
Des. Codes Cryptogr.
https://doi.org/10.1007/s10623-018-0461-x

How to build time-lock encryption

Jia Liu1 · Tibor Jager2 · Saqib A. Kakvi2 ·
Bogdan Warinschi3

Received: 21 February 2017 / Revised: 19 January 2018 / Accepted: 20 January 2018
© The Author(s) 2018. This article is an open access publication

Abstract Time-lock encryption is a method to encrypt a message such that it can only be
decrypted after a certain deadline has passed. We propose a novel time-lock encryption
scheme, whose main advantage over prior constructions is that even receivers with relatively
weak computational resources should immediately be able to decrypt after the deadline,
without any interaction with the sender, other receivers, or a trusted third party. We build
our time-lock encryption on top of the new concept of computational reference clocks and
an extractable witness encryption scheme. We explain how to construct a computational
reference clock based on Bitcoin. We show how to achieve constant level of multilinearity
for witness encryption by using SNARKs. We propose a new construction of a witness
encryption scheme which is of independent interest: our scheme, based on Subset- Sum,
achieves extractable securitywithout relying onobfuscation. The scheme employsmultilinear
maps of arbitrary order and is independent of the implementations of multilinear maps.

Keywords Time-lock encryption ·Timed-release encryption ·Bitcoin ·Witness encryption ·
SNARKs · Time-lock puzzles · Timed commitments

Communicated by C. Boyd.

B Jia Liu
j.liu@surrey.ac.uk

Tibor Jager
tibor.jager@upb.de

Saqib A. Kakvi
saqib.kakvi@upb.de

Bogdan Warinschi
csxbw@bristol.ac.uk

1 Institute for Communication Systems (ICS), 5G Innovation Centre (5GIC), University of Surrey,
Guildford, UK

2 Department of Computer Science, Paderborn University, Paderborn, Germany

3 Department of Computer Science, University of Bristol, Bristol, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10623-018-0461-x&domain=pdf

J. Liu et al.

Mathematics Subject Classification 68P25 · 94A60

1 Introduction

Alice has a document that she wants to make public in, say, a couple of days, but she is
not willing to hand it out to anybody before this deadline. Therefore she puts the document
into a box and attaches a “time-lock”. The lock keeps the box securely sealed, and thus the
document stays confidential, for the determined period of time. It will unlock automatically
when the deadline has passed, which makes it possible for everyone to access the document
easily, without any further interaction with Alice. Time-lock encryption is a digital equivalent
of such time-locked boxes. It allows to encrypt data for a period of time, up to a certain
deadline, such that even a computationally powerful adversary is not able to learn any non-
trivial information about the data before the deadline. However, when the time is over, even
parties with relatively weak computational resources should immediately be able to decrypt
easily. Essentially, time-lock encryption allows to send a message “into the future”. The key
novelty of time-lock encryption is that it achieves the following properties simultaneously:

(1) Non-interactive The sender Alice is not required to be available for decryption.
(2) No trusted setup Time-lock encryption does not rely on trusted third parties. Thus, the

sender is not required to trust any (set of) third parties to keep decryption keys (or shares
of decryption keys) secret until the deadline has passed.

(3) No resource restrictions Parties interested in decrypting a ciphertext are not forced to per-
form expensive computations until decryption succeeds. This means that a party which
simply waits till the decryption deadline has passed will be able to decrypt the ciphertext
at about the same time as another party who attempts to decrypt the ciphertext earlier
by performing a large (but reasonably bounded) number of computations. Thus, all rea-
sonably bounded parties will be able to decrypt a ciphertext at essentially the same time,
regardless of their computational resources.

These features are achieved simultaneously which makes time-lock encryption a fascinating
primitive, which enables applications that seem impossible to achieve with classical encryp-
tion schemes.

Efficient decryption without trusted third parties Time-lock encryption is related to timed-
release encryption, investigated by Rivest et al. [66]. However, timed-release encryption
has some drawbacks. One line of research [15,17,27,66] realizes timed-release encryption
by assuming a trusted third party (TTP), which reveals decryption keys at the right time.
Therefore security relies crucially on the assumption that the TTP is trustworthy. In particular,
it must not use its ability to allow decryption of ciphertexts earlier than desired by the sender
in any malicious way, for instance by revealing a decryption key before the deadline.

The other line of research [17,66,69] considers constructions that require the receiver of a
ciphertext to perform a feasible, but computationally expensive search for a decryption key.
This puts a considerable computational overhead on the receiver. It is particularly challenging
when the ciphertext is made public and there are many different receivers, some of whom
may be unknown to the sender. It seems impossible to encrypt with any known timed-release
encryption scheme in a way, such that all receivers are able to decrypt at the same time, unless
one relies on trusted third parties, or tight synchronicity. We think it an interesting theoretical
question in its own to ask if it is possible to avoid this.

