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Abstract. In 2004, Canetti-Halevi-Katz and later Boneh-Katz showed
generic CCA-secure PKE constructions from a CPA-secure IBE. Goyal
et al. in 2006 further extended the aforementioned idea implicitly to pro-
vide a specific CCA-secure KP-ABE with policies represented by mono-
tone access trees. Later, Yamada et al. in 2011 generalized the CPA to
CCA conversion to all those ABE, where the policies are represented
by either monotone access trees (MAT) or monotone span programs
(MSP), but not the others like sets of minimal sets. Moreover, the un-
derlying CPA-secure constructions must satisfy one of the two features
called key-delegation and verifiability. Along with ABE, many other dif-
ferent encryptions schemes, such as inner-product, hidden vector, spa-
tial encryption schemes etc. can be studied under an unified framework,
called functional encryption (FE), as introduced by Boneh-Sahai-Waters
in 2011. The generic conversions, due to Yamada et al., can not be ap-
plied to all these functional encryption schemes. On the other hand, to
the best of our knowledge, there is no known CCA-secure construction
beyond ABE over MSP and MAT. This paper provides different ways
of obtaining CCA-secure functional encryptions of almost all categories.
In particular, we provide a generic conversion from a CPA-secure
functional encryption into a CCA-secure functional encryption
provided the underlying CPA-secure encryption scheme has either re-
stricted delegation or verifiability feature. We observe that almost all
functional encryption schemes have this feature. The KP-FE schemes of
Waters (proposed in 2012) and Attrapadung (proposed in 2014) for reg-
ular languages do not possess the usual delegation property. However,
they can be converted into corresponding CCA-secure schemes as they
satisfy the restricted delegation.

Keywords: Functional encryption, Predicate encryption, Delegation,
Verifiability, Generic Conversion.

1 Introduction

Identity based Encryption. The day of PKC was started through the inven-
tion of key exchange protocol by Diffie and Hellman [15]. The major problem it
faced is the man-in-middle attack. To take care this issue, the common practice
is to use the certificate-based digital signature and keep all the certificates in
a public directory (certified). Then, ID-based cryptosystem [34] was introduced



2 Mridul Nandi and Tapas Pandit

to simplify the mentioned key management process, where the public key is the
identity. For many practical purposes, the stronger (IND-CCA) security is as-
sumed to be mandatory for the hired encryption scheme. To this direction, one of
the efficient transformations is due to Fujisaki and Okamoto [16]. In this generic
conversion, a one-way secure PKE scheme is transformed to CCA-secure PKE
scheme using a symmetric encryption scheme (in the sense of hybrid encryption),
but this assumes the random oracles. Canetti, Halevi and Katz [11] first came up
with a transformation, known as CHK-transformation, from a CPA-secure IBE
to CCA-secure PKE in the standard model. The basic technique used for this
conversion is the one-time signature (OTS), later Boneh and Katz [8] improved
the efficiency by employing a weak commitment and MAC technique.

Attribute-Based Encryption. The attribute-based encryption (ABE) [24,
28] is a generalization of IBE [6, 14], a smart way to provide the access control
over the secrets in fine grained manner. The access control that ABE implements
are the boolean formulas (access structures), in the form of monotone span
programs, monotone access trees (MAT) and the sets of minimal sets etc. The
attribute-based encryption mainly hides the payload, whereas the associated
indices are given in the clear as the part of ciphertexts and we call this ABE as
traditional ABE.

In the standard model, there are very few CCA-secure ABE schemes which
are either directly constructed or from CPA-secure ABE by applying the ab-
straction of [20]. The intuition in [20] basically extended the key idea of CHK-
transformation to the area of ABE in presence of delegation, but it was applicable
only to the large universe ABE (with MAT representation) in key-policy flavor.
Recently, Yamada et al. [38] generalized the abstraction of Goyal et al. [20] in the
standard model to include all ABE that support either monotone access trees
or monotone span programs. In their generic conversion [38], they also offered
an alternative of delegation for the ABE without delegation, called verifiability
which seems to be more powerful than the delegation.

Predicate Encryption. Beyond the traditional ABE, there are many encryp-
tion systems available in the literature, some of them are known to be (doubly-
)spatial encryption ((D-)SE) [7, 21], functional encryption for regular languages
[37], ABE for circuits [17], (hierarchical) inner-product encryption ((H)IPE) [27],
hidden vector encryption (HVE) [10] and anonymous IBE etc. All the above sys-
tems are subsumed under a larger class of encryption system, called predicate
encryption (PE) [23, 35]. A key-index x is eligible for the decryption of a cipher-
text encrypted under the associated index y if a relation holds between x and y
(in this case we write x ∼ y, and x 6∼ y otherwise). It captures both, the only
payload hiding and the associated index hiding. The former is known to be PE
with public index and the later is PE with hidden index.

Functional Encryption. All these encryption systems can be studied un-
der a ‘functional’-style framework (formally defined in section 2.1), known as
functional encryption (FE) [9]. Informally speaking, a FE for a functionality F
defined over the key space X and message space Ψ , deals with the computation of



Generic Conversions from CPA to CCA secure Functional Encryption 3

F(x, ψ) from the key SKx, associated to a key-index x, and a ciphertext Cψ en-
crypted for a message-index ψ. A brief literature survey on functional encryption
is given in Appendix C.

Our Contribution. In this paper, we explore a generic conversion from CPA to
CCA-security for the functional encryption systems [9]. The only generic solution
available in this domain is for traditional ABE due to Yamada et al. [38]. We
basically extend this conversion to include the larger class of encryption systems
(beyond the traditional ABE), i.e., the functional encryption. To the best of
our knowledge, this is the first conversion that can transform a CPA-secure FE
to CCA-secure FE, generically. Like Yamada et al., the underlying CPA-secure
schemes are required to satisfy either restricted delegation, a weaker notion of
delegation or restricted verifiability, a weaker notion of verifiability or both. Our
conversion is more general and widely applicable.

– The Yamada et al. [38] conversion for traditional ABE, can be viewed as a
specific instantiation of our generic conversion.

– It is applicable to all ABE even over policies represented by sets of minimal
sets or a general circuit (which was not captured by [38]).

– It is also applicable to any regular language recognized by a deterministic
finite automaton (DFA). As a result we are able to provide a CCA-secure
functional encryption schemes for regular languages using Waters [37] and
Attrapadung [1] CPA-secure constructions. None of these schemes possesses
the actual delegation, but by introducing a suitable (restricted) partial order
in the key space, we convert them into CCA-secure schemes smartly.

– Other categories of functional encryption such as (doubly-)spatial encryp-
tion, (Hierarchical-)inner-product encryption and hidden vector encryption
etc. also follow our generic CCA-conversion.

Our Approach. The basic hired technique involved in our generic conversion, is
the OTS or a combination of weak commitment and MAC. We briefly explain
our conversion using OTS. Let (vk ∈ {0, 1}n, signk) be a pair of verification key
and signing key for OTS. In this approach, vk is embedded into the ciphertext
obtained from a CPA-secure encryption and then the ciphertext is signed by OTS
scheme using signk to form the final ciphertext (CCA-secure). The verification
key vk is kept pubic in the ciphertext for the verification of the signature. The
main challenging task is to embed vk appropriately in the ciphertext so that an
attacker A can not create a new ciphertext (mostly well-formed or ill-formed but
up to certain extent) from the original ciphertext. Let F , X and Ψ be respectively
the functionality, key space and message space for a target CCA-secure functional
encryption FE to be constructed from a CPA-secure FE′ for (F ′,X ′, Ψ ′). So we
need suitable mappings (T1, T2, T3) from (F ,X , Ψ) to (F ′,X ′, Ψ ′) which would
transform the indices. These map must satisfy certain conditions and we call the
triple of maps delegation-friendly or verification-friendly index-transformer
depending on the satisfied properties (see definition 4 and 6). In section 4 we
see several examples of index-transformer over different categories of functional
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encryption. In section 3 we provide our generic construction which is briefly
constructed as follows:

1. Secret key of FE to an index x is same as that of FE′ to the index x′ (obtained
by applying T1).

2. To encrypt a message ψ for FE, we apply CPA-encryption for ψvk where
(vk, signk) is generated from the key generation of an OTS scheme and ψvk
is a transformed message index obtained through T3. We also sign the ci-
phertext Cψvk

by signk and keep the signature and verification key both as

a part of the final ciphertext. The decryption algorithm varies depending
on the delegation or verifiability features, where the mapping T2 is to be
applied.

In section 5 we observe that almost all known constructions (CPA-secure)
satisfy either delegation or verifiability or both. However, the schemes of Wa-
ters [37] and Attrapadung [1] for regular languages do not have full delegation.
However, we show that it has restricted-delegation which is actually required for
our generic conversion. In Appendix G, we provide the concrete instantiation of
KP-CCA-secure construction for regular languages. The similar instantiation is
possible for almost all other functional encryptions.

2 Preliminaries

2.1 Functional Encryption

Notation. [`] := {i ∈ N : 1 ≤ i ≤ `}. For a set X, x
R←− X denotes that x

is randomly picked from X according to the distribution, R. Likewise, x
U←− X

indicates x is uniformly selected from X. For two strings str1 and str2, str1||str2
denotes the concatenation of str1 and str2. The notation BT stands for the
transposition of the matrix B. For two column vectors u and u, we define

(
u
v

)
:=

(u1, . . . , u`, v1, . . . , vd)
T , where uT := (u1, . . . , u`) and vT := (v1, . . . , vd). For

vk ∈ {0, 1}n, we use the notations (vk⊥)T := (vk,−1) and (vk)T := (1, vk).

