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Abstract. Garg, Gentry and Halevi (GGH) described the first candidate multilinear maps using 
ideal lattices. However, Hu and Jia presented an efficient attack on GGH map, which breaks two 
applications of multipartite key exchange (MPKE) and witness encryption (WE) based on the 
hardness of 3-exact cover problem by using GGH. We describe a new construction of multilinear 
map using random matrix, which supports the applications for public tools of encoding in the origin 
GGH, such as MPKE and WE. The security of our construction depends upon new hardness 
assumption. Furthermore, our construction removes the special structure of the ring element in the 
principal ideal lattice problem, and avoids potential attacks generated by algorithm of solving short 
principal ideal lattice generator. 
Keywords. Multilinear maps, Ideal lattices, Multipartite Diffie-Hellman key exchange, Witness 
encryption, Zeroizing attack 

1 Introduction 

Constructing cryptographic multilinear map is a long-standing open problem [BS03]. It has many 
applications, such as witness encryption [GGS+13], general program obfuscation [GGH+13b, 
Zim15], function encryption [GGH+13b], and other applications [GGH+13a, BZ14]. Garg, Gentry, 
and Halevi (GGH) proposed the first candidate construction of multilinear maps from ideal lattices 
[GGH13]. GGHLite [LSS14] is an efficient improvement version of GGH map. Using same GGH 
framework, Coron, Lepoint, and Tibouchi [CLT13] (CLT) presented a construction over the integers. 
Gentry, Gorbunov and Halevi [GGH15] constructed graph-induced multilinear maps from lattices. 

The attacks for CLT and GGH demonstrate that the security of current constructions requires 
further deep cryptanalysis. On the one hand, Cheon, Han, Lee, Ryu, and Stehle recently broke the 
CLT construction using zeroizing attack introduced by Garg, Gentry, and Halevi. To fix the CLT 
construction, Garg, Gentry, Halevi and Zhandry [GGH+14], and Boneh, Wu and Zimmerman 
[BWZ14] presented two candidate fixes of multilinear maps over the integers. However, Coron, 
Lepoint, and Tibouchi showed that two candidate fixes of CLT can also be defeated using extensions 
of the Cheon et al.’s Attack [CHL+14]. By modifying zero-testing parameter, Coron, Lepoint and 
Tibouchi [CLT15] proposed a new construction of multilinear map over the integers. On the other 
hand, Hu and Jia [HJ15a] very recently presented an efficient attack on the GGH map, which breaks 
the applications on multipartite key exchange (MPKE) and witness encryption (WE) based on the 
hardness of 3-exact cover problem. 
  Gu [Gu15] presented a construction of multilinear maps without encodings of zero, which is an 
improvement of GGH map. Since no encodings of zero are given in the public parameters, MPKE 
using Gu map-1 successfully avoids the attack in [HJ15a]. However, Gu map-1 cannot be used for 
the instance of witness encryption based on the hardness of 3-exact cover problem [HJ15b]. This is 
because there is no randomizer in Gu map-1. But the instance of WE based on the hardness of 
3-exact cover problem is a strong application of multilinear map. Thus, there is a strong demand to 
construct scheme with randomizer. 
Our results. Our main contribution is to construct a new multilinear map using random matrix. Our 
construction improves GGH in three aspects. (1) We modify the zero-testing parameter of GGH by 
introducing random matrix. By using new zero-testing parameter, the level-1 encodings and level-0 
encodings in the public parameters are separated, and cannot be directly multiplied between them. 
As a result, our construction thwarts the revelation of the secret parameters. (2) We transform ring 
elements into non-square matrix to damage the structure of ring elements and further avoid the 
principal ideal lattice problem. Due to this improvement, we can give encodings of zero in the public 
parameters. Thus, our construction supports the applications for public tools of encoding in GGH, 
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and removes the weakness of the principal ideal lattices problem in GGH. (3) Our construction 
supports the membership group problem (SubM) and the decisional linear (DLIN) problem. Thus, 
our construction can have more applications than [GGH13]. 

