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Abstract. In this paper, we propose approximate lattice algorithms for solving the shortest
vector problem (SVP) and the closest vector problem (CVP) on an n-dimensional Euclidean
integral lattice L. Our algorithms run in polynomial time of the dimension and determinant of

lattices and improve on the LLL algorithm when the determinant of a lattice is less than 2n
2/4.

More precisely, our approximate SVP algorithm gives a lattice vector of size ≤ 2
√

log detL and
our approximate CVP algorithm gives a lattice vector, the distance of which to a target vector is
2
√

log detL times the distance from the target vector to the lattice. One interesting feature of our
algorithms is that their output sizes are independent of dimension and become smaller as the
determinant of L becomes smaller. For example, if detL = 2n

√
n, a short vector outputted from

our approximate SVP algorithm is of size 2n
3/4

, which is asymptotically smaller than the size
2n/4+

√
n of the outputted short vectors of the LLL algorithm. It is similar to our approximate

CVP algorithm.
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1 Introduction

Lattices and the LLL algorithm. A lattice is a set of all the integral linear combinations of
some linearly independent vectors in Rn. The Shortest Vector Problem (SVP) of a lattice is to
find a shortest nonzero vector in the Euclidean norm given a basis of the lattice. This problem
is easy when the dimension n of the lattice is small, but becomes exponentially hard as n
increases. The best known algorithm takes 2n+o(n) time [1]. Another class of SVP algorithms
outputs an approximate SVP in a polynomial time of n. The most widely used algorithm for
SVP is the LLL algorithm proposed by Lenstra, Lenstra, and Lovasz [19] in 1982. The LLL
algorithm has a very considerable amount of applications in many areas, including computer
algebra, algorithmic number theory, and cryptanalysis.

The LLL algorithm on a lattice L of dimension n runs in polynomial time in n and the
determinant L, but approximates only the shortest vector. The size of output vector b satisfies
∥b∥ ≤ 2n/4(detL)1/n, while a shortest nonzero vector of L is smaller than

√
n(detL)1/n by

the Minkowski theorem. The approximate factor 2n/4 is fixed regardless of the determinant
of the lattices and therefore is relatively significant as the determinant becomes smaller.

Our Contribution. In this paper, we propose approximate lattice algorithms on integral
lattices with a small determinant. Our initial idea is to reduce the SVP on a lattice L of
dimension n to the SVP on a sublattice L′ of L with a smaller dimension n′. In general,
the determinant of a sublattice may be smaller or larger than that of the original lattice.
Our approach is to use the Hermite normal form (HNF) to obtain a subspace with a bounded
determinant. The HNF of an integral lattice is a unique (generalized) lower-triangular matrix,
the columns of which form a basis of the lattice and it can be computed in polynomial time
from any basis of the lattice [22]. We show that the subspace generated by the last m columns
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has a smaller determinant than that of the original lattice for any positive integer m ≤ n. By
applying LLL to this subspace of appropriate m, we obtain a short vector, the size of which
is upper-bounded by 2

√
log detL+1, which is smaller than the shortest vector from LLL when

the determinant of L is smaller than 2n
2/4. We may apply any approximate SVP algorithm

to our algorithm instead of LLL, including the block Korkin-Zolotarev (BKZ) algorithm. Our
algorithm with BKZ of block size polylog(λ) can be used to break the current parameter of
the GGH scheme of the security parameter λ in poly(n, detL, λ), which is the first plausible
candidate multilinear map [11].

Second, we apply this method repeatedly to a lattice obtained from an integral lattice
L by permuting coordinates. Its purpose is to address the short independent vector problem
(SIVP), which asks to find n linearly independent short vectors given a basis of a lattice. We
remark that a permuted lattice has a different HNF, although each lattice has one unique
HNF. By applying LLL on the last m columns of the permuted lattice, we obtain a short
vector having a permutation that is a small vector in L. By taking a different permutation,
we expect to obtain additional short vectors in L. Moreover, the subspace obtained from
the last m columns consists of vectors, the first (n − m) entries of which are zero. This is
not sufficient to guarantee their independence, but we can choose permutations elaborately
to obtain n linearly independent vectors, of which the first (n − m) vectors are as small as
2
√
log detL+1 and the last m vectors are LLL-reduced and extensible to a basis of L. This

result is also asymptotically better than that of LLL only for a lattice of small determinant
of sub-quadratic size in dimension.

