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SUMMARY: Gentry’s bootstrapping technique is the most famous method
of obtaining fully homomorphic encryption. In this paper | propose a new
fully homomorphic encryption scheme on non-associative octonion ring
over finite field without bootstrapping technique [1]. The security of the
proposed fully homomorphic encryption scheme is based on computational
difficulty to solve the multivariate algebraic equations of high degree while
the almost all multivariate cryptosystems [2],[3],[4],[5].,[6],[7] proposed
until now are based on the quadratic equations avoiding the explosion of
the coefficients. Because proposed fully homomorphic encryption scheme
Is based on multivariate algebraic equations with high degree or too many
variables, it is against the Grobner basis [8] attack, the differential attack,
rank attack and so on.

The key size of this system and complexity for enciphering/deciphering
become to be small enough to handle.
keywords: fully homomorphic encryption, multivariate algebraic equation,
Grobner basis, octonion

81. Introduction

A cryptosystem which supports both addition and multiplication (thereby preserving
the ring structure of the plaintexts) is known as fully homomorphic encryption (FHE)
and is very powerful. Using such a scheme, any circuit can be homomorphically
evaluated, effectively allowing the construction of programs which may be run on
encryptions of their inputs to produce an encryption of their output. Since such a
program never decrypts its input, it can be run by an untrusted party without revealing
its inputs and internal state. The existence of an efficient and fully homomorphic
cryptosystem would have great practical implications in the outsourcing of private
computations, for instance, in the context of cloud computing.
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With homomorphic encryption, a company could encrypt its entire database of e-
mails and upload it to a cloud. Then it could use the cloud-stored data as desired—for
example, to calculate the stochastic value of stored data. The results would be
downloaded and decrypted without ever exposing the details of a single e-mail.

In 2009 Gentry, an IBM researcher, has created a homomorphic encryption
scheme that makes it possible to encrypt the data in such a way that performing a
mathematical operation on the encrypted information and then decrypting the result
produces the same answer as performing an analogous operation on the unencrypted
data[9],[10].

But in Gentry’s scheme a task like finding a piece of text in an e-mail requires
chaining together thousands of basic operations. His solution was to use a second
layer of encryption, essentially to protect intermediate results when the system broke
down and needed to be reset.

Some fully homomorphic encryption schemes were proposed until now [11],[12],
[13],[14].[15].

In this paper | propose a fully homomorphic encryption scheme on non-associative
octonion ring over finite field which is based on computational difficulty to solve the
multivariate algebraic equations of high degree while the almost all multivariate
cryptosystems [4],[5],[6],[7] proposed until now are based on the quadratic equations
avoiding the explosion of the coefficients. Our scheme is against the Grébner basis [8]
attack, the differential attack, rank attack and so on.

Organization of this paper is as follows. In Sec.2 preliminaries for octonion
operation are described. In Sec.3 we construct proposed fully homomorphic
encryption scheme. In Sec.4 the procedure for proposed fully homomorphic
encryption scheme is described. In Sec.5 re-encryption scheme is described. In Sec.6
we analyse proposed scheme to show that proposed scheme is immune from the
Grobner basis attacks by calculating the complexity to obtain the Grobner basis for
the multivariate algebraic equations. In Sec.7 we describe the size of the parameters
and the complexity for enciphering and deciphering. In Sec.8 we describe conclusion.
In Sec.9 we consider the composition of plaintext.

82. Preliminaries for octonion operation

In this section we describe the operations on octonion ring and properties of octonion
ring.
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82.1 Multiplication and addition on the octonion ring O

Let g be a fixed modulus to be as large prime as O(219).
Let O be the octonion [16]ring over a finite field Fq.

O={(av,ay,....a7) | & & Fq(j=0,1,...,7)} (1)
We define the multiplication and addition of A,B €0 as follows.
A=(ap,as,...,a7), a< Fq(=0,1,....,7), (2
B=(bo,bs,...,b7), b € Fq (j=0,1....,7). (3)
AB mod g

= (agho - a;b1- axby- asbs-asbs- ashs-aghs-azb; mod q,
aob+aibg+ash,+ashs-asb,+ashs-ashs-azbs mod q,
aphy-a1bs+asbe+asbs+asbi-asbs+agh7-azbs mod g,
apbs-a1b7-azbs+azbe+asbs+ash,-aghs+azh; mod g,

aobs+ash; - azb; - agbs+asbo+ash;+ ashs - azbs mod q,
aobs-a;bg+azbs-ash,-asbs+asho+aghi +azh, mod g,

apbs+asbs - ab;+asgh, - asbs - asb;+ash +azb, mod g,

apb7+asbs+asbs-ashi+asbs-ashs-agh,+azho mod q) 4)

A+B mod g
=(ap+bomod g, a;+b; mod ¢, a;+b, mod q, as+bsmod g,
ay+bsmod q, as+bsmod g, as+bs mod g, a;+b;mod q ). (5)
Let
|Al>= ag’+as>+...+a;°mod . (6)

If |A[>20 mod g, we can have A%, the inverse of A by using the algorithm Octinv(A)
such that

A= (ap/ |A? mod g, -a;/ |A? mod ..., -a7/ JA]? mod q) < Octinv(A). (7)

Here details of the algorithm Octinv(A) are omitted and can be looked up in the
Appendix A.

§2.2 Order of the element in O
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In this section we describe the order “J ” of the element “A4 ™ in octonion ring, that
IS,
A=A mod q.
Theorem 1
Let A:=(awo,a11,...,a17) €0, a;;EFq  (j=0,1....,7).
Let (&no,ant,....an7) :=A"E0, aFq  (n=1,2,...;j=0,1,....7).
aoo , anj S(n=1,2,...;j=0,1,...) and by’s(n =0,1,...) satisfy the equations such that
N:=ap?+...+a;7> mod g

ago:=1, b()::O, b1::1,

ano= an-10a10 — br:aN mod g ,(n=1,2,...), (8)
bn = an10+ bnaazo mod g ,(n=1,2,...), 9)
anj= bpagj mod q ,(n=1,2,...;j=1,2,...,7) . (10)

(Proof?)

Here proof is omitted and can be looked up in the Appendix B.

Theorem 2

For an element A=(ayp,a11, ...,a17) €0,

AM1=A mod g,
where
J=LCM {g*1, g-1}=0?-1,
N:=ay;%+ ag?+...+a;727#0 mod g.
(Proof: )

Here proof is omitted and can be looked up in the Appendix C.

82.3. Property of multiplication over octonion ring O

A,B,C etc. = O satisfy the following formulae in general where A,B and C have the
inverse A1 B! and C*mod g.



1) Non-commutative
AB#BA modq.
2) Non-associative

A(BC)#(AB)C mod q.

3) Alternative
(AAB=A(AB) modq, (11)
A(BB)=(AB)B mod q, (12)
(AB)A=A(BA) modq. (13)
4) Moufang’s formulae [16],
C(A(CB))=((CA)C)B mod q, (14)
A(C(BC))=((AC)B)C mod q, (15)
(CA)(BC)=(C(AB))C mod g, (16)
(CA)(BC)=C((AB)C) mod g. (17)

5) For positive integers n,m, we have
(AB)B" =((AB)B™))B=A(B(B™'B))=AB™ modg,  (18)
(AB")B =((AB)B™))B=A(B(B™'B))=AB™* modq,  (19)
B" (BA) =B(B™(BA))= ((BB™))B)A=B™A modq,  (20)
B(B" A)=B(B™(BA))= ((BB™1)B)A=B™A modg.  (21)
From (12) and (19), we have
[(ABMB]B =[AB™]B mod g,
(AB")(BB) =[(AB")B]B =[AB™!]B= AB™2 mod g,
(AB"B?= AB™2 mod g,

(ABMB™= AB™™ mod g.
In the same way we have

B™(B" A)=B™™A mod g.



