because for an (n x n) nonsingular matrix B, B~! = de%(B)B*
where

Bi1 Bsi i Bug
B — Bia Bas i Bpo

Bln BQ,n Bn,n

)

and each B, j is equal to the product of (—1)**/ and the minor determinant derived from B by
removing the i-th row and the j-th column. Similarly, we can check all the ((n—3) x (n—3))

13



Algorithm 1 Search for MDS Diffusion Matrices 1

Input: two integers b,n € ZT, a matrix A € Myy(F2) together with its irreducible minimal
polynomial g(x) € Fa[x].

Output: some polynomial matrices, an integer k.

1: define an integer k and k < 0;

2: define a set PS(m) := {h(x) € Fao[z] | h(z) # 0,deg(h) < m} where m = deg(g);
3: define a matrix L € My, xn(F2[z]) and L « Oy;

4: define an integer r and r <« 0;

5. define f(z) € <H;ZE[;“;]> and f(x) « 0;

6: print “The (n x n)-size external matrices of MDS diffusion matrices in My, xpn (F2) are:”;
7. for L € Myxn(F2lz]) where L; ; € PS(m), i,j =1,--- ,n do

8 turn L into L1 € Myxn(Folz]/< g(z) >) by a ring homomorphism n : Fylz] —

Falz]/< g(x) > such that n(h(x)) = h(x)+ < g(z) >;

9: T mg

10:  while r > 2 do

11: define a matrix B € M, (F2[z]/< g(z) >) and B < O,;

12: for B runs over all the (r x r)-size submatrices of L; do

13: f(z) « det(B);

14: if f(x) =0 then

15: goto Step 31;

16: else

17: if » > 3 then

18: compute B~1;

19: for f(z) runs over all the entries of B~! do
20: if f(x) =0 then
21: goto Step 31;
22: end if
23: end for
24: end if
25: end if
26: end for
27: T T —2
28: end while
29:  print L;

30: k—k+1;

31:  switch to the next L;
32: end for

33: print “where x = A.”;

34: print “There are k such MDS diffusion matrices.”.
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submatrices along with all the ((n — 2) x (n — 2)) submatrices. This technique benefits from
a fact that elementary operations are much faster than calculating determinants. On Step
36, we mean the diffusion matrices can be obtained by assigning the primitive block A to x
for each entry of the output polynomial matrices. Moreover, as mentioned in Section 2, two
similar matrices have the same minimal polynomial. Thus, in fact, we may assign z with
P~ AP for every nonsingular matrix P € My (IFz).

4 QOur Strategy for a More Generalized Case

In Section 3, we explained our strategy to find out a sort of MDS diffusion layers for the
fixed parameters and presented an algorithm. Note that we assumed a condition there: the
minimal polynomial of the primitive block A in Fo[z] is irreducible. Subsequently, that case
is virtually identical to looking for MDS diffusion matrices in M, x,(Fam). But, in practice,
it is not true for most matrices because matrix rings contain zero divisors (see [21], page 573).
How many matrices in Mpyp(F2) have irreducible minimal polynomials? Let us figure out
the proportion with the following lemma.

Lemma 3. Let A € Myyp(Fq), ma(x) be the minimal polynomial of A in Fq[x]. Then ma(z)
is drreducible in Fy[z] if and only if A € Fp.

Proof. Let f(x) denote the characteristic polynomial of A. Then deg(f) = b where deg(f)
denotes the degree of f(z).

Suppose m4(z) be irreducible in Fy[x]. Let deg(ma) = d and F,(«) denote the smallest
extension field of IF, that includes o. Then, from field theory,

Fy(A) = Fylz]/<ma(z) > =TFu

where 72" means ”isomorphic to” and < m4(x) > is the ideal generated by m(z). Because
f(x) is the characteristic polynomial of A, f(A) = O, from Hamilton-Cayley theorem. Then
ma(x) | f(x) from Proposition 1. Meanwhile, according to Proposition 3, f(z) is necessarily
a power of m(z). Consequently, d | b. And it is followed by F o C F . Thus, A € Fa C Fp.

Conversely, suppose A € F». Assume ma(z) is reducible in Fy[z]. Then there exists
two polynomials u(z),v(z) € Fy[z] such that m(z) = u(x)v(z) and deg(u) < deg(m,) and
deg(u) < deg(ma). Because m(z) is the minimal polynomial of A, u(A4) # 0 and v(A4) # 0.
But u(A)v(A) = ma(A) = 0. It is a contradiction since any field does not contain zero
divisors. Thus m4(z) must be irreducible in Fy[x]. O

From Lemma 3, the number of matrices in Mpy,(F,;) whose minimal polynomials are
irreducible in F,[z] is ¢°, while the cardinality of Myy,(F,) is ¢"’. The proportion is too
small. If we only focus on those primitive blocks whose minimal polynomials are irreducible
in Fa[x], we will miss a large amount of MDS candidates. Therefore, in this section, we will
remove this condition and consider a more generalized case: the minimal polynomial of the
primitive block A is reducible in Fa[z].