Third, we apply the above result to the closest vector problem (CVP) on an integral
lattice, which asks to find a lattice vector closest to the target vector in Rn given a lattice
and a target vector. CVP is one of the most fundamental lattice problems together with SVP.
An exact solution of CVP takes an exponential time in dimension, but we have polynomial
time approximate algorithms [4]. We propose a new CVP algorithm using Babai’s nearest
algorithm. Given a target vector w, we apply our algorithm to obtain n linearly independent
vectors b1, · · · , bn and write w = w1+w2, where w1 is in the lattice L1 generated by the first
(n−m) short vectors and w2 is in the orthogonal complement of L1 in Rn. Our approximate
CVP algorithm applies Babai’s algorithm two times, the first time to w1 and L1 and the
second to the projections of w2 and L2 against L1. By combining the results, we obtain a
lattice vector, the distance of which to the target vector is upper-bounded by approximately

O(2
√

log(detL)) times the distance of the target vector to the closest lattice point, unless it is
too small.

All three algorithms are asymptotically better than the previous polynomial time lattice
algorithms when the determinant of the lattice has a sub-quadratic size of dimension. We
remark that an n × n integral matrix with entries bounded by poly(n) has determinant
O(poly(n)n) = 2O(n log(n)) and is susceptible to our lattice algorithms. For example, if detL =

2n
√
n, a short vector outputted from our approximate SVP algorithm is of size 2n

3/4
, which is

asymptotically smaller than the size 2n/4+
√
n of the output short vectors of LLL. It is similar

to that of our approximate CVP algorithm.

Related work. Many studies have been conducted on exact algorithms for SVP and CVP
[2, 3, 6, 5, 13, 16, 21, 20, 18]. In addition, there have been many attempts to improve the clas-
sical LLL and BKZ algorithms [9, 10, 25, 24, 17, 23, 26, 7]. However, no serious asymptotic
improvement on approximate SVP and CVP algorithms was achieved, despite the very con-
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siderable number of their applications in optimization, computational number theory, and
cryptanalysis.

Organization. In Section 2, we introduce some preliminaries related to lattice problems
and algorithms and introduce HNF, which plays an important role in the next sections. In
Section 3, we present our new approximate SVP algorithm combining LLL and HNF. In
Section 4, we propose a new SIVP algorithm that repeats the proposed approximate SVP
algorithm after coordinate permutations, and show that the results can be used to improve
Babai’s nearest plane algorithm for CVP.

2 Preliminaries

Throughout this paper, we use lower-case and upper-case bold letters to denote vectors and
matrices, respectively. For a vector u ∈ Rn, ∥u∥ denotes the Euclidean norm of u. For vectors
u1, · · · ,um ∈ Rn, we denote [u1 · · ·um] as an n×m matrix, the i-th column of which is ui.
For a basis {b1, · · · , bn} of vector space, we use (b1, · · · , bn) to denote an ordered basis. For
a set S, span(S) is defined as the R-linear vector space generated by S. In log2(·), we omit
the subscript 2.

2.1 Lattices

An m-dimensional lattice of rank n is the set of all integer combinations {
∑n

i=1 xibi| xi ∈ Z}
of n linear independent vectors b1, . . . , bn ∈ Rm. The set of bi’s is called a basis of L. If n = m,
L is called a full rank lattice. A sublattice is a subset L′ ⊂ L that is also a lattice. A matrix
B = [b1 · · · bn] is a basis matrix of a lattice L. If L ⊂ Zn, we call it an integral lattice.