6) Lemma 1
A(B((AB)"))=(AB)™ mod g,
(((AB)MA)B =(AB)™* mod q.
where n is a positive integer and B has the inverse B2
(Proof?)
From (14) we have
B(A(B((AB)")=((BA)B)(AB)"=(B(AB))(AB)"=B(AB)™* mod g.
Then
B*(B(A(B(AB)")=B"(B (AB)™) mod g,
A(B(AB)"= (AB)™! mod q.

In the same way we have

(((AB))A)B=(AB)™ mod g. ged.
7) Lemma 2
A1(AB)=B mod g,
(BA)A'=Bmodq.
(Proof?)

Here proof is omitted and can be looked up in the Appendix D.

8) Lemma 3
A(BA1)= (AB)A1mod g.
(Proof?)
From (17) we substitute A*to C, we have
(AA)(B AY)= A ((AB) AY) mod g,
(B AY)=A1((AB) AY) mod q.
We multiply A from left side ,
A(B AH=A(A ((AB) A1))= (AB) At mod g. q.e.d.
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We can express A(BA?), (AB)A! such that
ABA™,

9) From (13) and Lemma 2 we have
AY((A(BAY)A)= ALA((BAYA))=(BAHA=B mod g,
(AY((AB)A)A=((A(AB))A1)A= A1(AB)=B mod q.

10) Lemma 4
(BA1)(AB)=B?mod q.

(Proof?)

From (17),

(BA)(AB)=B((A*A)B)=B? mod q. g.e.d.
11) Lemma 5
(ABA)( ABA)= AB?A1mod q.

(Proof?)

From (17),

(ABAY)(ABA1) mod q
=[AT (A(BADI(AB)A™]= A* {[(A*(BAT))(AB)]A"} mod g
= A {[(AABA™))(AB)JA'} mod g
= A {[(A((AB)A))(AB)JA'} mod g
= A {[(AAB))AD))(AB)JA'} mod q.
We apply (15) to inside of [ . ],
= A {[(A((AB)(A(AB)))]A"} mod g
= A {[(A((AB)B))]A"} mod g
= AT {JA(A(BB))]A'} modq
={ A1 [A(A(BB))]}A? mod q
=(A(BB))A! mod q



=AB?A*mod g. g.e.d.

12) Lemma 6
(AB"AY)( AB"AL )= AB™AT mod g.
(Proof?)
From (16),
[A™ (A%(BTA)]I(ABNA]= {A™ [(A(BTA™))(AB"]}A mod g
= A{ [(AA(B™A™))(AB")]A™} mod g
= A [(A((ABMAD)(ABT)]AT}  mod g
= AT { [(A(ABM)AT)(ABM] A} mod g
= AT { [(A’BMAT)(ABN] A"} mod q.
We apply (15) to inside of { . },
= AT { (A°BM)[A*((ABDAT)]} mod g
= AT { (A°BM)[AYAB'A)]} mod g
=A1{(A2B"(B"A1)} modq
= AL{ (AYAB™)(B'AD} mod q.
We apply (17) to inside of { . },
= AT {AY([(A°BMB"AY]} modg
=AT{AY((A3B™MA)} modq
= AT {(AY(AB™M)A} modq
=AT{(A2B™MA1} mod q
={ A1 (A?B™")) }A1 mod q
=(AB™MA* mod g
=AB™"Almod q. q.ed
13) A= O satisfies the following theorem.

Theorem 3
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A?=w1+vA mod q,

where
Fw,vEFq,
1=(1,0,0,0,0,0,0,0)=0,
A=(ap,ay,...,a7) 0.
(Proof?)

A2mod q
=(  aoap-a1a1- Axa2- AzAz-A4dy- AsAs-AsAs-a787 MOd g,
apay +a,80+a,as+a3a7-48;+as86-8685-a783 Mod g,
odz-ayay+aao+aszdst+asd;-asas+asdr-asas mod g,
ApAs-a1a7-A285+azd+audst+asaz-asdy+aza; mod q,
Apas+a182-8,81-A38+audo+asar+asas-azas Mod (g,
oAs-aap+ara3-a3az-audr+Hasap+asa; +azas mod g,
Aoas+a;85-aya7+azau-a4as-asas +asaptarza, mod g,
Qa7 +a183+a286-8381 +A485-asa4-Asa2+azao Mod )
=(2a0?- L mod q, 2a,a; mod ¢, 2a,a, mod ¢, 2a,as mod q, 2a,a, mod g, 2a,as mod q,
2apas mod q, 2aa; mod q)
where
L= ap?+a,?+a’+az+as+ag>+as>+a;> mod q.
Now we try to obtain u, vE Fqthat satisfy A>=w1+vA mod q.
wl+vA=w(1,0,0,0,0,0,0,0)+v(ao,as,...,a7) mod q,
A%= (2a4%- L mod g, 2a0a; mod g, 2a0a, mod g, 2asas mod q, 2asa; mod q,
2 apas mod g,2apas mod g, 2apa; mod q).
Then we have
AZ=w1+vA=-L1+2 aA mod g,

w=-L mod q,
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v=2apmod q. g.e.d.
14) Theorem 4
A" =w,1+v,A mod q

where h is an integer and wi,vi, EFq.
(Proof?)

From Theorem 3

AZ=w,1+v,A=-L1+2a,A mod q.
If we can express A"such that

Ah:Whl'l'VhA mod gs0, whhEFq,

Then
AM1=(wy1+vhA)A mod g

=WpA+vp(-L1+2 apA) mod g

=-Lvp1+( wh+2avih)A mod g.
We have

Wha=-L Vs mod g Fq,
Vhe1= Wpt2apvh, mod g Fq. g.ed.
15) Theorem 5

D <0 does not exist that satisfies the following equation.
B(AX)=DXmod g,

where B,A,DEO0, and X is a variable.

(Proof?)
When X=1, we have
BA=D mod q.
Then
B(AX)=(BA)X mod g.
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We can select CE O that satisfies
B(AC)# (BA)C mod g. (22)
We substitute C=O to X to obtain
B(AC)=(BA)C mod g. (23)
(23) is contradictory to (22). g.e.d.

16) Theorem 6
D <0 does not exist that satisfies the following equation.
C(B(AX))=DX mod g (24)
where C,B,A,DEO0, C has inverse C*mod q and X is a variable.

B,A,C are non-associative, that is,

B(AC)# (BA)C mod g. (25)
(Proof?)
If D exists, we have at X=1
C(BA)=D mod g.
Then
C(B(AX))=(C(BA))X mod q.
We substitute C to X to obtain
C(B(AC))=(C(BA))C mod g.
From (13)

C(B(AC))=(C(BA))C=C((BA)C) mod q
Multiplying C* from left side ,
B(AC)=(BA)C mod q (26)
(26) is contradictory to (25). g.e.d.

17) Theorem 7
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D and E< O do not exist that satisfy the following equation.
C(B(AX))=E (DX) mod q
where C,B,A,D and EE O have inverse and X is a variable.
A,B,C are non-associative, that is,
C(BA)+(CB)A mod q.
(Proof?)
If D and E exist, we have at X=1
C(BA)=ED mod q
We have at X=(ED)*=D"E* mod g.
C(B(A(D'E™))=E (D(D'E™)) mod g=1,
(C(B(A(DE™))™* mod =1,
((ED)AY)BHC! mod g=1,
ED =(CB)A mod g.
From (28) and (29) we have
C(BA) =(CB)A mod q.
(30) is contradictory to (27). g.e.d.

18) Theorem 8

D <0 does not exist that satisfies the following equation.

A(B(A™X))=DX mod q

where B,ADE0O, A has inverse A*mod g and X is a variable.
(Proof?)

If D exists, we have at X=1

A(BA1)=D mod q.

Then

A (B(AX))=(A(BA))X mod q.

(27)

(28)

(29)

(30)

(31)
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We can select C< O such that

(BA)(CA?) # (BAL)C)A?mod q.

