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Abstract. As a modified version of GGH map, Gu map-1 was successful
in constructing multi-party key exchange (MPKE). In this short paper
we present a result about the parameter setting of Gu map-1, therefore
we can reduce a key parameter 7 from original O(n?) down to O(\n)
(in theoretically secure case, where A is the security parameter), and
even down to O(2n) (in computationally secure case). Such optimization
greatly reduces the size of the map.
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1 Introduction: Background and Our Comment

Because we presented efficient attack [1] on GGH map for given encodings of
zero [2, 3], modification of GGH map is urgently needed. Gu map-1 [4] is one of
modified versions of GGH map. It successfully forms MPKE scheme, and avoids
our attack.

In this short paper we present a result about the parameter setting of Gu
map-1, therefore we can reduce a key parameter 7 from original O(n?) down
to O(An) (in theoretically secure case, where A is the security parameter), and
even down to O(2n) (in computationally secure case). Our result is that “vector
group” {Y;,i = 1,--- ,7} has the “rank” n rather than n?, and that “vector
group” {P,;;,i = 1,--- ,7} has the “rank” n rather than n?.Such optimization
greatly reduces the size of the map.

2 Gu Map-1

2.1 Setting Parameters

We define the integers by Z. We specify that n-dimensional vectors of Z™ are row
vectors. We consider the 2n’th cyclotomic polynomial ring R = Z[X]/(X™ + 1),
and identify an element v € R with the coefficient vector of the degree-(n — 1)
integer polynomial that represents w. In this way, R is identified with the integer
lattice Z™. We also consider the ring R, = R/qR = Z4[X]/(X™ + 1) for a (large
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enough) integer ¢q. Obviously, addition in these rings is done component-wise
in their coefficients, and multiplication is polynomial multiplication modulo the
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ring polynomial X" +1. For u € R, we denote Rot(u) = . . . €
—u1  —us - U
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Because Gu map-1 scheme uses the GGH construction [2,3] as the basic
component, parameter setting is set as that of GGH to conveniently describe
and compare. Let A be the security parameter, K the multilinearity level, n the
dimension of elements of R. Concrete parameters are set as ¢ = v/An, o’ = Anl*,
o* =2 ¢ > 28K O0E) 1y > O(KN?), 7 = O(n?). More detailed setting of 7 is
T=n%+ A\

2.2 Instance Generation

(1) Choose a prime ¢ > 28KApO(K),

(2) Choose an element g < Dzn , in R so that ||g7!|| < n?. In other words, g is
“very small”.

(3) Choose elements a;,e; <~ Dzn o, b; < Dzn s, i =1,---,7 in R. In other

words, a;,e; are “very small”, while b; is “somewhat small”.
(4) Choose a random element z € R,. In other words, z € R, is never small.

(5) Choose two matrices T, S <= Dynxn ,. In other words, T and S are “very
small”.
(6) Set i = |[TRot (“<) 71| | Py = [TRot(0sedys| i1, 7.
q q
(7) Output the public parameters {q,{Y;, Py ;},i =1,--- ,7}.

(8) Generating level-1 encodings. A user generates his secret d < Dzn o+ in
R, then publishes U = [22:1 diYi} = [TROL‘(M)T*] .U is
a

q
level-1 encoding of the secret d.

(9) Generating level-K decoding factors. After the user generating his secret d,
K T . . e:
he secretly computes V = [22:1 diszL = [TROt(M)S}q.
V is level-K decoding factor of the secret d.

2.3 A Note

2

Each public matrix Y; has n“ entries, and so does P,;;. For a public encoding

U = {2;1 dl-Yl} , if {Y;,4 = 1,--- 7} are linearly independent, the secret
q

{d;;i = 1,--- ,7} can be uniquely solved. This is the reason that 7 > n?, and
more detailed that 7 = n? + \.
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3 A Result about Parameter Setting of Gu Map-1

3.1 Ouwur Notations

Th 7
T
We denote {%] = [Ui,O U1 - uim_l]. We denote T' = | . |, where
q :
T’Vl_
T, is the k'th row of T. We denote T-% = [I7" Ty" -+ T)7'], where T}
tiig
tin :
tio ¢
is the k'th column of 771 For T, ' = | |, we define T}, '(I) = 2|
. Tk,
t;:ln :
e} ]

1=0,1,---,n— 1. It is easy to see that T, '(0) = T}, '. Again we have that
1 k=3
Tt = J
! 0 k#j

We write matrix Y; into the form of “vector” 571 Suppose Y; =

Yi, 1,1 Yi, 1,2
Yi,2,1 Yi,2,2

Yin,l Yin,2 -

Then Y; = [yi11 Yin,2 Yin Y21 Y22 Yizn Yol Yim2 " Yinn)

3.2 A Result about Vector Y;

Proposition 1

(1) Y, = “Ui,o Ui ~-ui’n,1]A} , where A is n x (n?) matrix, which is only
a
dependent on T

(2) We denote [ as the serial numbers of rows of A, I = 0,1,--- ,n — 1. We
denote (k, ) as the serial numbers of columns of A4, k,j =1,2,--- ,n. Then
(I, (k, 7)) entry of A is Tij_l(l).

(3) Special entries of A. (0, (k,7)) entry of A is 1 for k = j, and 0 for k # j.

(4) A natural corollary. The rank of {ﬁ,z =1,---,7} is at most n rather than

n?.

3.3 Similar Result about Vector P, ;

Proposition 2 We write matrix P,;; into the form of “vector” ]Bzm-. Then the
rank of {P,;;,i=1,---,7} is at most n rather than n?.

Yi,1,n
Yi,2,n

Yin,n
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4 Reducing 7

Suppose we obtain a public encoding U = [Z;l diYZ} .
q

7 > n will guarantee {Y;,i = 1,--- 7} linearly dependent, therefore the
secret {d;,i =1,---,7} can not be uniquely solved.

7 = An will guarantee that SVP (the shortest vector problem) over the lattice
generated by {Y;,i =1,--- ,7} is theoretically hard. Notice that A is far smaller
than n.

7 = 2n will guarantee that SVP over the lattice generated by {Y;,i =
1,-+-,7} is computationally hard.
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