Authentication Key Recovery in
Galois/Counter Mode (GCM)

John Mattsson

Ericsson Research, Stockholm, Sweden
{firstname.lastname}@ericsson.com

Abstract. GCM is used in a vast amount of security protocols and is quickly
becoming the de facto mode of operation for block ciphers. In this paper
we suggest several novel improvements to Fergusons’s authentication key
recovery method and show that for many truncated tag sizes, the security
levels are far below, not only the current NIST requirement of 112-bit se-
curity, but also the old NIST requirement of 80-bit security. We therefore
strongly recommend NIST to make a revision of SP 800-38D.

Keywords: Secret-key Cryptography, Message Authentication Codes, Block
Ciphers, Cryptanalysis, Galois/Counter Mode, GCM, Authentication Key Re-
covery, AES-GCM, Suite B

1 Introduction

GCM [3] is quickly becoming the de facto mode of operation for block ciphers.
GCM is included in the NSA Suite B set of cryptographic algorithms [12], and
AES-GCM is the benchmark algorithm for the AEAD competition CAESAR [13].
Together with GMAC, GCM is used in a vast amount of security protocols:

* Many protocols such as IPsec [14], TLS [15], SSH [16], JOSE [17], 802.1AE
(MACsec) [18], 802.11ad (WiGig) [19], 802.11ac (Wi-Fi) [20], P1619.1 (data
storage) [21], and Fibre Channel [22] only allow 128-bit tags.

* The exceptions are IPsec [23] that allows 64, 96, and 128 bit tags, CMS [24]
that allows 96, 104, 112, 120, and 128 bit tags, NFC-SEC [25][26] that only al-
lows 96 bit tags, SRTP [27] that allows 96 and 128 bit tags, and SRTP [28] that
allows 64 and 128 bit tags.

GCM is also used in several cryptography APIs. W3C Web Cryptography API [29]
and Oracle Java SE [30] allow 32, 64, 96, 104, 112, 120, and 128 bit tags. PKCS
#11 [31] allows tags of any length between 0 and 128 bits, and for Microsoft
Cryptography API [32] we could not find any information on allowed tag lengths.

The popularity is very well deserved, GCM has exceptional performance and
proven security, it is on-line and fully parallelizable, and it is efficient in both
hardware and software, especially on new processors with dedicated AES-GCM
instructions. Weaknesses of the GCM decryption function were described by

Ferguson [5], which showed that the forgery probability is not 27¢, and that
feedback on successful forgeries allows an attacker to recover the authentication
key H. As a note, the fact that the substitution probability decreases as message
length increases was already known [33]. The complexity of Ferguson’s authen-
tication key recovery method for the NIST approved tag lengths have not previ-
ously been analyzed.

In Sect. 2.1 we suggest an improvement to Fergusons’s method for message for-
gery and authentication key recovery method [5]. We then use this improved
method to calculate the probabilities for multiple message forgeries. In Sect. 2.2
we use these probabilities to calculate the complexity for authentication key
recovery using Ferguson’s method. In Sect. 2.3 we suggest several novel im-
provements to Fergusons’s method that significantly reduces the security levels
for short tags. We show that independently of the encryption key size, the securi-
ty levels (i.e. the effective key lengths) are 62-67 bits for 32-bit tags, 70-75 bits
for 64-bit tags, and t bits for t-bit tags where t = 96, 104, 112, 120, or 128. For
many tag sizes, the security levels are far below, not only the current NIST re-
quirement of 112-bit security, but also the old NIST requirement of 80-bit securi-
ty. The results are applicable to both GCM and GMAC.

We strongly recommend NIST to make a revision of [3] so that the security levels
of all allowed options are clearly stated, that options offering less than 112-bit
security are removed from the standard, or, if they are allowed, explain why a
security level below 112 bits is acceptable.

We do however fully recommend GCM for usage with 128-bit tags, especially
with AES-128. In fact we believe that with its excellent performance and proven
security, it should be the first choice for everybody wanting an AEAD algorithm.

