
Practical Fully Homomorphic Encryption
without Noise Reduction

Dongxi Liu

CSIRO, Marsfield, NSW 2122, Australia
dongxi.liu@csiro.au

Abstract. We present a new fully homomorphic encryption (FHE) scheme
that is efficient for practical applications. The main feature of our scheme
is that noise reduction considered essential in current FHE schemes, such
as boot strapping and modulus switching, is not needed in our scheme,
because it allows arbitrarily large noises in its ciphertexts. A ciphertext
in our scheme is a vector with its dimension specified as a security pa-
rameter of the encryption key. The dimension of ciphertexts does not
change with homomorphic operations and all ciphertext elements are in
a finite domain, so our scheme is compact. In addition, our scheme can
directly encrypt big integers, rather than only bit messages.
We proved the hardness of recovering encryption keys from any number
of ciphertexts with chosen plaintexts and then the semantic security of
our scheme. The hardness of recovering keys from ciphertexts is based
on the approximate greatest common divisors problem. We implemented
a prototype of our scheme and evaluated its concrete performance ex-
tensively from the aspects of encryption, decryption, homomorphic op-
erations, and bitwise operators over ciphertexts. The efficiency of our
scheme is confirmed by the evaluation result.

Keywords: Fully Homomorphic Encryption, Implementation, Practical Effi-
ciency

1 Introduction

Homomorphic encryption has the attractive property of permitting computa-
tion over encrypted data. An encryption scheme is fully homomorphic if the
encrypted data can be homomorphically added and multiplied. In a theoretical
breakthrough work, Gentry described the first fully homomorphic encryption
(FHE) scheme [8]. Following Gentry’s scheme, there are currently a number of
FHE schemes with various improvements, such as weaker security assumptions,
shorter public keys, or better asymptotic efficiency [1, 4, 7, 16, 9, 2, 3].

However, the current FHE schemes are still believed not suitable for practical
applications due to their poor concrete performance [10, 7]. It has been realized
that the poor performance is mainly caused by the noise reduction mechanisms
in the current FHE schemes [2]. One noise reduction mechanism is bootstrap-
ping, which is used in many FHE schemes [1, 4, 7, 16, 9]. As evaluated in [11], a
bootstrapping operation might take about 5.5 minutes.
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In the FHE scheme proposed by Brakerski, Gentry and Vaikuntanathan [2,
3], they described another noise reduction mechanism called modulus switching,
which can achieve better asymptotic performance than bootstrapping. However,
there is no implementation and concrete performance evaluation in [2, 3] and it
is not clear whether their scheme is efficient enough for practical applications. In
addition to the performance problem, noise reduction increases the complexity
of current FHE schemes for understanding and implementing. In [13], Naehrig,
Lauter and Vaikuntanathan only implemented the somewhat version of the FHE
scheme proposed by Brakerski and Vaikuntanathan in [1].

Noise reduction is essential for current FHE schemes because their ciphertexts
cannot be decrypted correctly if the noises in ciphertexts reach a certain limit.
Since homomorphic operations (in particular homomorphic multiplications) can
increase the noises in the resulting ciphertexts, noise reduction mechanisms must
be applied together with homomorphic operations to reduce the noises accumu-
lated in the resulting ciphertexts.

In this paper, we propose a symmetric FHE scheme that allows arbitrarily
large noises in a ciphertext and the resulting ciphertexts generated through any
number of homomorphic operations can always be decrypted correctly regardless
of the amount of noises accumulated in them. Hence, our scheme does not need
any noise reduction mechanism.

A ciphertext in our scheme is a vector, with the dimension specified as a pa-
rameter of the encryption key. The ciphertexts can be homomorphically added or
multiplied, and these homomorphic operations do not change their dimensions.
In addition, the ciphertext elements are defined in a finite domain specified by a
modulus. Hence, our scheme is compact. The features of no noise reduction and
compactness make our scheme efficient and also make it simple to implement
and use.

We proved the security of our scheme from two aspects. First, we proved
that the secret components in an encryption key cannot be recovered from any
number of ciphertexts with chosen plaintexts by the adversary. This proof is
based on the hardness of the approximate greatest common divisors problem.
Then, we proved the semantic security of our scheme; intuitively, our scheme is
semantically secure because the noises in a ciphertext can be arbitrarily large
and if the secret key components cannot be found from ciphertexts, the large
noises cannot be removed by the adversary to distinguish ciphertexts.

A prototype of our scheme has been implemented in Java and extensively
evaluated on a Dell XPS 13 laptop from multiple perspectives: the performance
of encryption and decryption, the performance of homomorphic operations, and
the performance of bitwise operators over ciphertexts. A keyword-based 1-out-of-
n oblivious transfer protocol is also implemented as an application of our scheme
to evaluate its usability in practical applications.

In our experiments, the key is configured to have a space bigger than 2128

and to generate ciphertexts having six dimensions. Our evaluation shows that
our scheme has better encryption and decryption performance than AES 128
provided in the Java SunJCE package. For homomorphic operations, our scheme
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takes about 1 second to evaluate the high degree polynomial
∑1000
i=1 xii, and 0.5

second to compare the bitwise encryption of two integers with 1000 bits. In the
test of retrieving a value from a table with 1000 entries based on an encrypted
keyword, our scheme takes about 2 or 3 seconds, depending on whether the
keyword is represented in 16 bits or 32 bits. The efficiency of our scheme makes
it suitable for many practical applications, such as statistics over encrypted data
[13] and query over encrypted relational databases [15, 14].

The rest of this paper is organized as follows. We give an overview of our
scheme in Section 2, followed by its construction in Section 3 and correctness
proof in Section 4. We prove the security of our scheme in Section 5, with the
implementation and evaluation result presented in Section 6. In Section 7, we
conclude the paper.