Although Boneh, Sahai and Waters explained in details the definition, secu-
rity and other properties of functional encryption in [9], for self-containment, we
briefly define them here. Let F : (X∪{ε})×Ψ −→ {0, 1}∗∪{⊥} be a function. We
call X and Ψ the key-index space and message space respectively. To each key-
index x, we associate a possibly randomized key SKx. A functional encryption
scheme for a function F allows to compute F(x, ψ) using the key SKx for a key-
index x and an encryption Cψ of the message ψ, i.e., F(x, ψ) = Dec(Cψ,SKx).1

A precise definition of the functional encryption for F is given below:

1 Conventionally, an empty key is associated with the empty key-index. Thus, any-
body can use the empty key to decrypt a ciphertext Cψ and obtains F(ε, ψ). So
we define F(ε, ·) to denote the amount of information we are comfortable to leak
from a ciphertext only. Usually, length of message is leaked. Sometimes we also leak
additional data, header file etc. All these information would be captured by F(ε, ·).
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Definition 1 (Functional Encryption). A basic functional encryption scheme
FE for a functionality F consists of four PPT algorithms - Setup, KeyGen, Enc
and Dec:

– Setup(1κ, j)→ (PP,MSK) where j ∈ J (the space for system parameters).

– KeyGen(PP,MSK, x) := KeyGenPP ,MSK(x)→ SKx (secret key associated

to a key-index x).

– Enc(PP, ψ) → Cψ (a ciphertext) where ψ ∈ Ψ (message space) is called a
message.

– Dec(PP,Cψ,SKx) := DecPP ,SKx
(Cψ)→ p ∈ {0, 1}∗ ∪ {⊥}.

Moreover, it satisfies the correctness condition: Pr[DecPP ,SKx(Enc(PP, ψ)) =

F(x, ψ)] = 1.

Whenever the public parameter PP and the master secret keyMSK are under-
stood we skip them for notational simplicity. We call a ciphertext C ill-format
if for all ψ, Pr[Enc(PP, ψ) = C] = 0, otherwise it is called correctly-format.
So the correctness condition implies that for all correctly-format ciphertext C,
DecSKx

(C) = F(x, ψ) provided Pr[Enc(PP, ψ) = C] > 0. But its does not talk
about anything how the decryption algorithm behaves on all ill-format cipher-
texts. A public format-verifier is an algorithm V such that V(PP,C) returns
1 if and only if C is correctly-format. An algorithm V is called weak format-
verifier if for all correctly-format C, V(PP,C) returns 1. For security definition
of functional encryption, we refer to Appendix A.

Predicate Encryption A predicate encryption PE for a key space X , an as-
sociated data space Y and a payload space M can be realized as a functional
encryption FE for a functionality F over (X ∪ {ε})×Ψ , where Ψ = Y ×M. The
functionality (also called predicate functionality), F for the PE is defined by

F(x ∈ X , (y,m) ∈ Ψ) =

{
m if x ∼ y
⊥ if x 6∼ y

where ∼ is some binary relation on X ×Y. The predicate encryption is said to be
with public index if the associated index y is not hidden, otherwise it is called to
be with hidden index (when confidentiality of associated data is also required).
In the case of public index, we can assume that y (but not m) is a part of Cψ
where ψ = (y,m) and we may define F(ε, (y,m)) = (y, len(m)). In hidden in-
dex, we may define F(ε, (y,m)) = (len(y), len(m)). So far all known functional
encryptions are predicate encryptions for some binary relations. We have differ-
ent categories of predicate encryption based on how we actually compute the
predicate relation. Here are some popularly known examples of relations which
have been used for predicate encryption (in case of asymmetric relation one can
always define dual relation by interchanging X and Y, e.g., key-policy or KP
and ciphertext-policy or CP):
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HVE relation: Let Σ be an alphabet and ∗ (referred as “wild card”) be a

special symbol not in Σ. We set Σ∗ := Σ ∪ {∗}. Let X := Σ`∗ and Y = Σ`.
For x = (x1, . . . , x`) ∈ X and y = (y1, . . . , y`) ∈ Y, we define x ∼ y if and
only if xi = yi or xi = ∗ for each i ∈ [`]. The corresponding encryption
schemes are known as hidden vector encryption.

Orthogonal: Let X = Y = F` where F is a finite field. For x = (x1, . . . , x`) ∈ X
and y = (y1, . . . , y`) ∈ Y, we define x ∼ y if and only if

∑`
i=1 xi.yi = 0.

The corresponding encryption schemes are known as inner-product predicate
encryption.

LSSS based relation: Let U be a set (of attributes). Define X = P(U) and Y
be the the set of all monotone span programs Γ := (M,ρ) where M is an
`×r matrix over F and ρ : [`]→ U . We define the binary relation A ∼ (M,ρ)
if (1, 0, . . . , 0) ∈ span({M i; ρ(i) ∈ A}) where M i is the ith row of the matrix
M .

Relation based on minimal set representation: Let Γ be a policy repre-
sented by the set of minimal sets, (B1, . . . , B`) and A be a set of attributes.
We define the binary relation A ∼ Γ if ∃ i ∈ [`] such that Bi ⊂ A.

Satisfiability relation in circuit: Let X be the set of all circuits “∧” and “∨”
gates 2 with having n bits input gates. Let Y = {0, 1}n. We define x ∼ y if
x is satisfied by y or y is satisfied by x in the sense of circuit satisfiability.

Relation in Spatial encryption: Let Y be an affine space Z`q and X be the

set of all affine subspaces of Z`q . For x ∈ X and y ∈ Y, we define x ∼ y if
and only if y ∈ x.

Relation in Doubly-Spatial encryption: Let Y = X be the set of all affine
subspaces of Z`q . For x ∈ X and y ∈ Y, we define x ∼ y if and only if
y ∩ x 6= ∅. In a more general set up, X is defined to be the set of all linear
subspaces, of the form Ker(X), a kernel of a matrix X over Zq .

Regular languages vs. Automata: A deterministic finite automaton (DFA),
M is defined to be a quintuple (Q,Σ, δ, q0, F ), where Q is a finite set of states,
Σ is a set of symbols, called alphabet, q0 ∈ Q is called the start state, F ⊆ Q
is called the set of final states and a partial function δ : Q×Σ → Q is called
transition function. The language, also called regular language, recognized
by the DFA M is defined as

L(M) = {w1w2 · · ·wn ∈ Σ∗ : δ(· · · δ(δ(q0, w1), w2) · · ·wn) ∈ F}.
We define a binary relation w ∼M if w ∈ L(M)

3 Generic Conversion to CCA from CPA-Secure
Functional Encryption

3.1 Delegation and Verifiability

Definition 2 (Delegation and re-randomization for FE). Let � be a par-
tial order on X . A functional encryption scheme FE is said to have the del-

2 These are 2-threshold gates, one may consider general threshold gates, e.g., t-
threshold gates.
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egation property w.r.t. � if there is a PPT algorithm Delegate such that for
all x � x̃ ∈ X , for all pp,msk, k, kx with Pr[Setup → (pp,msk)] > 0 and
Pr[KeyGen(pp,msk, x) = kx] > 0 we have

Pr[Delegate(pp, kx, x, x̃) = k] = Pr[KeyGen(pp,msk, x̃) = k]. (1)

Moreover, it is said to have re-randomization property if for all x ∈ X , x � x.

For many practical reason, Alice may have to compute a “delegate-key” for
her assistant, Charlie. For example, Alice is conducting a conference and gets so
busy with her tight schedule. Then, she wants Charlie to handle the registration
process and so, she computes a key for Charlie in a restricted manner so that
he can only see the message related to registration, not beyond that. The term
“restricted” would be justified by a choice of partial order � in the key space.
One can always define a natural partial order through the binary relation ∼ of
the predicate encryption. Indeed, for x, x̃ ∈ X , x � x̃ (i.e., x has more access
than x̃) if x̃ ∼ y implies x ∼ y for all y ∈ Y.

Verifiability for attribute based encryption has been defined in [38]. However,
we provide a simplified definition for a general public index predicate encryption.

Definition 3 (Verifiability). A predicate encryption scheme PE with public
index is said to have the verifiability if there is a PPT algorithm, Verify such
that for all ciphertext C (possibly ill-format) with the public associated index y,
and all x, x̃ with x ∼ y, x̃ ∼ y we have

Verify(PP,C, x, x̃) = 1⇒ Dec(PP,C,SKx) = Dec(PP,C,SKx̃)

and it is a weak format-verifier, i.e., it returns 1 for all correctly-format cipher-
text.3

Roughly speaking, it verifies that a ciphertext is correctly-format or if it is ill-
format then it can be decrypted to the same message under two keys with two
different indices both related to the associated index. Note that we can not define
verifiability for a hidden-index predicate encryption and hence for a general
functional encryption.

3.2 Using Delegation feature

In this section, we construct a generic CCA-secure functional encryption scheme
FE from a CPA-secure functional encryption FE′ = (Setup′,KeyGen′,Enc′,Dec′).
Let F : X × Ψ → {0, 1}∗ and F ′ : X ′ × Ψ ′ → {0, 1}∗ be two functionalities. We
describe a transformation which transforms key-index and message for F to a
transformed key-index and message for F ′.
Definition 4. A triple of maps T1 : X −→ X ′, T2 : X × {0, 1}n −→ X ′ and
T3 : Ψ×{0, 1}n −→ Ψ ′ is called delegation-friendly index-transformer from
(F ,X , Ψ) to (F ′,X ′, Ψ ′) if the following conditions4 (given in box) are satisfied
for all x ∈ X , vk 6= vk′ ∈ {0, 1}n and ψ ∈ Ψ .