2 Galois/Counter Mode (GCM)

Galois/Counter Mode (GCM) is an Authenticated Encryption with Associated
Data (AEAD) mode of operation for block ciphers with a block size of 128 bits. It
was designed by McGrew and Viega [1][2] and is standardized in NIST SP 800-
38D [3] and ISO/IEC 19772:2009 [4]. This analysis is based on [3]. GCM com-
bines the well-known counter mode of encryption with the Galois mode of au-
thentication, which is based on universal hashing. The Galois mode of authenti-
cation makes use of the function GHASH#u(4, C), which uses multiplications in
GF(2128) that can easily be parallelized. The 128-bit authentication tag is defined
as

Tag = Ex(N) @ GHASHK (4,C) , (D

where Kis the encryption key, Nis the nonce, H = E;(028) is the authentication
key (the encryption of 128 zero bits), A is the associated data (to be authenticat-
ed but not encrypted), and C is the ciphertext. The output of the authenticated
decryption function is either the plaintext P or the special error code FAIL.

SP 800-38D specifies that the 128-bit authentication tag may be truncated to 96,
104, 112, or 120 bits. For tags lengths of at least 96 bits, the maximum combined
length of A and Cis L = 257 blocks and the maximum number of invocations g of
the authenticated decryption function is unlimited. For certain applications the
tag may be truncated to 32 or 64 bits, and for these tag lengths, L and g are more
restricted. Galois Message Authentication Code (GMAC) is an authentication-only
variant of GCM. It can be seen as a special case of GCM where the ciphertext Cis
the empty string. We refer to [3] for the full specification of GCM and GMAC. Ex-
plicit weaknesses of the GCM functions have been discussed by Ferguson [5],
Joux [6], Handschuh and Preneel [34], and Saarinen [7]. An extensive evaluation
of GCM was done by Rogaway [8].

In Appendix B of SP 800-38D [3], NIST summarizes some particulars of the GCM
authentication function that were pointed out by Ferguson [5]:

* For t-bit tags, the forgery probability is not the ideal 27¢ but instead 2! - 2~¢
where 2! is the length in blocks of the largest message (4 and C) processed by
the authenticated encryption function.

* Each successful forgery enables the adversary to recover parts of the authen-
tication key H and increases the probability of subsequent forgeries.

Our conclusions from the first bullet is:

* The tag and message lengths must be chosen so that the forgery probability
L - 27t is acceptable. But as the complexity of performing a single forgery is
still the expected 2¢, we do not find this overly problematic.

The second bullet is harder to analyze and more problematic. NIST draws the
conclusions that for short tags:

* There should not be feedback of whether a forgery attempt is successful or
unsuccessful.

* The maximum combined length L of A and C shall be heavily restricted.

* The maximum number of invocations g of the authenticated decryption func-
tion shall be restricted.

The requirements are listed in Table 1. Unfortunately, NIST does not give any
motivations for the specific restrictions, or for that matter the security levels
they were assumed to give.

Table 1. NIST requirements on the usage of GCM with short tags

t ‘ 32 ‘ 64

L |21 22 23 24 25 226|211 213 215 217 219 221

q |222 220 218 215 213 211|232 229 226 223 220 217

2.1 Effective Tag Length

Fergusson [5] demonstrates through a concrete attack that due to the linear be-
havior of the GCM authentication function, the forgery probability for ¢-bit tags is
not 27¢, If the length of the largest ciphertext C processed by the authenticated
encryption function is 2! blocks, the forgery probability is 2!~¢. For subsequent
forgeries, the effective tag length is smaller. We refer to [5] for the full specifica-
tion of how this forgery is done. As pointed out by McGrew and Viega in [9], this
does not break the security guarantees of GCM; it proves that the bounds in [2]
are tight. Our view is that a better and more natural measure of forgery re-
sistance is complexity. For an ideal MAC, the data complexity to perform a single
forgery is 2° - 2¢ = 2¢. For GCM, the data complexity to perform a single forgery
is 2t - 2t7t = 2t,

Reading [5], it is not trivial to understand or calculate the effective tag lengths
for re-forgeries. In this section we extend Fergusson’s method to use associated
data in addition to ciphertext. We then suggest an improvement to Ferguson'’s
method, derive a formula for the effective tag lengths, and apply this formula to
the NIST approved tag and message lengths. These effective tag lengths are then
used in Sect. 2.2 to evaluate the data complexity of Ferguson’s method for au-
thentication key recovery.

Extension to use associated data. The attacker tries to change the associated
data A and the ciphertext C without changing the tag. The attacker does not
change the number of blocks in 4 and C. Let A’ be the modified associated data,
let C' be the modified ciphertext, and define B and B’ as

B=Al 0287 C | 0128~* | len(A) Il len(C) , 2
B' = A" 0%28=7 || " || 028% || len(A4) |l len(C) , 3)

where v is the bit length of the final block of A and u is the bit length of the final
block of C. Let B; be block i of B, where we number the blocks in the same order
as Ferguson, i.e. By = len(4) Il len(C). We can now define the error polynomial E
asin [5]

E=ZDi-H2i, 4)
i
where D; = E,i and E; = (B; — B)).