Given a lattice L in Rm with a basis matrix B, the determinant of the lattice is defined as√
det(BTB), where BT is the transpose matrix of B and det(M) denotes the determinant

of a square matrix M . By abusing the notations, detL is used to denote the determinant of
L. The i-th successive minimum of a lattice L, denoted by λi(L), is defined by

λi(L) = min
r

{r : dim(span(L ∩B(r))) ≥ i},

where B(r) : {x ∈ Rn : ∥x∥ ≤ r}.
Given a basis {b1, · · · , bn}, we denote by b∗1, · · · , b∗n the output of the Gram-Schmidt

orthogonalization of the basis, i.e., b∗i is the component of bi orthogonal to span(b1, · · · , bi−1).

2.2 Lattice Problems

Let us recall the most well-known hard problems on lattices.

– The Shortest Vector Problem (SVP): given a basis matrix B of a lattice L, compute a
non-zero lattice vector v ∈ L such that ∥v∥ ≤ λ1(L) .

– The Closest Vector Problem (CVP): given a basis matrix B of a lattice L and a vector
w ∈ Rn, compute a lattice vector v ∈ L such that ∥w − v∥ is minimal.

SVP and CVP are widely used to solve algorithmic problems such as integer programming,
factoring polynomials over the rationals, solving subset sum problem, simultaneous Diophan-
tine equations, and approximate greatest common divisor problem, to name a few.
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2.3 Lattice Algorithms

There are two types of lattice algorithms. One is the exact lattice algorithms, such as enumer-
ations [15, 13, 26] for SVP and Aggarwal et al.’s algorithms for CVP [1], which lead to exact
solutions in exponential time of input size. The second is approximate lattice algorithms,
such as the LLL algorithm and Babai’s nearest plane algorithm, which result in approximate
solutions, but run in polynomial time of input size. In this paper, we focus on approximate
lattice reduction algorithms.

The LLL algorithm introduced by Lenstra, Lenstra, and Lovasz [19] is a basic lattice
reduction algorithm to produce a short vector and a short basis. Upon input of an ordered
basis (b1, b2, · · · bn) of a lattice L, the LLL algorithm (with factor 3/4) outputs another
ordered basis (b′1, b

′
2, · · · b′n), satisfying ∥b′i∥ ≤ 2n/2 · λi(L) for each i, in polynomial time in n

and max
i

∥bi∥. This new basis is called an LLL-reduced basis. The output is dependent on the

order of basis elements.
While the Minkowski theorem guarantees λ1(L) ≤

√
γn(detL)

1/n for the Hermite constant

γn ≥ n, the first vector of LLL satisfies ∥b′1∥ ≤ 2n/4 ·det(L)1/n. When, upon input of a lattice
L of dimension n, an algorithm outputs a lattice element of size α det(L)1/n, α is called the
Hermite factor of the algorithm for L. The LLL algorithm has Hermite factor ≤ 2n/4 for any
lattice.

To solve the approximate CVP, Babai’s nearest plane algorithm is widely used. For an
input basis matrix B = [v1,v2, · · ·vn] of lattice L and w ∈ Rn, Babai’s algorithm gives a

lattice vector v ∈ L, satisfying ∥v−w∥2 ≤ 1
4

n∑
i=1

∥b∗i ∥2, in polynomial time in n and max
i

∥vi∥.

Moreover, if B is an LLL-reduced basis, then ∥v −w∥2 ≤ 2n∥u−w∥2 for all u ∈ L.

2.4 Hermite Normal Form

Approximately speaking, the Hermite normal form of a full-rank square matrix M is a lower
triangular matrix obtained by column operations with integral coefficients from M . A matrix
with integer entries is in (column) Hermite normal form (HNF) if

1. (Zero rows) All nonzero columns (columns with at least one nonzero element) are at the
left of any columns of all zeros (all zero columns, if any, are at the right of the matrix).

2. (Triangular) The first nonzero entry from the above (called the pivot) of a nonzero column
is always strictly below the pivot of the column on the left of it. Moreover, it is positive.