3 So if Verify(PP,C, x, x̃) = 0 for x ∼ y, x̃ ∼ y then C must be ill-format.
4 We would refer as delegation-friendly conditions.
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(1) F(x, ψ) = F ′(xvk, ψvk), (2) F(x, ψ) = F ′(x′, ψvk) and (3)
F ′(xvk, ψvk′) =⊥.

where we simply denote T1(x), T2(x, vk) and T3(ψ, vk) by x′, xvk and ψvk respec-
tively.

Definition 5 (Restricted Delegation for FE). An algorithm Delegate is said
to be a restricted-delegatable algorithm for a functional encryption scheme FE′

w.r.t. an index-transformer (T1, T2, T3) if for all x ∈ X , vk ∈ {0, 1}n, the equation
(1) holds for the partial order of the form, xvk � xvk and x′ � xvk.

A Generic Construction based on Restricted Delegation. We provide a
generic construction of a functional encryption FE = (Setup,KeyGen,Enc,Dec)
for a functionality F based on a functional encryption FE′ = (Setup′,KeyGen′,Enc′,
Dec′) for a functionality F ′ and a valid index-transformer (T1, T2, T3) from (F ,X , Ψ)
to (F ′,X ′, Ψ ′). We assume that FE′ has restricted delegation property for all
x and vk. Let OTS = (OTS.Gen,OTS.Sign,OTS.Ver) be a one-time signature
scheme. The setup algorithm is same as before and it returns (PP,MSK).5

Now we describe the other three algorithms (implicitly understood PP,MSK):

Conversion based on Delegation and using One-Time-Signature
– KeyGen(x) := KeyGen′(x′) (in notation: SKx := SK′x′).
– Enc(ψ) : It runs (vk, signk)←− OTS.Gen(1κ) and returns

CT = (C := Enc′(ψvk), δ := OTS.Sign(C, signk), vk).

– DecSKx(C, δ, vk) =

Dec′K(C) if

(
OTS.Ver(C, δ, vk) = 1 and

K ← Delegate(PP,SK′x′ , x′, xvk)

)
⊥ otherwise.

Correctness : Let (PP,MSK) ←− Setup(1κ, j) and for all x ∈ X , ψ ∈ Ψ , let
SKx ←− KeyGen(PP,MSK, x) and CT←− Enc(PP, ψ). Then,

Dec(CT,SKx) = Dec′(C,SK′xvk
)

(
by correctness of OTS
and definition of Dec

)
= F ′(xvk, ψvk) (by correctness of given FE′)

= F(x, ψ). (by given condition (1))

5 It may not be identical as it can include some public parameter for the one time sig-
nature which would be used. Moreover, the index transformer also maps the system
parameters accordingly. However, we skip those technical details as it does not harm
in understanding the actual conversions.
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Theorem 1. Let (T1, T2, T3) be a delegation-friendly index-transformer, FE′ be
an IND-CPA secure functional encryption scheme with the restricted delegation
and OTS be a strong unforgeable one-time signature scheme, then the above
proposed scheme FE in section 3.2 is an IND-CCA secure functional encryption
scheme.

Proof. We describe for the adaptive security. One can similarly have a proof
for selective security. If an adversary A can break the IND-CCA security of
the proposed scheme FE, then we establish an algorithm B, called simulator for
breaking IND-CPA security of the primitive functional encryption scheme FE′

with advantage AdvIND−CCA
A ,FE (κ)−AdvsUF−CMA

A ,OTS (κ). Let CH be the challenger for

the primitive functional encryption scheme FE′. Now we describe how B works
with CH with the help of A . Here B will try to behave CCA-challenger of A
against FE′. Note that B can not make decryption query while A can make.
So the main thing is to show how B can respond decryption queries with the
help of key-generation queries so that B in one hand does not violate the rule
of CPA game with CH and other hand, it simulates perfectly as a challenger of
A . We denote the behavior of B as BCHCPA and described below:

Algorithm BCHCPA : It first run (vk∗, signk∗) ←− OTS.Gen(1κ). In the setup
phase B simply forwards the public parameter PP, obtained from CH, to A .

Phase 1/2 Query: It consists of the following queries in adaptive manner:

KeyGen Query: Let x ∈ X be a key-index queried by A , then B makes a key
query for x′ := T1(x) to CH. Then CH replies the key SKx = SK′x′ to B
and the same key is passed to A .

Decrypt Query: Let (CT, x), where CT = (C, δ, vk) be a decryption query by
A . Then B runs flago ←− OTS.Ver(C, δ, vk) and if flago = False, it returns
⊥ to A else proceeds. If vk = vk∗, B aborts the game we set BADOTS true,
else moves to next step. B makes a key query for the key-index xvk :=
T2(x, vk) to CH and gets the replied key SK′xvk

. Then B executes K ←−
Delegate(PP,SK′xvk

, xvk, xvk) and returns Dec′K(C) to A .

Challenge: Whenever A submits two challenge message indices ψ0, ψ1 ∈ Ψ to
B, B submits two challenge indices ψ0

vk∗ , ψ
1
vk∗ ∈ Ψ

′, where ψivk∗ := T3(ψi, vk∗)

for i = 0, 1 to CH. Then, CH picks b
U←− {0, 1} and provides the challenge ci-

phertext C∗ = Enc′(PP, ψbvk∗) to B. Now, B runs δ∗ ←− OTS.Sign(C∗, signk∗)
and returns the challenge ciphertext CT∗ := (C∗, δ∗, vk∗) to A .

Guess: A sends a guess b′ to B and, then B returns the same guess b′ to CH.

Analysis: As the verification key has been chosen in the beginning of the game
it is easy to define a forging algorithm which forges correctly against the one-
time signature whenever BADOTS sets true. So we may assume that BADOTS

does not set true throughout. In this case we show the following two things:
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Claim-1 B follows the restriction of CPA-security game (as interacting with CH) as
long as A does so. In other words, B is correct given that A is correct.

Claim-2 Until B aborts (i.e., BADOTS occurs), all responses of B to A are identically
distributed with the responses of a CCA-challenger CHCCA to A .

Assuming the above, we have

AdvIND−CPA
B,FE′ (κ) ≥ AdvIND−CCA

A ,FE (κ)− 1

2
AdvsUF−CMA

A ,OTS (κ)

which will conclude the theorem. Now we show the above two claims.

Proof of Claim-1. By the natural restriction on key queries by A , we have for
each queried key-index x ∈ X

F(x, ψ0) = F(x, ψ1) (2)

For each key query on index x′ by B, we have

F ′(x′, ψ0
vk∗) = F(x, ψ0) (by condition (2))

= F(x, ψ1) (by equation (2))

= F ′(x′, ψ1
vk∗) (by condition (2))

which is required as a natural restriction on key queries by B. To handle the
decryption query of A for (CT := (C, δ, vk), x), B first makes a key query to
CH for the key-index xvk := T2(x, vk). Then randomizes the replied key SK′xvk
using delegation and then finally using this key, it decrypts the ciphertext. Since,
vk 6= vk∗, we have

F ′(xvk, ψ
0
vk∗) =⊥ (by condition (3))

= F ′(xvk, ψ
1
vk∗) (by condition (3))

which is again a requirement for key queries by B.

Proof of Claim-2. This is more or less straightforward from the restricted
delegation property.

ut

Conditions for Predicate Encryption: If we restrict the delegation-friendly index-
transformer to the class of PE, then the maps, T1, T2 and T3 satisfy the following:
for all x ∈ X , vk 6= vk′ ∈ {0, 1}n and y ∈ Y (note that they differ in condition
2).

– (Public index). (1) x ∼ y ⇐⇒ xvk ∼′ yvk, (2) x 6∼ y =⇒ x′ 6∼′ yvk and
(3) xvk 6∼′ yvk′

– (Hidden index). (1) x ∼ y ⇐⇒ xvk ∼′ yvk, (2) x ∼ y ⇐⇒ x′ 6∼′ yvk
and (3) xvk 6∼′ yvk′

A construction using MAC, weak commitment and restricted delegation will
be found in Appendix D.
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3.3 Using (restricted)-Verifiability Feature

In this section, we construct a generic CCA-secure predicate encryption scheme
PE = (Setup,KeyGen, Enc, Dec) from a CPA-secure predicate encryption PE′ =
(Setup′,KeyGen′, Enc′, Dec′). Let ∼ (resp. ∼′) be a predicate relation between X
(resp. X ′) and Y (resp. Y ′). Let OTS = (OTS.Gen,OTS.Sign,OTS.Ver) be a one-
time signature (OTS) scheme. Like in the case of delegation, we define an index-
transformer (T1, T2, T3), called verifiability-friendly index-transformer.

Definition 6. A triple of maps T1 : X −→ X ′, T2 : Y × {0, 1}n −→ X ′ and
T3 : Y × {0, 1}n −→ Y ′ is called verifiability-friendly index-transformer
from (∼,X ,Y) to (∼′,X ′,Y ′) if the following conditions6 (given in box) are
satisfied for all x ∈ X , vk 6= vk′ ∈ {0, 1}n and y ∈ Y.

(1) x ∼ y ⇐⇒ x′ ∼′ yvk, (2) ε
y
vk

∼′ yvk, and (3) ε
y
vk
6∼′ yvk′

where we simply denote T1(x), T2(y, vk) and T3(y, vk) by x′, εy
vk

and yvk respec-

tively.

Definition 7 (Restricted Verifiability for PE). An algorithm Verify is said
to be a restricted-verifiable algorithm for a predicate encryption scheme PE′ with
public index w.r.t. a index-transformer (T1, T2, T3) if it is (1) weak format-verifier
and (2) for all ciphertext C (possibly ill-format) with the public associated index
y, and all x′ := T1(x), εy

vk
:= T2(y, vk) with x ∼ y we have

Verify(PP,C, x′, εy
vk

) = 1⇒ Dec′(PP,C,SK′x′) = Dec′(PP,C,SK′
ε
y
vk

) (3)

We also say that PE′ is said to have the restricted-verifiability. We note that the
restricted verifiability is a weaker notion than the actual verifiability.

