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ficient. In this paper, the “special b” variant of the Learning With Errors problem (bLWE) is presented, and helps us construct 
the first circularly secure key switching process which can replace the key switching process and similar re-linearization pro-
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problem (LWE) assumption.  
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1  Introduction 

Recently, cryptography obtained the swift and violent de-
velopment [1-4]. The idea of homomorphic encryption can 
be retrospect to 1978 [5], it means that an entity can imple-
ment computations on encrypted data without decryption. 
This character of encryption scheme sounds appealing in 
network services. The most important application of ho-
momorphic encryption is the outsourcing of data and com-
putation on clouds. Besides these, there are some other in-
teresting applications including database encryption dele-

gate computation, private information retrieval (PIR), elec-
tronic voting, and secure multiparty computation [6]. 

If an encryption scheme can compute any function of the 
ciphertexts, then it is called a Fully Homomorphic Encryp-
tion scheme. Otherwise, if it can only evaluate a limited set 
of circuits about ciphertexts, then it is called a Somewhat 
Homomorphic Encryption(SHE) scheme. The substantial 
progress was achieved by Gentry’s first FHE scheme based 
on ideal lattices in STOC’2009 [7], following many im-
provements with higher efficiency and better performance. 
In Eurocrypt 2010, Dijk, Gentry and Halevi et al. [8] pro-
moted another succinct construction of FHE scheme on in-
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tegers other than on ideal lattice, called DGHV. In 2011, 
Brakerski et al. [9] proposed two schemes based on Learn-
ing with Errors problem over Rings (RLWE) and two im-
portant techniques called re-linearization and dimen-
sion-modulus reduction to control noise and the length of 
encrypted data. In 2011, Brakerski, Gentry and Vaikuntan-
athan [10] presented a novel approach to FHE that dramati-
cally improves performance and bases security on weaker 
assumptions, by a much more effective approach for man-
aging the noise level, called BGV. In 2012, Halevi and 
Shoup programmed BGV by C++ and NTL math kernel 
library [11]. In Cryptology–CRYPTO 2013, Gentry et al. 
[12] proposed a scheme, called GSW, based on Learning 
with Errors problem and a new technique called the ap-
proximate eigenvector method. What’s more, Gentry et al. 
constructed the first identity-based FHE scheme and attrib-
ute-based FHE scheme. 

Considering the efficiency, we will focus on BGV. BGV 
consists of the scheme based on RLWE and the scheme 
based on LWE. Based on the Ring LWE assumption, it can 
reduce the per-gate computation of the bootstrapped version 

from   3.5  to  O  , comparing with Previous FHE 

schemes. Although the scheme based on RLWE is the most 
effective FHE scheme, up to now, the security is controver-
sial. The scheme based on LWE is not so effective, but it 
has a more reliable security. This paper improves BGV 
based on LWE. Compared with Brakerski et.al’s scheme 
based on LWE, our scheme has advantages of a smaller se-
cret key size, easier and faster computation in Inputs Nor-
malization and an efficient FHE.Add [6]. 

2  Preliminaries 

2.1 Basic Notation 

Definition 2.1 [13] (B-bounded distributions). A distribu-

tion ensemble n{ }n  , supported over the integers, is 

called B-bounded if ( )Pr [| | ] 2
S

n

n

e

e B






 


. 

Definition 2.2 [14] (Leveled Fully Homomorphic Encryp-
tion). We say that a family of homomorphic encryption 

schemes ( ){ : }L L   is leveled fully homomorphic if, 

for all +L , they all use the same decryption circuit, 
( )L  compactly evaluates all circuits of depth at most L  

(that use some specified complete set of gates), and the 

computational complexity of ( )L ’s algorithms is polyno-

mial (the same polynomial for all L ) in the security pa-
rameter, L , and (in the case of the evaluation algorithm) 
the size of the circuit. 

Definition 2.3 [15] (LWE). For security parameter  , let 

 n n   be an integer dimension,   2q q    be an 

integer, and      be a distribution over  . The 

,q,nLWE   problem is to distinguish the following two dis-

tributions: In the first distribution, one samples  , bi ia  

uniformly from 1n
q
 . In the second distribution, one first 

draws n
qs   uniformly and then samples   1, b n

i i q
a   

by sampling n
i qa   uniformly, ie  , and setting 

,i i ib s e  a . The ,q,nLWE   assumption is that the 

,q,nLWE   problem is infeasible. 