3. (Modulus Reduction) All the entries in a row at the left of a pivot are nonnegative and
strictly smaller than the pivot.

The HNF is used for efficiently solving linear Diophantine equations, integer programming,
and various lattice problems, such as the lattice membership problem, lattice basis prob-
lem, and lattice union problems [22, 8]. Given a basis matrix B, computing its HNF, de-
noted by HNF(B), takes polynomial time and space in dimension n and det(B). More pre-
cisely, for an n× n matrix with the largest entries bounded by M , the computation requires
O(nθB(n logM)) time and O(n2 logM) space, where nθ is the number of arithmetic opera-
tions required to multiply two n× n matrices and B(t) is an upper bound to the number of
bit operations required to multiply two t-bit numbers [22].

The HNF of a matrix over Z is unique. We call the HNF (ordered) basis of B the columns
of HNF (B).
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3 Lattice Reductions with HNF

In this section, we propose an algorithm to compute a short vector of a lattice by using
a lattice reduction algorithm with HNF. As the determinant of the lattice is smaller, our
algorithm improves on the previous lattice reduction algorithms.

3.1 Subspace from Hermite Normal Form

Currently, all approximate lattice reduction algorithms with polynomial running time in input
size have exponentially large Hermite factors in the rank of the input matrix. For example,
LLL has Hermite factor 2n/4 for the rank n of input matrix L. To obtain a short vector with a
smaller Hermite factor, we may attempt to apply LLL to a subspace of L of smaller dimension.
However, it is not always true that a subspace of smaller dimension has a determinant smaller
than that of the original lattice L.

In this subsection, we show how to use HNF to obtain a sublattice having a determinant
not larger than that of the original lattice.

Theorem 1. Given a basis matrix [b1, · · · , bn] of integral lattice L in Hermite normal form,
det([bi, · · · , bn]) ≥ det([bi+1, · · · , bn]) for 1 ≤ i ≤ n− 1.

Proof. Suppose bi is a vector with pivot di. Consider an ordered basis Bi := {bn, · · · , bi}
and its corresponding Gram-Schmidt basis {b∗n, · · · , b∗i }. Then det(Bi) =

n∏
j=i

∥b∗j∥ = ∥b∗i ∥ ·

det(Bi+1). Here b
∗
i is of the form bi− (cnbn+ · · ·+ ci+1bi+1) for some cn, . . . , ci+1 ∈ R and so

the first nonzero component of b∗i is also di. Hence, ∥b∗i ∥ ≥ di and det(Bi) ≥ di · det(Bi+1).
Since di is a positive integer by the definition of HNF, we have det(Bi) ≥ det(Bi+1). ⊓⊔

3.2 An Algorithm for SVP

We apply the LLL algorithm to a sublattice L′ of integral lattice L with det(L′) ≤ det(L)
obtained as in the previous section. It is described in Algorithm 1.

Algorithm 1 LLL with HNF

Input: {b1, · · · , bn} and m < n
Output: {v1, . . . ,vm}
1. Compute the HNF basis (b′1, · · · , b′n) of (b1, · · · , bn).
2. Set (v1, . . . ,vm) as the output vector of LLL upon input (b′n−m+1, · · · , b′n)
return (v1, . . . ,vm).

If we take an appropriate m, the first vector of the output of Algorithm 1 is shorter than
that of LLL on the original lattice when the determinant of the lattice is not large.

Theorem 2. For an n-dimensional integral lattice L with log det(L) < n2/4 and m =⌊
2
√

log(det(L))
⌉
, Algorithm 1 outputs an LLL-reduced basis of a certain sublattice L′ of L

with detL′ ≤ detL in polynomial time in n and det(L). In particular, the first vector satisfies

v1 ∈ L such that ∥v1∥ < 2
√

log det(L)+1/32.
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Proof. Let {b′1, · · · , b′n} be an HNF basis of lattice L. By the given conditions,m =
⌊
2
√

log(det(L))
⌉
<

n. When Algorithm 1 is applied to L, the output is merely the output of LLL on the sublattice
L′ generated by {b′n−m+1, · · · , b′n}.