That is, (BAY), C and A? are non-associative.
Substituing X=CA in (31), we have
A (B(A(CA)))=(A(BA™))(CA) mod q.
From Lemma 3
A (B((A*C)A)))=(A(BA1))(CA) mod g.
From (17)
A (B((A'C)A)))=A([(BAH)C]A) mod g.
Multiply A* from left side we have
B((AC)A))= ((BAY)C)A mod g.
From Lemma 3
B(A*(CA))=((BA1)C)A mod g.
Transforming CA to ((CA?)A™), we have
B(AL((CA2AL)=((BAL)C)A mod g.
From (15) we have
((BA1)(CAH)A'=((BA')C)A mod .
Multiply A from right side we have
((BAL)(CAY)=((BAY)C)AZmod g.
(33) is contradictory to (32).

g.e.d.

(32)

(33)
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83. Concept of proposed fully homomorphic encryption scheme

Homomorphic encryption is a form of encryption which allows specific types of
computations to be carried out on ciphertext and obtain an encrypted result which
decrypted matches the result of operations performed on the plaintext. For instance, one
person could add two encrypted numbers and then another person could decrypt the
result, without either of them being able to find the value of the individual numbers.

83.1 Definition of homomorphic encryption

A homomorphic encryption scheme HE := (KeyGen; Enc; Dec; Eval) is a
quadruple of PPT (Probabilistic polynomial time) algorithms.

In this work, the message space M of the encryption schemes will be octonion
ring, and the functions to be evaluated will be represented as arithmetic circuits over
this ring, composed of addition and multiplication gates. The syntax of these
algorithms is given as follows.

-Key-Generation. The algorithm KeyGen, on input the security parameter 17,
outputs (sk) < KeyGen(1") , where sk is a secret encryption/decryption key.

-Encryption. The algorithm Enc, on input system parameter [q], secret keys(sk)
and a message m& U, outputs a ciphertext C «—Enc(sk;m).

-Decryption. The algorithm Dec, on input system parameter [q], secret key(sk) and
a ciphertext C, outputs a message m*«—Dec(sk;C).

-Homomorphic-Evaluation. The algorithm Eval, on input system parameter g, an
arithmetic circuit ckt, and a tuple of n ciphertexts (Cs,..., Cy),
outputs a ciphertext C* —Eval(ckt; Cy,..., Cy).

The security notion needed in this scheme is security against chosen plaintext
attacks (IND-CPA security), defined as follows.

Definition 1 (IND-CPA security). A scheme HE is IND-CPA secure if for any PPT
adversary Ay it holds that:

AdVEA5e [A] :=|PrTAJ(Enc(sk;0)) = 1] - Pr[A4(Enc(sk;1)) = 1]|= negl(»)
where (sk) «KeyGen(1").

§3.2 Definition of fully homomorphic encryption
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A scheme HE is fully homomorphic if it is both compact and homomorphic with
respect to a class of circuits. More formally:

Definition 2 (Fully homomorphic encryption). A homomorphic encryption scheme
FHE :=(KeyGen; Enc; Dec; Eval) is fully homomorphic if it satisfies the following
properties:

1. Homomorphism: Let CR = {CR; },.n be the set of all polynomial sized
arithmetic circuits. On input sk <—KeyGen(1"), Vckt € CR,, V(mg,...,m)) €
M" where n=n(A), V(Ci,...,Cp)

where Cij— Enc(sk;m;), it holds that:
Pr[Dec(sk;Eval(ckt; Cy,...,Cy)) # ckt(my,...,my)] = negl(A).

2. Compactness: There exists a polynomial « = u(4) such that the output length of
Eval is at most x bits long regardless of the input circuit ckt and the number of its
inputs.

83.3 Proposed fully homomaorphic enciphering/deciphering functions

We propose a fully homomorphic encryption (FHE) scheme based on the
enciphering/deciphering functions on octonion ring over Fq.

| define the some parameters for describing FHE.

Let g be a prime more than 2.

Let M=(mo,my,...,m7) €0 be the plaintext to be encrypted.

Let X=(Xo,...,X7) €O[X] be a variable.

Let E(M,X) and D(M,X) be a enciphering/deciphering function of user A,

Let C(X)=E(M,X) =O[X] be the ciphertext.

Ai €0 is selected randomly such that Ai? exists (i=1,...,k) which is the secret keys
of user A.

C(X)=E(M,X) is defined as follows.
C(X)=E(M,X):=A(...(AM(A? (...(A1 1X)...) mod g=O[X] , (34)
=( eooXo+eo1X1t ... TeorX7,

€10Xpt+e11X1t ... te17 X7,

e7o0Xot+e X1+ ... terr X7), (35)
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= {ej}(1,)=0,...,7) (36)

with e; < Fq (i,j=0,...,7) which is published in cloud centre.
Let D be the deciphering function defined as follows.

G1(X):=AM(...(A2X)....), (37)
Go(X):=As(....(AX)...), (38)
D:=
Gu(C(G2(1))= A ..(Ar(...(Ar. .. (AMAE (. (A YA ..(AD)..)  (39)
=M

:(mo,ml,. . .,m7).
83.4 Elements on octonion ring assumption EOR(k,n;q)

Here we describe the assumption on which the proposed scheme bases.
Elements on octonion ring assumption EOR(K,n;Q).

Let q be a prime more than 2. Let k and n be integer parameters. Let A:=(Ay,...,A)
€0 Let Ci(X) := AX,Mi)=AK. ..(Ar (Mi(ArY(...(At X)...) mod g O[X] where
plaintexts M;:=(mi,...., miz) EO(i=1....,n), X is a variable.

In the EOR(K,Nn;q) assumption, the adversary Aq is given Ci(X) (i=1,...,n)
randomly and his goal is to find a set of elements A=(A,,...,Aq) €O with the order of
the elements A,..., Ax and plaintexts M;(i=1,...,n). For parameters k = k(X) and n=n(})
defined in terms of the security parameter A and for any PPT adversary A4 we have

Pr [Ax(...(As(Mi (ArY(.. (A X)...) mod g = Ci(X) (i=1,...,n):

A=(As,..., A), Mi(i=1,...,n)«Aq (1, Ci(X) (i=1,...,n))]= negl(p).

To solve directly EOR(k,n;q) assumption is known to be the problem for solving
the multivariate algebraic equations of high degree which is known to be NP-hard.

83.5 Syntax of proposed algorithms

The syntax of proposed scheme is given as follows.

-Key-Generation. The algorithm KeyGen, on input the security parameter 1* and
system parameter g, outputs sk« KeyGen(1%), where sk is a secret
encryption/dencryption key.

-Encryption. The algorithm Enc, on input system parameter ¢, and secret keys sk
and a message m< M, outputs a ciphertext C(X ;sk,m)«—Enc(sk;m).
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-Decryption. The algorithm Dec, on input system parameter [q], secret keys sk
and a ciphertext {c;}, outputs message Dec(sk;{cij}) where {c;} «—Enc(sk;m).

-Homomorphic-Evaluation. The algorithm Eval, on input system parameter g, an
arithmetic circuit ckt, and a tuple of n ciphertexts ({c1;;}...., {cn;j}), outputs an
evaluated ciphertext {c j}<—Eval(ckt; {c1;}...., {cni}).

Theorem 9
Forany M\N<O,

if E(M, X)=E (N, X) mod g, then M= N mod g.

Thatis,ifM # N mod g, then E(M, X)#E (N, X) mod g.
(Proof)
IfE(M, X)=E (N, X) modq, then

As(.. . AMAE (...(ALX)...)= (As(. . .(ANAC (...(AL 2X)...) mod g.
We substitute A(...(AcX)...) to X in above expression, we obtain
As(-(AMAC(A AL (AX). . )=ALCCANAC (A (AL (AX)...) mod g,
Ax(....(AMX)...)= Ax(... (AN X)...) mod g,
MX =NX mod g.
We substitute 1 to X,
M=Nmodq. g.ed

It is said that M and E(M,X) corresponds one to one .