2 An Overview of Our Scheme

Let q be a prime and Zq be the set of integers modulo q. The modulus q is public
in our scheme. Given the secret key K(n), an integer v ∈ Zq in our scheme is
encrypted into the ciphertext (c1, ..., cn+1), where ci ∈ Zq. The dimension of
a ciphertext is determined by the parameter n in the key K(n). The security
parameter of our scheme includes n and q, which both determine the size of key
space, and they are chosen by users who want to encrypt their data.

We denote the encryption and decryption operations of our scheme by the
following notations.

Enc(K(n), v) = (c1, ..., cn+1)
Dec(K(n), (c1, ..., cn+1)) = v

For the key K(n), our scheme provides a public evaluation key PEK =
{pekij |1 ≤ i ≤ n + 1, 1 ≤ j ≤ n + 1}, which is used when performing homo-
morphic multiplication. A PEK element pekij is obtained from the encryption
Enc(K(n), sekij), where sekij ∈ Zq is a secret evaluation key element, derived
from K(n). Hence, pekij is also a n+ 1 dimensional vector.

In the following, we suppose the ciphertexts C = (c1, ..., cn+1) and C ′ =
(c′1, ..., c

′
n+1) are encrypted with the key K(n) for discussing the homomorphic

properties of our scheme.

2.1 Homomorphic Addition

The homomorphic addition of C and C ′ is defined as a vector addition, that is,
C ⊕ C ′ = (c1 + c′1 mod q, ..., cn+1 + c′n+1 mod q). Our scheme supports additive
homomorphism by ensuring the following condition.

Dec(K(n), C ⊕ C ′) = Dec(K(n), C) +Dec(K(n), C ′) mod q

Let d ∈ Zq and d�C = (d∗c1mod q, ..., d∗cn+1mod q). According to the additively
homomorphic property, we have Dec(K(n), d� C) = d ∗Dec(K(n), C) mod q.
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2.2 Homomorphic Multiplication

With the public evaluation key PEK, the homomorphic multiplication of C and
C ′, denoted by C ⊗PEK C ′, is defined by the following expression.

((c1 ∗ c′1)� pek11)⊕ ((c1 ∗ c′2)� pek12)⊕ ...⊕ ((cn+1 ∗ c′n+1)� pek(n+1)(n+1))

Our scheme is multiplicatively homomorphic by ensuring the following con-
dition.

Dec(K(n), C ⊗PEK C ′) = Dec(K(n), C) ∗Dec(K(n), C ′) mod q

Thus, we can evaluate any degree of polynomials over ciphertexts by using
homomorphic operations ⊕, � and ⊗PEK . Note that our scheme does not need
any noise reduction schemes (e.g., boot strapping and modulus switching) to
be used together with homomorphic operations. Moreover, our scheme is com-
pact, since all homomorphic operations do not change the dimension of resulting
ciphertexts and each ciphertext element is an integer in Zq.

3 Construction of Our Scheme

We define the structure of key K(n), the encryption and decryption algorithms,
and the secret and public evaluation keys in this section. All random integers
are uniformly sampled from Zq.

3.1 Structure of K(n)

A key K(n) in our scheme is a tuple of four secret components (Γ,Π,Θ, Φ). For
a key K(n), we require n ≥ 3, such that there exist integers h ≥ 2 and m ≥ 1,
satisfying n = h + m. The component Γ is a list [k1, ..., kn], where each ki is a
tuple of random integers in Zq.

ki =


(a, si1, ..., sim, ti) if 1 ≤ i ≤ h;

(siu, ..., sim, ti) if h+ 1 ≤ i ≤ n− 1 and u = i− h+ 1;

(ti) if i = n.

As shown by the above definition of ki, different choices of h and m can lead
to different structures of Γ . On the other hand, h and m can be derived from
the structure of Γ , so they do not need to be explicitly kept in the key. For
correctness, we require a 6= 0 and ti 6= 0 for 1 ≤ i ≤ h.

The component Π of key K(n) is a random permutation of the set {1, ..., n+
1}. Suppose Π = {d1, ..., dn+1}. Then, we have the notation Π(i) = j, such that
i = dj . The component Θ is a list of l random integers in Zq, and we require
l ≤ n − 2. The component Φ is a list consisting of l + 1 ciphertexts, which will
be defined in the next section.
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3.2 Encryption

We have two levels of encryption. The lower level encryption can only be used
a limited number of times (at most n− 1 times) for a key K(n) for the security
reason to be discussed below, while the upper level encryption can be used any
number of times to encrypt values in Zq, including secret evaluation keys.

3.3 Lower Level Encryption

The lower level encryption is denoted by Encl(K(n), v) = (c1, ..., cn+1). The
lower level encryption algorithm only uses the components Γ and Π in K(n) to
define each ci, as shown below, where r1, ...,rh, rs1,..., rsm, rv1,...,rvh−1 and rr
are random integers uniformly sampled from Zq, and S(i) = Σm

j=1sij ∗ rsj .

cΠ(i) =



a ∗ ti ∗ (v +Σh−1
j=1 rvj) + S(i) + ti ∗ (ri − rh) mod q if i = 1;

a ∗ ti ∗ (−rvi−1) + S(i) + ti ∗ (ri − ri−1) mod q if 2 ≤ i ≤ h;

rsu +Σm
j=u+1sij ∗ rsj + ti ∗ rr mod q if h+1 ≤ i≤ n−1

and u = i− h;

rsm + ti ∗ rr mod q if i = n;

rr mod q if i = n+ 1.

In our scheme, the lower level encryption is only used to generate the com-
ponent Φ in K(n) (as a part of key generation). Suppose in K(n), we have
Θ = [θ1, ..., θl], where l ≤ n − 2. Then, we generate Φ = [φ1, ..., φl+1], with φi
defined below.