Just as in Section 3, we also suppose every block of the diffusion matrix L € My, xpn(F2)
is a polynomial of certain primitive block A € Mjyp(F2). Then every minor determinant of
L consisting of its blocks is equal to the determinant of a polynomial in A. In Section 3,
for every polynomial f(x) € Fao[z], f(A) is nonsingular if and only if f(x) Z 0 mod ma(x)
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because my4(x) is irreducible in Fo[x]. Now, in this section, we suppose m4(x) is reducible in
Fy[z]. Then we can get the standard factorization of m4(x) by Berlekamp’s algorithm ([4]).
Suppose

ma(z) = p1(z)?p2(x)® - ps(x)®

is the standard factorization of my4(x) where py(z),--- ,ps(z) are distinct irreducible poly-
nomials in Fao[z]. From Lemma 2, for a polynomial f(x) € Fa[z], f(A) is nonsingular if and
only if GCD(f(z),ma(z)) = 1. Then, in this case, GCD(f(z),ma(x)) = 1 if and only if
GCD(f(x),pi(z)) =1for i =1,---,s. Moreover, because each p;(x) is irreducible in Fa[z],
we only need to check whether f(z) = 0 mod p;(x) for i« = 1,---,s. From an algebraic
viewpoint, for a polynomial f(z) € Falz]|, f(A) is a nonsingular matrix in Mpyp(F2) if and
only if f(x) is a invertible element in the fields Fo[z]/< p;(x) > for i = 1,--- ,s. Therefore,
for a external matrix

fii(z)  fig(x) - fie(z)
()= | 2 Pl a8 o Bl < mate) >).
fn,1($) fn,2(x) fn,n<37)

if we want to argue whether H(A) is an MDS block matrix with block size (b x b), what we
need to do is just to regard H(x) as a matrix over Fo[x]/< p;(z) >, i = 1,--- , s and check
whether it is MDS over these field respectively. From the above statement and Lemma 2, we
have the following theorem.

Theorem 1. Let A € Mpyp(Fo) with the minimal polynomial ma(z) € Falx]. Suppose
ma(z) has the standard factorization

ma(x) = p1(x)“p2(x)? - - ps(z)*,

where py(x), -+, ps(x) are distinct irreducible polynomials in Falx] and eq,- -+ , e are positive
integers. Let

fii@)  fiz(x) - fin(z)
H@) = | ) P ) ),

fri(@) fap(@) - fan(®)
Then the following three statements are equivalent.
1. H(A) is an MDS block matriz with block size (b X b);
2. every minor determinant of H(x) is coprime with ma(x);
3. every minor determinant of H(x) is coprime with p;(x) fori=1,---  n.

From the discussion above and in Section 3, for a given primitive block A € Mjy(F2),
the external matrices of MDS diffusion matrices L € My, «pn(F2) are absolutely determined
by m4(z) but not by A itself or b, no matter whether m(z) is reducible or not. We formally
state this conclusion in the following theorem.
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Theorem 2. Suppose A € Myxp(F2) and A" € My« (F2) are two primitive blocks having
the same minimal polynomial. Then the external matriz

fia(x)  fiz(x) - fia(z)
foalw) o) Fanl®) @ g (Bofa)
foi (@) fo2(@) - fan(z)

makes
fia(A)  fig(4) - fin(A)
f2a(4) foz(A) - fan(4) € Munxin(F2)
fn,l(A) fn,2 (A) o fn,n(A)

be an MDS diffusion matriz if and only if it makes

fii(A)  fip(A) - fin(4)
f21(A")  fap(A) -+ fan(4)

fn,l(Al) fn,2 (A/> e fn,n(A/)
be an MDS diffusion matriz.

€ Mb’nxb’n(F2)

For a matrix A € Mpy(F2) and a polynomial matrix

fin(x) fig(x) - fia(o)
H@) = | P10 Rl B e,

foa(@)  foa(x) - fan(z)

let us think about two kinds of elementary operations on H(z), namely, interchanging two
rows (or columns) and multiplying a row (or a column) with a polynomial g(xz) € Falx]
coprime to ma(z). If we obtain another polynomial matrix H'(x) € My, xn(Fa[z]) from H(z)
via interchanging two rows (or columns) of H(z), according to the properties of determinants,
we know every minor determinant D’(z) of H'(x) is equal to certain minor determinant D(x)
of H(x) multiplied by 1 or —1. If D(x) is coprime to ma(z), D'(x) is coprime to mu(x)
obviously. Thus interchanging two rows (or columns) of H(z) does not change MDS property
of it. Likewise, if we multiply a row (or a column) of H(z) with a polynomial g(z) € Fa[x]
coprime to my(x), every minor determinant D’(x) of obtained polynomial matrix H'(x) will
be equal to certain minor determinant D(x) of H (z) multiplied by g(z). If D(x) is coprime to
ma(z), D'(xz) = D(x)g(z) must be coprime to m4(x) since g(x) is also coprime to ma(z). So
multiplying a row (or a column) with a polynomial g(x) € Fa[z] coprime to m4(x) does not
change MDS property of H(z) either. By contrast, the third kind of elementary operation on
matrices, namely, adding a row (or column) multiplied by a polynomial to another row (or
column) cannot retain MDS property of H(x), because it might make some entries become
zero. However, we discover another operation on H(x) that is a little similar to the third
kind of elementary operation mentioned above and can retain MDS property of H(z). Let
us clarify this kind of operation in the following theorem.
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Theorem 3. Let A be a matriz in Myx,(F2) with the minimal polynomial ma(x) € Falz].
Suppose the standard factorization of ma(x) in Fa[x] is

ma(x) = p1(x)?p2(z)? - - ps(z)*,

where py(x), - ,ps(x) are distinct irreducible polynomials in Fo[x] and e1,-- - ,es are positive
integers. Let
9(x) = p1(z)pa(z) - - ps().