Effective Tag Length. Let t,, be the effective tag length after n successful forger-
ies (with feedback). Following the procedures in [5] and assuming that:

* The byte length of A or C is not a multiple of 16. This implies that the attacker
can modify the length encoding in D,,.
* The combined length of A and Cis at least 2! — 1 blocks.

With these assumptions, the attacker has 128l free variables and can in the first
forgery force e, =l bits of the error polynomial E to zero. The effective tag
length is therefore t, = t — [. In subsequent forgeries the attacker knows more
bits of the authentication key H and can force even more bit of the error poly-
nomial E to zero. Feedback of successful forgery of a message with effective tag
length t,, allows recovery of t,, additional bits of the authentication key H. After
n successful forgeries, the attacker knows h,, bits of H and can force e, bits of
the error polynomial E to zero where

- 1281
hn = Zl tn and e, = W—hn . (5)
]:

Following [5], the effective tag length is t,, = t — e,, until the attacker knows all
128 bits of H (h,, = 128) or when the attacker can force more then ¢ bits of the
error polynomial to zero (e, = t), in which case the effective tag size is zero.

Our improvement. We notice that when 128 — h,,. < t — e,,, the effective tag
length can be reduced by doing exhaustive search on the 128 — h,, unknown bits
of H instead of doing exhaustive search on the t — e, bits of the tag that could
not be forced to zero. With this improvement, the effective tag size is

t, = max(0, min(t —e,, 128 —h,)) . (6)

This improvement significantly reduces some of the effective tag lengths, but has
negligible effect on the authentication key recovery complexities in Table 3 and
4. The result of applying the improved formula (6) to the NIST approved tag and
maximum message lengths, as well as the maximum message lengths of 212 and
228 blocks imposed by IPv4 and IPv6 is shown in Table 2.

Table 2. Effective tag lengths for the NIST approved tag and message lengths

t 32 64 96 104 112 120 128

L |25 26 27 28 29 210|215 217 219 221 223 225|216 232 261|216 232 261|216 232 261|216 232 261[216 232 261

to |31 30 29 28 27 26|53 51 49 47 45 43|84 68 39|92 76 47100 84 55108 92 63 (116100 71
t: |31 30 29 27 26 25|46 43 40 38 35 33|44 37 15|36 36 14(28 31 13|20 21 8 (0 O O
tz |31 29 27 25 24 23|16 16 15 14 14 13{0 0 0|0 O Of(O0O O OfO0O O OO O O
t; |29 26 24 22 20 18)0 0 0 O O O(O O O|{O O OfO O OfO O OO O O

ts| 6 13 12 13 12 110 0 0 0 0 O0OfO O 0|0 O OfO O OfO O OO O O

ts|0 0 0 0 0 2|0 0 O 0 O O[O O O(O O OfO O OfO O OO O O

While the values tp might look short, the complexity of performing a single for-
gery is still the expected 2°. If a tag length of t = 128 is used with an encryption

key of length 128 bits, performing a single forgery is as hard as recovering the
encryption key, hardly a weakness.

The effective tag lengths in Table 2 are calculated with the greedy algorithm
used by Ferguson. Using the suggestions we propose in Sect. 2.3, it is possible to
decrease the effective tag length of later forgeries by increasing the effective tag
length of earlier forgeries.

2.2 Complexity of Ferguson’s Authentication Key Recovery Method

The discussions [9][10] after Ferguson’s paper [5] focused mostly on multiple
forgeries and authentication key recovery after nonce collisions in the encryp-
tion function, i.e. the forbidden attack later discussed by Joux [6]. We think the
most important aspect of Ferguson’s paper is the full recovery of the authentica-
tion key H after successful forgeries to the decryption function. While we agree
with McGrew and Viega that the expected complexity to perform multiple forger-
ies is unclear, the expected complexity against key recovery is very clear. The
complexity of performing full key recovery is expected to be 2% where k is the
stated security level. Unless stated otherwise, k is expected to be equal to the key
length. In e.g. HMAC-SHA-256 the complexity for key recovery is believed to be
2256 unless the authentication key is derived from a smaller key. In GCM, the
authentication key is always 128 bits, which means that the security level against
authentication key recovery is never more than 128 bits, even if block ciphers
with larger key sizes like AES-192 or AES-256 are used. Other AEAD schemes
like CCM and OCB gives a security level equal to the encryption key size. This
shortcoming is not mentioned in [2][3][8].