It is shown that the encrypting function E(M, X) has the property of fully
homomorphism.

83.6 Addition/subtraction scheme on ciphertexts

Let N=(no,ny,...,n7) €O be another plaintext to be encrypted.
Let C,1(X)=E(M, X) and C;(X)=E (N, X) be the ciphertexts.
C1(X)x C(X) mod g =E(M,X) £ E (N,X) mod q
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=As(.. .(AM (A (..(ALX)...) +A1 . .(AN(AC (... (A1 EX)...) mod g
=As(....(AM £ N] (A (....(AL 2X)...) mod g
E(M,X)  E (N,X)= E(M£N,X) mod g. (40)

83.7 Multiplication scheme on ciphertexts
Let C1(X)= E(M, X) and C,(X)=E (N, X) be the ciphertexts.
C1(C2(X)) mod q =E(M, E (N,X)) mod q
=Au(...(AM (ALAAL (.. (ANA. ..(Ar2X)...) mod g
= Au(...(A(M(N (A (...(ArX)...) mod q (41)

83.8 Inverse of E(M,X)
We define E(M, X)tD, the inverse of E(M, X) such that
E(M, E(M, X)™)=E(M, E(M, X))V=X. (42)

Theorem 10
In case that ME O has the inverse , that is [M|%40 mod q,
if E(M, E(M, X))=E(M ’, E(M, X))=X,

M =M 1 mod g,
That is,
E(M, X)D=E(M %, X).
(Proof:)
E(M, E(M *,X))
=As(...(AM (AT G A A AM A (. .(AL X)) mod g =X,
Au(...(AMM’ (A (....(AL X)...) mod g=X.
We substitute (As(...(AL)...) to X in above expression, we obtain
As(...(AMM)...)= (Ax(...(Ad)...) mod g.
MM ’=1 mod q,
Then
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M>=M " mod g,
That is
E(M, X)D=E(M %, X).
As the same manner, we obtain the same result from the equation
E(M’, E(M, X))=X. g.e.d.
We define the element expression of E(M, X) and E(M °, X) which is the inverse of
E(M, X) as follows.
E(M, X)=As(....(AM (At (...(ArX)...) mod gEO[X] ,
=( eooXoteorXat ... TeorXz,

E1o0Xote11 X1+ ... te17 X7,

er0Xo+enXat ... terr X7) mod q, (43)
={eij}(,j=0,...,7) (44)
with ;& Fq (i,j=0,...,7).
E(M *, X)=Au(...(AM * (A . .(Ar2X)...) mod gEO[X] ,
=(e’ooXote oXat ... +e o7z,

e 10Xote X1t ... +e’17 X7,

e’ oXote 71Xt ... te'r7 X7) mod q, (45)
={e’j}(1,j=0,...,7) (46)
with e < Fq (i,J)=0,...,7).

Then we obtain
E(M, E(M”, X)) =
{eoo(€’00Xote 01X1t... €’ 07X7)+eo1(€’10X0te X1t ... Te 17 X7)+... teor(€’70X0+€’ 71Xt ... +e’77 X7),

e1o0(e ooXote oiXit... te’orX7)Hew(e’1oXo+e’ uXit... +e’17 X7)+... +err(€’ 70X+ 71Xt ... +e’77 X7),



e7o(e ooXote oiX1t ... te o7X7)+eri(€’10Xo+e 111+ ... te’17 X7)+ ... Ferr(€'70%o e 71X ... +e’77 X7) }

mod g.

From

we obtain

We solve the above 8 simultaneous equations so that we obtain the value of e’; €

Fq(i,j=0,...,7).
That is,

20

€00€’00+€01€" 10+ .

€108 00t€11€10t.

€708 00+t€71€ 10t ..

€00€’01+€01€7 11t ..

€108 01118 11 +.

€708 01t€71€ 11+

€008 07+€01€" 17+ ..

€108 o7 t€11€ 17+

€708 o7te71€ 717+

E(M, X)“D=E(M", X) mod g

=( €’ 0oXote’ gaX1t ... te 07Xz,

E(M, E(M ’, X)) =X=(Xo,...,X7) mod q ,

.+e07€’70=1 mod ¢

..+e17€’70=0 mod q

.+e77€’70=0 mod ¢

.+ep7e’717=0mod g

..+ee’n=1mod q

.+er72’°71=0 mod g

.+eg7€’77=0 mod g

.+e17€°77=0 mod g

+er7e’77=1 mod q
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€’ 10X +€ X1+ ... +e’17 Xy,

e’7oXo+e 71X+ ...+€’77 X7) mod g, (47)

={e"i}(i,j=0,...,7) (48)
with e’ Fq (,j=0....,7).

83.9 Division scheme on ciphertexts

Let C1(X)= E(M, X) and C,(X)=E (N, X) be the ciphertexts.

We try to make the ciphertext of M/N where N has the inverse.

First we calculate the inverse of E(N,X) by using method described above to obtain
E(N,X)D,

E(N, X)®V=E (N, X).
E(M, E(N, X)®D)= E(M, E(N, X))
=As(....(AMNT (AL (.. (AL 2X)...) mod g E O[X] (49)

83.10 Property of proposed fully homomorphic encryption

(IND-CPA security). Proposed fully homomaorphic encryption is IND-CPA secure.

As adversary Aq does not know sk, Aq is not able to calculate M from the value of
E(M,X).

For any PPT adversary Ay it holds that:
AdVEPALE [A] =|PrTAJ(E(Mo,X)) = 1] - PrTA«((E(M1,X))= 1]|= negl(A)
where sk «KeyGen(1%).

(Fully homomorphic encryption). Proposed fully homomorphic encryption
=(KeyGen; Enc; Dec; Eval) is fully homomorphic because it satisfies the following
properties:

1. Homomorphism: Let CR = {CR; },en be the set of all polynomial sized arithmetic
circuits. On input sk «KeyGen(1*), Vckt € CRy, V(My,...,m)) € M"wheren
=n(A), V({cl}.....{cni}) where {cij} —(E(M\,X)), (r =1,...,n),

we have D(sk;Eval(ckt; {c1;},...,{cn;})) = ckt(my,...,my).

Then it holds that:
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Pr[D(sk; Eval(ckt; {c1j}.....{cn;})) # ckt(m,,...,my)] = negl(}).

2. Compactness: As the output length of Eval is at most klog,q=kA where k is a
positive integer, there exists a polynomial x = x()) such that the output length of Eval
IS at most u bits long regardless of the input circuit ckt and the number of its inputs.

84. Proposed fully homomorphic data-processing procedure

User Alis the data holder generating the ciphertexts corresponding to the data which
he holds. He wants that the information of the data which he holds is not revealed.
User B is the company which processes the enciphered data in cloud data centre
without revealing and knowing the information of the data.
User A wants to obtain the result for processing the data, for example, stochastic
value.
1)User A selects A;=0 randomly such that At exists (i=1,...,k) which is the secret
keys of user A.
Let M;i(i=0,...,n-1) be the plaintexts.

C(X)=E(M;, X) is defined as follows.
C(X)=E(M;, X)=Aq(...(A(M; (A (...(A1 X)...)...) mod gEO[X] , (50a)
:( elgoXo+elgiX1+ ... +Elg7X7,

eiipXo+eiiXi+ ... +ely7 X7,

el7oXo+eizXe+ ... +elsy X7), (50b)
= {eij}(.k=0,...,7) (50¢)

with eix=Fq (i=0,...,n-1;},k=0,...,7).
2) User Aencrypts plaintexts M; O (i=0,...,n-1) to C;(X) = O[X] (i=0,...,n-1) such
that
Ci(X)=E(M;, X) (i=0,1,...,n-1)
where E(.) is the enciphering function to be secret.
3) User A sends [eij (i=0,...,n-1;},k=0,...,7)] to cloud data centre through the
insecure line.
4) Later, user A sends his request for processing the data of user A to the user B.
For example 1, user A requests the value of the ciphertext corresponding to
(M1+My+Ms)/(MM3) €0.
5) User B receives the request from user A and downloads g,C1(X),C2(X),Cs(X) from
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cloud data centre.He calculates the ciphertext C*(X) corresponding to
(M1+M2+M3)/(M2M3) as follows.