Lemma 2.4 [16] (Average-case to Worst-case) Let 

, 1n q   be some integers and   be some distribution on 

q . Assume that we have access to a distinguisher W  

that distinguishes ,A s  from U  for a non-negligible 

fraction of all possible s . Then there exists an efficient 

algorithm W  that for all s  accepts with probability 

exponentially close to 1 on inputs from ,A s  and rejects 

with probability exponentially close to 1 on inputs from 

U . 

We let ,
n
d q  be the distribution of n

qa � where 

1( [1],..., [n 1]) U n
q
 a a � , 

1

1
[n] [i](mod )

i n

i
d q

 


 a a . 

Definition 2.5(bLWE：LWE with a special b): For security 

parameter  , let  n n   be an integer dimension, let 

  2q q    be an integer, 1d   be an integer, and let 

     be a distribution over  . The , , ,n q dbLWE   

problem is to distinguish the following two distributions: In 

the first distribution, one samples  ( [1],..., [n 1] ,b) n
q a a   

by sampling ( , b)a  uniformly from n
q . In the second dis-

tribution, called , ,qbA s , one first draws n
qs   uniform-

ly and then samples  ( [1],..., [n 1] ,b) n
q a a   by sampling 

,
n
d q a , e  , and setting 

1
b = [i] [i] 2

n

i
e


 a s . The 

, , ,n q dbLWE   assumption is that the , , ,n q dbLWE   problem 

is infeasible (When 1d   we represent , ,n qbLWE   as 

, ,1,n qbLWE  .) 

In order to follow the description of BGV based on LWE, 
we represent R  as   denote set of the integers. 

2.2 Basic Encryption Scheme based on bLWE 

Set 1|| ||a  to be 
1

[i]mod
n

i
q

 a , set 1a  to be 
1

1
a


 

mod q . 
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E.Setup(1 ,1 )  : Choose a  -bit modulus q  and choose 

the other parameters    ( , , 2 1 log ,n n N n q       

 , , 1)d      appropriately to ensure that the 

scheme is based on a LWE instance that achieves 2  secu-

rity against known attacks. Let  , , ,params q n N  . 

E.SecretKeyGen( )params : Draw n s . Set sk  s  

  11, [1],..., [ ] n
qn R   s s .32 

E.PublicKeyGen( , )params sk : Takes as input a secret key 

(1, )sk  s s  with [0] 1s , n
qRs  and the params . 

Draw Ne . Generate matrix ( 1)N n
qR  A , matrix 

N n
qR A  and a vector b . Set [j]i

a  to be the element of 

i th row and j th column of A  and i
a to be the i th row 

of A . Sample 1,
n

i q a  for all the 1 i N  ， notice 

that 
1

1i
 a . Set (n 1)N

qR  A  to be the matrix consist-

ing of the frontal 1n   columns of A . Set 

, 2= ii ie  b a s  to be each element of b . Set 

( )( | ) N n+1
qR   A b A  and ( | ) N n

qR   A b A  (Ob-

serve: =2A s e .) It’s easy to convert A  into A . 

Set the public key pk  A . 

E.Enc( , , )params pk m : To encrypt a message 2m R , set 

1( ,0,...,0) n
qm R  m , sample 2

NRr , find out A  

according to pk  A  and output the ciphertext 

1T n
qR   c m A r . 

E.Dec( , , )params sk c : Output 
2

,
q

m      
c s . 

Notice that the decryption equation for a ciphertext c  
that encrypts m  under key s  can be written as 

 
2

( )
q

m L 
 c s  where ( )Lc x  is a ciphertext-dependent 

linear equation over the coefficients of x  given by 

( ) ,L c x c x . 

Suppose that we have two ciphertexts 1c and 2c , en-

crypting 1m  and 2m  respectively under the same secret 

key s . The way homomorphic multiplication is accom-

plished in [13] is to consider the quadratic equation 

1 2 1 2, ( ) ( ) ( )Q L Lc c c cx x x . Assuming the noises of the initial 

ciphertexts are small enough, we obtain 

1 21 2 ,
2

( )
q

m m Q      c c s , as desired. If one wishes, one can 

view 
1 2, ( )Qc c x  as a linear equation 

,
( )longL 

1 2c c x x  over the 

coefficients of x x – that is, the tensor of x  with itself – 

where x x ’s dimension is roughly the square of x ’s. 

2.3 Key Switching  

Key Switching stands for a process, which can convert a 

ciphertext 1c  under the secret key 1s  into a ciphertext 2c  

under a different secret key 2s . 