Moreover, since det(L′) ≤ det(L) by Theorem 1, the first vector v1 of the output satisfies

∥v1∥ ≤ 2m/4 · det(L′)1/m ≤ 2m/4 · det(L)1/m = 2
√

log(det(L))+ϵ,

where 0 ≤ ϵ ≤ 1/(16m) ≤ 1/32.
Obviously, v1 ∈ L′ ⊂ L, and the running time is upper bounded by the running time of

LLL and HNF. ⊓⊔

Another lattice reduction algorithm, the BKZ algorithm with block size β, outputs a

lattice vector of a size bounded by 2(γβ)
n−1

2(β−1)
+ 3

2 · (detL)
1
n in poly(n, size(B)) · CHKZ(β)

times, where γβ is the Hermite constant of rank β, size(B) is the size of largest entries of
basis matrix B of L, and CHKZ(β) = 2O(β) is the cost of HKZ-reduction in dimension β [12,
1].

We claim that our algorithm asymptotically outperforms BKZ with block size β = polylog(n)

for an n-dimensional integral lattice with determinant 2n
δ
for δ < 2. While the output vector

of BKZ with β has a Euclidean norm of at most 2(n log β)/β+O(1), Algorithm 1 with BKZ
gives a vector of the Euclidean norm at most 2n

δ/2
, which is asymptotically smaller than

the previous one. We remark that when the basis entries of an n-dimensional lattice L are
bounded by 2o(n), we achieve a subquadratic determinant 2o(n

2) of L.

Furthermore, we may plug BKZ in our algorithm (instead of LLL) to obtain a shorter

lattice vector b ∈ L. More precisely, we have ∥b∥ < 2β
√

(logβ det(L))/2(β−1)+ 3
2 when detL =

βo(n2). The running time is upper bounded by the running time of the BKZ algorithm with
block size β, poly(n, size(B)) · CHKZ(β) and the running time of computing HNF.

3.3 Application to SVP on Ideal Lattices

The first plausible candidate of multilinear maps was suggested by Garg, Gentry, and Halevi
[11] in 2013 and was followed by many subsequent research studies. However, Hu and Jia gave
a cryptanalysis of this candidate and showed it to be insecure. In this paper, we present a
different cryptanalysis of GGH multilinear maps based on SVP. The scheme is constructed
on a ring R := Z[x]/⟨xn + 1⟩ for a power n of 2, and its security relies on finding a short
generator of an ideal lattice ⟨g⟩ generated by g in the ring. For the λ bit of security, it is
assumed that n = Ω(λ2) and q = 2Θ(λ), and the determinant of the ideal ⟨g⟩ is bounded by
(λn)n/2.

According to [11, Sec. 6.3.3], if one finds a short element ĝ in ⟨g⟩ such that ∥ĝ∥ ≤ q3/8, the
GGH scheme is not secure. Since a basis of the ideal lattice ⟨g⟩ is easily recovered in polynomial
time by the zeroizing attack, we may apply our Algorithm 1 to find a short element in the
lattice and break the GGH scheme. Using BKZ of block size β in Algorithm 1, we can obtain
an element ĝ ∈ ⟨g⟩ satisfying

∥ĝ∥ ≤ 2β
√

(logβ det(⟨g⟩))/2(β−1)+ 3
2 = 2

O
(
λ
√

log λ log β
β

)
,

which is asymptotically smaller than q3/8 for β = polylog(λ). Hence, a desired short element
in the ideal lattice can be computed in polynomial time in λ, which yields a break of the
GGH scheme with the current parameters.
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4 Short Independent Vectors and CVP

In this section, we extend Algorithm 1 to obtain more short vectors and use it to improve
Babai’s nearest plane algorithm for CVP.