An important detail mentioned in [6] but not in [3][5] is that as the authentica-
tion tag depends on Ex(N), authentication key recovery in GCM does not mean
that the attacker can independently create new messages. Knowledge of the au-
thentication key H enables an attacker to modify a valid message by freely choos-
ing A and C, but not N. Assuming known-plaintext, an attacker can freely chose A
and P, where P is the plaintext. Still, we would expect a security level of no less
than the encryption key length against authentication key recovery attacks.

Complexity without query restrictions. Assuming a maximum combined
length of L = 2! blocks, the effective tag length is t, = t — [, and the data com-
plexity (measured in blocks) of performing the first forgery is 2! - 2t7t = 2¢, As
the complexity of Ferguson’s authentication key recovery method is dominated
by the complexity of the first forgery, this is also the data complexity c¢ for full
authentication key recovery

c=~ 2. (7

Hence, without restrictions on q and irrespective of encryption key length, the
security level of GCM against full authentication key recovery is only equal to the
tag length t. This shortcoming is not mentioned in [3][8].

Complexity with query restrictions. The complexity of Fergusson’s key recov-
ery method with restrictions g and L has not previously been analyzed. In this
section we derive the complexities for the NIST approved tag and maximum
message lengths. Limiting the maximum number of invocations q of the decryp-
tion function so that 2% > g > 2% does not increase the complexity of authenti-
cation key recovery. The data complexity is q - 2! and the probability that the
attacker succeeds with a forgery in g attempts is p; = q - 27%, resulting in the
same total complexity of g - 2! / p; = 2t / 27t = 28,

Restricting g so that 2t > g does however increase the complexity of Ferguson'’s
method. Let ¢; = 27%. The probability that the first successful forgery will occur
on forgery attempt f is approximately ¢,(1 — ¢,)/~! and the probability of a
second forgery is approximately ¢,(q — f). The probability p, that an attacker
succeeds with two forgeries in g attempts is therefore:

)

Zcpo(l—qbo)f EEACEE ¢°¢1 g%+ 0(¢°¢1q3> :

6

We used SageMath to calculate the Taylor series and then collected the leading
terms for the domain ¢, ¢; < q~1. McGrew and Viega prove the same formula
in [10]. With the above approximation for p, we can approximate p;, and with p;
we can approximate p,, etc.

q
p3 = Z‘l)o(l — o)/t @(q -f)3F= —¢0¢61¢2 q°*+ 0 <¢0(2P;¢2 4) ,
q it " 3 $od® 3
pox) do(i-0) B = LT g+ o L] [or] . ©
f=1 j=0 j=0
q
ps = Z¢0(1 — o) ¢1¢;fs¢4 - = 1_[¢] + 0 ¢oq l_[¢’
f=1 j=0

This lead us to the hypothesis that

qn n-1 ¢0qn+1 n-1
=] Jort o (n+1>.1_[¢1 : (10)
j=0
This is something that we do not prove, but by dividing g into n intervals, it is

n
easy to prove that p, > Z—n 7;(} ¢;. Let | =log, L, we can now calculate the

complexity c of authentication key recovery with Fergusons method as

Czq‘zl/pn' (11)

Complexity for the NIST tag and message lengths. Table 3 shows the complex-
ities achieved by applying (11) to the NIST approved tag and maximum message
lengths. The grey coloring shows the t,, that was used in the calculation. In a few
cases the domain assumption does not hold as 2 ~ q. In these cases we have
chosen n to overestimate rather than underestimate the complexity. Note that
the complexities for authentication key recovery are independent of the encryp-
tion key length.