A Generic Construction based on Restricted Verifiability. We describe
the CCA-secure PE from a CPA-secure PE′ with restricted verifiability Verify and
a verifiability-friendly index transformer. Let OTS = (OTS.Gen,OTS.Sign,OTS.Ver)
be a one-time signature scheme. The setup algorithm is same as before (with a
possibly small modification in system parameter as mentioned before) and it re-
turns (PP,MSK). The other three algorithms (implicitly understood PP,MSK)
are described below (key generation and encryption algorithms are same as the
case of delegation):

6 We would refer as verifiability-friendly conditions.
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Conversion based on Verifiability and using One-Time-Signature
– KeyGen(x) := KeyGen′(x′) (in notation: SKx := SK′x′).
– Enc(m, y) : It runs (vk, signk)←− OTS.Gen(1κ) and returns

CT = (C := Enc′(m, yvk), δ := OTS.Sign(C, signk), y, vk).

– DecSKx(C, δ, y, vk) =

Dec′SK′x′ (C) if

(
OTS.Ver(C, δ, vk) = 1, x ∼ y,

Verify(PP,C, x′, εy
vk

) = 1

)
⊥ otherwise.

Correctness : Let (PP,MSK) ←− Setup(1κ, j) and for all x ∈ X , y ∈ Y,m ∈
M, let SKx ←− KeyGen(PP,MSK, x) and CT←− EncPP (m, y). Then, clearly
from the definition of decryption, we have DecSKx(CT) =⊥ whenever x 6∼ y.

Suppose x ∼ y then,

Verify(PP,C, x′, εy
vk

) = 1 (by conditions (1), (2) and weak format-verifier)

Dec(CT,SKx) = Dec′(C,SK′x′) (Since, Verify(PP,C, x′, εy
vk

) = 1)

= m (by correctness of PE′ and the condition (1))

Theorem 2. Let (T1, T2, T3) be a verifiability-friendly index-transformer, PE′ be
an IND-CPA secure predicate encryption scheme with restricted verifiability and
OTS be a strong unforgeable one-time signature scheme, then the above proposed
scheme PE in section 3.3 is an IND-CCA secure predicate encryption scheme.

Proof. For proof, we refer to Appendix F.

A construction using MAC, weak commitment and restricted verifiability will
be found in Appendix E.

4 Instantiations of Delegation/Verifiability-friendly
Index-Transformer

Now, we are just about to instantiate the various instantiations of index-transformers,
(T1, T2, T3) for both delegation-friendly and verifiability-friendly functional en-
cryption classes, viz., predicate encryption classes. The candidate classes are tra-
ditional ABE, FE for regular languages, (D)SE, ABE for circuits, (H)IPE and
HVE. For all the instantiations of the index-transformers (T1, T2, T3) described in
the respective subsections and Table 1, formally we have the following theorem
(for proof, one can easily check delegation/verifiability-friendly conditions):

Theorem 3. The index-transformers, (T1, T2, T3) given in Table 1 for all the
aforementioned classes satisfy either the delegation-friendly conditions (with both,
hidden index and public index) or the verifiability-friendly conditions.

All the given instantiations of the index-transformers, (T1, T2, T3) preserve the
efficiency of the respective indices.
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Table 1. Instantiations of different functional encryption systems with either delega-
tion or verifiability. The notations, tABE and cABE respectively stand for traditional
ABE and ABE for circuits. Del (D) and Verf (V) respectively denote the delegation
and verifiability. In 5th column of the table, the expressions, xvk := T2(x, vk) and

ε
y
vk

:= T2(y, vk) are appeared respectively for the delegation-based and verifiability-
based conversions.

Class x y x′ := T1(x) xvk/ε
y
vk

yvk := T3(y, vk) D/V

tABE † Γ A Γ Γ ∧ (∧P∈Svk
P ) A ∪ Svk Del

tABE † A Γ A ∪W A ∪ Svk Γ ∧ (∧P∈Svk
P ) Del

tABE † Γ A Γ ∧P∈Svk
P A ∪ Svk Verf

tABE † A Γ A Svk Γ ∨ (∧P∈Svk
P ) Verf

tABE ‡ B1, . . . , B` A B1, . . . , B` B1 ∪ Svk, . . . , B` ∪ Svk A ∪ Svk Del
tABE ‡ A B1, . . . , B` A ∪W A ∪ Svk B1 ∪ Svk, . . . , B` ∪ Svk Del
tABE ‡ B1, . . . , B` A B1, . . . , B` Svk A ∪ Svk Verf
tABE ‡ A B1, . . . , B` A Svk B1, . . . , B`, Svk Verf

FE for DFAs
M := (Q,Σ,
T , q0, F )

w
M ′ := (Q′, Σ′,
T ′, q′0, F )

Mvk := (Q′, Σ′,
Tvk, q

′
0, F )

vk||w Both

FE for DFAs w
M := (Q,Σ,
T , q0, F )

∗n||w vk||w Mvk := (Q′, Σ′,
Tvk, q

′
0, F )

Del

FE for DFAs w
M := (Q,Σ,
T , q0, F )

w $vk[1] · · · $vk[n]

Mvk := (Q′, Σ′,
Tvk, q0, F

′)
Verf

(D)SE Aff(X,x) Aff(Y,y)
Aff
([ X U

Vx 1

]
,(

x
0

)) Aff
([ Z U

V 0

]
,(

z

vk

)) Aff
([ Y U

Vy 0

]
,( y

vk

)) Both

More generic
(D)SE

Ker(X) Aff(Y,y) Ker
([ X U

Vx O

])
Ker
([ Z U

V vk⊥

]) Aff
([ Y U

Vy O

]
,( y

vk

)) Both

cABE Ω ω Ω Ωvk ω||vk Del
cABE Ω ω Ω Ωvk ω||vk Verf
cABE ω Ω ω|| 0 · · · 0︸ ︷︷ ︸

n

ω||vk Ωvk Verf

IPE x y x (x, vk⊥) (y, vk) Del

IPE (x1, . . . , x`) (y1, . . . , y`) (x1, . . . , x`, 0, 0) (y⊥1 , . . . , y
⊥
` , vk,−1) (y1, . . . , y`, 1, vk) Verf

HIPE (x1, . . . ,xk) (y1, . . . ,yh) (0,x1, . . . ,xk) (vk⊥,x1, . . . ,xk) (vk,y1, . . . ,yh) Del

HIPE (x1, . . . ,xk) (y1, . . . ,yh) (0,x1, . . . ,xk) (vk⊥,y⊥1 , . . . ,y
⊥
` ) (vk,y1, . . . ,yh) Verf

HVE x y x||∗n x||vk y||vk Del

4.1 Instantiation of Traditional ABE

We show that the constructions of Yamada et al. [38] is a special case of ours,
i.e., our abstraction for functional encryption with predicate functionality unifies
the generic CCA conversion for ABE [38]. Let U be the attribute universe for the
target ABE. Then, the universe for primitive ABE′ is U ′ := U ∪W, where W =
{P1,0, P1,1, . . . , Pn,0, Pn,1} or {0, 1}n according to U is small or large. For a vk ∈
{0, 1}n, we define Svk := {P

1,vk[1], P2,vk[2], . . . , Pn,vk[n]} or {vk} according to U
is small or large. In Table 1, we give a brief instantiation of index-transformer
(T1, T2, T3) for both delegation-friendly and verifiability-friendly traditional ABE
(tABE), where Γ and A stand for policy and set of attributes. The classes,
tABE followed by † are the instantiations of index-transformer for tABE, where



14 Mridul Nandi and Tapas Pandit

boolean formulas are represented by either monotone access trees or monotone
span programs.

– (Minimal set representation). The approach of Yamada et al. has not handled
the ABE, where the policies are represented by the sets of minimal sets. We
show the instantiations of delegation/verifiability-friendly index-transformer
for ABE, where the policies are described by the sets of minimal sets. We
use the notation, (B1, . . . , B`) for the access formula. In the Table 1, the
classes, tABE followed by ‡ are the instantiations of index-transformer for
tABE with minimal set representation.

4.2 Instantiation for Regular Languages

Let Σ be the alphabet for the target functional encryption FE for regular lan-
guages. We represent the regular languages by the DFAs. LetM = (Q,Σ, T , q0, F )
and w respectively be a DFA and a string over Σ. A brief instantiation of index-
transformer (T1, T2, T3) for both delegation-friendly and verifiability-friendly are
given in Table 1. A clear pictorial representation of the index-transformers will
be found Appendix H. Some of the technicalities are described case by case:

– (KP-FE for regular languages). W.L.G, we assume that 0, 1 ∈ Σ and set the
alphabet for the hired encryption scheme FE′ to beΣ′ := Σ. The transformed
key-index under T1 is M ′ = (Q′, Σ′, T ′, q′0, F ) where Q′ = Q∪{q′0, . . . , q′n−1}
with q′0, . . . , q

′
n−1 6∈ Q and T ′ = T ∪ {(q′i−1, q′i, 1 − j) : j = 0, 1; i =

1, . . . , n} with q′n = q0. The transformed key-index under7 T2 is Mvk =
(Q′, Σ′, Tvk, q

′
0, F ) which is same as M ′ except Tvk = T ∪ {(q′i−1, q′i, vk[i]) :

i = 1, . . . , n}.
– (CP-FE for regular languages using delegation). W.L.G, we assume that 0, 1 ∈

Σ and set Σ′ := Σ ∪ {∗}. Like HVE, we introduce the “wild card” (∗) entry
in the key-indices (strings) to represent both the symbols 0,1. First of all,
note that CP-FE for regular languages never supports the actual delegation.
With this wild card entry, we can have a restricted partial order of the
form, ∗n||w � vk||w (i.e., w′ � wvk) for all w ∈ Σ∗ and vk ∈ {0, 1}n. The
description of Mvk is same as above.