BitDecomp( , )n
qR qx  [10] decomposes x  into its bit 

representation. Namely, write 
log

0
2

q j
jj

  


 x u , where all 

of the vectors ju  are in 2
nR , and output 

log
( ,... )

q  0u u  

log

2

n q
R    . 

Powersof2( , )n
qR qx [10] outputs the vector 

log log
( , 2 ,..., 2 )

q n q

qR      x x x . 

1 2
1 2SwitchKeyGen( , )n n

q qR R s s ： 

1. Run 2 2E.PublicKeyGen( )NA s，  for 1N n  

log q   . 

2. Find out 2A  according to 2A and set 

2 2 2+Powersof2( ) ( Powersof2( ) | )   1 1B A s b s A ( Add 

Powersof2( ) N
qR1s  to A ’s first column.) Output 

1 2
  s s B . 

1 2
SwitchKey( , ) s s 1c ： Output 2 1=BitDecomp( )T c c B  

2n
qR . 

Lemma 2.6: Let 
1 21 2 1 2 2, , , , ,q n n   s ss s A ,B  be as in 

1 2SwitchKeyGen( , )s s , and let 2 22 N
qR 2A s e . Let 

1
1

n
qRc  and 

1 2
SwitchKey( , ) 2 s s 1c c . Then, 2 , 2c s  

1 12 BitDecomp( ), , mod q1 2c e c s  

2.4 Modulus Switching 

Modulus Switching stands for a process, which does not use 
the secret key s  but a bound on its length, can transform a 
ciphertext c  modulo q  into a different ciphertext modulo 

p  while preserving correctness -namely, ,
p

   c s  

, mod 2
q

  c s . 

For integer vector x  and integers q p m  , we de-

fine Scale( , , )q, p r x x  to be the R -vector closest to 

 p / q x  that satisfies mod r x x . 

Lemma 2.7: Let q  and p  be two odd moduli, and let c  

be an integer vector. Define c  to be the integer vector 
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closest to  p / q c  such that mod 2 c c . Then, for any 

s  with  1, / 2 ( / )
q

q q p     c s s , we have 

, , mod 2
p q

       c s c s  and , ( / )
p

q p   c s  

 1,
q
   c s s , where  1 s  is the 1 -norm of s . 

3  A Fully Homomorphic Encryption Scheme 
based on bLWE 

FHE.Setup(1 ,1 )L : Takes as input the security parameter 

 , a number of levels L . Let 

= ( )= (log log )L L     ，  be a parameter about moduli. 

For j L  (input level of circuit) to 0 (output level), run 

( 1)E.Setup(1 ,1 )j
jparams    to obtain a ladder of de-

creasing moduli from   1 bitsLq L   down to 

 0 bitsq  . For 1j L   to 0, replace the distribution 

L with = L  . (That is, the noise distribution do not de-

pend on the circuit level.) 

FHE.KeyGen({params })j : Set E.SecretKeyGenL s  

( )Lparams . Generate matrix 
L

N n
L qR  A  uniformly, a 

vector N
L e , Set 2L L L L

  b A s e  and L A  

( | )L L
b A . 

For j L  down to 0, do the following: 

1. Run modj L jqs s  and E.PublicKeyj A  

Gen( , )j jparams s .Notice that js  and Ls  are the same, 

essentially, since js  is the state of Ls  under the different 

modulus. (Omit this step when j L .) 

2. Set 
1

2
j

j

n

j j j qR
 

 
    s s s . That is, j

s  is a tensor of 

js  with itself whose coefficients are each the product of 

two coefficients of js in 
jqR . 

3. Run 
1 +1SwitchKeyGen( , )

j j j j
 

s s s s . (Omit this 

step when j L .) 

Output: The secret key Lsk  s  and the public 

key
1

( , )
j jjpk A 
  ss ( For j L  down to 0.) 

FHE.Enc( , , )paramas pk m : Take a message in 2R . 

Output: E.Enc( , , )L Lparamas A m . 

FHE.Dec( , , )paramas pk c : Suppose the ciphertext is 

under level of j . Output: E.Dec( , , )j jparamas s c . (The 

ciphertext could be augmented with an index indicating 
which level it belongs to.) 

1FHE.Add( , , )pk 2c c : Apply Inputs Normalization: sup-

pose the two ciphertexts are 1c  modulo 
1

qc  and 2c  

modulo 
2

qc . If 
2 1

q qc c , abandon. If 
2 1

q qc c , set 

2 1
Scale( , , 2)q ,q2 2 c cc c . If 

1 2
q qc c , set 1 Scalec  

1 21( , , 2),q qc cc ( Notice that it takes 
2 1

q qc c  times of 

FHE.Refresh  layer-by-layer for BGV, thus inefficient). Set 

 
2 1

max ,jq q q c c . 