Our second contribution is to describe two applications of MPKE and WE using our multilinear 
map. Since these applications are attacked by [HJ15a], they urgently require to be fixed. The 
construction of MPKE and WE based on our new map is same as ones using GGH. 

Organization. We first recall some background in Section 2. Then we describe symmetric 
construction in Section 3, commutative variant and asymmetric variant in Section 4. Finally, we 
present two applications of MPKE and WE using our construction in Section 5, and draw conclusion 
in Section 6. 

2 Preliminaries 

2.1 Notations 

We denote , ,    the ring of integers, the field of rational numbers, and the field of real 

numbers. We take n  as a positive integer and a power of 2. Notation  n  denotes the set 

{1,2, , }n , and  qa  the absolute minimum residual system   mod ( / 2, / 2]
q

a a q q q   . 

Vectors and matrices are denoted in bold, such as , ,a b c  and , ,A B C . Let I  be the identity 

matrix. The j -th entry of a  is denoted as ja , the element of the i -th row and j -th colomn of 

A  is denoted as ,i jA (or [ , ]A i j ). Notation 


a  ( a  for short) denotes the infinity norm of 

a . The polynomial ring [ ]/ 1nX x    is denoted by R , and [ ]/ 1n
q X x    by qR . 

The elements in R  and qR  are denoted in bold as well. Similarly, notation  qa  denotes each 

entry (or each coefficient) ( / 2, / 2]ia p p   of a . 

2.2 Lattices and Ideal Lattices 

An n -dimension full-rank lattice nL    is the set of all integer linear combinations 

1

n

i ii
x

 b  of n linearly independent vectors n
i b  . If we arrange the vectors ib  as the 

columns of matrix n nB  , then  : nL Z Bz z . We say that B  spans L  if B  is a 

basis for L . Given a basis B  of L , we define ( ) { | , : 1/ 2 1/ 2}n
iP i z     B Bz z   

as the parallelization corresponding to B . Let det( )B  denote the determinant of B . 

Given Rg , let I  g  be the principal ideal in R  generated by g , whose  -basis is 
1( ) ( , ,..., )nRot x x   g g g g . 

Given nc  , 0  , the Gaussian distribution of a lattice L  is defined as L x , 

, , , ,( ) / ( )LD L   c c cx , where 
2 2

, ( ) exp( / )    c x x c , , ,( ) ( )
x L

L  


c c x . 

In the following, we will write 
, ,0nD


 as 
,nD


. We denote a Gaussian sample as ,LD x  

(or ,ID d ) over the lattice L (or ideal lattice I ). 
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2.3 Multilinear Maps 

Definition 2.1 (Multilinear Map [BS03]). For 1   cyclic groups 1,..., , TG G G  of the same 

order q , a  -multilinear map 1: Te G G G    has the following properties: 

(1) Elements  
1,...,j j j

g G


 , index  j  , and integer qa  hold that 

1 1( , , , , ) ( , , )je g a g g a e g g       

(2) Map e  is non-degenerate in the following sense: if elements  
1,...,j j j

g G


  are 

generators of their respective groups, then 1( , , )e g g  is a generator of TG . 

 
Definition 2.2 ( -Graded Encoding System [GGH13]). A  -graded encoding system over R  

is a set system of   ( ) : ,jS S R R j       with the following properties: 

(1) For every index  j  , the sets  ( ) :jS R    are disjoint. 

(2) Binary operations ‘ ’ and ‘ ’ exist, such that every 1 2,  , every index  j  , and 

every 1( )
1 ju S   and 2( )

2 ju S   hold that 1 2( )
1 2 ju u S     and 1 2( )

1 2 ju u S    , where 

1 2   and 1 2   are the addition and subtraction operations in R  respectively. 