123

How to build time-lock encryption

1.1 Contributions

We introduce a new primitive called computational reference clocks as an extension of the
standard computational model, which provide a novel and very realistic method to “emulate”
real-world time in a computational model. We show that the widely-used cryptocurrency Bit-
coin provides a practical example of such a reference clock, which shows that the assumption
that these objects exist in practice is reasonable.

As a first application of this extended computationalmodel,we construct time-lock encryp-
tion schemes, a primitive which exhibits many interesting features that are impossible to
achieve in a plain standard computational model. We give a proof-of-concept construction
of encryption schemes, where a sender is able to encrypt a ciphertext, such that not even a
computationally powerful (but reasonably bounded) adversary is able to learn any non-trivial
information about the message before the deadline. Once the deadline has passed, even
receivers with relatively limited computational resources are immediately able to decrypt.
Decryption is non-interactive, in the sense that there is no communication between the sender
and receivers except for the initial, unidirectional transmission of the ciphertext, or among
receivers. We call encryption schemes with these properties time-lock encryption schemes.

Our time-lock encryption scheme is built on top of the computational reference clock and
a generic witness encryption (WE) scheme that is extractable. We propose a new witness
encryption scheme, which achieves extractable security without using obfuscation and which
is more efficient than previously known schemes. The size of the ciphertext and running time
for encryption and decryption of witness encryption is linear in terms of the size of witness.
Usually the linear complexity is very natural and efficient. Unfortunately, this is not good
enough for witness encryption because all the instantiations of witness encryption are based
on multilinear maps [18]. The current instantiations of multilinear maps [31,32,40,54] are
not yet practical regardless of recent lines of attacks. To mitigate this issue, we use SNARKs
[12–14,44,49,55,56,62] to reduce the complexity of our time-lock encryption. We show that
using SNARKs can achieve short ciphertext onwitness encryption and constantmultilinearity
level regardless of the instance and witness.

1.1.1 Time-lock encryption

Computational reference clocks A first challenge in constructing time-lock encryption is to
find a reasonable equivalent of real-world time in a computational model. Real-world time
is usually determined by some physical reference, like the current state of atomic reference
clocks. We do not see any reasonable way to mimic this notion of time in a computational
model without trusted third parties.

Our main idea is to use the current state of an iterative, public computation as what we call
a computational reference clock. The abstract notion of computational reference clocks stems
from the concrete idea of using the popular digital cryptocurrency Bitcoin [61] as a reference
clock. To clarify what wemean by this, consider the following concrete example. The Bitcoin
system performs an iterative, very large-scale, public computation, where so-called miners
are contributing significant computational resources to the gradual extension of the Bitcoin
block chain. Essentially, this block chain consists of a sequence of hash values B1, . . . , Bτ that
satisfy certain conditions.1 These conditions determine the difficulty of finding new blocks in
the chain. TheBitcoin system adjusts the difficulty, depending on the computational resources
currently contributing to the Bitcoin network, such that about every 10 minutes a new block

1 Section 5.1 contains a more detailed background on Bitcoin.

123

J. Liu et al.

Bτ+1 is appended to the chain. Thus, the block chain can serve as a reference clock, where
the current length τ of the chain tells the current “time”, and there are about 10 minutes
between each “clock tick”.

Witness encryption In order to be able to sketch our construction of time-lock encryption
from computational reference clocks, let us briefly recap witness encryption [43]. Witness
encryption for all NP-relations was introduced by Garg et al. [43]. Known constructions [7,
21,41,43,46] are based on multilinear maps [18,40], or obfuscation [5,6,41].

A witness encryption scheme is associated with an NP-relation R (cf. Definition 1). For
(x, w) ∈ R we say that x is a “statement” and w is a “witness”. A witness encryption

scheme for relation R allows to encrypt a message m with respect to statement x as c
$←

WE.Enc(x,m). Any witness w which satisfies (x, w) ∈ R can be used to decrypt this
ciphertext c as m = WE.Dec(c, w). Intuitively, one may think of a statement x as a “public
key”, such that any witness w with (x, w) ∈ R can be used as a corresponding “secret key”.