Let
fiil@)  fig(x) - fin(x)
()= | Fle) 2 Bl e M ol
faa(@)  fo2(x) - fan(z)
and
h171(33') h172(.%') hl,n(x)
H'(e) = H(a) +gla) | "2000) Teal) o hane)
hpi(z) hn2(z) -+ hpn(x)
where
h171(x) h172(x) hl,n(a:)
h2,1($) h2,2($) hgyn(l‘)
hni(z) hpo(z) -+ hpp(x)

is any polynomial matriz in Myxn(Falz]). In other words, every (i,j)-th entry of H'(x) is
equal to f; j(x) + g(z)hij(z), i,j = 1,--- ,n. Then H(A) is MDS if and only if H'(A) is
MDS.

Proof. Obviously, the transformation from H(z) to H'(z) is invertible. So we only need to
prove MDS property of H(A) implies MDS property of H'(A).
Suppose H(A) is MDS. According to Theorem 1, what we need to do is to prove every

minor determinant of H'(x) is coprime to p;(x) for i = 1,--- ,s. Without loss of generality,
let us think of a square submatrix M'(x) of H'(x) obtained by choosing the i-th rows for
i=1,---,m and the j-th columns for j = 1,--- ,m of H'(x), where m is a positive integer
and m < n. Then

fra(e) +g@hia(z)  fre(@) +g9(@)hax) - frm(e) +g(@)him(z)
det (M (x)) = .f.27.1(x) +9(@)h2,1(2) if.z,.2(9€) + 9(x)h22(x) ‘.f.2’.m($) + 9(x)hom(x)

fma (@) + 9(@)him1(2)  fm2(@) + g(@)hma(z) - fmm(@) + (@) m(z)
According to the properties of determinant, we may write det(M’(z)) as the sum of a series
of m-order determinants. More specifically, for every j = 1,---,m, we can split the j-th

column of det(M'(z)) into two columns

fri(2)
f2,5(z)

Fong ()
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and

9 5()

Finally, det(M’(x)) can be written as the sum of 2™ determinants. For instance, one of these

determinants is
g@hii(z)  fiz(x) - fim(w)
g(@)ha1(z) foo(x) - fom(x)

)

9(@)hm1 (@)  fm2(®) - fom(T)

which is equal to
hia(z)  fip@) - fim(z)
g(z) hoi(z)  faolx) - fom(x)

hm,1($) fm,2(x) fm,m(x)

Obviously, all of these 2™ determinants are multiples of g(x) expect one determinant, namely,

fii(z)  fip(x) - fim(z)
faa(z)  fop(z) - fom(z)

frm1(@)  fm2(@) o fm(T)

Let M (z) denote the submatrix

fii(z)  fip(x) - fim(z)
foa(x)  fa2(x) - fom(z)

fm,l(x) fm,2($> fm,m(x)

Then

det(M'(x)) = det(M(x)) + g(x)q(x), (18)
where g(x) € Fa[z]. Since H(A) is MDS, det(M (x)) is coprime to p;(x) fori = 1,--- ,s. Thus,
det(M'(x)) is also coprime to p;(z) for i = 1,--- ,s because g(z) is a multiple of p;(z) for
i=1,---,s. Similarly, every minor determinant of H'(z) is coprime to p;(z) fori =1,--- ,s.
Therefore, H'(A) is MDS according to Theorem 1. O

Remark 2. Theorem 3 gives us an approach to construct new MDS diffusion matrices from a
fixzed MDS matriz. Obviously, it is useless to the case when the multiplicity of every irreducible
factor of ma(x) is 1 (including the case when ma(x) is irreducible in Falz]). In this case,
g(x) = ma(xz). Then for every entry f; j(x) of H(x), fij(A)+ g(A)hi;(A) has no difference
from f; j(A). But it does make sense when there exists a irreducible factor of H(x) having
a multiplicity greater than 1. In this case, the approach coming from Theorem 3 can give
us at least 28 — 1 extra options for every entry of the external matriz of an MDS block
matriz, where | = deg(ma) — deg(g). In detail, if H(A) is MDS, for every entry f; (x)
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of the external matriz of H(A), we may randomly pick a polynomial h; ; € Falx] such that
deg(hij) < deg(ma) — deg(g) and substitute f;;(x) + g(x)h;;(x) for fij(x). This kind of
operation on H(x) does not alter MDS property of H(A). Furthermore, as mentioned in
the proof of Theorem 3, the transformation from H(x) to H'(x) is invertible. Let v denote
the binary relation on the set My yxn(Fa[z]) such that for two matrices H(z) and H'(z) in
Moxn(Folz]), H(x) is y-related to H'(x) if there exists a matric

hia(z) hig(z) -+ hip(x)
h2,1($) h2,2(1') te hz,n(w) c Mnxn(FQ[x])
hpi(z) hp2(z) -+ hpn(x)
making
hl,l(l‘) hl,g(l‘) e hl,n(a:)

H'(z) = H(z) + g(z) | "21(®) h22(®) - haa(2)

hpi(x) hpa(z) - hpn(z)