(3) Binary operation ‘  ’ exists, such that every 1 2,  , every index  1 2,j j   with 

1 2j j   , and every 1

1

( )
1 ju S   and 2

2

( )
2 ju S   hold that 1 2

1 2

( )
1 2 j ju u S  

  , where 1 2   

is the multiplication operation in R  and 1 2j j  is the integer addition. 

3 Construction using random matrix 

Setting the parameters. Let   be the security parameter,   the multilinearity level, n  the 

dimension of elements of R . Concrete parameters are set as n  , 1.5n   , 2   , 
16 ( )2 Oq n  , 2m  ,  2( )n O  , 2( )O n  , ( )O n  , 1 (log )k O n , 2 (log )k O n  such 

that 1 2 ( )k k n O   . 

3.1 Construction 

Instance generation: (par) InstGen(1 ,1 )  . 

(1) Choose a prime 16 ( )2 Oq n  ; 

(2) Choose 
,nj D


g


,
,nj q

Dh


,  j m  in R , and set 
1

m

jj
g g  so that jg ’s 

are coprime and 1
j n g ; 

(3) Choose elements  
, '

, , ,ni i i D i


 a b e


 in R ; 

(4) Choose a random element qRz  so that -1
qRz ; 

(5) Choose randomly , n n
q
T S   so that 1 1, n n

q
  T S  ; 

(6) Choose 
11 ,k nD

T


, 
21 ,n kD
S


 and set 1

1
*T TT , 1

1
*S = S S ; 
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(7) For  i  , set 1( )i i
i

q

Rot     

a g e
Y T T

z
 and 1 ( )i i i q

Rot   X S b g e S ; 

(8) For    , choose 
, 'nD 

q


 in R , and set 1( )
q

Rot 


    

q g
Q T T

z
; 

(9) Set 1

1
( )

m

zt j jj q
Rot  


   P T z h g S ; 

(10) Output the public parameters         par , , , , , ,i i zti
q    

 * *Y X Q P T S . 

Generating level- t  encoding: enc(par, , , )tU d r . 

Given 
, *

D  
d


 and 

, *
D  

r


, then 
1 1

( ) ( )t t
i ii q

d r
 

  
      U Y Q  is a 

level- t  encoding of level- 0  encoding 
1

( )t
i ii q

= d



  E X . 

Adding encodings: 1add(par, , , , )ktU U U . 

Given k  level- t  encodings lU , their sum 
1

=
k

ll q
 
 U U  is a level- t  encoding. 

Multiplying encodings: 1mul(par,1, , , )kU U U . 

Given k  level-1 encodings lU , their product 
1

=
k

ll q
 
 U U  is a level- k  encoding. 

Zero testing: isZero(par, , )U R . 

Given a level-   encoding 1( )
q

Rot 
    

rg e
U T T

z
 and a level- 0  encoding 

1 i ii q
r




   R X , to determine whether U  is a level-   encoding of zero, we compute 

*
zt q

     
*V = T U P R S  and check whether V  is short: 

3/41 if
isZero(par, , )

0 otherwise

q 
 


V
U R . 

Extraction: ext(par, , )sk  U R . 

Given a level-   encoding U  and a level- 0  encoding 
1 i ii q
r




   R X , we compute 

*
zt q

     
*V = T U P R S , and collect (log ) / 4q   most-significant bits of each of the 

1 2k k -matrix V : 

*ext(par, , ) Extract(msb( ))zt q
      

*U R T U P R S . 

Remark 3.1 (1) To generate a level-l encoding of given plaintext, one can provide the level-l 

encoding and level-0 encoding of plaintext jx , 0,..., 1j n   in the public parameters: 

1( )
j

j
j

q

x
Rot  

  
  

a g
Y T T

z
 and 1 ( )j

j j q
Rot x   X S b g S . 

Given 
, *nD


d


, we can generate its level-1 encoding 
1 1

( )
n

j jj q
d r


  

     U Y Q , 

where 
, *

D  
r


, and its level-0 encoding 

1

n

j jj q
d


   D X . 