Cl(X):E(M1,X):A1(. . (Ak(Ml (Ak_l (.. .(A1-1X). ..) mod g, (51)
Cao(X)=E(M2,X)=Aq(.. .(Ak(Mz(Ak'l (.. .(A1'1X). ..)mod g, (52)
Ca00=EM3X)=Au(....(AdMa(Ac (....(ArX)...) mod g, (53)

K1(X):=C1(X)+C(X)+C3(X)=Ax(...(A([M1 +Mo+M3](A(...(Ar2X)...) mod g, (54)
K2(X):=C»(C3(X))=E(M2,E(M3,X))=Au(. . .(Ad(M2(M3(AcX(...(Ar2X)...) mod g, (55)
Ka(X):= K2(X)Y mod g, (56)
where K3(K2(X)) = Kz(K3(X) )=X mod g.

K3(X) is obtained by using the method described in 83.8 Inverse of E(M,X) and
applying to Ky(X)V,

Then K5(X) is given such that

Ka(X) =As(...(AM3zL (M2 L (At (....(AL X)....) mod g, (57)

because

Ad(. .. (AMa(Ms (At (. .(Ac 2 (A(...(AMsT (M2 L (A (...(AL X))

= Au(...(AM2(Ms (M3 (M2 2 (A (... (AL 2X)....)

= Ad(...(AM2o(M3 (M3 (M 2 (At (...(Ar 2X)...) =X mod . (58)
C*(X)= K1(K3(X)) mod g. (59a)

= (CooXo+ ...Co7X7,

CoXot... +C77X7) (59b)
={c;}(1,j=0,...,7) (59c)

with c;=Fq (i,j=0....,7).

6) User B sends C*(X) as the ciphertext corresponding to the plaintext
(M1+M2+M3)/(M2M3) to user A.

7) User A receives C*(X) from user B.

8) User A deciphers C*(X) to obtain the plaintext (M;+M,+Mj3)/(M2M3) by using
the secret keys of user A, Ai(i=0,... k) such that

A G (At (CHT AL .. (AL )]
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= A (A {K(Ks[ Ad. .. (AD)..)DD)...)

=AC (A AL A M+MA+MB] (A . . (AT AL . . (AM Y M ACK. . (A
(Au(...(Ad)..)}..))

=[My + Mo+ M3](Mzt (M2 2 (At (... (AL 2 (Ag(...(AD)...)

=[M1 + Mo+ M3](Ms? (M, 1))

=[M; + M+ M3](MM3 ) !

=[M;+M,+Mj3]/(M2M3) mod g. (60)

9) Next user A sends his request for processing the data of user A to the user B.
For example 2, user A requests the value of the ciphertext corresponding to
(M1+M2+M3)/(M1+M2M3) 0.

10) User B receives the request from user A and he calculates the ciphertext C*(X)
corresponding to (M;+M,+Msz)/(M;1+M,Ms) as follows.

C1()=E(M,X)=Ax(...(A(M (At (...(A¢ 2X)...) mod g, (61)
Ca(X)=E(M2,X)=Ax(. ..(A(MA(A (....(AL 1X)...) mod g, (62)
Ca(X)=E(M3,X)=A1(...(AMs(A™ (....(AL X)...) mod g, (63)

K1(X)=C1(X)+C(X)+C3(X)=Ax(...(A([M1+Mx+M3] (A (...(A1 1X)...) mod q, (64)
K2(X)=C2(C3(X))=E(M2,E(M3,X))=Ax(...(A(M2(M3 (Ac* (...(A1 2X)...) mod g, (65)
Ks(X)= C1(X)+Ka(X)
=Ac(... (AWM (At (...(AL X))+ A (AdMa(Ms (At (....(AL X)) mod g,
=Ad(...(AIMz (AC(. . (A1 X). ) +Mo(Ma(AC... (A1 2X)..)])...) mod g, (66)
Let

Co*(X):= K(X) (67)
and
Cz*(X)::Kg(X). (68)

11) User B sends C;*(X)= Ky(X) and C,*(X)=K3(X) as the ciphertext to user A.
12) User A receives Ci*(X)= Ky(X) and C,*(X)=Ks(X) from user B.

13) User A deciphers C;*(X)= Ky(X) and C*(X)=K3(X) to obtain the plaintext
(M1+M2+Ms)/(M1+M2Ms) by using the secret keys of user A as follows.
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Ru=ACL (...(AL T (C*(Au...(Ad)...)
= AL (o (ALY (Ky(A(. .. (AD)...)...)
=M; + M+ Mzmod q,
Ro:=Act (...(Ar 2 (Co*(Ad(....(AL)...)
AL (AHAL .. (AIMUACC . (A AL . (AL)... )+
Ma(Ms (AcK(...(ArH(Ad...(AD)..) ])...)
=M; +M,(M3 1)mod q,
= M; +M,M3; mod g.
R1(R2)*=( M1 + Mo+ M3)( M1 + MoM3 )™ mod g
=( Mz + Ma+ M3) / (M1 + MaM3 ) mod g.

Here we notice that from theorem 11, D < O does not exist such that
C*(X)=AC(. . .(Ar(AL(. . .(AD (AH...(ATY(AL(...(A X)...).

Theorem 11
Let M{,M,,MzE O be non-associative each other.
D &0 does not exist such that

M X+ Mz(MgX)zDX

(Proof?)
When X=1, we obtain

Mi1+M,;Ms=D.

Then

M1 X+Mz(M3X)=( M1+M,M3)X
Let E be non-associative to M;,Ms, that is,

Mo(M3E) # ( M2Ms)E.
From (D,when X=E,

M1E+Mo(M3E)=( M1+M,Ms)E
My(M3E)=( M,M3)E

It is contradictory.

(69)

(70)

(71)



26

g.e.d.

85. Proposed re-encryption scheme

Now | describe the re-encryption schemes on octonion ring over Fqg by using the
proposed enciphering/deciphering functions.

User A selects A; €0 randomly such that At exists (i=1,...,k) which is the secret
keys of user A.

User A selects B; €0 randomly such that Bi* exists (i=1,...,k) which is the secret
keys of user A.

Let M; be a plaintext (i=0,...,n-1).

Ciphertext E(M;,X;A) is defined as follows.

E(M A=A (AMIAC (-..(A1*X)...) mod gEO[X],  (72a)
= (elgoXotelgiX1t ... +eigrXz,

elyoXo+eiuXi+ ... +eir7 X7,

eizoXo+ely X1+ ... +eirr X7) mod o] (72b)
={eij}(i=0,....n-Lj.k=0,....7) (720)

with eixEFq (i=0,...,n-1;},k=0,...,7) which is the secret keys of user A.
We show how to re-encipher E(M;,X;A) to E(M;,X;B) by using B; €0 as follows.

Cas=B1(...Be(A*(. . .(Ar E[Mi,Ax(....(ABY(....(B1*X)...);A])...)mod g (73a)
= By(...(B(Mi(Bc! (....(By X)...) mod g
= E(M;, X;B) (73b)
User A sends the re-encryption keys Kgrel, Kre2 to cloud data centre.
Krel(X):= By(...(B(A (...(AL (X)...) mod g, (74)
Kre2(X):= Au(...(AB (...(B1 2X)...) mod g, (75)
where we notice that
Krel(Kre2(X))
= Ba(...(B(AC (...(AL YA . .(AB(...(B1 2X)...)...)=X mod g. (76)
Cloud data centre replaces E(M;,X;A) into E(M;,X;B) by using the re-encryption
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keys Krel(X), Kre2(X) as follows.