It is easy to check 7 is an equivalence relation (a relation holding reflexivity, symmetry and
transitivity). So we can partition My xn(Fa[x]) into equivalence classes by v. And according
to Theorem 3, if one polynomial matriz H(x) makes H(A) MDS, every polynomial matriz
H'(z) in the same class as H(z)’s makes H'(A) MDS. In other words, MDS property is an
invariant on every equivalence class obtained from ~y. Besides, from the definition of the
relation vy, it is not hard to calculate the numbers of equivalence classes obtained from it.
We merely need to consider the entries of external matrices as the residues with respect to
modulo mod g(z). Thus, there are totally 2deg(g)-n? equivalence classes obtained from ~y. If
we restrict the degree of entries of external matrices to a range [0,deg(ma) — 1] (regard every
entry as a residue modulo ma(x)), the cardinality of every equivalence class is 2" where
[ = deg(ma) — deg(g). Therefore, if we want to search for all the external matrices of MDS
matrices (or a part of them), we may only take the representatives of the equivalence classes
obtained form ~y into account. And this approach will greatly reduce the amount of search when
2ln? g large. In practice, the less nonzero entries a diffusion matriz has, the more efficient
implementation it has. As the Hamming weight of a sequence, we may extend the notion
of Hamming weight to matrices. For a matriv L € Mpypxpn(F2), we define its Hamming
weight wy (L) as the number of its nonzero entries. Then for a matriz A € Myxp(F2) and a
polynomial matrix

fii(x)  fig(x) - fia(o)
H@) = | PR B e,
fn,l ($) fn,2 ($) ce fn,n(l')

obviously
n
wir(H(A) = Y wa(fi;(A)).
ij=1
So, if we need a diffusion matrixz with a Hamming weight as small as possible, we may manage
to reduce the Hamming weight of each block f; j(A), i,j =1,--- ,n respectively. With respect
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to a equivalence class obtained from -y, we can choose the one with the smallest Hamming
weight from

{£i,i(A) + g(A)hi j(A) | hij(2) € Faola], deg(h) < deg(ma) — deg(g)}

for each (i,7), i,7 =1,--- ,n, and then we will get the most efficient diffusion matrixz in this
equivalence class.

From Theorem 3 and Remark 2, we have the following corollary.

Corollary 1. Let A be a matriz in Mpyy(F2) with the minimal polynomial ma(z) € Falz].
Suppose the standard factorization of ma(x) in Fa[x] is

ma(x) = p1(x)p2(x)? - - ps(x)®,
where p1(x), - ,ps(x) are distinct irreducible polynomials in Fo[x] and e1,--- ,es are positive
integers. Let
g(w) = pr(z)pa(w) - - ps().
Let ~ be the binary relation defined in Remark 2 on the set Myyxn(Falz]). And let
MDSE M, xn(Falz], A) denote the set

{H(z) € Myxn(Falz]) | H(A) is MDSY}.

Then ~ is an equivalence relation on the set My xn(Fa[z]) and partition My, (Fa[x]) into
2de8(9)n* cquivalence classes. Moreover, M DSEMyy,(Fa[z], A) is the union of some of the
equivalence classes obtained from -y.

In summary of the above statements, now we present Algorithm 2 that can find out all
the MDS diffusion matrices L such that

o L € Myp,xpn(F2) for given parameters b and n;

e L can be divided to n? blocks and each block L; ; € Mpx(F2) is a polynomial in given
primitive block A € Mpyy(F2).

Algorithm 2 is similar to Algorithm 1. We modify several steps. And it is easy to find out
the reasons from the above explanations. On Step 39, like the situation in Algorithm 1, we
may actually assign z with P~ AP for every nonsingular matrix P € Mpy;(F2).

4.1 Some Experimental Results

We conduct our experiment with MAGMA (version 2.19-9) on a computer whose hardware
and software conditions are listed in Table 1.

We search with Algorithm 2 for parameters b = 8 and n = 4. We choose the primitive
block

00000001
10000000
01000001
00100000

A=l 000100 00 |EMss(F)
00001000
00000100
00000010

[N]
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Algorithm 2 Search for MDS Diffusion Matrices 2

Input: two integers b,n € Z", a matrix A € Myy;(F2) together with its minimal polynomial

m(z) € Fa[z], m(z)’s standard factorization m(z) = pi(z) pa(x)®? - ps(x)® in Falx],
9(x) = pr(x)pa() - - - ps().

Output: some polynomial matrices, an integer k.

1:
2:
3:
4:
5:
6:
T
8:
9

10:

11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:

define an integer k and k <+ O;
d := deg(g);
define a set PS(d) := {h(x) € Fa[z] | deg(h) < d,GCD(h(x),pi(z)) =1,Vi=1,---,s};
define a matrix L € My« (Fa[z]) and L «— Oy;
define an integer r and r « 0;
define f;(x) € Fa[z]/< pi(xz) > and fi(x) «— 0,i=1,---s;
print “The (n x n)-size external matrices of MDS diffusion matrices in My, xpn(F2) are:”;
for L € M, xn(PS(d)) do
fori=1,---,sdo
turn L into L; € Myxn(Fo[z]/< pi(z) >) by a ring homomorphism 7n : Falz] —
Falx]/< pi(x) > such that n(h(z)) = h(x)+ < pi(z) >;
re—n;
while » > 2 do
define a matrix B € M,y (Fa[z]/< pi(x) >) and B « O,;
for B runs over all the (r x r)—size submatrices of L; do
fi(2) — det(B);
if fi(z) =0 then
goto Step 34;
else
if » > 3 then
compute B~
for f;(x) runs over all the entries of B~! do
if fi(x) =0 then
goto Step 34;
end if
end for
end if
end if
end for
T 1T —2
end while
end for
print L;
k—k+1;
switch to the next L;
end for
print “where x = A.”;
print “There are k£ such MDS diffusion matrices.”.
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Table 1: Computer Hardware and Software
processor Intel Xeon E5620 @ 2.40GH z
RAM DDR3, 32G, 2133.4M H 2

operation system | Windows 7, 64 bit

with the minimal polynomial m(y) = (y* +y 4+ 1)? € Fa[y]. Then

_ mA(y)
GCD(ma(y), m's(y))

9(y) =yt ry+1,

where m/, (y) denotes the derivative of m4(y). We want to find out the external matrices of
MDS matrices. If we really searched all external matrices in My, (F2[y]) whose entries are
in the sense of modulo g(y), we would have to check 15'¢ = 6568408355712890625 polynomial
matrices (we omit those matrices at least one of whose entries is 0). It is too large! We do
not have a supercomputer to handle such computations. So we restrict ourselves to only four
variable entries and just search the external matrices having the form

1 Y 14y y2

y2 1+y gy 1
f31(y) f32(y) f33(y) f3a(y)
f34(y) f31(y) f32(y) f33(v)

where f31(y), f32(y), f3.3(y) f3,4(y) are in the sense of modulo g(y). Hence we only need to
check 15* = 50625 external matrices.

After running a series of MAGMA codes, we find out 1395 external matrices of MDS
diffusion matrices. And it takes 10.920 seconds. We list a part of these candidates in Appendix
A (note that we just list the third rows of them).

Note that we are searching for the representatives of equivalence classes obtained from
the equivalence relation v mentioned in Remark 2. If we treat the entries of external matrices
as residues modulo m 4 (y), every equivalence class contains (24)'¢ = 264 polynomial matrices.
For example, the external matrix

S M4X4(F2 [x])

1 Y 14y y2
2
Y 14+y vy 1
H(vy) =
(y) y2+1 1 y2+y y2+y
v4+y y?+1 1 v 4y

makes H(A) MDS according to our experiment. Then the equivalence class of H(y) contains
all the polynomial matrices having the form

h11(y) hi2(y) his(y) hia(y)
hoa(y) h22(y) hos(y) hoa(y)
HOFIW 1y i) hao() has) hasw)
ha1(y) ha2(y) haz(y) haa(y)

where h; j € Falyl], deg(h; ;) <4 or h;j(y) =0fori=1,2,3,4 and j = 1,2,3,4. All of these
external matrices are MDS when assigning A to y.
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5 Constructing Recursive MDS Diffusion Layers with Our
Strategy

In section, we discuss the constructions of recursive diffusion layers with our method.

As mentioned in section 1, recursive diffusion layers are a sort of diffusion layers with
high efficiency because they make use of LFSRs. Let L € My, xpn(F2) be a diffusion layer for
certain positive integers b and n where b is the length of bundles, then L is recursive if there
exists n matrices (or Fa—linear transformations) By, - -, B, € Mpxp(F2) such that for every
input row vector x = (x1,- - ,x,), the corresponding output row vector y = (y1, - ,yYn) is
just the (n + 1)-th state vector of the linear recursive sequence that has the relation

Tiinr1 = Bi(®i1) + Ba(xig2) + - + Bal®ign)

19
=x11B1+@2Ba+ -+ @0 By (19)
and the initial state vector @ = (x1,---,x,). In other words, if we input (zi,---,x,) to
the LFSR with the relation (19), we will take (41, ,®2,) as the output vector of the
diffusion layer L. If we express this procedure by matrices, we can define a matrix
Oy -+ Oy B
I, -+ O By
B = . . . . S Mbnxbn(F2)
Oy --- I, B,

where By, -+, B, € Mpxp(F2), Op denotes the zero matrix in Myy,(Fe) and I, denotes
the identity matrix in Mpyp(F2). Then it is easy to get the diffusion matrix L = B™. We

name By, -+, B, € Mpxp(F2) the recursive coefficient matrices after the common recursive
coefficients in a certain field. Note that the first block column of L is

By

By

By,
Thus at least we need By, --- , By to be nonsingular if we want a MDS diffusion matrix.

In [25] and [26], the authors talked about several recursive diffusion layers whose recursive
coefficient matrices are all polynomials in certain primitive block (denoted by L in their
papers). But they just gave the sufficient and necessary conditions for those diffusion layers
being MDS without talking about the construction of the primitive block in detail. Obviously,
if every recursive coefficient matrix is a polynomial in certain primitive block A € My, (IF2),
every block of the received diffusion matrix will be a polynomial in A too. So those diffusion
layers discussed in [25] and [26] are merely special cases of the situation discussed in Section
3 and 4. Consequently, we may construct recursive diffusion matrices with our strategy.