(2) Although we randomly choose the matrices , n n
q
T S  , we still use the element z  to 
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control the level number of encoding. 
(3) The composite-order element g  is to support the subgroup membership (SubM) and 

decisional linear (DLIN) problems. 
(4) The matrix R  in the zero-testing and the extraction algorithm is to describe the security of 

our construction and present the MPKE protocol. 
(5) The level-1 encodings of zero in the public parameters are to construct witness encryption 

scheme. 
(6) We set 1 2 ( )k k k n O     . In fact, 1 2,k k  can be 1. Because n  is the dimension of 

ring element, our aim is to compress n  free variables of the ring element to k  variables, and 
breakdown the structure of the ring element in the principal ideal lattice problem. 

(7) One can sample 
, *nj D


h


 instead of 
,nj q

Dh


 since ztP  cannot be squared. 

(8) The number of level-1 encodings of non-zero in public parameters   can be set to ( )O n  

according to the result in [HJ15c]. 

3.2 Correctness 

Lemma 3.2 The algorithm InstGen(1 ,1 )   runs in polynomial time. 

Lemma 3.3 The encoding enc(par, , , )tU d r  is a level- t  encoding. 

Proof. Since 1( ) ( )t ti i
i

q

Rot     

a g e
Y T T

z
 and 1( ) ( )t t

q

Rot 


    

q g
Q T T

z
, we have 

1 1

11 1 1

1

( ) ( )

( )
( )

( )

t t
i ii q

' ' t
i i i ii i

t

q

t
q

d r

d r d
Rot

Rot

 
 

  
 

 

  



     

  
 
  

    

 

  

U Y Q

a g q g e
T T

z

ag e
T T

z

, 

where (( ) ( ) ) /' t t
i i i i  a a g e e g , ( ) /' t

 q q g g , '

1 1

'
i ii

= d r
 

  
  a a q , and 

1
( )t

i ii
= d




e e . 

Again since 1( ) ( )t t
i i i q

Rot   X S b g e S , we have 

1

1 '

1 1

1

( )

( ( ) )

( )

t
i ii q

t
i i i ii i q

q

d

Rot d d

Rot



 




 



   

   

   



 

E X

S b g e S

S bg e S

, 

where (( ) ( ) ) /' t t
i i i i  b b g e e g , '

1 i ii
= d




b b , and 

1
( )t

i ii
= d




e e . 

Thus, U  is a level- t  encoding of the level- 0  encoding E .                          □ 

Lemma 3.4 Given k  level- t  encodings 1, , kU U , their sum 
1

=
m

ll q
 
 U U  is a level- t  

encoding. 

Proof. Since the level- t  encoding lU  has the form 
' '

1( )l l
l t

q

Rot  
  
 

r g e
U T T

z
, their sum 
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' '
1 11

1

( )
= ( ) ( )

m
m l ll

l t tl q
q

q

Rot Rot 


               


r g e rg e

U U T T T T
z z

 is a level- t  

encoding, where '

1

m

ll
=

r r  and '

1

m

ll
=

e e .                                      □ 

Lemma 3.5 Given k  level-1  encodings lU , their product 
1

=
k

ll q
 
 U U  is a level- k  

encoding. 

Proof. Since the level- 1  encoding 
' '

1( )l l
l

q

Rot  
  
 

r g e
U T T

z
, the product of k  level-1 

encodings is: 

1

' '
1

1

' '

1 1

1

=

( )

( )
( )

( )

k

ll q

k l l

l
q

k

l lj

k

q

k
q

Rot

Rot

Rot






 



 
 

 
  
 

 
 
 
 

    







U U

r g e
T T

z

r g e
T T

z

rg e
T T

z

,  

where ' ' '

1 1
, ( ( ) ) /

k k

l l ll l
=

 
   e e r r g e e g .                                   □ 

Lemma 3.6 The zero testing isZero(par, , )U R  correctly determines whether U  is a level-  

encoding of zero. 