4.1 Short Independent Vectors

For an integral lattice L, by using the LLL algorithm with HNF one can find a vector v from

a sublattice L′ ⊂ L with ∥v∥ ≤ 2
√

log det(L)+1/32. We want to obtain more vectors of similar
size. Since HNF is unique, the output of Algorithm 1 is unique if we fix a lattice and m.
However, if we change the order of coordinates, a different HNF and thus different outputs of
Algorithm 1 are obtained. One issue of this approach is to guarantee the independence of
the second vector from the first vector.

In this subsection, we propose an algorithm to output independent short vectors by ap-
plying HNF after permuting coordinates. More precisely, we permute coordinates of vectors
so that the specific m coordinates of vectors are placed in their m lowest rows and apply HNF
for some integer m. We apply Algorithm 1 and take the inverse permutation to obtain a
lattice vector, of which the specific (n−m− 1) entries are zero and one specific entry (corr.
to pivot) is nonzero. By repeating, we obtain linearly independent (n−m) lattice vectors of
size almost 2m/2, when m = ⌊2

√
log(detL)⌉.

Now, we define a permutation πi,j from Zn to Zn swapping the i-th and j-th coordinates:

πi,j(x1, · · · , xi, · · · , xj , · · ·xn) = (x1, · · · , xj , · · · , xi, · · ·xn).

Then, πi,j(L) = {πi,j(v) | v ∈ L} is also a lattice and det(πi,j(L)) = det(L). The proposed
algorithm is described in Algorithm 2.

Algorithm 2 Short Independent Vectors with LLL+HNF

Input: {b1, · · · , bn} and m < n
Output: {v1, · · · ,vn}
1. for i = 1 upto (n−m) do
2. Set vi as the first vector of the output of Algorithm1(b1, . . . , bn,m)
3. Set ji as the position of the first nonzero component of vi

4. Set (v1, . . . ,vi) = (πi,ji(v1), · · · , πi,ji(vi)) and (b1, · · · , bn) = (πi,ji(b1), · · · , πi,ji(bn))
5. end for
6. Set (vn−m+1, . . . ,vn) as the output of Algorithm1(b1, . . . , bn,m)
7. for i = 1 upto n do
8. Set vi = π−1

1,j1
◦ · · · ◦ π−1

n−m,jn−m
(vi)

9. end for
return v1, · · · ,vn.

We show that this algorithm outputs n linearly independent vectors, not necessarily a
basis of a lattice generated by b1, . . . , bn. In fact, the vectors v1, . . . ,vn obtained in Step 6 of
Algorithm 2 form an integral matrix

[v1 . . .vn] =

[
Tn−m O
R Mm

]
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, where Tn−m is an (n−m)× (n−m) lower-triangular integral matrix with nonzero diagonal
entries and O is a zero matrix. Moreover, Mm is an m ×m integral matrix, the columns of
which form an LLL-reduced basis of a certain sublattice L′ with detL′ ≤ detL for the original
lattice L generated by b1, . . . , bn.

Theorem 3. Let L be an n-dimensional integral lattice with det(L) < 2n
2/4, and m =

⌊2
√

log(detL)⌉. One can find n independent vectors v1, . . . ,vn in polynomial time in n and

det(L), where the first (n −m + 1) vectors are of size smaller than 2
√

log(detL)+1/32 and the
last m vectors form an LLL-reduced basis of a sublattice L′ of L with detL′ ≤ detL.

Proof. Given an integral lattice L, we apply Algorithm 2 on any basis of L and m. Note
that Algorithm 1 outputs m linearly independent vectors starting with (n−m) zero entries.

After the first round of the first loop, v1 is a vector with a nonzero first entry followed
by the (n−m) zero entries. After the second round of the first loop, v2 is a vector, the first
(n−m+1) entries of which are zero, except the second, which is nonzero. Since j2 ≤ (n−m+1),
the first entry of v1 is unchanged and remains nonzero after permutation π2,j2 . By repeating
this procedure, after the entire (n−m)-th round of the first loop, we obtain (n−m) vectors
(v1, · · · ,vn−m) in the permuted lattice πn−m,jn−m ◦· · ·◦π1,j1(L), where vi is a vector of which
the first (i − 1) entries are zero and the i-th entry is nonzero. Hence, the first (n −m) rows
of the matrix [v1 . . .vn−m] form a lower-triangular matrix with nonzero diagonal entries and
therefore v1, . . . ,vn−m are linearly independent.