Output: 4 mod jq 1 2c c c  

1FHE.Mult( , , )pk 2c c : Apply Inputs Normalization. First, 

multiply: the new ciphertext, under the secret key 

j j j
  s s s , is the coefficient vector 3c  of the linear 

equation 
,

( )longL 
1 2c c x x . Then, output: 

14 FHE.Refresh( , )
j j j j-1,q ,q

  3 s sc c  

1
FHE.Refresh( , )

j j j j -1,q ,q
 s sc : Takes a ciphertext en-

crypted under j
s , the auxiliary information 

1j j


 s s  to 

facilitate key switching, and the current and next moduli 

jq  and j-1q . Do the following: 

1. Switch Keys: Set 
11 SwitchKey( , )

j j j,q
  s sc c , a 

ciphertext under the key j-1s  for modulus jq . 

2. Switch Moduli: Output 1Scale( , , , 2)j jq q 2 1c c , a 

ciphertext under the key j-1s  for modulus 1jq  . 

3.1 Correctness and Performance  
There are two distinctions between the FHE scheme of 
BGV based on LWE with this paper. Firstly, we improve the 

process of FHE.Add . Secondly, we replaces the sample 

( , ) b  in the BGV based on LWE with the sample ( , ) b . 

Notice that the second part doesn’t interfere with the cor-
rectness and efficiency of BGV. The first part is easy after 
improvement. The proof of theorem is similar to the proof 
of BGV. So we omit the concrete proof here. 

Theorem 3.1 For some = (log log )L    , FHE is a 

correct L -leveled FHE  scheme – specifically, it correctly 
evaluates circuits of depth L  with Add and Mult gates 
over 2R . The per-gate computation of Mult gates is 

 3 5O L   and Add gates is  O  . 

3.2 Security 
In this section, we will focus on the security of our FHE 
scheme and prove the CPA security of the FHE scheme and 
the circular security of key switching process in standard 
model. 

Lemma 3.2 For any 2, 1, 1n q d   , and error distri-

bution  , there is an efficient (transformation) reduction 

from 1,q,nLWE   to the ,q,nbLWE   that reduces the ad-

vantage by at most 2 n . 

Proof. Sample 1( , ) n
q qb    a    from the given oracle, 
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and output 
1

( , ) ( , ( ) [n])bb d    a a a s . Set a  

1
( | ( )d a a  with the vertical bar denoting concatenation. 

 (1) Given an uniform sample 1( , ) n
q qb    a   , the 

reduction outputs an uniform sample ( , ) ( ,b b  a a  

1
( ) [n])d  a s , up to statistical distance 2 n ( since d is a 

constant, b and [ ]ns  are uniform in q .) 

 (2) Given a sample 1( , ) n
q qb    a    from , ,qA s , 

the reduction outputs a sample 
1

( , ) ( , ( )bb d    a a a  

[n])s  from , ,qbA s , where 
1

( ) [n]=b db    a s  

< , >+2ea s , up to statistical distance 2 n . 

Therefore, if the 1,q,nLWE   problem is infeasible, then 

,q,nbLWE   problem is infeasible, completing the proof. It 

means that , ,qbA s  is indistinguishable from uniform. 

A public-key encryption system is circular-secure when it 
remains secure even encrypting some messages that depend 
on the secret keys [6]. 

Theorem 3.3. Let , , ,q n N   be the parameters associ-

ated to FHE.SwitchKey. There is an efficient (transfor-
mation) reduction from FHE.SwitchKey to the ,q,nbLWE  . 

We can get the result by proofing that each row of 

1 2
  s s B  doesn’t leak any message of s , namely, the 

lows are indistinguishable from uniform. 

Set g ( )=Powersof2( )[ ]i is s  and (g ( ) g ( ) ...i it = s + s s， ，， 

g ( )) n
i qs  . The following equation is correct, since we 

have 1 1 a  in the process of SwitchKeyGen . 

 

 

1

, 2 +g ( )

, 2 + g ( )

, 2 + , g ( ) g ( ) ... g ( )

, g ( ) g ( ) ... g ( ) 2

, 2

i

i

i i i

i i i

b e

e

e

e

e

  

   

    

  

  

， ，，

， ，，

a s s

a s a s

a s a s s s

a s + s s s

a t

 

Notice that t  is a vector based on s  and n s , 

only. We view 1( [1],..., [n 1], , 2 ) n
q qe      a a a t  as 

a sample of , ,qbA t , up to statistical distance 2 n . If there 

is an adversary can distinguish , ,qbA t  from uniform. Then 

there is an adversary can distinguish , ,qA t  from uniform. 