φi =

Encl(K(n), θi) if i ≤ l;

Encl(K(n), 1) if i = l + 1.

Hence, the lower level encryption is used at most n− 1 times. Note that φl+1 is
an encryption of the integer 1. Θ and Φ in K(n) will be used in the upper level
encryption.

3.4 Upper Level Encryption

We denote the upper level encryption by Enc(K(n), v) = (c1, ..., cn+1). That is,
the encryption described in Section 2 is the upper level encryption. Let Θ =
[θ1, ..., θl] and Φ = [φ1, ..., φl+1] in K(n). Then, the upper level encryption is
defined as

Enc(K(n), v) = (ru1 � φ1)⊕ (ru2 � φ2)⊕ ...⊕ (rul+1 � φl+1)

where ru1,...,and rul are random integers uniformly sampled from Zq and rul+1 =
v −Σl

i=1rui ∗ θi mod q.
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3.5 Decryption

Our decryption algorithm recovers a value v from a ciphertext (c1, ..., cn+1) with
the key K(n) by taking the following steps.

(1) RR = cΠ(n+1) mod q;

(2) RSm = cΠ(n) − tn ∗RR mod q;

(3) RSu = cΠ(i) − ti ∗RR−Σm
j=u+1sij ∗RSj mod q, for u from m− 1 to 1

and i = u+ h;

(4) F = Σh
i=1((cΠ(i) −Σm

j=1sij ∗RSj)/ti) mod q;

(5) v = F/a mod q.

The correctness condition a 6= 0 and ti 6= 0 (1 ≤ i ≤ h) for K(n) ensures the
validity of decryption steps (i.e., no division by zero). We prove the correctness
of our scheme in the next section.

In the above definition, the decryption algorithm is described in five steps
by using intermediate variables, such as RSu and F . Actually, we can fuse these
steps by replacing each intermediate variable (F , RSi or RR) by its definition
recursively until all intermediate variables are removed. After fusion, we get a
linear form of the decryption algorithm.

v = dk1 ∗ cΠ(1) + ...+ dkn+1 ∗ cΠ(n+1) mod q

where dk1, ..., and dkn+1, called linear decryption keys, are defined over Γ in
K(n). The linear decryption keys will be used to define the secret and public
evaluation keys in the next section.

From the linear form of decryption, we can see if the lower level encryption
is used n times or more for a key K(n), then the linear decryption keys can be
obtained by solving n equations under chosen-plaintext attacks. For this security
reason, our scheme requires the lower level encryption be used at most n−1 times
and only used for generating Φ. The upper level encryption works by randomly
combining vectors in Φ (i.e., using the ciphertexts in Φ as a basis), so the upper
level encryption does not generate independent vectors and can be securely used
any number of times.

As an example, we fuse the decryption steps for the key K(5), with h = 3
and m = 2, and get the following six linear decryption keys dki (1 ≤ i ≤ 6),
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where w = a ∗ (t1 ∗ t2 ∗ t3) mod q.

dk1 = t2 ∗ t3/w mod q

dk2 = t1 ∗ t3/w mod q

dk3 = t1 ∗ t2/w mod q

dk4 = −(t2 ∗ t3 ∗ s11 + t1 ∗ t3 ∗ s21 + t1 ∗ t2 ∗ s31)/w mod q

= −(dk1 ∗ s11 + dk2 ∗ s21 + dk3 ∗ s31) mod q

dk5 = (t2 ∗ t3 ∗ s11 + t1 ∗ t3 ∗ s21 + t1 ∗ t2 ∗ s31) ∗ s42/w

−(t2 ∗ t3 ∗ s12 + t1 ∗ t3 ∗ s22 + t1 ∗ t2 ∗ s32)/w mod q

= −dk4 ∗ s42 − (dk1 ∗ s12 + dk2 ∗ s22 + dk3 ∗ s32) mod q

dk6 = (t2 ∗ t3 ∗ s11 + t1 ∗ t3 ∗ s21 + t1 ∗ t2 ∗ s31) ∗ (t4 − s42 ∗ t5)/w

+(t2 ∗ t3 ∗ s12 + t1 ∗ t3 ∗ s22 + t1 ∗ t2 ∗ s32) ∗ t5/w mod q

= −dk4 ∗ (t4 − s42 ∗ t5) + (dk1 ∗ s12 + dk2 ∗ s22 + dk3 ∗ s32) ∗ t5 mod q

To define secret evaluation keys in the next section, we need to permutate
the keys dk1, ..., dkn+1 into dk′1, ..., dk

′
n+1, such that dk′j = dki if Π(i) = j for

1 ≤ i ≤ n+ 1 and 1 ≤ j ≤ n+ 1. Since dk′j ∗ cj = dki ∗ cΠ(i), the linear form of
decryption can be written into the following new form, where Π is not needed
any more.

v = dk′1 ∗ c1 + ...+ dk′n+1 ∗ cn+1 mod q

3.6 Secret and Public Evaluation Keys

Recall that our scheme provides a public evaluation key PEK = {pekij |1 ≤
i ≤ n + 1, 1 ≤ j ≤ n + 1} for homomorphic multiplication. An element in
PEK is an encryption of a secret evaluation key element sekij , that is, pekij =
Enc(K(n), sekij).

Given Dec(K(n), C) = v and Dec(K(n), C ′) = v′, our scheme ensures
Dec(K(n), C ⊗PEK C ′) = v ∗ v′ mod q. Let C = (c1, ..., cn+1) and C ′ =
(c′1, ..., c

′
n+1). From the multiplicatively homomorphic property, we can deter-

mine the following condition that must be satisfied by sekij .