– (CP-FE for regular languages using verifiability). We set Σ′ := Σ ∪ {$0, $1},
where Σ∩{$0, $1} = ∅. The transformed associated index under T3 is Mvk =
(Q′, Σ′, Tvk, q0, F

′) where Q′ = Q ∪ {q′1, . . . , q′n} with q′1, . . . , q
′
n 6∈ Q and

Tvk = T ∪ {(q′i−1, q′i, $vk[i]) : i = 1, . . . , n} with q′0 = q0.

4.3 Instantiation for (Doubly-)Spatial Encryption

In (doubly-)spatial encryption, the delegation algorithm is considered to be a
mandatory feature to capture the different functional encryptions. Therefore all

7 we consider both the cases, based on delegation and verifiability together. Obviously
the part xvk := Mvk is clear. The part, εwvk is defined to be a DFA that accepts

vk||w. Since M accepts w, therefore Mvk plays the role of εwvk as well.
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the (D-)SE schemes [7, 39, 21, 26, 12, 13] are eligible for CCA conversion w.r.t
the delegation-friendly index-transformer (T1, T2, T3). But the only schemes that
are subject to CCA conversion w.r.t the verifiability-friendly index-transformer
(T1, T2, T3) are [7, 39, 21].

Let V(= Z`q) be an `-dimensional affine space over the field F(= Zq) for a
target (D)SE. Then, the transformed (` + 1)-dimensional affine space is V ′ :=

{
(
v
r

)
: v ∈ V, r ∈ F}. Let x,y ∈ Z`q,X ∈ Z`×ϑq with ϑ ≤ ` and Y ∈ Z`×%q

with % ≤ `. Let U, Vx and Vy be respectively the ` × 1, 1 × ϑ and 1 × % null
matrices. In Table 1, we show the index-transformer (T1, T2, T3) by using block
matrix representation. Some notations found in Table 1 are described case by
case.

– ((D)SE). In this case, both the key-indices and the associated indices are

described by the affine subspaces of Z`q , i.e., x := Aff(X,x) and y := Aff(Y,y).
We define Z := X, V := Vx and z := x if (T1, T2, T3) is delegation-friendly
else, Z := Y, V := Vy and z := y.

– (More generic (D)SE). Recently, Chen and Wee [13] defined (doubly) spatial
encryption in more generally, where the key-indices x are represented by
Ker(X) and the associated indices are same as before. The authors [13] showed
that the (D)SE in former form can be easily derived from this general form
of (D)SE. Let O, Vx, Vy and N be respectively the 2×1, 2×ϑ, 2×% and `×ϑ
null matrices. We define the blocks to be Z := X and V := Vx if (T1, T2, T3)
is delegation-friendly else, Z := N and V = Vy

4.4 Instantiation of ABE for Circuits

Let Ω be a circuit of depth at most ` over k boolean variables. Let ω be a
boolean assignment over these k variables. Let Ω̃vk be a circuit of depth at most

` satisfied exactly by ω||vk for all ω ∈ {0, 1}k. Suppose the boolean variables
appeared in Ω ∈ X (resp. Ω ∈ Y) are indexed from 1 to k. We assume that when
the circuit Ω ∈ X (resp. Ω ∈ Y) is considered as a part of X ′ (resp. Ω ∈ Y ′),
the same indices of the variables are preserved here. In later case, Ω ∈ X ′ (resp.
Ω ∈ Y ′) can be considered over (k + n) variables, but note that the remaining
variables from the index (k+ 1) to (k+ n) are not present. In Table 1, we show
briefly the instantiations of index-transformer (T1, T2, T3) for both delegation-
friendly and verifiability-friendly. Both the systems, KP-ABE and CP-ABE [17]
for circuits are eligible for CCA conversion w.r.t the verifiability-friendly index-
transformer (T1, T2, T3). Some of the technicalities found in Table 1 are dealt
case by case.

– (KP-ABE for circuits using delegation). The transformed key space X ′ is the
set of all circuits of depth at most (` + 1) over (k + n) boolean variables.
The transformed circuit, Ωvk (under T2) is obtained by joining two circuits,

Ω and Ω̃vk as the child circuits to an ‘AND’-gate.
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– (KP-ABE for circuits using verifiability). The transformed key space X ′ is the
set of all circuits of depth at most ` over (k+n) boolean variables. Here, the
transformed circuit, Ωvk (under T2) is considered to be a circuit of depth at
most ` satisfied exactly by the assignment ω||vk.

– (CP-ABE for circuits using verifiability). The transformed associated data
space Y ′ is the set of all circuits (excluding tautology) of depth at most
(`+ 1) over (k+ n) boolean variables. Here, we assume that vk must not be
equal to the zero string. The transformed circuit, Ωvk (under T3) is obtained

by joining two circuits, Ω and Ω̃vk as the child circuits to an ‘OR’-gate.

4.5 Instantiation of (H)IPE

For a HIPE, the description of the system parameters are j := (`, d;µ1, . . . , µd),
with µ0 = 0 < µ1 < µ2 < · · · < µd = `, where d is called the depth of the
hierarchy and ` is the maximum length of the vectors. For i = 1, . . . , d, let
Σi := Zµi−µi−1

q \ {0} be the ith level attribute space. Then, the hierarchical

attribute space is defined by Σ := ∪di=1(Σ1 × · · · × Σi). We set both X and
Y are to be Σ. For a key-index x = (x1,x2, . . . ,xk) and an associated index
y = (y1,y2, . . . ,yh), where xi,yi ∈ Σi, we define x ∼ y if and only if k ≤ h and
xi.yi = 0 for all i such that 1 ≤ i ≤ k. For, this section only we consider the all
the vectors to be row vectors.

Although both the cases for non-HIPE and HIPE could be handled in one
framework (as non-HIPE is a special case of HIPE), for simplicity, we deal them
separately.

– (Non-HIPE using delegation). A non-HIPE scheme can always be considered
as a HIPE with depth of hierarchy d = 1. For the CCA conversion using
delegation, our primitive IPE must have to be hierarchical of depth 2. In
this HIPE, the vectors in the first level are the actual attributes for IPE and
the vectors (of dimension 2) in 2nd level are used to embed the verification
keys vk. The examples of such schemes which qualify the criteria based on
delegation are [24, 30].

– (Non-HIPE using verifiability). To handle the CCA conversion using verifi-
ability, we no longer consider the primitive IPE scheme to be hierarchical,

rather we extend the dimension. For y ∈ Z`q , we define y⊥ = (y⊥1 , . . . , y
⊥
` ) ∈

{v ∈ Z`q : v.y = 0} and 0 ∈ Z`q could be a choice for y⊥. Rest of the part
will be understood from Table 1. One of the qualified candidates for this
conversion is IPE scheme in section 4.1 of [3].

– (HIPE using delegation). In case of HIPE, the vectors in every levels are the
actual attributes for the HIPE. Therefore, we open a new attribute space,
consisting the vectors of dimension two to embed the verification keys vk.
This space is now reserved for first level of the hierarchy and the levels of all
the actual attributes spaces are shifted (increased) by one. So, the delegation
required for CCA conversion will take place at first level of the hierarchy.
The description of the system parameters are j′ := (`′, d′;µ1, . . . , µd′) where



Generic Conversions from CPA to CCA secure Functional Encryption 17

`′ = `+2, d′ = d+1, µ′1 = µ0+2 = 2, µ′2 = µ1+2, . . . , µ′i+1 = µi+2, . . . , µ′
d′

=

µd+2 = `′ and µ′0 = 0 < µ′1 < · · · < µ′
d′

= `′. Here we consider the first level

attribute space Σ′1 to include 0, i.e., Σ′1 = Zµ
′
1−µ′0
q . Let Σ′i := Zµ

′
i−µ′i−1

q \ {0}
for 2 ≤ i ≤ d′. Let Σ′ := ∪d

′

i=1(Σ′1 × · · · × Σ′i). Note that Σ′i = Σi−1 for
2 ≤ i ≤ d′. We set X ′ = Y ′ = Σ′. There are many HIPE schemes, e.g., [27,
24, 30], which are eligible for CCA conversion based on delegation.

– (HIPE using verifiability). y⊥i ∈ {vi ∈ Σi : vi.yi = 0} for 1 ≤ i ≤ k. One of
the qualified candidates for this conversion is HIPE scheme in section 10 of
[29].

4.6 Instantiation of HVE

The hidden vector encryption [22, 10] is a PE with hidden index, but is a special
case of IPE as found in [23]. A brief instantiation of delegation-friendly index-
transformer (T1, T2, T3) is given in Table 1, where we assume that Σ = {0, 1}.
Both the lengths of transformed key-indices and the associated indices are ex-
tended from ` to (`+ n). For this instantiation, we could not find any example
suitable for the CCA conversion.

5 Candidate Schemes Favorable to Our CCA Conversion

We list up the various predicate encryption schemes that are favorable to our
CCA-conversion. Only the schemes for regular languages are described here as
they support the restricted delegation w.r.t (T1, T2, T3) defined in the Table 1,
instead of actual delegation. A tabular representation of the candidate schemes
are found in Table 2.