On the other hand, the first (n − m) rows of the matrix [vn−m+1 · · ·vn] from Step 6 of
Algorithm 2 form a zero matrix. Hence, they are independent of v1, . . . ,vn−m. Moreover,
vn−m+1, . . . ,vn are an output of Algorithm 1 and therefore an LLL-reduced basis of a certain
sublattice L′ of L with detL′ ≤ detL. Hence, all vi’s form an n linearly independent set.

By inverting the permutation (note that π−1
i,ji

= πi,ji), we obtain (n − m) linearly inde-
pendent vectors of L. By Theorem 2, we can bound the size of vi for 1 ≤ i ≤ (n−m+ 1) by

2
√

log(detL)+1/32. ⊓⊔

We remark that we may obtain more independent small vectors. Take any m coordinates
out of n and apply a row permutation to the lattice, the specific m coordinates of which are
located in the last coordinates. By applying the HNF and LLL algorithms and inverting the
permutation, we can obtain one short vector in the lattice, the specific (n −m) coordinates
of which are zero. We can repeat this procedure for each

(
n
m

)
permutation. If the output

vectors are randomly distributed on the set of short vectors of L, it is probable that we can
find n linearly independent small lattice vectors by repeating this procedure polynomially
many times. However, we do not know how to obtain a full-rank set of independent vectors
efficiently, which would be an interesting problem.

4.2 Application to CVP

In this section, as an application of short independent vectors, we describe an improved
Babai’s nearest plane algorithm. Babai’s nearest algorithm enables us to find a lattice vector
v ∈ L close to w, inductively. It is an approximate algorithm to give a lattice vector v, the
distance of which to target vector w is bounded by an exponential size in n. Our goal is to
reduce the size of the bound using Algorithm 2.

Given a lattice L and a vector w in Rn, we define

dist(w, L) := min
u∈L

||w − u||.
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Theorem 4. Let B = [b1, b2, · · · , bn] be a basis matrix of an integral lattice L with det(L) <
2n

2/4. On input B and w ∈ Rn, one can find a lattice vector v such that

∥v −w∥ ≤ 2
√

log(detL)+1/2
√

(n− ⌊2
√

log detL⌉) + dist(w, L)2

in polynomial time in n and det(L).

Proof. Given a basis B of an integral lattice L, we take m = ⌊2
√
log detL⌉ and apply Algo-

rithm 2 to obtain an independent set B′ = {b′1, · · · , b′n}. We recall that the first (n−m+1)
vectors have bounded size and the last m vectors are LLL-reduced and can be extended to a
basis of L. We denote by L1 the lattices generated by the first (n−m) vectors. Consider the
orthogonal projection maps P and P⊥ on Rn:

P : Rn → ⟨b′1, · · · b′n−m⟩⊥

P⊥ : Rn → ⟨b′1, · · · b′n−m⟩,

where ⟨b′1, · · · b′n−m⟩⊥ is the orthogonal complement of the vector space ⟨b′1, · · · b′n−m⟩ in Rn.

Then, an arbitrary vector v ∈ Rn is represented by P (v) + P⊥(v) and ∥v∥2 = ∥P (v)∥2 +
∥P⊥(v)∥2. Since, for some cj ∈ Q, b′i =

n∑
j=1

cjbj for all i, one can see that P (L) is also an

m-dimensional lattice in Rn.
First, we compute an LLL-reduced basis of P (L) from {P (b1), · · · , P (bn)} and apply

Babai’s nearest plane algorithm on the basis and P (w) to obtain a vector v2 ∈ P (L) close to
P (w). Since P (L) is an m-dimensional lattice in Rn and v2 ∈ P (L), we have

∥v2 − P (w)∥ ≤ 2m/2 dist(P (w), P (L)).