Dec(K(n), C ⊗PEK C ′)

= Dec(K(n), ((c1 ∗ c′1)� pek11 ⊕ ...⊕ (cn+1 ∗ c′n+1)� pek(n+1)(n+1)))

= Σn+1
i=1 Σ

n+1
j=1 (ci ∗ c′j) ∗Dec(K(n), pekij)) mod q

= Σn+1
i=1 Σ

n+1
j=1 (ci ∗ c′j) ∗ sekij mod q

= v ∗ v′ mod q
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The secret evaluation key is derived from the linear form of our decryption
algorithm. For Dec(K(n), C) = v and Dec(K(n), C ′) = v′, we have their corre-
sponding linear decryption forms.

v = Σn+1
i=1 dk

′
i ∗ ci mod q

v′ = Σn+1
j=1 dk

′
j ∗ c′j mod q

By multiplying v and v′, we can get the following equations.

v ∗ v′ mod q

= (Σn+1
i=1 dk

′
i ∗ ci) ∗ (Σn+1

j=1 dk
′
j ∗ c′j) mod q

= Σn+1
i=1 Σ

n+1
j=1 (dk′i ∗ ci ∗ dk′j ∗ c′j) mod q

= Σn+1
i=1 Σ

n+1
j=1 (ci ∗ c′j ∗ dk′i ∗ dk′j) mod q

Thus, by defining sekij = dk′i∗dk′j mod q, we have Σn+1
i=1 Σ

n+1
j=1 (ci∗c′j∗sekij) =

v∗v′ mod q, meaning that this definition of sekij satisfies the required condition.
Note that each sekij is also a value in Zq, so it can be encrypted as other plaintext
values.

4 Correctness of Our Scheme

We prove the correctness of additive homomorphism for our lower level encryp-
tion algorithm, and then extend the proof to other cases.

4.1 Additive Homomorphism

Suppose N values vb (1 ≤ b ≤ N) are encrypted into N ciphertexts (cb1, ..., c
b
n+1),

under the key K(n), with the lower level encryption algorithm. For correctness
proof we do not care the number of times the lower level encryption is used. In
the following, we prove that Dec(K(n), (ΣN

b=1c
b
1 mod q, ..., ΣN

b=1c
b
n+1 mod q)) =

ΣN
b=1vb mod q.

Let rb1, rb2,...,rbh, rsb1, ..., rsbm, rvb1,...,rvbh−1 and rrb be the random numbers
used in the encryption of vb. Then, we have the following definition for the sum
of each ciphertext element. Let S(i) = Σm

j=1sij ∗ (ΣN
b=1rs

b
j).

ΣN
b=1c

b
Π(i) =



a ∗ ti ∗ (ΣN
b=1(vb +Σh−1

j=1 rv
b
j)) + S(i) + ti ∗ (ΣN

b=1(rb1 − rbh)) mod q,

if i = 1;
a ∗ ti ∗ (ΣN

b=1(−rvbi−1)) + S(i) + ti ∗ (ΣN
b=1(rbi − rbi−1)) mod q,

if 2 ≤ i ≤ h;

ΣN
b=1rs

b
u +Σm

j=u+1sij ∗ (ΣN
b=1rs

(b)
j ) + ti ∗ (ΣN

b=1rr
b) mod q,

if h+1 ≤ i≤ n−1 and u = i− h;
ΣN
b=1rs

b
m + ti ∗ (ΣN

b=1rr
b) mod q, if i = n;

ΣN
b=1rr

b mod q, if i = n+ 1.
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Based on the above definition, the proof below checks each decryption step,
eventually showing that the decryption result is ΣN

b=1vb.

– RR = ΣN
b=1c

b
Π(n+1) mod q = ΣN

b=1rr
b mod q

– RSm = ΣN
b=1c

b
Π(n) − tn ∗RR mod q

= ΣN
b=1rs

b
m + tn ∗ (ΣN

b=1rr
b)− tn ∗ (ΣN

b=1rr
b) mod q

= ΣN
b=1rs

b
m mod q

– For u from m − 1 to 1 and i = u + h, we can recursively have RSu =
ΣN
b=1rs

b
u mod q.

RSu = ΣN
b=1c

b
Π(i) − ti ∗RR−Σ

m
j=u+1sij ∗RSj mod q

= ΣN
b=1rs

b
u +Σm

j=u+1sij ∗ (ΣN
b=1rs

b
j) + ti ∗ (ΣN

b=1rr
d)− ti ∗RR

−Σm
j=u+1sij ∗RSj mod q

= ΣN
b=1rs

b
u mod q

– Let F = F1 + F2h, where F1 and F2h are defined below. Then we have
F = a ∗ (ΣN

b=1vb) mod q.

F1= (ΣN
b=1c

b
Π(1) −Σ

m
j=1s1j ∗RSj)/t1 mod q

= (a ∗ t1 ∗ (ΣN
b=1(vb +Σh−1

j=1 rv
b
j)) + S(1) + t1 ∗ (ΣN

b=1(rb1 − rbh))

−Σm
j=1s1j ∗RSj)/t1 mod q

= (a ∗ t1 ∗ (ΣN
b=1(vb +Σh−1

j=1 rv
b
j)) + t1 ∗ (ΣN

b=1(rb1 − rbh)))/t1 mod q

= a ∗ (ΣN
b=1(vb +Σh−1

j=1 rv
b
j)) +ΣN

b=1(rb1 − rbh) mod q

= a ∗ΣN
b=1vb + a ∗ΣN

b=1Σ
h
j=2rv

b
j−1 +ΣN

b=1(rb1 − rbh) mod q

F2h= Σh
i=2(ΣN

b=1c
b
Π(i) −Σ

m
j=1sij ∗RSj)/ti mod q

= Σh
i=2(a ∗ ti ∗ (ΣN

b=1(−rvbi−1)) + S(i) + ti ∗ (ΣN
b=1(rbi − rbi−1))