A secure witness encryption scheme essentially guarantees that no adversary is able to
learn any non-trivial information about a message encrypted for statement x , unless it already
“knows” awitnessw for (x, w) ∈ R.Witness encryption schemeswith this property are called
extractable [7,21,48]. The notion of extractable securitywas first proposed in [48], alongwith
a candidate construction, but there are no known constructions with a mathematical proof of
extractable security. Zhandry constructs an extractable witness PRF in [71], but extractability
is directly assumed. To the best of our knowledge, existing WE schemes [43,46,48,71] do
not have efficient extraction methods (since extractors for these schemes appear to be super-
polynomial). An exception is the scheme of Bellare and Hoang [8] which defers the issue of
extractability to its underlying obfuscation scheme.

Construction of time-lock encryption The key idea behind our construction of time-lock
encryption is to combine a computational reference clock with witness encryption. For this
introduction, let us consider time-lock encryption based on Bitcoin as one specific instanti-
ation of a reference clock (we will consider more general constructions in the body of the
paper). We define an NP-relation R such that

(1) For x ∈ N, statements have the form 1x , that is, x in unary representation.
(2) Any valid Bitcoin block chain w = (B1, . . . , Bx) of length at least x is a witness for

statement 1x , that is (1x , w) ∈ R.

Let (WE.Enc,WE.Dec) be a witness encryption scheme for this particular relation R.
Suppose the current state of the Bitcoin blockchain is B1, . . . , Bτ . Then the block chain
contains a witness w for (1x , w) ∈ R for all x ≤ τ . The Bitcoin blockchain is public.

Therefore everybody is immediately able to decrypt any ciphertext c
$← WE.Enc(1x ,m)

with x ≤ τ , by using the witness from the public block chain as the “decryption key”.
It is worth pointing out that the reference clock does not have to start with the genesis

block of Bitcoin. We can set the clock’s initial state w0 to be the latest block and ignore
older parts of the blockchain. In addition, the witness does not have to include all transaction
data of the blockchain, as the hash chain of the block headers is sufficient for decryption. A
block header is an 80-byte digest for each block. Our model can be viewed as a pruned and
simplified version of the blockchain.

Security of this construction Let c = WE.Enc(1x ,m) be a ciphertext with x > τ . Under the
assumption that the witness encryption scheme is secure, we will show that an adversary has
only two possibilities to learn any non-trivial information about m.

123

How to build time-lock encryption

(1) The adversary waits until the public Bitcoin block chain has reached length x . Then
the chain contains a witness w for (1x , w) ∈ R, which immediately allows to decrypt.
However, note that then not only the adversary, but also everybody else is able to decrypt,
by reading w from the public Bitcoin block chain and computing m = WE.Dec(c, w).
Speaking figuratively, “the time-lock has opened”.

(2) The adversary tries to “put forward” the computational reference clock provided by
the Bitcoin block chain, by computing the missing blocks Bτ+1, . . . , Bx of the chain
secretly on its own, faster than the public computation performed by the collection of
all Bitcoin miners. Note that this means that the adversary would have to outperform
the huge computational resources gathered in Bitcoin, which currently (August 2017)
perform more than 6.6 × 1018 ≈ 262 hash computations per second. Assuming that no
adversary is able to perform this large amount of computation to learn the encrypted
message earlier, the scheme is secure.
Aparticularly interesting case iswhen the value of learning themessage earlier than others
is below the value of the computations an adversary would have to perform. For instance,
in our Bitcoin-based instantiation, an adversary would earn Bitcoin for contributing its
resources to the network. Then security is provided simply by the fact that there is no
incentive for the adversary to attack the time-lock encryption.

The above description is slightly simplified. The actual Bitcoin block chain (described in
Sect. 5.1) and our construction (in Sect. 5.3) are more complex, but the underlying principle
is the same. In particular, we will have to describe slightly more complex relations, because
of the variable difficulty parameter in Bitcoin.

We stress that we do not have to put any form of trust in Bitcoin miners. The intermediate
states of their computations can be completely public, and they do not have to store any
secrets.

Using SNARKs to reducemultilinearity level for witness encryption The size of the ciphertext
and the running time for encryption and decryption is linear in terms of the size of witness.
Usually the linear complexity is very natural and efficient. Unfortunately, this is not good
enough for witness encryption because all the instantiations of witness encryption are based
on multilinear maps [18]. The research on multilinear maps is still in its infancy [31,32,
40,54] and is not yet practical regardless of recent lines of attacks. Most importantly, the
existing implementations for multilinear maps are not compact, that is, the size of the group
elements is polynomial in the multilinearity level (i.e., the maximum number of pairings).
The multilinearity level is polynomial in the length of the witness. To mitigate this issue, we
propose our second construction of time-lock encryption by using SNARKs [12–14,44,49,
55,56,62] together with witness encryption. Instead of directly encrypting with an instance
x in witness encryption, the idea is to encrypt with SNARKs verification procedure for the
statement (x, w) ∈ R. This idea of using SNARKs to gain efficiency is not new [48,71].
However, we show that using SNARKs can achieve constant multilinearity level regardless
of the instance and witness, rather than the previous linear complexity in [48,71].