KP-FE for regular languages. So far we know, there are only two IND-CPA
secure KP-FE schemes [37, 1] for regular languages, but none of them satisfies
the actual delegation. Here we mainly investigate the KP-FE scheme of Waters
[37] for regular languages as the scheme of Attrapadung [1] has the structural
similarity with [37]. We first describe KP-FE scheme of Waters briefly.

Let (p, g, e,G,GT ) be a bilinear group descriptor, where e : G × G −→ GT
is a bilinear map, |G| = |GT | = p (prime) and G :=< g >. Let PP :=

[e(g, g)α, g, z, hstart, hend, hσ∀σ ∈ Σ] and MSK := [g−α], where α
U←− Zp and

z, hstart, hend, (hσ)σ∈Σ
U←− G.

Secret Key. The distribution of the key is SKM := [M,Kstart,1 := D0(hstart)
rstart ,

Kstart,2 := grstart , (Kt,1 := Dx
−1zrt , Kt,2 := grt , Kt,3 := Dy(hσ)rt)t∈T ,

(Kendx,1 := g−α.Dx(hend)
rendx , Kendx,2 := grendx)qx∈F ], whereM := (Q,Σ, T , q0, F ),

Q := {q0, q1, . . . , q|Q|−1}, Di
U←− G for each qi ∈ Q, rstart, rendx, (rt)t∈T

U←−
Zp.
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Ciphertext. The distribution of the ciphertext is Cw := [w,Cm := m.e(g, g)
α.s` ,

Cstart,1 := C0,1 = gs0 , Cstart,2 := (hstart)
s0 , (Ci,1 := gsi , Ci,2 := (hwi

)sizsi−1)
i∈[`],

Cend,1 := C`,1 = g
s`, Cend,2 := (hend)

s` ], where s0, s1, . . . , s`
U←− Zp.

One can easily check that the KeyGen satisfies the re-randomization. Since all the
transitions are used to label the secret key components, therefore the encryption
scheme of Waters [37] (similarly the scheme of Attrapadung [1]) satisfies the
restricted delegation by the following theorem:

Theorem 4 (Generic restricted delegation in KP flavor). If the KeyGen
algorithm for the primitive scheme FE′ for regular languages supports the re-
randomization and the transitions are involved to label the key components for
M ′, then the functional encryption scheme, FE′ for regular languages satisfies the
restricted delegation w.r.t the index-transformer (T1, T2, T3) defined in section 4.

Proof. We have to show the delegation for the restricted partial order w.r.t
the index-transformer (T1, T2, T3), i.e., M ′ � Mvk. The description of M ′ and
Mvk are same except Tvk ⊂ T ′. Let SKM ′ := (SKT ′ ,SKH), where the key
components of SKT ′ are labeled by the transitions of T ′ and the rest is SKH .
Now, the description of the restricted key for Mvk is SKMvk

:= (SKTvk
,SKH),

where SKTvk
is formed by keeping those components of SKT ′ which are labeled

by the transitions of Tvk. Finally, the delegation key for Tvk is obtained by
applying re-randomization on SKMvk

.

Again it is straightforward to check that the scheme [37] (similarly [1]) satisfies
verifiability.

CP-FE for regular languages. Using the restricted partial order as a weapon
defined in section 4.2, we observe a generic restricted delegation given below :

Observation. If the KeyGen algorithm for the primitive scheme FE′ supports
the re-randomization and for each i ∈ [n], all the key components for ith entry in
the key-indices of the form, ∗n||w, are labeled with 0 and 1, then the FE′ scheme
for regular languages satisfies the restricted delegation w.r.t index-transformer
(T1, T2, T3) defined in section 4.2.

Proof. Similar to Theorem 4.

The only available CP-FE scheme [1] for regular languages is not known to
satisfy the above restricted delegation. However, the verifiability is satisfied by
Attrapadung’s scheme [1].

6 Conclusion and Future Works

In this paper, we have proposed a generic CCA conversion for the CPA-secure
functional encryption that unifies all the existing results. We keep open the choice
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for all possible instantiations that would respect our delegation/verifiability-
friendly index-transformer. Some of the task is still pending, like, we do not know
any delegation-friendly index-transformer of CP-ABE for circuits. Eventually, we
could not find any example that fits with delegation-friendly index-transformer
either for CP-FE for regular languages or KP-ABE for circuits. In future, we
would be interested to see the complete picture of the CCA conversion.
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A Security Definition of Functional Encryption

We first define what are the different important phases of a challenger CH.
Depending on how an adversary A runs with the phases and what are the
oracle access it might have, different security advantages are defined.

Definition 8 (Security Model). A challenger for a functional encryption se-
curity game has the following different phases.

– Setup : The challenger CH runs the setup algorithm to produce (PP,MSK).
Then, CH gives PP to A and keeps MSK to itself.

– Query Phase 1: The adversary A is given access to the oracles KeyGenPP ,MSK(·, ·)
and DecPP (·, ·, ·).

– Challenge : A submits two messages ψ0, ψ1 ∈ Ψ . CH picks b
U←− {0, 1} and

returns the challenge ciphertext C∗ = Enc(PP, ψb) to A . Sometimes this
phase may be split into two and A may submit a part of two messages in
the first phase and submit the rest in the second phase.

– Query Phase 2: Same as Phase 1.
– Guess: A finally sends a guess b′ to B.

A is said to be correct if

1. F(x, ψ0) = F(x, ψ1) for x = ε or all x queried to KeyGen oracle and
2. (C∗, x) is never queried to Dec oracle such that F(x, ψ0) 6= F(x, ψ1).

Definition 9 (Security Advantages). In case of selective-message indistin-
guishability game (sIND-), the challenge phase would be run before the setup
phase, otherwise we have adaptive indistinguishability game (or IND-). More
formally, in selective-message game, A has to submit the challenge pair before
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Table 2. Different functional encryption schemes with either delegation or verifiability.
Verify, NK, NA respectively stand for verifiability, ‘not known’ and ‘not applicable’.
The schemes followed by ‘∗’ satisfy restricted delegation but not the actual delegation.
The schemes followed by ‘∗∗’ are not directly applicable to CCA conversion, but with a
small modification (as mentioned in [38]) are eligible for the conversion. The schemes,
where Verify field is assigned to NA means we only consider these schemes in the context
of index hiding.

Schemes Class of FE Policy type Delegate Verify
Goyal et al. sec.4 [20] Traditional ABE KP NK X
Goyal et al. sec.5 [20] Traditional ABE KP X X
Goyal et al. sec.A [20] Traditional ABE KP NK X
Ostrovsky et al. sec.3 [32] Traditional ABE KP NK X
Bethencourt et al. [5] Traditional ABE CP X X
Goyal et al. [19] Traditional ABE CP NK X
Waters sec.3 [36] Traditional ABE CP X X
Waters sec.5 [36] Traditional ABE CP X X
Lewko et al. sec.6 [25] Traditional ABE KP NK X
Attrapadung et al. [4] Traditional ABE KP NK X
Lewko et al. sec.2 [24] Traditional ABE CP NK NK
Lewko et al. sec.2 [24] ∗∗ Traditional ABE CP X X
Okamoto et al. [28] Traditional ABE KP NK NK
Okamoto et al. [28] ∗∗ Traditional ABE KP X X
Waters [37] ∗ FE for Regular Languages KP X X
Attrapadung sec.6.2 [1] ∗ FE for Regular Languages KP X X
Attrapadung sec.8.2 [1] FE for Regular Languages CP NK X
Boneh et al. [7] Spatial Encryption - X X
Zhou et al. sec.3 [39] Spatial Encryption - X X
Hamburg [21] Doubly-Spatial Encryption - X X
Moriyama et al. [26] Spatial Encryption - X NK
Chen et al. [12] Doubly-Spatial Encryption - X NK
Chen and Wee [13] Doubly-Spatial Encryption - X X
Garg et al. [17] ABE for Circuits KP NK X
Garg et al. [17] ABE for Circuits CP - X
Okamoto et al. [27] HIPE - X NA
Lewko et al. sec.3.5 [24] IPE - X NA
Lewko et al. sec.B.6 [24] HIPE - X NA
Okamoto et al. sec.5 [30] IPE - X NA
Okamoto et al. sec.E [30] HIPE - X NA
Attrapadung sec.4.1 [3] IPE - NK X
Okamoto et al. sec.10 [29] HIPE - X X

receiving PP from CH. However, a part of challenge (e.g., target policy in case
of PE) may be given before setup phase. (For I ∈ {sIND, IND}) A is not al-
lowed to ask decryption query in chosen plaintext attack (I-CPA) model and in
contrast, A can ask for decryption query in chosen ciphertext attack (I-CCA)
model. The advantage of a correct A in any one of the combination of the above
game is defined by

Advmodel
A ,FE(κ) =

∣∣∣∣Pr[b = b′]− 1

2

∣∣∣∣ .
The superscript model is one of the following IND-CCA, IND-CPA, sIND-

CPA and sIND-CCA depending on the interaction types between A and the
challenger CH as described above. For example, AdvIND−CPA

A ,FE (κ) denotes the ad-

vantages for a correct A interacting with IND-CPA challenger CH.
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A functional encryption FE is said to be model secure if for all correct PPT
adversary A , the advantage Advmodel

A ,FE(κ) is at most a negligible function in

security parameter κ. The IND-CCA (resp. sIND-CCA) security of a functional
encryption is also called as adaptive (resp. selective) security.

B One Time Signature, Mac and Weak Commitment

Definition 10 (Signature Scheme). A signature scheme consists of three
PPT algorithms - Gen, Sign and Ver

– Gen: It takes a security parameter κ. It outputs a verification key vk and a
signing key signk.

– Sign: It takes a message m and a signing key signk as input. It returns a
signature δ.