In summary of the above statements, now we present Algorithm 3 that can find out all
the MDS recursive diffusion matrices L such that

o L € Mp,xpn(F2) for the given parameters b and n;

e L can be divided to n? blocks and each block Lij € Myxp(F2), 4,5 =1, ,n;
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Algorithm 3 Search for Recursive MDS Diffusion Matrices

Input: two integers b,n € ZT, a matrix A € Myxp(F2) together with its minimal polynomial m(z) € Fa[z],
m(x)'s standard factorization m(z) = p1 (2)° pa(z) - - pa(2)°* in Fale], g(x) = pi(2)pa(x) - - pa(2).
Output: some polynomial matrices, an integer k.

1: define an integer k£ and k «— 0;
2: d:= deg(yg);
3: define a set PS(d) := {h(z) € F[z] | deg(h) < d, GCD(h(z),pi(z)) =1,Vi=1,--- ,s};
4: define L € My xn(F2[z]) and L «— On;
5: define By(z), -, Bn(z) € Falz] and Bi(z) < 0,--- , Bp(z) < 0;
6: define a matrix B € My xn(Fz2[z]) and B «— O,;
7: define an integer r and r « 0;
8: define fi(x) € F2[z]/< pi(x) > and fi(z) — 0,i=1,---,s;
9: print “The (n x n) round external matrices of MDS recursive diffusion matrices in My, xon (F2) are:”;
10: for (Bi(z),- -, Bn(z)) run over PS(d)" do
O, -+ Oy B
I, -+ Op B2
11: B« . . . ;
O, --- I, Bn
12: L — B";
13: fori=1,---,sdo
14: turn L into L; € Muxn(F2[z]/< pi(z) >) by a ring homomorphism 7 : Fa[z] — Falz]/< pi(z) >
such that n(h(z)) = h(z)+ < pi(x) >;
15: for f;(x) runs over all the entries of L; do
16: if fi(z) =0 then
17: goto Step 43;
18: end if
19: end for
20: r—n;
21: while r > 2 do
22: define a matrix H € M, x,(F2[z]/< pi(z) >) and H « O,;
23: for H runs over all the (r X r) submatrices of L; do
24: fi(z) «— det(H);
25: if fi(z) =0 then
26: goto Step 43;
27: else
28: if » > 3 then
29: compute H™;
30: for fi(x) runs over all the entries of H~* do
31: if fi(x) =0 mod p;(x) then
32: goto Step 43;
33: end if
34: end for
35: end if
36: end if
37: end for
38: re—r—2;
39: end while
40: end for
41: print B;

42: k—k+1;

43:  switch to the next (Bi(z), -, Bn(2));

44: end for

45: print “where x = A.”;

46: print “There are k such MDS diffusion matrices.”.
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e cvery recursive coefficient matrix is a polynomial in given primitive block A € Mpyp(F2).

Note that every matrix output by Algorithm 3 is a matrix corresponding to each round of
the diffusion layer but not the diffusion matrix itself.

5.1 Some Experimental Results

We conduct our experiment with MAGMA (version 2.19-9) on a computer whose hardware
and software conditions are listed in Table 1.

We search with Algorithm 3 for parameters b = 8 and n = 6. We choose the primitive
block

000 O0O0O0OTO01
1000 0 O0O0O
01 0 0O0O0TO01
001 00O0O0OT O
A=1 00010000 |EMslE

000 01O0O0TO0
000 O0O0O1O0O0
000 O0O0OO0OT1FPO0

with the minimal polynomial ma(y) = (y* +y + 1)? € Fa[y]. Then

ma(y) 4

9(y) = =y ty+1

W)= GCDmaly). m )

where m/y(y) denotes the derivative of ma(y). We want to find out the round external
matrices

0 0 Bi(y)
1 -~ 0 Bsly
Bly)=1 . . . . € Mexo(IF2[y])
0 -+ 1 Be(y)
of recursive MDS matrices, where deg(B;) < 4 for i = 1,--- ,6. So we need to check 155 =

11390625 external matrices totally.

After running a series of MAGMA codes, we find out 180 external matrices of recursive
MDS matrices. And it takes 5373.766 seconds. We list all the round external matrices in
Appendix B (note that we just list the transpose of the 6th columns of them).

Similar to Section 4.1, we just search for the representatives of equivalence classes obtained
from the equivalence relation . And it is easy to generate the whole equivalence class of
each representative with the method mentioned in Remark 2.

6 Conclusion

In this paper, we propose a new method to verify a sort of MDS diffusion block matrices
whose blocks are all polynomials in a certain primitive block over the finite field Fy. And
then we discover a new kind of transformations that can retain MDS property of diffusion
matrices and generate a series of new MDS matrices from a given one. Moreover, we get an
equivalence relation from this kind of transformation. And MDS property is an invariant with
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respect to this equivalence relation which can greatly reduce the amount of computation when
we search for MDS matrices. With this method, we list a series of MDS diffusion matrices
for some specific parameters. Finally, we discuss MDS recursive diffusion layers with our
method and extend the results of the corresponding work of FSE 2012 and SAC 2012. We
expect that our proposal will be helpful in designing the diffusion layers of block ciphers and
hash functions.
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Appendices