−Σm
j=1sij ∗RSj)/ti mod q

= Σh
i=2(a ∗ ti ∗ (ΣN

b=1(−rvbi−1)) + ti ∗ (ΣN
b=1(rbi − rbi−1)))/ti mod q

= Σh
i=2a ∗ (ΣN

b=1(−rvbi−1)) +Σh
i=2(ΣN

b=1(rbi − rbi−1)) mod q
= Σh

i=2a ∗ (ΣN
b=1(−rvbi−1)) +ΣN

b=1(rbh − rb1) mod q

– At last, according to the last step of the decryption algorithm, the decryption
result is ΣN

b=1vb = F/a mod q.

4.2 Other Cases

Suppose the value v is encrypted into (c1, ..., cn+1) under the key K(n), with
the random numbers r1, r2,...,rh,rs1,..., and rsm, rv1,..., rvh−1, and rr. The
proof of Dec(K(n), (d ∗ c1 mod q, ..., d ∗ cn+1 mod q)) = d ∗ v mod q has the
same structure as the above proof for additive homomorphism. To obtain the
proof, we replace ΣN

b=1c
b
Π(i) in the above proof with d ∗ cΠ(i), Σ

N
b=1vb with d ∗ v,

ΣN
b=1rs

b
j with d ∗ rsj , etc. These proofs imply the correctness of the upper level

encryption, since it is defined over homomorphic operations ⊕ and �.
From the proof of � operation, by letting d = 1, we get the correctness

proof of Dec(K(n), (c1, ..., cn+1)) = v. The homomorphic multiplication ⊗PEK
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is defined over ⊕ and �. Hence, the above proofs can establish the correctness of
multiplicative homomorphism, together with the correctness of secret evaluation
keys, which is discussed in the previous section.

5 Security Analysis

We first prove that it hard to recover the secret components Γ and Φ in a
key K(n) from ciphertexts. Then based on the hardness of the key recovery
problem, we prove the semantic security of our scheme. The hardness of our key
search problem is based on the approximate greatest common divisors (AGCD)
problem.

5.1 The AGCD Problem

This problem is proposed by Howgrave-Graham [12]. Given any number of the
approximate multiples ai = p ∗ qi + ri of p, where p, qi and ri are integers, the
problem is to find the hidden common divisor p. Note that qi and ri change in
each ai. There are algorithms proposed in [5, 6] to recover p, but this problem is
still believed to be hard and used by fully homomorphic encryption schemes, such
as [16, 7]. In particular, if ri can be as large as p, it is impossible to reconstruct
p from any number of approximate multiples ai [6].

5.2 Hardness of Recovering Φ and Γ

The component Φ in a key K(n) is a list of secret vectors that are linearly
combined to generate ciphertexts in the upper level encryption. We prove that
it is hard to recover the secret vectors in Φ from any number of ciphertexts.

Theorem 1. Given any number of ciphertexts from the upper level encryption
with K(n), it is hard to recover Φ in K(n).

Proof 1 Let Φ = [φ1, ..., φl+1], where l ≤ n − 2, and φi = (φi1, ..., φi(n+1)). As
shown in the upper level encryption, a ciphertext (c1, ..., cn+1) is defined as:

c1 = Σl+1
i=1rui ∗ φi1 mod q

...

cn+1 = Σl+1
i=1rui ∗ φi(n+1) mod q

In the first ciphertext element c1, φi1 (1 ≤ i ≤ l+1) are the common divisors
to be recovered. We prove that it is hard to find the secret value φ11 from the
first element c1 of any number of ciphertexts.

Let r1 = Σl+1
i=2rui ∗ φi1. Then, we have c1 = ru1 ∗ φ11 + r1 mod q. Since

rui (1 ≤ i ≤ l + 1) are random numbers generated for each encryption, r1 is
a number unknown to the adversary and randomly changes for each encryption
even if the adversary chooses plaintexts. Moreover, r1 can be bigger than φ11.
Hence, it is hard to recover φ11 from the first element c1 of any number of
ciphertexts according to the hardness of the AGCD problem. The proofs for other
secret values in Φ are carried out similarly.
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The upper level encryption in our scheme is built over the lower level encryp-
tion, in which the Γ component of K(n) is used. The component Γ consists of
n tuples of secret values, with each tuple independently used in the lower level
encryption. Among a ciphertext, the element cΠ(n) has the simplest definition
which involves the secret value tn. In this section, we prove that it is hard to
recover tn and the proofs for other secret values in Γ are similar.

Theorem 2. Given any number of ciphertext elements cΠ(n) from the upper
level encryption with K(n), it is hard to find tn in Γ .

Proof 2 Let Φ = [φ1, ..., φl+1], where l ≤ n − 2, and φi = (φi1, ..., φi(n+1)).
Thus, from the lower level encryption, we have

φiΠ(n) = rsim + tn ∗ rri mod q

and the element cΠ(n) from the upper level encryption is defined as:

cΠ(n) = Σl+1
i=1rui ∗ φiΠ(n) mod q

= Σl+1
i=1rui ∗ (rsim + tn ∗ rri) mod q

= Σl+1
i=1rui ∗ rsim + tn ∗ (Σl+1

i=1rui ∗ rri) mod q

The rest of the proof is similar to the above one. Since rui (1 ≤ i ≤ l + 1) are
random numbers generated for each encryption, we know that Σl+1

i=1rui ∗ rsim is
a number unknown to the adversary and randomly changes for each encryption.
Moreover, Σl+1

i=1rui ∗ rsim can be bigger than tn. Hence, it is hard to recover tn
from the element cΠ(n) of any number of ciphertexts according to the hardness
of the AGCD problem.