– Ver: It receives a message m, a signature δ and a verification key vk as input.
It returns a boolean value 1 for accept or 0 for reject.

Definition 11 (Strong Unforgeability of One-Time Signature). Strongly
unforgeability one-Time signature model is defined as a game, GameReal between
a challenger B and an adversary A , where the adversary has to forge a signature
for a message. The game, GameReal consists of the following phases:
Gen: The challenger B runs Gen(1κ) −→ (vk, signk). Then vk is given to the
adversary A .
Query: The adversary A is given access to the oracle Sign(., signk) at most
once. Let (m, δ) be the corresponding query message and relied signature.
Forgery: The adversary outputs a signature (m∗, δ∗).

We say the adversary succeeds in this game if Ver(m∗, δ∗, vk) = 1 and (m, δ) 6=
(m∗, δ∗).
Let AdvOTS

A (κ) denote the success probability for any adversary A in the above
experiment. A signature scheme is said to be Strongly unforgeable one-time sig-
nature if AdvOTS

A (κ) is at most negligible function in κ

Definition 12 (Message Authentication Code). A message authentication
code (MAC) consists of two algorithms - Mac and MVer

– Mac It takes as inputs, a symmetric key AK ∈ K, where K is a key space and a
message m ∈M and it outputs tag τ . In notation, we write τ := MacAK(m).

– MVer It takes the inputs, a symmetric key AK, a message m and a tag τ .
It returns 1 for accept and 0 for reject. We use the notation, MVerAK(m, τ)
for MVer(AK,m, τ).

For correctness, it is required that for all AK ∈ K and all m ∈M that
MVerAK(m,MacAK(m)) = 1

Definition 13 (Message Authentication). A message authentication code
(Mac,MVer) is secure against a one-time chosen-message attack if the success
probability of any PPT adversary A in the following game is negligible in the
security parameter κ:
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1. A random key AK ∈ K is chosen.
2. A outputs a message m and is given in return τ = MacAK(m).
3. A outputs a pair (m′, τ ′).

We say that A succeeds in above game if (m, τ) 6= (m′, τ ′) and MVerAK(m′, τ ′) =
1.

Definition 14 (Weak Commitment). A weak commitment is a triple of PPT
algorithms - CSetup, Commit and Decommit such that:

– CSetup It takes as input the security parameter 1κ and outputs a string pub.
– Commit It takes input pub, and outputs (AK, com, decom) with AK ∈ {0, 1}κ.

We would say com as the public commitment string and decom as the de-
commitment string.

– Decommit It takes as input pub, com and decom, and outputs a key AK ∈
{0, 1}κ ∪ ⊥.

For correctness, it is required that for all pub generated by CSetup and for all
(AK, com, decom)←− Commit(pub), we have Decommit(pub, com, decom) = AK.

Definition 15 (Security Weak Commitment). A weak commitment scheme
is said to be secure if it satisfies both hiding and binding as follows:
Hiding: For all PPT A the following is negligible:∣∣∣∣∣Pr

[
pub←− CSetup(1κ), AK0

U←− {0, 1}κ
(AK1, com, decom)←− Commit(pub), b

U←− {0, 1}
: A (pub, com,AKb) = b

]
− 1

2

∣∣∣∣∣ .
Binding: For all PPT A the following is negligible:

Pr

 pub←− CSetup(1κ),
(AK, com, decom)←− Commit(pub),

decom′ ←− A (pub, com,AK)
: Decommit(pub, com, decom) 6∈ {⊥,AK}

 .
C A Brief Literature Survey on Functional Encryption

The attribute-based encryption was introduced by Sahai and Waters [33] as a
Fuzy-IBE. Since, then many ABE schemes have been constructed either in the
form of KP-ABE [20, 32, 25, 4], where the key-indices access structures (policies)
and the associated indices are attribute vectors (sets of attributes), or in the
form of CP-ABE, [5, 19, 36], where the roles of policies and the sets of attributes
are interchanged.
Spatial Encryption. Spatial encryption was introduced by Boneh and Ham-
burg [7] as a special instance of generalized identity-based encryption (GIBE).
The GIBE [7] would capture many functional encryptions, e.g., traditional IBE,
broadcast IBE, HIBE, ABE and forward-secure system etc. The one of the main
building blocks for GIBE was known to be spatial encryption [7, 39, 26], where
the key-indices (roles) are the affine subspaces of an affine space and the asso-
ciated indices (policies) are the points of the affine space. The access is granted
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if the associated index is a member of the affine subspace. Boneh and Hamburg
[7] showed how to obtain the different flavor of IBE from spatial encryption,
e.g., HIBE, inclusive IBE, co-inclusive IBE, broadcast IBE, product scheme,
multiple authority scheme and forward-secure scheme etc. Later, Hamburg [21]
extended the notion of spatial encryption to doubly-spatial encryption (DSE),
from which the expressive functional encryptions can be derived, e.g., IPE, ABE
etc. In doubly-spatial encryption [21, 12, 13], both the key-indices (roles) and
associated indices (policies) are the affine subspaces and a key-index satisfies an
associated index if and only if their intersection is not void.

ABE for Circuits. Traditional ABE could provide the functionality for boolean
formulas or equivalently circuits with fanout 1 (captured by the complexity class
NP1). Later, Garge et al. [17] and Gorbunov et al. [18] independently proposed
the ABE constructions for circuits of arbitrary fanout based on the multi-linear
maps and LWE assumption respectively. However, all the previous ABE systems
[18, 17] for general circuits were proven selectively secure. Recently, Attrapadung
[2] provided fully (adaptively) secure ABE systems for circuits based on asym-
metric graded encoding systems in composite-order settings.

Functional Encryption for Regular Languages. All the aforementioned
systems except the FE [37, 1] for regular languages can provide at most the
bounded access. Waters [37] first moved to unbounded access control systems
(KP-FE), where the key-indices are the regular languages represented by DFAs
over an alphabet, Σ and the associated indices are the strings over Σ. The system
[37] was shown to be selectively IND-CPA secure. In contrast, Attrapadung [1]
proposed the adaptively IND-CPA secure FE for regular languages.

Inner Product Encryption. Katz, Sahai and Waters [23] introduced the
predicate encryption (with hidden index) for inner product, where access control
is defined through the orthogonality of key-index and associated index. This PE
is known as zero IPE [31, 30, 24, 29] and it’s dual version, where the relation is
defined through non-orthogonality is called non-zero IPE [3, 29]. The zero IPE
schemes are mainly used for the purpose of attribute hiding are available in
either hierarchical or non-hierarchical style, but some of them [3, 29] are used to
handle payload hiding.

D Construction using MAC, weak commitment and
restricted delegation

Now we demonstrate a generic construction using MAC, weak commitment
scheme and restricted delegation property of the underlying CPA-secure con-
struction. This is an analogue of the construction (section 3.2) using OTS scheme.
Let (Mac,MVer) and (CSetup,Commit,Decommit) be the respectively MAC and
weak commitment scheme (security definitions can be found in Appendix B). We
would like to note that security requirement of MAC is equivalent to pairwise
independent hash function. We note that the public parameter, pub of the weak
commitment scheme is generated along the public parameter generation of the



26 Mridul Nandi and Tapas Pandit

primitive encryption scheme by the Setup algorithm of the new (CCA-secure)
predicate encryption.

– KeyGen(x) := KeyGen′(x′) (in notation: SKx := SK′x′).
– Enc(m, y) : It runs (AK, vk(= com), decom)←− Commit(pub) and returns

CT = (C := Enc′((m, decom), yvk), τ := MacAK(C), vk).

– DecSKx(CT := (C, τ , vk)) =


m if


K := Delegate(PP,SK′x′ , x′, xvk),

(m, decom) := Dec′K(C),

AK := Decommit(pub, vk, decom)

and MVerAK(C, τ) = 1


⊥ otherwise

Theorem 5. Let (T1, T2, T3) be a delegation-friendly index-transformer, PE′ be
an IND-CPA secure predicate encryption scheme with the restricted delegation
and, (Mac,MVer) and (CSetup,Commit,Decommit) respectively be the secure (in
sense of definition 15 and 13) MAC and weak commitment scheme, then the
above proposed scheme PE in section D is an IND-CCA secure predicate encryp-
tion scheme.

Proof. The proof is followed from that of Theorem 1 in section 3 and the argu-
ments of [8] for avoiding the circularity from primitive predicate encryption and
weak commitment.

E Construction using MAC, weak commitment and
restricted verifiability

Now we demonstrate a generic construction using MAC, weak commitment
scheme and restricted verifiability property of the underlying CPA-secure con-
struction. This is an analogue of the construction (section 3.3) using OTS scheme.
Let (Mac,MVer) and (CSetup,Commit,Decommit) be the respectively MAC and
weak commitment scheme.

– KeyGen(x) := KeyGen′(x′) (in notation: SKx := SK′x′).
– Enc(m, y) : It runs (AK, vk(= com), decom)←− Commit(pub) and returns

CT = (C := Enc′((m, decom), yvk), τ := MacAK(C), y, vk).

– DecSKx(CT := (C, δ, y, vk)) =


m if


x ∼ y,Verify(PP,C, x′, εy

vk
) = 1,

(m, decom) := Dec′SK′x′ (C),

AK := Decommit(pub, vk, decom),

and MVerAK(C, τ) = 1


⊥ otherwise.
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Theorem 6. Let (T1, T2, T3) be a verifiability-friendly index-transformer, PE′

be an IND-CPA secure predicate encryption scheme with restricted verifiability,
(Mac,MVer) and (CSetup,Commit,Decommit) respectively be the secure MAC
and weak commitment scheme, then the above proposed scheme PE in section E
is an IND-CCA secure predicate encryption scheme.