Table 3. Data complexity with Ferguson’s method for full authentication key recovery.
¢ 32 64 96 104 112 120 128
L |21 22 23 2¢ 25 226|211 213 215 217 219 221|212 228 257 |12 228 257 | 212 228 257 [212 228 257 [Q12 228 57

q | 2?22 220 218 215 213 211|232 229 226 223 220 217| o0 o o [0 0 o [0 o[o | o o

tp |31 30 29 28 27 26|53 51 49 47 45 43 |84 68 39 (92 76 47 |100 84 55108 92 63 |116 100 71

t; |31 30 29 27 26 25|46 43 40 38 35 33|44 37 15|36 36 14|28 31 13|20 21 8|0 O O

tz |31 29 27 25 24 23|16 16 15 14 14 130 O 0O O O|O O O|O O O|JO O O

ts (29 26 24 22 20 180 0 0 O O O|O O O|JO O OjO O OfO O OfO O O

t+#| 6 13 12 13,12 11|/0 0 0 O O 0|0 O OO0 O 0JO O Of|O 0 O|O O O
I

¢ 2616 261.6 262.6 2656 268.9 271.9279.0 279.0 279.0 280.0 280.0 281.0(296.0 296.0 296.0[104 2104 2104|2112 2112 112|120 2120 2120|2128 128 128

Our analysis shows that with Ferguson’s method the security levels for 32-bit
tags are below the old NIST requirement of 80-bit security (that was in place in
2007 when [3] was published), while 64-bit tags are just on the border. Only
112, 120, and 128 bit tags fulfill the current NIST requirement of 112-bit securi-
ty. Unfortunately, NIST does not give any motivations for the exact restrictions
they put on 32 and 64 bit tags, or for that matter the security levels they were
assumed to give.

2.3 Our Improved Method for Authentication Key Recovery

In this section we propose several novel improvements to Ferguson’s method for
authentication key recovery. These improvements significantly reduce the secu-
rity levels for short tags.

* The attacker may choose to modify a message with a message length that is
smaller than the maximum message length L.

* After each successful forgery, the attacker may choose to modify a different
message.

* The attacker may choose to modify messages with different lengths
2lo, 2, 2k

Let the length of the first message be 2% and let | = max(l;, L,, ...). The probabil-
ity that the attacker does not achieve a single successful forgery in q attempts is

(1 — ¢¢)? in which case the attacker sends g2’ blocks of data. The probability
that the first successful forgery will occur on forgery attempt f is approximately

do(1 — ¢o)f_1 in which case the attacker sends at most f2% + (¢ — f)2! blocks

of data. The average number of blocks w sent by the attacker is therefore bound-
ed by:

w S (1= ho)- g2 + T do(1 = bo) - (2! - F2' = 21)
= q2° +5$0q’(2' = 2) + 0(9Fq°2") . (12)

We used SageMath to calculate the Taylor series and then collected the leading
terms for the domain ¢, < g~1. Using this improved method, the data complexi-
ty c of authentication key recovery is

c=q-29/p, . (13)

Example. Let [, = 0 and [= log, L. For 64-bit tags, the effective tag lengths are
ty =64, t; =64 —2l, and the complexity is c = q-2b/p, = 2b*tt1tl /g =
2129 /12q. Applying this to the column (L = 221, g = 217), the already low com-
plexity is reduced from 2810 to 2790, It seems infeasible to increase the security
level to 112 bits, as this would either restrict the message length too much or
make deployments vulnerable to denial-of-service attacks.

Table 4. Data complexity with our improved method for full authentication key recovery.
¢ 32 64 9% 104 112 120 128
L |21 22 23 2¢ 25 226|211 213 215 217 219 221|212 228 257 |12 228 257 | 212 228 257 [212 228 257 [Q12 228 57

q | 2?22 220 218 215 213 211|232 229 226 223 220 217| o0 o o [0 0 o [0 o[o | o o

to (32 32 32 32 32 32|64 64 64 64 64 64|96 96 96 (104 104 104|112 112 112(120 120 120(128 128 128

t; (31 30 28 27 26 24|42 38 34 30 26 22|32 0 0|24 0 0|16 0 OO O OO O O

tz |31 29 27 25 23 22{0 O O O O OfO O OfO O O|O O OjO O OJO O O

ts (29 26 23 21 19 170 O O O O O|O O O)JO O OjO O OfO O OfO O O

ttf5 9 11 10,10 9|0 0 0 O O O|O O O|JO O OjO O OfO O OfO O O

¢ 2616 261.6 260.6 2646 2659 266.9|275.0 2740 273.0 272.0 2710 270.0(296.0 296.0 296.0[2104 2104 2104|2112 2112 112|120 120 2120|2128 128 128

Table 4 shows the complexities achieved by applying our improved method (13)
with [, =0 and [=log, L to the NIST approved tag and maximum message
lengths. This significantly reduces the data complexities of authentication key
recovery for short tags. With our improved method, the security levels are 62-67
bits for 32-bit tags and 70-75 bits for 64-bit tags; this is below the old NIST re-
quirement of 80-bit security and far below the current NIST requirement of 112-
bit security.