For a ciphertext vector, the adversary cannot know exactly which element is
cΠ(n), since he does not know the permutation Π in K(n). Hence, it is harder
for the adversary to recover tn from cΠ(n).

5.3 Semantic Security

We analyze the semantic security of our scheme by proving the indistinguisha-
bility of ciphertexts under chosen-plaintext attacks (i.e., IND-CPA).

Theorem 3. Given two plaintexts v and v′ chosen by a probabilistic polynomial-
time adversary, and a ciphertext C that encrypts v or v′ with K(n), the adversary
can only distinguish whether C encrypts v or v′ with a probability negligibly
higher than 1

2 .

Proof 3 In our scheme, only the element cΠ(1) in C is dependent on v or v′.
Thus, if the adversary cannot distinguish whether cΠ(1) encrypts v or v′, then he
cannot distinguish whether C encrypts v or v′. Moreover, the hardness of our key
recovery problem proved above shows that other ciphertext elements cΠ(i) (2 ≤
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i ≤ n + 1) cannot be exploited to determine secret key values used in cΠ(1).
Hence, we consider only cΠ(1) to prove the semantic security of our scheme.

Let Θ = [θ1, ..., θl], Φ = [φ1, ..., φl+1], and φi = (φi1, ..., φi(n+1)), where l ≤
n − 2. Thus, from the lower level encryption, by letting S = Σm

j=1s1j ∗ rsij, we
have

φiΠ(1) =

a ∗ t1 ∗ (θi +Σh−1
j=1 rvij) + S + t1 ∗ (ri1 − rih) mod q if 1 ≤ i ≤ l

a ∗ t1 ∗ (1 +Σh−1
j=1 rvij) + S + t1 ∗ (ri1 − rih) mod q if i = l + 1

Let v′′ is either v or v′. Then, cΠ(1) from the upper level encryption is defined
as:

cΠ(1) = Σl+1
i=1rui ∗ φiΠ(1) mod q

= a ∗ t1 ∗ (Σl
i=1rui ∗ θi + rul+1 +Σl+1

i=1rui ∗ (Σh−1
j=1 rvij))+

Σl+1
i=1rui ∗ (Σm

j=1s1j ∗ rsij) + t1 ∗ (Σl+1
i=1rui ∗ (ri1 − rih)) mod q

= a ∗ t1 ∗ v′′ +Σl+1
i=1rui ∗ (a ∗ t1 ∗ (Σh−1

j=1 rvij)+

Σm
j=1s1j ∗ rsij + t1 ∗ (ri1 − rih)) mod q

Note that v′′ = Σl
i=1rui ∗ θi + rul+1 according to the upper level encryption

algorithm.
If v 6= 0 and v′ 6= 0, then the expressions of a∗t1∗v mod q and a∗t1∗v′ mod q

generate the same value from 1 to q − 1 with the same probability, since q is a
prime and a 6= 0 and t1 6= 0 are uniformly sampled from Zq. Hence, at this case,
the probability of distinguishing whether cΠ(1) encrypts v or v′ is just 1

2 , since
the definition of cΠ(1) differs only on the two indistinguishable expressions when
encrypting v or v′ . In the following, we discuss the case where v = 0 and v′ 6= 0.
The case where v 6= 0 and v′ = 0 is similar.

Let W = Σl+1
i=1rui ∗ (a ∗ t1 ∗ (Σh−1

j=1 rvij) +Σm
j=1s1j ∗ rsij + t1 ∗ (ri1 − rih))−

ru1 ∗ a ∗ t1 ∗ rv11 mod q. Then,at this case, we have either cΠ(1) = W + ru1 ∗ a ∗
t1 ∗ rv11 mod q or cΠ(1) = a∗ t1 ∗v′+W + ru1 ∗a∗ t1 ∗ rv11 mod q, depending on
whether v or v′ is encrypted. The advantage of distinguishing these two cΠ(1) is
negligible, if the advantage of distinguishing the value of ru1 ∗ a ∗ t1 ∗ rv11 mod q
from the value of a ∗ t1 ∗ v′ + ru1 ∗ a ∗ t1 ∗ rv11 mod q is negligible, since the rest
part of each cΠ(1) (i.e., W ) is the same.

Further, a∗t1 is the common factor in the expressions ru1∗a∗t1∗rv11 mod q
and a∗t1∗v′+ru1∗a∗t1∗rv11 mod q. Hence, the values of these two expressions
can be distinguished only with a negligible advantage, if the advantage of distin-
guishing the value of ru1 ∗ rv11 mod q from the value of v′ + ru1 ∗ rv11 mod q is
negligible.

The value of ru1 ∗ rv11 mod q is from a distribution, where the probability of
ru1∗rv11 mod q = 0 is 2∗q−1

q∗q , while the probability of ru1∗rv11 mod q = z, where

z 6= 0, is q−1
q∗q , since ru1 and rv11 are uniformly sampled from Zq and q is a prime.

In the expression v′ + ru1 ∗ rv11 mod q, v′ is selected by the adversary. Hence,
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the value of v′ + ru1 ∗ rv11 mod q is from a distribution, where the probability
of ru1 ∗ rv11 mod q = v′ is 2∗q−1

q∗q , while the probability of ru1 ∗ rv11 mod q = z,

where z 6= v′, is q−1
q∗q . That is, the two expressions have different provability for

their values 0 and v′, and the same probability for other q − 2 values.
Thus, the advantage of distinguishing the value of ru1 ∗ rv11 mod q from the

value of v′ + ru1 ∗ rv11 mod q is 2 ∗ ( 2∗q−1
q∗q −

q−1
q∗q ) = 2 ∗ ( q

q∗q ) = 2
q . Let the bit

length of q be b. Then, the advantage is a negligible function with respect to the
bit length b.