Proof. Given a level-   encoding 1( )
q

Rot 
    

rg e
U T T

z
 and a level- 0  encoding 

1 i ii q
r




   R X , we compute *

zt q
     

*V = T U P R S  and check whether V  is short: 

3/41 if
isZero(par, , )

0 otherwise

q 
 


V
U R . 

If U  is a level-  encoding of zero, namely 0mod je g . Since jg ’s are coprime, we obtain 

'e r g . Thus,  
*

1 1 *
1 1 1

1
1 11 1

1 11

( ) ( ) ( )

(( )( )( ))

(( )( / )( ))

zt q

m

j j i ij i
q

m

j j i i i ij i q

m

j jj q

'
Rot Rot r

Rot ' r r

Rot ' ' '






 
 


 



     

      

    

     

 

 



*V = T U P R S

rg r g
T T T z h g S X S

z

T rg r g h g b g e S

T r r h g g b g e S

. 

For our choice of parameter, 1/8' q r r , (1)O' ' n b g e  and 1 1 n
 
 T S . 

Moreover, V  is not reduced modulo q , that is  q V V . Hence, 
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1 11

1 11

3
1 11

4 (1)

1

(1) 2 1/8

(1)

(( )( / )( ))

(( )( / )( ))

(( ) / ) ( )

( ) ( / )

( / )

m

j jj q

m

j jj

m

j jj

m O
j jj

O
j j

O

Rot ' ' '

Rot ' ' '

n Rot ' Rot ' '

n n Rot ' Rot n n

n q m Rot

n

 













     

   

    

     

    










V T r r h g g b g e S

T r r h g g b g e S

T r r h g g b g e S

r r h g g

h g g

2 1/8 1/2

3/4

( ) ( )q poly n q poly n

q

   

. 

If U  is a level-  encoding of non-zero element, namely  j m  , 0mod je g . Thus,  

*

1 1 *
1 1 1

1
1 11

1
1 1 1 11 1

( ) ( ) ( )

( ) ( ) ( )

( )
( ( ) ) ( )

zt q

m

j j i ij i
q

m

j jj q

m m j
j jj j

j q

Rot Rot r

Rot Rot Rot ' '

' '
Rot ' ' Rot




 
 





 

     

      

    

 
   
  

 



 

*V = T U P R S

rg e
T T T z h g S X S

z

T rg e h g b g e S

h e b g e
T rg b g e h g S T S

g

. 

By Lemma 4 in [GGH13], 1 11

( )
( )

m j

j
j

' '
Rot q






h e b g e
T S

g
, namely qV .     □ 

Lemma 3.7 Suppose that two level-  encodings 1 2,U U  encode same plaintext, then 

1 2ext(par, , ) ext(par, , )U R U R . 

Proof. Assume that 1( )i
i

q

Rot 
    

r g e
U T T

z
,  2i , and 1 ( )Rot ' ' R S b g e S  such that 

1/8
i q r g e , (1)O' ' n b g e . Thus 

*

1
1 1 1 11 1

1
1 1 1 11 1

( )
( ( ) ) ( )

( )
( ( ) ) ( )

i i zt q

m m j
i j jj j

j q

m m j
i j jj jq

j q q

' '
Rot ' ' Rot

' '
Rot ' ' Rot


 


 

     

 
   
  

             

 

 

*V = T U P R S

h e b g e
T r g b g e h g S T S

g

h e b g e
T r g b g e h g S T S

g

. 

For our parameter setting, 1 3/4
1 11

( ( ) )
m

i j jj q
Rot ' ' q


   T r g b g e h g S . By Lemma 4 in 

[GGH13], 1 11

( )
( )

m j

j
j q

' '
Rot q



 
 

  


h e b g e
T S

g
 when  j m  ,  0mod je g . Thus, the 

equality holds.                                                                □ 
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3.3 Security 

Consider the following security experiment: 

(1) par InstGen(1 ,1 )   

(2) For 0l   to  : 

     Sample 
, *l D  

d


, 
, *l D  

r


; 

     Compute level-0 encoding ,1l l i ii q
d




   E X ; 

     Generate level-1 encoding , ,1 1l l i i li q
d r

 
  

    U Y Q . 