3 Conclusions

The security levels of GCM and GMAC against authentication key recovery are for
many tag sizes far below, not only the current NIST requirement of 112-bit secu-
rity, but also the old NIST requirement of 80-bit security. With our improved
authentication key recovery method, the security levels are 62-67 bits for the
NIST approved usage of 32-bit tags, 70-75 bits for the NIST approved usage of
64-bit tags, and tbits for the NIST approved usage of t-bit tags where t = 96, 104,
112, 120, or 128. These security levels are independent of the encryption key
size. It seems infeasible to increase the low security levels to 112 bits, as this
would either restrict the message length too much or make deployments vulner-
able to denial-of-service attacks.

One might argue that it is acceptable to allow a lower security level against au-
thentication key recovery than encryption key recovery, especially if authentica-
tion key recovery requires online access to the hopefully short-lived GCM in-
stances. With this arguing, 96-bit tags could be acceptable, even if they only offer
96 bits of security against authentication key recovery. We do not take a stance
on this, but note that the current NIST requirements in NIST SP 800-57 Part 3
[11] states that the authentication key strength shall be equal or grater than 112
bits and that less than 112 bits of security shall not be used.

Appendix C of [3] first states that implementations should not provide feedback
on the integrity of individual packets and then nevertheless heavily restricts the
number of invocations of the decryption function. Our view is that feedback on
the integrity of individual packets is almost always possible and we recommend
NIST to forbid the use of GCM and GMAC with short tags.

We strongly recommend NIST to make a revision of [3] so that the security levels
of all allowed options are clearly stated, that options offering less than 112-bit
security are forbidden, or, if they are allowed, explain why a security level below
112 bits is acceptable.

We do however fully recommend GCM for usage with 128-bit tags, especially
with AES-128. In fact we believe that with its excellent performance and proven
security, it should be the first choice for everybody wanting an AEAD algorithm.
We note that the design choices causing the security problems with truncated
tags are also responsible for the excellent performance of GCM.

References

1. McGrew, Viega, “The Galois/Counter Mode of Operation (GCM)”, May 2005,
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm
-revised-spec.pdf

2. McGrew, Viega, “The Security and Performance of the Galois/Counter Mode of Opera-
tion”, October 2004, http://eprint.iacr.org/2004/193.pdf

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

NIST SP 800-38D, “Recommendations for Block Cipher Modes of Operation: Gal-
ois/Counter Mode (GCM) and GMAC”, November 2007, http://csrc.nist.gov/
publications/nistpubs/800-38D/SP-800-38D.pdf

ISO/IEC 9772:2009, “Information technology -- Security techniques -- Authenticated
encryption”, July 2008, http://www.iso.org/iso/home/store/catalogue_tc/
catalogue_detail.htm?csnumber=46345

Ferguson, “Authentication weaknesses in GCM”, May 2005, http://csrc.nist.gov/
groups/ST/toolkit/BCM/documents/comments/CWC-GCM/Ferguson2.pdf

Joux, “Authentication Failures in NIST version of GCM”, 2006,
http://csrc.nist.gov/groups/ST/toolkit/BCM /documents/comments/800-38_Series-
Drafts/GCM/Joux_comments.pdf

Saarinen, “GCM, GHASH and Weak Keys”, 2011, http://www.iacr.org/archive/
fse2012/75490220/75490220.pdf

CRYPTREC TR No. 2012, “Evaluation of Some Blockcipher Modes of Operation”, Feb-
ruary 2011, http://www.cryptrec.go.jp/estimation/techrep_id2012_2.pdf

McGrew, Viega, “GCM Update”, May 2005, http://csrc.nist.gov/groups/ST /toolkit/
BCM/documents/comments/CWC-GCM/gcm-update.pdf

McGrew, Fluhrer, “Multiple forgery attacks against Message Authentication Codes”,
May 2005, http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/
CWC-GCM/multi-forge-01.pdf

NIST SP 800-57 Part 3-Rev.1 “Recommendation for Key Management: Part 3 - Appli-
cation-Specific Key Management Guidance”, January 2015, http://nvlpubs.nist.gov/
nistpubs/SpecialPublications/NIST.SP.800-57Pt3r1.pdf