Proof. The proof is followed from that of Theorem 2 in section 3 and the argu-
ments of [8] for avoiding the circularity from primitive predicate encryption and
weak commitment.

F Proof of Theorem 2

Proof. We describe for the adaptive security. One can similarly have a proof for
selective security. Similar to the proof of Theorem 1, we show that if A can
break the IND-CCA security of the proposed scheme PE, then we establish an
algorithm B for breaking IND-CPA security of the primitive predicate scheme
PE′ with advantage AdvIND−CCA

A ,PE (κ)−AdvsUF−CMA
A ,OTS (κ). Let CH be the challenger

for the primitive predicate encryption scheme PE′. The role of B is the same as
described in proof based on restricted delegation.

B: It first run (vk∗, signk∗) ←− OTS.Gen(1κ). In the setup phase B simply
forwards the public parameter PP, obtained from CH, to A .
Phase 1/2 Query: It consists of the following queries in adaptive manner:

KeyGen Query: Let x ∈ X be a key-index queried by A , then B makes a key
query for x′ := T1(x) to CH. Then CH replies the key SKx = SK′x′ to B
and the same key is passed to A .

Decrypt Query: Let (CT, x), where CT = (C, δ, y, vk) be a decryption
query by A . Then, B runs flago ←− OTS.Ver(C, δ, vk) and flagf ←−
Verify(PP,C, x′, εy

vk
). If any of the flag values is false, returns ⊥ to A

els proceeds. If vk = vk∗, B aborts the game we set BADOTS true, else
moves to next step. B makes a key query for ε

y
vk

:= T2(y, vk) to CH and

let K be the replied key for the index ε
y
vk

. Then, B returns Dec′K(C) to A .

Challenge: Whenever A submits two equal length messages m0,m1 ∈ M and
a challenge data index y∗ to B, B submits the same messages m0,m1 ∈ M
and a challenge policy y∗vk∗ := T3(y∗, vk∗) to CH. Then, CH picks b

U←− {0, 1}
and returns C∗ = Enc′(PP,mb, y

∗
vk∗) to B as a challenge ciphertext. Now, B

runs δ∗ ←− OTS.Sign(C∗, signk∗) and returns CT∗ := (C∗, δ∗, vk∗) to A .
Guess: A sends a guess b′ for b to B and, then B returns the same guess b′ to
CH.

Analysis: As the verification key of OTS has been chosen in the beginning of
the game it is easy to define a forging algorithm which forges correctly against
the the one-time signature whenever BADOTS sets true. So we may assume that
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BADOTS does not set true throughout. In this case we show the following two
things:

Claim-1 B follows the restriction of CPA-security game (as interacting with CH) as
long as A does so. In other words, B is correct given that A is correct.

Claim-2 Until B aborts (i.e., BADOTS occurs), all responses of B to A are identically
distributed with the responses of a CCA-challenger CHCCA to A .

Assuming the above, we have

AdvIND−CPA
B,PE′ (κ) ≥ AdvIND−CCA

A ,PE (κ)− 1

2
AdvsUF−CMA

A ,OTS (κ)

which concludes the proof. Now we will show the above two claims.

Proof of Claim-1. By the natural restriction on key queries by A , we have for
each queried key-index x

x 6∼ y∗ (4)

For each key query on index x′ by B, we have

x′ 6∼′ y∗vk∗ (by condition (1) and equation (4))

which is required as a natural restriction on key queries by B. To answer the
decryption query (CT := (C, δ, y, vk), x) of A , B makes a key query to CH for

the key-index ε
y
vk

and then, it decrypts the ciphertext using SK′
ε
y
vk

, in stead

of SKx := SK′x′ . Now, the restricted verifiability emphasizes that B does not
violet the rule for decryption as expected in CCA game with A . Again vk 6= vk∗

implies that

ε
y∗

vk
6∼′ y∗vk∗ (by condition (3))

which is again a requirement for key queries by B.

Proof of Claim-2. This is more or less straightforward from the restricted-
verifiability property.

G A Concrete CCA-secure Construction based on
Waters scheme [37]

– Setup(1κ, Σ) : On the assumption that 0, 1 ∈ Σ, it sets Σ′ := Σ, otherwise
Σ′(⊃ Σ) includes either 0 or 1 or both. It runs the bilinear group generator
on 1κ to produce (p, g, e,G,GT ), where e : G × G −→ GT is a bilinear
pairing map, g is a generator of G, and G and GT are both cyclic group
of prime order p. Let n be an integer related to the security parameter κ
which would be chosen so that the security advantages contributed by n is
comparable to other security components of security advantages. For any
m, let F2m denote the finite field of size 2m. Moreover, we fix two hash
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functions, namely an universal one-way hash function G : {0, 1}4n → {0, 1}n
and a collision resistant hash function H : {0, 1}∗ → {0, 1}n. It now picks

z, hstart, hend, hσ
U←− G for each σ ∈ Σ′, α U←− Zp,K0,K1,K2

U←− F22n .

Then, it publishes PP and MSK:

PP := [e(g, g)α, g, z, hstart, hend,K0,K1,K2, 〈hσ〉σ∈Σ′ ] MSK := [g−α]

– KeyGen(PP,MSK,M := (Q,Σ, T , q0, F )) : It first applies the transforma-
tion T1 to M and let M ′ := T1(M) = (Q′, Σ′, T ′, q′0, F ), where Q′ := Q ∪
{q′0, . . . , q′n−1} with q′i 6∈ Q for i = 0, . . . , (n−1) and T ′ = T ∪{(q′i−1, q′i, 1−j) :
j = 0, 1; i = 1, . . . , n} with q′n = q0.
Let the states in Q′ be enumerated as q0, q1, . . . , q|Q′|−1. For each state qi ∈
Q′, it picks Di

U←− G. It picks rstart
U←− Zp. For each t ∈ T ′, it chooses

rt
U←− Zp. For each qx ∈ F , it chooses rendx ∈ Zp. Now, it computes the

initial key components

Kstart,1 := D0(hstart)
rstart , Kstart,2 := grstart

For each transition t = (x, y, σ) ∈ T ′, it produces the key components as

Kt,1 := Dx
−1zrt , Kt,2 := grt , Kt,3 := Dy(hσ)rt

For each final state qx ∈ F , it sets the final key components as:

Kendx,1 := g−α.Dx(hend)
rendx , Kendx,2 := grendx

Finally, it returns SKM ′ := [M ′,Kstart,1,Kstart,2, (Kt,1,Kt,2,Kt,3)t∈T ′ ,
(Kendx,1,Kendx,2)qx∈F ]

– Enc(PP,m,w := (w1 · · ·w`)) : It first choose (x1, x2) ∈ F2
22n and defines

vk = G(x1, x2). We compute AK = K0 + K1x1 + K2x2 and write it as
(r1, r2) ∈ F2

2n . Then, it applies the transformation T2 to w and let wvk :=
T2(w, vk) = vk||w. It sets `′ := ` + n. Let wi denote the ith symbol of wvk.

It picks s0, s1, . . . , s`′
U←− Zp. Then, it computes the ciphertext components

as follows:

Cm := m.e(g, g)
α.s`′ , Cstart,1 := C0,1 = gs0 , Cstart,2 := (hstart)

s0

For i ∈ [`′], it computes:

Ci,1 := gsi , Ci,2 := (hwi
)sizsi−1

It sets the final components as:

Cend,1 := C`′,1 = g
s`′ , Cend,2 := (hend)

s`′

It sets Cwvk
:= [wvk,Cm,Cstart,1,Cstart,2, (C1,1,C1,2), . . . , (C`′,1,C`′,2),Cend,1,Cend,2].

Now, it returns CTw := (Cwvk
, δ, vk) where δ is computed as r1H(Cwvk

) +
r2.
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We skip the decryption algorithm as it is same the decryption algorithm for the
generic conversion.

Theorem 7. If G is universal one-way hash function (UOWHF), H is collision
resistant hash function and (`∗ + n)-Expanded BDHE assumption holds, then
the above construction is IND-CCA-secure functional encryption for a regular
language, where the size of the challenge string w∗ is `∗.

Proof. It is followed from the proof of Theorem 5 in Appendix D or Theorem 6
in Appendix E and Theorem 4.1 of [37].

H Diagram of Index-Transformer for Regular Languages

Delegation/Verifiability-friendly index-transformer of KP-FE for regular
languages

W.L.G, assume that 0, 1 ∈ Σ and set Σ′ = Σ

q′0 q′1 q′2 q′n = q0· · ·M ′ : M
0, 1 0, 1 0, 1

vk[1] vk[n]vk[2] · · ·q′2q′1Mvk : q′0 q′n = q0 M

q′0, . . . , q
′
n−1 6∈ Q, where F is unchanged.

wvk := vk||w

Delegation-friendly index-transformer of CP-FE for regular languages

W.L.G, assume that 0, 1 ∈ Σ and set Σ′ = Σ ∪ {∗}

vk[1] vk[n]vk[2] · · ·q′2q′1Mvk : q′0 q′n = q0 M

q′0, . . . , q
′
n−1 6∈ Q, where F is unchanged.

wvk := vk||ww′ := ∗n||w
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Verifiability-friendly index-transformer of CP-FE for regular languages

Assume that Σ ∩ {0, 1} = ∅ and set Σ′ = Σ ∪ {0, 1}

vk[1]
vk[n]vk[2] · · ·q′2q′1

Mvk :

q′n

q′1, . . . , q
′
n 6∈ Q.

ǫMvk := vkw′ := w

Mvk is a DFA that recognises L(M) ∪ {vk}, i.e.,

M

q0

F F ′ := F ∪ {q′n}