(3) Set 
1 jj q




   U U . 

(4) Set *
0C D zt q

       
*V V T U P E S . 

(5) Set *
0R zt q

      
*V T U P R S , where 0 1 i ii q

w



   R X  and 

, *
D  

w


. 

Definition 3.8 (ext-GCDH/ext-GDDH). According to the security experiment, the ext-GCDH and 
ext-GDDH are defined as follows: 

Level-  extraction CDH (ext-GCDH): Given  0par, , , U U , output a level-  extraction 

encoding 1 2k k
q
W   such that   3/4

C q
q


 V W . 

Level-   extraction DDH (ext-GDDH): Given  0par, , , ,U U V , distinguish between 

 0par, , , ,ext GDDH DD   U U V  and  0par, , , ,ext RAND RD   U U V . 

3.4 Cryptanalysis 

We first generate easily computable quantities in our construction, then analyze possible attacks 
using these quantities.  

3.4.1 Easily computable quantities 

On the one hand, encodings ,i iY X  encode same element ie , they cannot be directly multiplied. 

Since they are enveloped by different matrices ,T S . To multiply them, we must use ztP . On the 

other hand, Q  are encoding of zero. However, the random matrices ,T S  are over modulo q . 

Thus, to eliminate ,T S , we must compute the following expression: *
zt q

      
*V T U P D S , 

where U  is a level-  encoding and D  is a level- 0  encoding. 
  To obtain easily computable quantities, we require that U  is a level-  encoding of zero. 

(1) By using Q , we compute (1) *( ) zt q


      

*V T Q P D S ; 

(2) By using cross-multiplication of ,i iY X , we compute 

(2) 1 *( )t i zt j j zt i q

          
*V T Y Y P X Y P X S ; 

(3) By using mix-multiplication of Q  and ,i iY X , we compute 

(3) 1 *( ) ( )k k
t i zt j j zt i q




          
*V T Q Y Y P X Y P X S ; 

(4) *( )k k
i zt j q




      
*V T Q Y P X S . 

By our parameter setting, it is easy to see that the matrices  ( ) , 4  V  are not reduced 
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modulo q , namely ( ) ( )

q

    V V . 

After simplification,  ( ) , 4  V  have the form 1 1( )kRot T r g S , where 0 k    and 

Rr . By 1
1

k nT  , 2
1

n kS  , and ( )k n nRot  r g  , we get 1 2( ) k k V  . It is easy to 

see that ( )V  has destroyed the structure of the ring element kr g , and does not have the property 

of the principal ideal lattice problem. We do not find feasible attacks by using ( )V  for our 
construction. 

Let it  be the i -th row vector of 1T , js  be the j -th column vector of 1S , and k m r g . 

We define a function , ( ( )) ( )Tf Rot Rot  t s m t m s . Thus ( )
, ( )i j i jv Rot   t m s  is the entry of 

the i -th row and the j -th column of ( )V . By arranging ( )T Rot t m s , we can obtain a scalar 

product of m  and n , where n  is determined by t  and s . However, we cannot find usable 

quantities from some ( )T
i iv Rot  t m s  when , ,it m s  are unknown.  

3.4.2 The Subgroup Membership and Decision Linear Problems 

The SubM problem. Let /j jR R R g , 1 mG R R   , and  1 20 mG R R    . Let  

iZ  be level-1 encodings of elements from G , and (1)
iZ  be level-1 encodings of elements from 

1G . When generating encoding enc(par, , , )tU d r , we replace iY  with iZ  or (1)
iZ . The 

subgroup membership problem is to distinguish between enc(par, , , )tU d r  using iZ  and 

1 1 1enc(par, , , )tU d r  using (1)
iZ . By the above analysis, ( )V  has erased the structure of 

principal ideal lattice problem. That is, one cannot distinguish between U  and 1U . Thus, we 

conjecture that the SubM problem is hard in our encoding scheme. 