NSA, “Suite B Cryptography”,
https://www.nsa.gov/ia/programs/suiteb_cryptography/

CAESAR: Competition for Authenticated Encryption: Security, Applicability, and Ro-
bustness, http://competitions.cr.yp.to/caesar.html

IETF RFC 4543, “The Use of Galois Message Authentication Code (GMAC) in [Psec ESP
and AH”, May 2006, https://tools.ietf.org/html/rfc4543

IETF RFC 5288, “AES Galois Counter Mode (GCM) Cipher Suites for TLS”, August
2008, https://tools.ietf.org/html/rfc5288

IETF RFC 5647, “AES Galois Counter Mode for the Secure Shell Transport Layer Pro-
tocol”, August 2009, https://tools.ietf.org/html/rfc5647

Jones, “JSON Web Algorithms (JWA)” (IETF work in progress), January 2015,
https://tools.ietf.org/html/draft-ietf-jose-json-web-algorithms-40

IEEE 802.1AE-2006, “Media Access Control (MAC) Security”, August 2006,
http://standards.ieee.org/getieee802/download/802.1AE-2006.pdf

IEEE 802.11ad-2012, “Part 11: Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) Specifications - Amendment 3: Enhancements for Very High
Throughput in the 60 GHz Band”, October 2012, http://standards.ieee.org/
getieee802/download/802.11ad-2012.pdf

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

IEEE 802.11ac-2013, “Part 11: Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) Specifications - Amendment 4: Enhancements for Very High
Throughput for Operation in Bands below 6 GHz”, December 2013, http://
standards.ieee.org/getieee802/download/802.11ac-2013.pdf

IEEE 1619.1-2007, “IEEE Standard for Cryptographic Protection of Data on Block-
Oriented Storage Devices”, May 2008

ANSI INCITS 496-2012, “Information technology - Fibre Channel Security Protocol 2
(FC-SP-2)”

IETF RFC 4106, “The Use of Galois/Counter Mode (GCM) in IPsec Encapsulating Secu-
rity Payload (ESP)”, June 2005, https://tools.ietf.org/html/rfc4106

IETF RFC 5084, “Using AES-CCM and AES-GCM Authenticated Encryption in the Cryp-
tographic Message Syntax (CMS)”, November 2007, https://tools.ietf.org/html/
rfc5084

ECMA-409, “NFC-SEC-02: NFC-SEC Cryptography Standard using ECDH-256 and AES-
GCM”, December 2014, http://www.ecma-international.org/publications/files/
ECMA-ST/ECMA-409.pdf

ECMA-411, “NFC-SEC-04: NFC-SEC Entity Authentication and Key Agreement using
Symmetric Cryptography”, December 2014, http://www.ecma-international.org/
publications/files/ECMA-ST/ECMA-411.pdf

Kim, Lee, Kim, Park, Kwon, “The ARIA Algorithm and Its Use with the Secure Real-
time Transport Protocol (SRTP)” (IETF work in progress), September 2014,
https://tools.ietf.org/html/draft-ietf-avtcore-aria-srtp-07

McGrew, Igoe, “AES-GCM Authenticated Encryption in Secure RTP (SRTP)” (IETF
work in progress), April 2015, https://tools.ietf.org/html/draft-ietf-avtcore-srtp-aes-
gcm-15

W3C, “Web Cryptography API”, December 2014, http://www.w3.org/TR/
WebCryptoAPI/

Oracle, “Java Platform, Standard Edition 8 API Specification”,
https://docs.oracle.com/javase/8/docs/api/index.html

OASIS, “PKCS #11 Cryptographic Token Interface Current Mechanisms Specification
Version 2.40” September 2014, http://docs.oasis-open.org/pkcs11/pkes11-
curr/v2.40/cs01/pkecs11-curr-v2.40-cs01.pdf

Microsoft, “Cryptography API: Next Generation”, https://msdn.microsoft.com/en-
us/library/windows/desktop/aa376210

Kabatianskii, Smeets, Johansson, “On the Cardinality of Systematic Authentication
Codes Via Error-Correcting Codes”, IEEE Transactions on Information Theory, Vol.
42, No 2, March 1996

Handschuh, Preneel, “Key-recovery attacks on universal hash function based MAC al-
gorithms” CRYPTO 2008, http://www.cosic.esat.kuleuven.be/publications/article-
1150.pdf