Krel(E(M;, Kre2(X);A))= E(M;, X;B) (i=0,...,n-1). (77)
Cloud data centre sends E(M; X;B) to user B who wants information M; (i=0,...,n-
1).
User A sends the Kpel(X), Kpe2(X) to user B such that
Kpel(X):= Ba(...(Bk(X)...) modq, (78)
Kpe2(X):= Bc*(...(Bs*X)...) mod g, (79)

where we notice that
Kpel(Kpe2(X))=X mod g. (80)
User B deciphers E(M;,X;B) to obtain M; as follows.
Koe2( E(M;, Kpel(X);B))=M; mod q (i=0,...,n-1). (81)

86. Analysis of proposed scheme

Here we analyze the proposed fully homomorphism encryption scheme.

86.1 Computing plaintext M and A; (i=1,...,k) from coefficients of ciphertext
E(M,X;A) to be published

Ciphertext E(M,X;A) is published by cloud data centre as follows.
E(M,X;A)=A(...(AM(A? (...(A1L X)...) mod gEO[X] , (82a)
=( eooXot€orX1t ... teorXz,

E10Xo+e11 X1t ... teq7 X7,

70X te7 X1+ ... terr X7) mod q, (82b)
={eyr}(J,r=0,...,7) (82c)

with ey Fq (j,r=0....,7) which is published,
where A; €0 to be selected randomly such that Ai exists (i=1,...,k) are the secret keys
of user A.

We try to find plaintext M from coefficients of E(M,X;A), ey Fq (j,r =0,...,7).

In case that n=7, the number of unknown variables (M, Ai (i=1,...,7)) is 64, the
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number of equations is 65 such that
| E(M,1;A)P=eqe?+€e10>+. . . +€70% =|M[*= mg?+my?+...+m-*> mod g, (83)
Foo(M,A1,As,. ..,A7)=e0 Mod g, B
Foi(M,A1,As,. ..,A7)=e01 mod g,

For(M,A,Az,...,A7)=o; mod q, — (84)

F772(M,A1,A,,...,A7)=e;7 mod q, —
where Foo,...,F77 are the 15" algebraic multivariate equations.
Then the complexity G required for solving above simultaneous equations by
using Grobner basis is given [8]such as
G=(64-+aregCoreg)" =(512C54)"=0(2%°)>> O(2%), (85)
where w=2.39, and

Oreg = 448(=64*(15-1)/2+(2-1)/2 - 0y (64*(225-1)/6+(4-1)/6)). (86)

Next we try to find plaintexts M; and M, from two ciphertexts such as
E(My,X;A)=Ax(....(AdMy(A (....(AL X)...) mod gEO[X] (87)
E(M2,X;A)=Ax(....(AdMo(A (....(AL X)...) mod g EO[X]. (88)

We obtain 130 equations as follows.

| E(Mi,l;A)|2:ei002+ei102+. . .+ei702 :lMi|2: mi02+mi12+. . .+mi72 mod g, (89)
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Foo(Mi,A1,A,...,A7)=€ico mod g, —
Fo1(Mi,A1,Az,. ...,A7)=ei01 Mmod q,

For(Mi,A1,As,. ..,A7)=ei0cz mod q, — (90)

F772(Mi,A1,A,...,A7)=eizzmod g, —
(i=1,2),

where F,..., F77 are the 15" algebraic multivariate equations.
The number of unknown variables (Mi, My, A (i=1,...,7)) is 72, and the number
of equations is 130.
Then the complexity G required for solving above simultaneous equations by
using Grobner basis is given such that

G:(72+dreng reg)w, (9 1)

where we are not able to compute the d.q accurately.
So we adopt 15 as dreg.

G>G’=(72+dregcdreg)W =(87C15)W:O(2130)>> 0(280) (92)
The complexity G required for solving above simultaneous equations by using
Grobner basis is enough large for secure.
86.2 Computing plaintext M; and di (i,j,k=0....,7)

We try to computing plaintext M; and dij (i,j,k=0,...,7) from coefficients of
ciphertext E(M;,X;A) to be published.
At first let E(Y,X,A) €O[X,Y] be the enciphering function such as

E(Y,XA):=AL( . .(AY (At (...(AL 1X)...) mod gEO[X,Y], (93a)
=(doooXoYo+dootXoy1t ... +dorrXry,

diooXoYotdioaXoya Tt ... +dirrX7y,

d7ooXoYo+0ro1Xoy1t ... +d7r7X7y7) mod g, (93b)
={diy}(1,j,k=0,...,7) (93c)
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with dix=Fq (i,J,k =0,...,7) .
Next we substitute M;to Y, where

Mi=(mio,Mi1,...,Mi7) 0.
We have
E(Mi,X;A):=Ax(. ..(AMi (A (...(A: 2X)..)mod g€ O[X],
=(doooXomo+doorXoms+ ... +dorzXzmy,

d100Xomo+digiXoms+ ... +diz7%7my,

d7o0XoMo+a701XoM1 + ... +d777%7mM7) mod g,
:{dijk}(i,j,k:O, - ,7)

with dix=Fq (i,j,k =0,...,7) .
Then we obtain 64 equations from (43) and (95b) as follows.

doooMio+dooaMis + ... +doorMiz=€00

dozoMio+donsMiz + ... +dor7Mi7=€n1

dozomio+doramin+ ... +dorzMiz=€07 -

diooMio+di0iMirt+ ... +diorMiz=e€10 »

duoMig+ditMis+ ... +du7Miz=en

dizomip+dizamin + ... +dizMiz=€17 B

dzooMio+d7oaMin + ... +drorMiz=€70

dz0mip+d7uMig + ... +d7i7Miz=ezn

dzzomio+d7amin+ ... +drrrMiz=€r7

(94)

(95a)

(95b)
(95c¢)

(96a)

(96b)

(96¢)
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For My,..., Mg we obtain the same equations, the number of which is 512,
We also obtain the 8 equations such as

| E(M;, L;A)[>= [Mif’= mig>+m;2+. . .+m;7> mod q,(i=0,...,7). (97)

The number of unknown variables M;and dij (i,J,k=0,...,7) is 576(=512+64).

The number of equations is 520(=512+8).

Then the complexity G required for solving above simultaneous quadratic algebraic
equations by using Grébner basis is given such as

GG =(520+dregCoreg)” =(763C223)"=0(21%3%)>> 2%, (98)

where G’ is the complexity required for solving 520 simultaneous quadratic algebraic
equations with 520 variables by using Grobner basis,

where w=2.39,
and

Oreg = 243(=520%(2-1)/2 - ¥ (520*(4-1)/6) (99)

It is thought to be difficult computationally to solve the above simultaneous
algebraic equations by using Grobner basis.

87. The size of the modulus g and the complexity for enciphering/
deciphering

We consider the size of the system parameter g. We select the size of g such that
O(g®),the order of the plaintext is larger than O(2%°). Then we need to select modulus g
=0 (219).

In case of k=7, q=0(2%), the size of e Fq (i,j=0,...,7) which are the coefficients
of elements in E(M,X;A)=A(...(AM(A(...(A1*X)...) mod q € O[X] is
(64)(log.q)bits =640bits, and the size of system parameters [g] is less than 20bits.

In case of k=7, g=0(21°), the complexity to obtain E(M,X;A) is
(15*512+14*36)(log.q)*= O(2%°) bit-operations

and the complexity required for deciphering is
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(576)(log.0)?= O(2'°) bit-operations.
The complexity to obtain E(M,X;A) by using the element expression of E(M,X;A)
IS
(512)(log.q)*= O(2%%) bit-operations.

On the other hand the complexity of the enciphering and deciphering in RSA
scheme is

O(2(log n)*)=0(2%*) bit-operations

where the size of modulus n is 2048bits.
Then our scheme requires small memory space and complexity to encipher and
decipher so that we are able to implement our scheme to the mobile device.