Moreover, since the adversary cannot know exactly which element is cΠ(1),
it is harder for him to distinguish whether C encrypts v or v′.

6 Implementation and Evaluation

We have implemented a prototype of our scheme in Java and evaluated its con-
crete performance on a Dell XPS 13 laptop. In our implementation, all values
(plaintexts, keys, random numbers and ciphertext elements) are represented with
the Java class BigInteger and Eclipse is used to run Java programs.

6.1 Configuration

The public modulus q in our experiment is q = 100000000000031, which is a
prime and thus a value in Zq can be as big as 1014. The key K(n) is configured
to have n = 5, with h = 3 and m = 2. Hence, the linear decryption keys
dki (1 ≤ i ≤ 6) for our experiment are the same as the example defined in
Section 3.5.

We choose l = 2, such that Θ = [θ1, θ2] and Φ = [φ1, φ2, φ3]. The three inde-
pendent vectors in Φ mean that three linear decryption keys can be determined,
with another three left as free variables. Hence, the space for linear decryption
keys is 1014∗3 = 1042 > 2128.

Homomorphic Enc AES Enc Homomorphic Dec AES Dec

0.22 0.25 0.02 0.17

Table 1. Performance of Encryption and Decryption (seconds)

6.2 Performance of Encryption and Decryption

In this experiment, we evaluate the encryption and decryption performance of
our scheme by comparing it with the AES algorithm provided in the Java security
package SunJCE. The AES algorithm is configured to run in the CBC block mode
with PKCS5 padding and it supports a 10128 key space in the SunJCE package.
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In our evaluation, we randomly generate 10000 integers, each of which has 5
digits (e.g., 34845), and then use our encryption scheme and the AES algorithm
to encrypt each integer, respectively. After all encryptions, we decrypt each cor-
responding ciphertext with our scheme and AES. Table 1 shows the average
time of encryption and decryption performed by our scheme and AES. We can
see our scheme is slightly faster than AES for encryption, while much faster for
decryption.

Fig. 1. Time for Running ΣN
i=1x

i
i over Encrypted xi

6.3 Performance of Homomorphic Operations

We evaluate the performance of homomorphic addition and multiplication with
high-degree polynomials over ciphertexts. The polynomial we used has the form
ΣN
i=1x

i
i, where xi is the encryption of a randomly generated integer of five digits.

The exponential function xii is calculated by using the following formula.

xii =

xi(x
2
i )

i−1
2 mod q if i is odd

(x2i )
i
2 mod q if i is even

Figure 1 gives the time for evaluating ΣN
i=1x

i
i from N = 1000 to N = 10000.

This experiment shows that our scheme is efficient to perform a large number
of homomorphic operations. For example, the homomorphic operations for cal-
culating ΣN

i=1x
i
i takes about 1 seconds when N = 1000 and about 15 seconds

when N = 10000. Note that xii is an exponential function with respect to i. The
correctness of homomorphic addition and multiplication is also checked in this
experiment.
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6.4 Operations over Encrypted Bits

Bitwise encryption allows the comparison of encrypted integers. We have imple-
mented a library that has functions to encrypt integers bitwise, and to support
comparison, addition, and multiplication with bitwise operators, such as AND,
XOR and NOT. In the following, we evaluate the performance of our scheme
when comparing bitwise encryption of integers.

Let V = v1v2...vN and V ′ = v′1v
′
2...v

′
N be the binary representation of V and

V ′. We only report the performance of comparing whether V is bigger than V ′.
We use the following expression, which returns 1 if V > V ′, and 0 otherwise.

(v1 ⊕ v′1)v1 + (v1 ⊕ v′1 ⊕ 1)(v2 ⊕ v′2)v2 + ...+
(v1 ⊕ v′1 ⊕ 1)...(vN−1 ⊕ v′N−1 ⊕ 1)(vN ⊕ v′N )vN

In the above expression, ⊕ is overloaded to represent the XOR operation and
defined as v ⊕ v′ = v + v′ − 2vv′.

Fig. 2. Performance of Comparing Encrypted Integers

In this experiment, we encrypt each bit vi and v′i of V and V ′, and then
evaluate the above expression over encrypted bits. Figure 2 gives the perfor-
mance with the bit number N increasing from 1000 to 10000. As shown by this
experiment, we can efficiently compare bitwise encryption of integers with our
scheme.

6.5 An Application: Keyword-Based Oblivious Transfer

As an application example, we implemented a keyword-based 1-out-of-n oblivious
transfer protocol with our FHE scheme. In this protocol, we suppose the sender
has a table, consisting of T entries, and each entry consists of a keyword KWi
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and a value Vi for 1 ≤ i ≤ T . The keyword KWi is assumed to be unique in
the table, and the table is not encrypted by the sender. A receiver may want to
retrieve an entry by specifying a keyword KWr.

Fig. 3. Performance of Oblivious Transfer

Let KWi == KWr denote 1 if the two keywords KWi and KWr match,
and 0 otherwise. Without considering the oblivious requirement, the sender can
answer the receiver’s request by sending the result of the following expression.

(KW1 == KWr) ∗ V1 + ...+ (KWT == KWr) ∗ VT

If KWr is not a valid keyword in the table, the result is 0; otherwise, only the
value Vi with the matched keyword is returned, since we assume each keyword
is unique.