A

Wi +y, 2 +y, P +y2 4y, 1, P4y, vy 3y Hy+ Ly, [Py vy vy Ly,
W4y, v +y, P+ L+l P u iy P+ Ly y+ 1, [y vy Ly v ),
W2 +y, v +y, Lyd+y2 +y+1], [P +y v2+y, L2+ 1), P4y, v v 4y, vy yP P+ 1,
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WV +u. P+ +u oty WPy P P ol WPyt
v+ oyl Py oy Py L P u Ay u Pty + Lyl
WP +y, v+ +y, vy Ly 1, [Py, vy s P 1,1, [y2+y,y3+y2+y,y37y2+1],
W +y, v+ +u, L, [Py w24y, 3l P 4y v v s P+, [P +y,y,y +y -
v b, WPy y PP+ 1) P4y v, 0% v [Py vy 1 vl [P, y y +1],
W4y, v 1), Py P+ +y+ Lty iyl Py ARy + LR+,
[y2+y,y3+y2+y+1,y2+y7y3+1]7 [y2+y7y3+y2+y+l,y2+1,y]7 W+ vy +y* +
y+ 1,97 y +y] v + v,y +y +y+1y v WP+ u P+ +y+ Lyt oyt +y+ 1],
[y +y,y +y +y+1y y3 + o2 +y+1] [y2+y,y3+y2+y+1,y3+1,y3+y2+y],
[y +y,y + 17 +1 ¥ 7+ 1), [y +y. P+ P+ LA+ + Ly +y+1] s +y,y +y +
Ly +y+1, v +y+1] [y +u, P+ Ly P+ 1 Py 1L yR o y + 47 +y],
[V +y,y+1, v 2ty 0P Y +1] [y° +y,y+1,y2+1,y3+y2+y] [ +y,y+1,4° +y +1,57+1],
[+, y+1 y +y+1 Y3ty +y] W +y, y+ 1, + 1,93+ +y], [P+, y+1,1,y +y 24+y+1],
[y +yy + v, y +y, 57 + 97 +y] [y2+y7y3+y,y2+y,y3+y] & +yy +yy +yy],
W2 +y,y° U +y,1] Wty vty + 2yt R+l [P +y,y +, y y +y +1],
[y +yy +yy +y+1y] W2 +u. 0 + v, 0% 07 + 97, [y +yy +yy P +y + 1],
[y +yy +u. 1 P ey Ly R+l Ryt +y,1,y + v +y+ 1],
W +v, v +y, L1, WP+ uy? +y+ LA+ u v’ Py y+ Ly R+t [P+
v +y+ L+ +y+ LA+ 1) Pty Ay Lty Ly 4yl [Py iy o+
LyP+y+ 1Lyl [ +u v +y+ Ly +y+ L,y + 7 + 1], [P v +y + Ly* +y + 1,97,
W4y +y+ 1L+ Ly +yl, P4y A y+ L+ Ly P4y v v s v
[y2+y,y3,y2+1,y3+y]7 W2+ % P+ + 1,9, [P+, y3,y3+y2+1,y2], [y2+y,y3,y3+y+
Ly?), [v° +o, Y3, v +y+1 v +y+1], [P +y, v v+ 1L,y 4y, [y 1,y 341, y 24y,y +y 24+1],
[y +yy +1y + v, y%], [y +u. P+ Ly +y oyl WPy y® +1y +y+1y +1],
[y +yy +1,9° +y+1 v+l [V +y P+ Ly +y+ 1y [P +yy + 1,2 +y+1 2,
[y +y,y +1y + L34yl P4y + L L+ 2 P4y Ly gt R +y+1],
W +y, 1, y°+y,y +y ] P4y, Ly +y, v+ 1], [P 4y, Ly +y, o7, [P+, 1 y2+1 v*+yl,
[y +y,1,y2+1 y +y 2+1], [P 4y, L2+ L2 4yl [Py, Ly, o3+, [P+, 1, v +y+1 1],
[+ Y.y +y vy, 1, [P+ vy vy A 1 [Py v PRy, g+
1, P +y?+y, v+ P +02 4y, 1), [P+ 4y, v 4y, v ol Py g R,
WP +v2+u. v +y, 0y P+ o 2 P Py Py
v+ L+l By P P u ) By ),
WP+ 0+ L P P w0 Pyt
T e T T | T T e T T T LV o T S VI T Sy T TR AR TRl S U
P+ +u + A+ 1 P v syl P4 VR vyt + ),
[y3+y2+y7y7y3+y2+y,y2+1]7 [y3+y2+y,y,y,y2+1]7[y3+y2+y7y7y,y+1]= [ +9° +
vy y.y +y+1] [y +y +yyy Y +1} WP+ +uu, 0%y + 1), P+ v+t 1,
[y +y +yy +y y +y + .57 + +y+1]7 [y3+y2+y,y3+y2,y3+y2+y,y2+1],
[y +y +y,y +32y +y +yay+1}, [P +v2+y, P 2, vt 4y +y, ] [v° +y +y,y +y Y2+
1,y° Y +y+1] [y +y +y, 47 +y ,y3+y2+1,y3+y] [P +v°+y,° +y y +1 Y +y >+,
[y +y +, y +y5 P+ Ly+1), P+t A+ L [P +y +y,y Y3 +y? 1 yl,
[y° +y +, y y +y2+y y+1] P4+ +y, 02, v 02, v 0P [Py, 02, y3+y +1 v Sy,
[y +y o y? Y +y +1 v ry+1), [P+ A L 2+, [P +y +y, y y -y Sy,
[y° +y + v, 9% 97, y +y+1] W+ v +y, 050 +y,0° + 1], [y +v*+u.yh Y0 y + 97,
WP+ +yy+ L+ + Lyl B+ +yy+ Ly+ Lyl B+ +yy+ Ly+ 1L y3 4y +1],
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[Py +y, y+1, 34y, y+1, [P+, Py, vy ), [Py vy Ay 1L ),
WP+ +y, Py, P 2+ L2 1, [Py 4y, vy R L) [P s Py, w1 R,
WP+ +y. P+ y+ Lyt +y+ 1, [P+ oy Py P+ L1 P+ Py Ly
4yl [Py Ay L+ L Py e Ay Ly R 4l
P4y +y, P +y+ L+ L 1, P+ +u Py LA P 0L [Py vty
LY,y +y+1, [P+ +u. P +y+ Ly +u P + 02, WP+ Py + Lt 4y, P+ 1,
P+ +y P +y+ L0 WPy Lyt iyt [Pyt
y+1,y3+y2+y,y+1], [y3+y2+y,y2+y+1,y,y2], WP+ +uy +y+ Ly + 20,
[y +y Uy +y+1 yt+Ly S [Py Ay LR+ L0, Py v v+ v,
[+ +y,y Y +y +y, 2+, [y3+y2+y,y3,y3+y2+y,y2+1]7 [P+, % P+ .y
[y +y +, y y 241, y] WP+ v+ % v+ L+ y 1 [Py gt vt LR+
[+ S+ Y3 Y +y, 3], [y +y7 4y, 0, P L Py [Py, Ly, Py
[y3+y? +y,1,y +y2+y, v 1), [P+ 4y, Lt iy 02 [Py 4y LRy, v,
P4y +y Ly v +1], P+ +y, Ly + Ly + 1), [P+ o L+ 0%, v + 7], [P+ 0% +
v, L+ PRy Lyt A 8 P R+ LRy P Ry, Ly P+,
WP+ +y, Ly o2 +y+1, P40+, L 4y, u+ 1, [y, v s P 0% 4y, P+ 4yl