88. Conclusion

We proposed the new fully homomorphism encryption scheme based on the
octonion ring over finite field that requires small memory space and complexity to
encipher and decipher. It was shown that our scheme is immune from the Grébner basis
attacks by calculating the complexity to obtain the Grobner basis for the multivariate
algebraic equations.

The proposed scheme does not require a “bootstrapping” process SO that the
complexity to encipher and decipher is not large.

89. Considering composition of plaintext

At end of this chapter we consider the composition of the plaintext.
In section 3 and 4 we adopt M=(m,,...,m;) €0 as the plaintext where m;< Fg
(i=0,...,7).

The scheme described in section 3 and 4 has the homomorphic property, that is,

M=(ms,...,m7), N=(no,...,n7)
E(M,X)+ E(N,X)= E(M+N,X) mod q,
E(M,E(N,X))= E(MN,X) mod g.

We notice that
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M+N mod g =(mq,...,m7)+ (No,...,n7) mod q

=(mg+ny mod q,..., m;+n; mod Q).

MN mod g

= (MgNg-M1N1- MaN2- M3N3-M4N4- MsNs-MgNs-M7N7 Mod g,
MoN1+M31Ng+M,Ns+Mgn7z-MyN,+Msne-MgNs-Mzng mod g,
MoN2-M1Na+MoNg+M3Ns+mM4N1-Msns+Mmgn7-M-Ng Mod d,
MoN3-M1N7-MoNs+Ms3Ng+Mm4Ng+msn,-Mgns+m-n; mod q,
MoN4+M1N2 - MoN; - M3Ng+M4Ng+MsN;+MegNs - M7Ns mod d,
MoNs - M1Ng+M,N3 - M3N; - MaN7+MsNo+mgn;+m7ns mod q,
MoNe+M31Ns - MyN7+M3N, - MaN3 - MsNy+MgNo+m7n, mod q,
MoN7+M1N3+mazNs - M3N1+MyNs - MsN4 - Mgz +mM7Ne mod q).

From the viewpoint of m; and n;, it is not clear that this scheme has multiplicative
homomorphism.

For practical use, we can also adopt the following method to have the
multiplicative homomorphism clearly.

We select the element B=(hy,...,b7) =0 such that,
Lg:=|B[>= be*+bs?+...+b7>mod =0,
and
bo#0 mod q.
We define the partial set of O, Sg by
Se:={B=(by,...,.b7) €O | |B]*= bo?+bs?+...+b7*mod q=0, bo£0 mod q }.

Let u be the plaintext to belong to the set of the plaintext P={u | ueFq}.

Let ve Fq be the random number.
We define the medium text M by

M:=ul+vB<O,

and
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IM [2=(u+Vvho)>+v2(b,%+. . .+b7%)#0 mod q.

Then
u2+2vbou+v2(be?+by%+. . .+b7%)#0 mod q,
(u+2vbp) u£0 mod q,
We have
u£0 mod q
and
u+2vbe£0 mod g.
Theorem 12
M 9=(ul+vB)4 mod g =M= ul+vB<O,
(Proof:)

From Theorem 3
B2= -L1+2 boB=2 boB mod g,
M 2=(u1+vB) (u1+vB) mod q,
=u21+(uv+vu)B+v2BZ mod q,
= U?1+(2uv+2 bev?)B mod g mod q,
M 3=(u21+(2uv+2 bov?)B) (ul+vB) mod g,
= u31+(3u?v+2 bouv?+2 by (2uv+2 bev?)v)B mod g,
= u31+(3u?v+3(2 ho)uv?+(2 bg)?v)B mod q,
M 4 =( ud1+(3u?v+3(2 bo)uv?+(2 be)2v*)B) (ul+vB) mod q,
= U*1+(4udv+4(2 bo)uv>+4(2 bo)2uv+(2 bg)*v*)B mod g,

M 9= u91+(quiv+g(2 bo)ud2v+. . .4+q(2 be)™2uvi+(2 be)*v9)B mod g
= ul+(2 bo)*v4B mod q.
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Because (2 bo)®*=1 mod g and v %=v mod g,

we have
M 9= ul+vB=M mod q. g.e.d.

Lemma 7

M1 Ma= usup1+(Usvo+vau; +2viv, be)B mod g

where

M;=(u11+v;B),

M,=(up1+v,B).
(proof)

M;M,=(u;1+v1B) (Um;1+v,B)

=UsUp1+(UgVo+ViUp) B+vivoB2,
From B?= 2 byB mod q,

=UpUp1+(UpVo+viUp) BHvivo2 boB

:U1U21+(U1V2+V1U2 +2V1Vs bo)B qed

Here we consider the multiplicative operation on the ciphertexts.
From section 3 “Multiplication scheme on ciphertexts” we have

C1(Cy(X)) mod g =E(M; , E (M2,X)) mod g

where
C1(X)= E(M1,X) =Aq(...(AM1(At (...(AL 1X)...) mod q

and
Co(X)=E (M2,X) =Au(...(A(M2(A? (...(A1 1X)...) mod q

are the ciphertexts.
Then we have

C1(Ca(X)) mod q =E(M3 , E (M2,X)) mod q
=Aq(.. .(Ak(Ml(Ak_l (Al_l(Al (.. .(Ak(Mz(Ak_l (...(A1 _1X). ..)mod
= As(...(A(M1(M2 (At (....(AL EX)...) mod q.

Substituting (u11+v1B) , (u1+v,B) to M;,M, we have
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= Au(....(A(U11+viB) ((U21+V2B) (At (....(A¢ 2X)...) mod g
= Ad(. . (AU ((U214v2B) (A (... .(A1 X)...) mod q.
+ Ad(...(A((V1B) ((U21+V2B) (At (....(AL 2X)...) mod q.
= A (AU (U2L) (A (....(A1 X)...) mod g.
+ A (ALUL)((v2B) (A (....(AL 2X)...) mod g
+ Ac(..(AL(V1B) (M21) (At (....(AL2X)...)mod g
+ A1(...(A((1B) ((v2B) (At (....(A1 EX)...) mod q.
= Ac(. . .(Ad(Urtizl) (A (....(AL 2X)....) mod g,
+ As(...(A(Uv2B) (At (....(AL 2X)...) mod g.
+ As(.. . (A((Vau2B) (At (... (AL 2X)...) mod g
+ Ac(. . .(A(vv2B B) (Act (...(A1 X)...) mod g.
= As(...(A((Uru21+ uVvzB + viUB + vivoB B) (At (...(A1 1X)...) mod g
= Ag(...(A([ugud+ (ugv + Vil +2bo viv2)B] (At (... (AL 2X)...) mod .
Then we have
C1(C2(X)) mod g =E(M; ,E (M2,X)) mod q
=E((u11+v;B) ,E ((u21+v,B),X)) mod q
= E((upu21+ (ugvz + ViU, +2bg Viv2)B) , X)) mod q.

It is shown that in this method we have the multiplicative homomorphism on the
plaintext u clearly.
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Appendix A:

Octinv(A)

S « ag?+a®+...+a*mod q.
% ST mod q
q[1] « q div S ;% integer part of /S
r[1] <= gmod S ;% residue
k «1
q[0] <@
0] «— S
while r[k] # 0
begin
ke—k+1
q[k] < r[k—2] div r[k—1]
1[k] «— r[k—2] mod [rk—1]
end
Q [k—1] « (-1)-q[k—1]
L[k-1]«1
1+— k-1
while i>1
begin
Q[ i—1]« (-1)-Q[i]~q[i—1]+ L[ 1]
Lli-1]<Q[1]
1—1-1

end

invS «— Q[1] mod q
INVA[0] < ag+«invS mod q
Fori=l,...,7,
invA[i] < (-1)-aixinvS mod q
Return A'= (invA[0], invA[1],..., invA[7])
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Appendix B:
Theorem 1
Let A=(a10,a11, ...,a17) & O, ayj & Fq (fZO,], veey 7)

Let A"=(an,an1, ...,anr) €0, a5 Fq (n=1,...,7;j=0,1,...,7).

aoo ,an 's(n=1,2,...;j=0,1,...)and by’s (n=0,1,...) satisfy the equations such that

N=a?+...+a17> mod q

a=1, bp=0, by=1,

ano= an-10a10 — br-sN mod q,(n=1,2,...)
bn=an10+ bn1a10 mod q,(n=1,2,...)
an= byagj mod q ,(n=1,2,...,7=1,2,...,7) .
(Proof:)

We use mathematical induction method.