The DLIN problem. Given a matrix of elements ,( ) w w
i j R  A a  and their encodings matrix 

,(enc(par, , , ))i jtT a r , the DLIN problem is to distinguish between rank w  and rank 1w  

matrices A . Based on same reason, we conjecture that the DLIN problem is hard in our encoding 
scheme. 

4 Variant 

We can use polynomial ring instead of integer ring   for our symmetric construction to improve 
the efficiency of our construction. It is easy to verify that our constructions are still correct under this 
case. 

We can adapt the above symmetric construction into asymmetric variant. This variant is same as 
that [GGH13], except with changing polynomial ring to matrix ring. 

5 Applications 

In this section, we describe two applications using our construction, the MPKE protocol and the 
instance of witness encryption. 

5.1 MPKE Protocol 

(1 ,1 )NSetup . Output (par) InstGen(1 ,1 )   as the public parameters. 

(par, )jPublish . The j -th party samples 
, *j D  

d


, 
, *j D  

r


, publishes the public key 
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1 1
( ) ( )j j,i i j,i ii i q
d r

 

 
      U Y Q  and generates the secret key 

1
( )j j,i ii q
d




   D X . 

 (par, , , )j k k j
j


D UKeyGen . The j -th party computes j kk j

C U  and extracts the 

common secret key *ext(par, , ) Extract(msb( ))j j j zt j q
sk        

*D C T C P D S . 

Theorem 5.1 Suppose the ext-GCDH/ext-GDDH defined in Section 3.2 is hard, then our 
construction is one round multipartite Diffie-Hellman key exchange protocol. 
 

5.2 Witness Encryption 

Given an instance inst  of 3-exact cover problem, which includes a number K  and a collection 

Set  of subsets  1 2, ,...,T T T K  , find a 3-exact cover of  K .  For an instance of witness 

encryption, the public key is a collection Set  and the public parameters par  in our construction, 

the secret key is a hidden 3-exact cover of  K  for inst . 

(1 , , par, )inst MEncrypt : 

(1) For  j K , sample 
,j Z

D  
d , 

, *j D  
r


 and generate level- 1  encodings 

,1 1
( )k k i i k,i ii i q

d r
 

 
     U Y Q . 

(2) Compute 
1

K

kk q
   U U  and Ext(par, , )sk  I U  and encrypt M  into ciphertext 

C , where I  is an identity matrix. 

(3) For each element  1 2 3, ,iT i i i , sample 
, *iT D  

r


 and generate a level-3  encoding 

1 2 3

3

1
( )

i iT i i i T ,
q

r


  
    U U U U Q , where . 

(4) Output the ciphertext C  and all level-3  encodings  ,
iT iE T Set U . 

( , , , )inst W C EDecrypt : 

(1) Given C , E  and a witness set W , compute 
ii

TT W q
   U U . 

(2) Generate Ext(par, , )sk  I U , and decrypt C  to obtain M . 

 
Similar to [GGSW13], the security of our construction depends on the hardness assumption of the 

Decision Graded Encoding No-Exact-Cover. 
Theorem 5.2 Suppose that the Decision Graded Encoding No-Exact-Cover is hard. Then our 
construction is a witness encryption scheme. 

It is easy to verify that our WE construction cannot be broken by using the attack methods in 
[HJ15a, HJ15b].  

6 Conclusion and open problem 

In this paper, we describe a new modification of GGH, which supports the applications for public 
tools of encoding in GGH, such MPKE and WE. Our construction removes the special structure of 
the principal ideal lattice problem, and avoids potential attacks generated by algorithm of solving 
short principal ideal lattice generator. However, the security of our construction depends upon new 
hardness assumption, which cannot be reduced to classical hardness problem, such as LWE or SVP.  
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