Moreover, we have dist(P (w), P (L)) ≤ dist(w, L), since

dist(P (w), P (L)) ≤ dist(P (w), P (u)) ≤ dist(w,u)

for any vector u ∈ L.

We write v2 =
∑n

i=1 ciP (bi) for some integer ci’s and take v1 =
∑n

i=1 cibi ∈ L. Then,
we take v3 ∈ L1 close to P (w − v1) ∈ L1 by Babai’s nearest plane algorithm on the basis
{b′1, . . . , b′n−m} and P (w − v1). Then, we have

∥v3 − P⊥(w − v1)∥2 ≤
1

4

n−m∑
i=1

∥b′i∥2 ≤ (n−m) · 22
√
log detL−31/16,

where the last inequality comes from Theorem 2.
Finally, we take v := v1 + v3 for v1 ∈ L and v3 ∈ L1. It belongs to L and

∥v −w∥2 = ∥P (v −w)∥2 + ∥P⊥(v −w)∥2

= ∥v2 − P (w)∥2 + ∥v3 − P⊥(w − v1)∥2

≤ 2m dist(w, L)2 + (n−m) · 22
√
log detL−31/16.

The running time of this algorithm is bounded by that of Algorithm 2 and is twice
that of Babai’s nearest plane algorithm, and therefore, results in polynomial time in n and
det(L). ⊓⊔
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We present an algorithm described in Theorem 4.

Algorithm 3 Closest Vector with Babai+HNF

Input: {b1, · · · , bn} and w
Output: v

1. Compute m =
⌊
2
√

log(det[b1, · · · , bn])
⌉

2. Set (b′1, . . . , bn) as the output of Algorithm 2(b1, . . . , bn,m)
3. Compute w′ = P (w)
4. for i = 1 upto n do
5. Set b′′i as the orthogonal projection of the vector bi onto vector space ⟨b′1, . . . , b′n−m⟩⊥
6. end for
7. Set (b′′′1 , . . . , b

′′′
n ) as the output of LLL algorithm(b′′1, . . . , b

′′
n)

8. Set v2 as the output of Babai’s nearest plane algorithm on input (b′′′1 , . . . , b
′′′
n ) and w′

9. for i = 1 upto n do
10. Set ci as the coefficient of the b′′i of the v2

11. end for
12. Set v1 = c1b1 + · · ·+ cnbn
13. Compute w′′ = P (w − v1)
14. Set v3 as the output of Babai’s nearest plane algorithm on input (b′1, . . . , b

′
n−m) and w′′

return v1 + v3

Consider an n-dimensional integral lattice L with determinant 2βn. By Gaussian heuris-
tics [14, Sec. 6.5.3], the average distance of a random point in Rn to the closest lattice point is√

n
2πe(detL)

1/n. For a random point, our algorithm gives a lattice point, the distance of which

to the target vector is bounded by approximately 2
√
βn
√

n(1 + 2β), while it is 2n/2 ·
√
n2β

in the original Babai’s nearest plane algorithm. Our algorithm has asymptotically smaller
approximate factors when β is constant.

5 Conclusion and Open Problems

In this paper, we proposed three approximate lattice algorithms for SVP, SIVP, and CVP.
Each of our algorithm runs in polynomial time of the dimension and determinant of the input
lattice. When we apply them to an n-dimensional integral lattice with determinant < 2n

2/4,
the Euclidean norm of the output is bounded by O(2

√
log detL), which is asymptotically smaller

than O(2n/4), that of LLL short vectors.
The sublattice generated by the last columns of the basis matrix in the Hermite normal

form of an integral lattice has a determinant that is smaller than that of the original lattice. In
this paper, we assumed only that the former is not less than the latter; however, we can obtain
a more improved result if it is much smaller. It would be interesting to observe the behavior
of the determinants of the sublattices from our algorithm for random lattices. Furthermore,
our work raises a question as to how a sublattice with a smaller determinant can be found,
which leads to a different direction of lattice reduction algorithms.
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