]

]

[\

]

l,
]7
]
]

)

[ ,y2+y,y3+y2+y,y2+1]7 W +u. P+ vty +y+ 1 iy R +y
[y, y 4.9, y? +y +1] W v +u 097, vy, 0P Hy+1] [y, v +u v 0% v R+ 1,
[y, y +y,1° +y +1, y Syl [y,y2+y,y3+y+1,y3+y+1]v [, +y,v* + 1,07, [, > +y, 4+
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[y, y 2y y.y ] WP+ +y, v P+l P+ +u P A+ LA P+ sy +
Ly +y] [y,y +y +y,y+ Lyl .y Py + LA+l P+ w4l
[y, v Sty 4y, 7 +1], [y,y7y3+y2+y7y+1], Wy, >+ +y, v +y+1], [y, v, v* 41, P 4y % 410,
[y, vy +1 y+1], [y, vy Sty+ Ly +v? 4y, oy, P +y+ Ly2 +yl [y, v vy + Ly 47,
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v,y +y y +y2y +y] [y7y3+y2,y3+y+1,y3+y2+1]7[ v, y° + %y tytLy 2+,
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[, P4y +y,y + 1,57 +1,y3+y2+1,y3+y2], L+ +yy +2 +Ly+1L,y° +
y? +1y +y +y] [1,9° +y +u,9% 05000 + P+l [Lyy? + Ly + 1,95 0% + 47,
Ly, y3+y? +1 y WAL Ly o v+ 193 ) L+ L P P s P+
y+1] [1,4° +y +y+1 v,y + 1L, + v+, Ly Py + Ly + vy 4 Lyl
1 v +1 y+1 y? y N y] L+ 1,8 +y,y+ 1,95 +y, 02 +1], L,y + 1,07 + 1, 5,y +1, 47,
1 Y Sy, Y7+, y y +y +1,9], [1,y3+y2,y?’+y2+1,y2+1,y2+1,y3+y2+y], L2470, y+
Ly +1, y] Ly +y2+1, y+1 y+1 v +Ly LA+ + Ly, vt R+ 1,
[1,4° +y +1y +1y y +1y +y2+ 1, Ly P+ +yy+ Ly, Ry + 1],
[1,y yy +1 v+ +y+ 1 LAy vyt A Ly + Lty +
1,y P4y +y+Ly+1] Ly+ L%y +y +y+ L+l Ly+ Ly +y+ 1Ly° +
Ly, v+l (L +u v + v +y+Luv®y+1, Ly +u% v + Ly +y+ Ly +1],
[Ly +y. Pt +y+ Ly 1 Ly + LA+ A+ Ly Pty 1,
Ly*+y+Lyy P+ +u v+ +y+1], Ly +y+ LyP + 0%y + Ly  + 0%, 0 +y + 1],
Lysy+1y, 3+ 1,02 +1], (L3, 03 4y, 0% y+ L y2 1), (L% o + Ly+ 1, y+ 1,3+ 42 +1],
Ly + L3+ +y+ L+ L, 2y + L2 4+ 1), L,y + 1,92, 9%, 9% +y 4+ 1,97 + 9,
[1,y3+1,y3+y+1,y,y3+y+1,y3+1].
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