[step 1]

When n=1, (8) holds because

a10= apo 10 - hoN=azo mod g.

(9) holds because

b1= ago+ bodzo =a =1mod g.

(10) holds because

ai= biay; = a;; mod g ,(j=1,2,...,7)

[step 2]

When n=k,

If it holds that

= a10a10 - bkiaN mod g ,(k=2,3.4,...),
b= a.1,0+ br.1810 Mod q,

a= bag;mod q,(j=1,2,...,7),

from (9)

bx.1= ak20+ breaio mod q,(k=2,3/4,...),

then

AI=AA=(ayg, bidus, ..., bd17)(@u0,a11, ...,a17)

=(axo a0 - bkN, axo a11+ byas auo,. . ., Ak &7+ bkdsz ai )
=(akoao - bkN, (ako + biaio)ass, .. ., (A + bkao)arr)

=( A+10, Dkr10 Q11 . ., D10 317),

as was required. g.ed.

(8)
©)
(10)
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Appendix C:

Theorem 2

For an element A=(ajo,a1s, ...,a17) €0,
A=A mod q,

where

J:=LCM {0?-1,0-1}=0¢?*-1,

N:=ay>+ a;?+... +a17%#0 mod q.

(Proof:)

From (8) and (9) it comes that

ano= an-10a10 - bpsN'mod q,

bn= an-10+ bn1a;0 mod q,

ano a10 *+ by N= (@n-10@10 - bn1N) @10 +(@n-1,0% br-1@10)N= @0 810° + a0 N mod g,
by N= an.10a10° + @n.10 N- anp aomod g,

b1 N= @n-20810° + @n-20 N- @10 80 mod g,

ano= 2 a108n10- (10> +N) anomod q, (N=1,2,...) .

1) In case that — N # 0 mod q is quadratic non-residue of prime g,
Because - N0 mod ¢ is quadratic non-residue of prime q,

(-N)@D2=-1 mod g.

no - 2 @10 An10+( a10>+N) an20=0 mod g,

ano=(A"(azo-a) + (f- a10)a")/( p- o) over Fqla]

bn=(5"-o")/( - &) over Fq[a]

where o,/ are roots of algebraic quadratic equation such that

t2-2810t+3.102+N:O.
a = a;, +V—N over Fq|a],

B=a;y—V—N over Fg[a].

We can calculate 59"as follows.

BT = (a;, —V—=N)T" over Fq[a]
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= (2109 — V=N (=N)@~1D/2)a over Fq[a]

= (a;p, — V—N(—N)W@=Y/2)a over Fq[a]

= (a10? — V=N(=N)@"D/2(=N)@~1/2) gver Fq[a]
=a,, —V—N(=1)(=1) over Fq[o]

= a;0 — V—N over Fq[a]

= [ over Fq|a].
In the same manner we obtain

a? = aq over Fq[a].

ag20 = (B4 (az0 — @) + (B — a;0)a®) /(B — @)
=(f(azo-a) + (B- ao)a)/( f- @)=a;p mod q.

by = (BT —a®)/(B—a) =1 moda.

Then we obtain

qu:(aq2,0 ,banll, ---,bq23.17)
=( dio, dig, ...,a17)=A mod q

2) In case that -N-0 mod q is quadratic residue of prime ¢
ano=(f"(a10-a) + (5- ar0)a")/(p- @) mod q,

bro=(8"-a")/( - o) modq,

As o, Fq, from Fermat’s little Theorem

S9=£ mod q,

a%=o mod q.

Then we have

ag=(f"(a10-0) + (8- ar)a?)/( p- @) mod g
=(B(aw-a) + (8- aro)a)/( - o) mod g
=a;p modq

b=(£%-0%)/( f- &)=1 mod q.

Then we have



aq=(aqo ,bqall, . .,bqa17)
:( aio, a11,...,a17)=a mod g.

We therefore arrive at the equation such as

AM*1=A mod q for arbitrary element A€ O,

where
J=LCM { g*-1,0-1}=¢*-1,

as was required. g.e.d.

We notice that

in case that -N=0 mod g

ago=1, bo=0, b1=1,

From (8)

ano= an-10a10 mod g ,(n=1,2,...),
then we have
ap=ap"modq,(n=1.2,...).
aq= aio 9= azpmod q.

From (9),

bn= an10+ bnaaio mod g ,(n=1,2,...)
= a0 "+ bpaa0 mod g
= 2a10 nly bn-28102 mod q

= (n-1)azo "+ biae™ mod q
= nay " mod q.
Then we have

an= Nay "*ay;mod q ,(n=1,2,...,j=1,2,..

ag= gaw®*ay; mod q =0,(j=1,2,...,7) .

).
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Appendix D:
Lemma 2
A1(AB)=B
(BAA=B
(Proof:)

A= (ap/ |A]? mod g, -a;/ |A? mod ..., -a;/ |JA]? mod q).

AB mod g

= (‘agho-azbs- @by~ ashz-aubs- asbs-asbs-azhz mod q,
agb;+aibgt+azbs+ashr-asb,+ashe-ashs-azbs mod g,
agh2-a1bs+asho+ashs+asbi-ashs+ash7-azbs mod g,
aobs-aib7-axbs+ashe+asbs+ashr-aghs+ash, mod g,
aobs+aihy-a,b1-ashs+asbg+ashr+ashs-azbs mod g,
aobs-a1Ds+a,b3-asb,-asby+ashe+ash: +azh, mod g,
apbs+aibs-a,b7+ashs-asbs-ashi+aghe+ash, mod g,
aoby+aibs+asbs-ash; +asbs-ashs-ash,+azbo mod q).

[A*(AB)]o

={ ao(aho-aibi- axb,- ashs-asbs- ashs-ashe-asby)
+ay(aobs+aibot+azbs+ashr-asb+ashe-aghs-azhs)
+ az(aob2-a1bs+azbo+asbs+asbs-ashs+ashr-azbe)
+as(aobz-aib7-abs+agho+asbe+ash,-ashs+azbi)
+au(aobs+ayh,-a,b1-ashs+asbo+ashr+aghs-azbs)
+ as(Aobs-a1bs+azbz-ashz-asbr+ashe+ash +ashy)
+a(aobe+aibs-a.b7+ashs-asbs-ash; +agho+ashy)
+a(agh7+asbs+aybs-ash; +abs-ashs-agh,+azho) } /JAP mod g

={( ag>+a?+...+a7*) b} /|A? =bo mod g
where [M ], denotes the n-th element of M<O.

[A*(AB)].

={ ao(aob1+a1bo+azhs+ashr-asb,+ashs-aghs-azbs)
-a1(Aobo-a1b1- azb2- ashs-asbs- asbs-agbe-azby)
-82(aohs+asbz-abi-asbe+asbo+ashr+aghs-asbs)
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-a3(aoh7+aibs+ashs-ashi+asbs-ashs-ash+azho)
+ay(aoh2-a1bs+asbo+ashs+asbi-ashs+ashr-azbs)

- as(@obe+a1bs-ab7+asbs-asbs-ashi+ashe+ashy)
+a(aobs-a1be+ashs-agh,-asb7+asho+ashi +azhs )
+ay(aghs-a1h7-azbs+azho+asbe+ash,-aghs+azb;) } /A mod g

={(ag*+a>+...+a7%) b} /|AP=b; mod q.

Similarly we have

[AY(AB)]i=bimod q (i=2,3,...,7).
Then

AYAB)=Bmodg. qed.