To make the transfer oblivious, the receiver encrypts the request KWr in bits
with his own key K(n), and then sends the encrypted keyword to the sender,
together with the modulus, the public evaluation key, and an encryption of 1
(i.e., Enc(K(n), 1)). Note that for an integer v, we have v � Enc(K(n), 1)) =
Enc(K(n), v)). Hence, Enc(K(n), 1)) is used by the sender to change a table
entry (KWi, Vi) into an entry encrypted with the receiver’s key K(n). Note
that KWi needs to be encrypted in bits for supporting comparison, while Vi is
just encrypted as an integer. After such encryption, the above expression can be
evaluated over ciphertexts with homomorphic operations.

Figure 3 shows the performance of our oblivious transfer protocol, where
keywords are represented with 16 bits or 32 bits. Since KWr is encrypted, the
sender does not know which entry is selected by the receiver. On the other hand,
the table entries not matched with KWr is not included in the result, so the
receiver only knows the table entry being selected.
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7 Conclusion

In this paper, we presented a new FHE scheme, which allows arbitrarily large
noises in ciphertexts. Hence, it does not need any noise reduction mechanism,
such as bootstrapping and modulus switching, which is considered as the most
essential technique in current FHE schemes. Our scheme is compact, since homo-
morphic operations do not change the size of ciphertexts. These features makes
our scheme efficient and also makes it simple to implement and use in data
processing applications.

We proved the security of our scheme from two aspects: the hardness of find-
ing secret key values from ciphertexts and semantic security. The hardness of
recovering secret key values from ciphertexts is based on the approximate GCD
problem. We implemented a prototype in Java and evaluated the performance on
encryption, decryption, homomorphic operations, and bitwise operators over ci-
phertexts. An 1-out-of-n oblivious transfer protocol has been implemented as an
application of our scheme and its performance is also evaluated. Our evaluation
confirmed that our scheme is efficient for practical applications.

References

1. Z. Brakerski, , and V. Vaikuntanathan. Fully homomorphic encryption from ring-
lwe and security for key dependent messages. In Proceedings of the 31st Annual
Conference on Advances in Cryptology, CRYPTO’11, pages 505–524, Berlin, Hei-
delberg, 2011. Springer-Verlag.

2. Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (leveled) fully homomorphic
encryption without bootstrapping. In ITCS, pages 309–325, 2012.

3. Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (leveled) fully homomorphic
encryption without bootstrapping. ACM Trans. Comput. Theory, 6(3):13:1–13:36,
July 2014.

4. Z. Brakerski and V. Vaikuntanathan. Efficient fully homomorphic encryption from
(standard) lwe. In Proceedings of the 2011 IEEE 52nd Annual Symposium on Foun-
dations of Computer Science, FOCS ’11, pages 97–106, Washington, DC, USA,
2011. IEEE Computer Society.

5. Y. Chen and P. Q. Nguyen. Faster algorithms for approximate common divisors:
Breaking fully-homomorphic-encryption challenges over the integers. In Proceed-
ings of the 31st Annual International Conference on Theory and Applications of
Cryptographic Techniques, EUROCRYPT’12, pages 502–519, Berlin, Heidelberg,
2012. Springer-Verlag.

6. H. Cohn and N. Heninger. Approximate common divisors via lattices. IACR
Cryptology ePrint Archive, 2011:437, 2011.

7. J.-S. Coron, A. Mandal, D. Naccache, and M. Tibouchi. Fully homomorphic en-
cryption over the integers with shorter public keys. In Proceedings of the 31st
annual conference on Advances in cryptology, CRYPTO’11, pages 487–504, Berlin,
Heidelberg, 2011. Springer-Verlag.

8. C. Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of the
41st annual ACM symposium on Theory of computing, STOC ’09, pages 169–178,
New York, NY, USA, 2009. ACM.



18 Dongxi Liu

9. C. Gentry and S. Halevi. Fully homomorphic encryption without squashing using
depth-3 arithmetic circuits. In Proceedings of the 2011 IEEE 52Nd Annual Sympo-
sium on Foundations of Computer Science, FOCS ’11, pages 107–109, Washington,
DC, USA, 2011. IEEE Computer Society.

10. C. Gentry and S. Halevi. Implementing gentry’s fully-homomorphic encryption
scheme. In Proceedings of the 30th Annual international conference on Theory and
applications of cryptographic techniques: advances in cryptology, EUROCRYPT’11,
pages 129–148, Berlin, Heidelberg, 2011. Springer-Verlag.

11. S. Halevi and V. Shoup. Bootstrapping for helib. In Advances in Cryptology -
EUROCRYPT 2015 - 34th Annual International Conference on the Theory and
Applications of Cryptographic Techniques,, pages 641–670, 2015.

12. N. Howgrave-Graham. Cryptography and Lattices, volume 2146 of Lecture Notes in
Computer Science, chapter Approximate Integer Common Divisors, pages 51–66.
2001.

13. M. Naehrig, K. Lauter, and V. Vaikuntanathan. Can homomorphic encryption be
practical? In Proceedings of the 3rd ACM Workshop on Cloud Computing Security
Workshop, CCSW ’11, pages 113–124, New York, NY, USA, 2011. ACM.

14. R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakrishnan. Cryptdb:
protecting confidentiality with encrypted query processing. In Proceedings of the
Twenty-Third ACM Symposium on Operating Systems Principles, SOSP ’11, pages
85–100, 2011.

15. S. Tu, M. F. Kaashoek, S. Madden, and N. Zeldovich. Processing analytical queries
over encrypted data. In Proceedings of the 39th international conference on Very
Large Data Bases, PVLDB’13, pages 289–300, 2013.

16. M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan. Fully homomorphic en-
cryption over the integers. In Proceedings of the 29th Annual international confer-
ence on Theory and Applications of Cryptographic Techniques, EUROCRYPT’10,
pages 24–43, Berlin, Heidelberg, 2010. Springer-Verlag.