Then according to the average-case to worst-case lemma, 
there is an adversary can distinguish , ,qA s  from uniform 

which is infeasible. As a result, ( [1],..., [n 1], ,a t  a a  

12 ) n
q qe     is indistinguishable from uniform. 

Sample 1( [1],..., [n 1], ) n
q qb  a a    from the 

,q,nbLWE   oracle. Given an uniform sample, the reduction 

outputs an uniform sample. Given samples from , ,qbA t , 

the reduction outputs a sample of the row of switching key, 
completing the proof. It means that we have constructed the 
first circularly secure key switching process, what’s more, it 
can replace the key switching process and similar 
re-linearization process used by the existing FHE schemes. 

According to lemma 3.2, ( [1],..., [n 1], ,a s  a a  

12 +Powersof2( )[ ]) n
q qe is     is indistinguishable 

from uniform. 

We let ( )CPA
NSHAdv C  be the success probability of attack-

er C in our scheme, ( )BGVAdv D  be the success probability 

of attacker D in the FHE scheme of BGV based on LWE, 

( )
nLWEAdv A  be the success probability of attacker A in the 

LWE with n dimensions, ( )
nbLWEAdv B  be the success 

probability of attacker B in the bLWE with n dimensions. 
There are two distinctions between the FHE scheme of 

BGV based on LWE with this paper. The first distinction 
between the BGV based on LWE with this paper is that we 
improve the process of FHE.Add . The second is that we 

replaces the sample ( , ) b  in the BGV based on LWE 

with the sample ( , ) b . We will focus on the second part, 

since the first part don’t lower the secure. 
The following inequations are correct, since each row of 

( , ) b  is indistinguishable from the sample of bLWE. 

( ) ( ) | ( ) ( ) |
n n

CPA
NSH BGV LWE aLWEAdv C Adv D Adv A Adv B    

1 1
( ) | ( ) ( ) ( )

n n nBGV LWE LWE LWEAdv D Adv A Adv A Adv A
 

     

1
( ) | ( ) | ( ) ( ) |

n n nbLWE BGV LWE LWEAdv B Adv D Adv A Adv A


     

1
| ( ) ( ) | .

n nLWE bLWEAdv A Adv B


   

Notice that ( )BGVAdv D ,
1

| ( ) ( ) |
n nLWE LWEAdv A Adv A


  

and 
1

| ( ) ( ) |
N NLWE bLWEAdv A Adv B


  are negligible. It means 

that the success probability of attacker C in our scheme is 
negligible and our scheme is CPA secure. 

3.3 Performance 
This paper improves the BGV based on LWE. Compared 
with BGV based on LWE, our scheme has advantages of a 
smaller secret key size , easier and faster computation in 
Inputs Normalization and an efficient FHE.Add. 

1. Secret key size. There are L secret keys in BGV, since 

each level needs a secret key 1

j

n
j qR s  to decryption. Our 

scheme needs only one secret key Ls . 

2. Inputs Normalization. BGV needs to apply 
FHE.Refresh  layer-by-layer to modify the input cipher-

texts of different levels. Our scheme needs only one Scale  

operation. 
3. FHE.Add operation. BGV uses FHE.Refresh  opera-

tion which contains SwitchKey operation and Scale  op-

eration in FHE.Add. It can be removed for efficiency. 
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Table 1 Efficiency Comparison of BV11b
 [9]

, BGV
 [10]

 and Our Scheme 

Schemes Public Key Size  Secret Key Size Circular 

Security  

CPA Securi-

ty  

BV11b
 [9]

 [ ( 1)]lbm n q   1L   No Yes 

BGV
 [10]

 [ ( 1)] ( 1) lbN n L q     L  No Yes 

Our 

Scheme 
[ ( 1)] ( 1) lbN n L q     1 Yes Yes 

 
As a result, our scheme is more efficient then BGV, 

DGHV and BV11b based on LWE, since BGV is more effi-
cient than these schemes. 

4  Summary and Future Directions 

This paper improves the BGV based on LWE. Our scheme 
has a smaller secret key size, faster computation in Inputs 
Normalization and an efficient FHE.Add comparing with 
BGV based on LWE. An important remaining problem is to 
develop the circular security key switching process to base 
on RLWE and apply it to other scheme, such as GSW, 
BV11b. Another interesting problem is to improve the per-
formance of our system. 
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