1.1.2 Extractable witness encryption

Construction of extractablewitness encryption Wepropose a newextractablewitness encryp-
tion scheme based on a special Subset- Sum (described below). To encrypt with any NP
language, we present a reduction from the NP-complete CNF-SAT to our special Subset-
Sum problem. We prove the extractable security of this construction in the Idealised Graded

123

J. Liu et al.

Encoding Model [4,22,72]. To the best of our knowledge, this is the first construction of
witness encryption to achieve extractable security, without the use of obfuscation.

We use a variant of multilinear maps where the groups are indexed by the integer vectors
[4,19,40,72], which allows us to efficiently encode an instance of the special Subset-
Sum problem. Suppose a u-linear map on groups {Gw}w with w ≤ u (component-wise
comparison). The pairing operation ew,w′ maps Gw × Gw′ into Gw+w′ with w + w′ ≤ u by
computing ew,w′

(
gaw, gbw′

) = gabw+w′ .
The special Subset- Sum problem is: given a multi-set of positive integer vectors Δ =

{(vi : �i)}i∈I where (vi : �i)means vi occurs �i times in themultiset and a target sum-vector s
such that (�i +1)vi �≤ s and vi are pairwise-distinct, to decide whether there exists a subset of
Δ that can sum up to s. The side condition (�i +1)vi �≤ s is to guarantee the encoding of each
integer vector vi can only be used for at most �i times, in order to keep consistency between
the encoding of the Subset- Sum and the original Subset- Sum problem. In multilinear

maps, the vectors in Δ = {(vi : �i)}i∈I are encoded as
{
gαvi
vi

}

i∈I and the target vector is

encoded as gαs

s . Suppose the subset-sum exists, that is
∑

i∈I bivi = swith bi positive integers
and bi ≤ �i . Then we compute the encoding of the target sum as below

gαs

s = e(gαv1
v1 , · · · , gαv1

v1︸ ︷︷ ︸
b1

, gαv2
v2 , · · · , gαv2

v2︸ ︷︷ ︸
b2

, · · · , gα
v|I |

v|I | , · · · , gα
v|I |

v|I |︸ ︷︷ ︸
b|I |

)

In this way, each vector vi only needs to be encoded once and the multiplication of the same
encoding is in logarithm time which gains efficiency. To encrypt with any NP language, we
present a reduction from CNF-SAT to our special Subset- Sum problem.

We prove that our encoding achieves extractability in the generic model of multilinear
maps. The main technical detail is to construct an efficient extractor to extract a witness from
the adversary’s group operations. Constructing a witness extractor for the existing witness
encryption schemes [43,48,71] appears to be super-polynomial because of the expansion of
adversary’s query-polynomial. Soundness security [43] is a special case of the extractable
security; for sanity of this work, we also give full discussion about the soundness security of
our scheme in Appendix G.

Interestingly extractable witness encryption with arbitrary auxiliary inputs might be
unattainable [42]. A simple counter example is the following: suppose the sampler has
(x, w) ∈ R, then the sampler obfuscates the decryption algorithm of witness encryp-
tion z = O(WE.Dec(w, ·)) and gives z to the adversary; the adversary can decrypt
WE.Enc(x,m) by using the backdoor z and does not have to know w.

To circumvent this issue, we define extractable security in an oracle model. The oracle is
used to model the Bitcoin blockchain. The extractability is possible to achieve for most of
the non-artificial oracles. In particular, when the oracle is instantiated with a decentralised
cryptocurrency such as Bitcoin, this kind of backdoor is unlikely to exist since it is believed
that no one can have a witness w in advance for each instance x .

Efficiency comparison Assume a CNF formula has n variables and k clauses, and m literals.
The ciphertext size of our witness encryption scheme is 2n + 2k + 1 group elements. The
evaluation time is n+O(

klog m
2k

)
. The multilinearity level is n+m−k and can be optimised

to n + O(
klog m

2k

)
.

The efficiency of encodingCNF-SAT in [43] depends on the reductionwhich is unspecified
in [43]. As far as we know, the best reductions from CNF-SAT to Exact- Cover is CNF-
SAT → 3-CNF-SAT → Exact- Cover (The details of the second reduction can be found in

123

How to build time-lock encryption

Appendix H). However, the reduction from CNF-SAT to 3-CNF-SAT increases the number
of variables and clauses by the size of the original CNF formula, that is n′ = O(m) and
k′ = O(m) while m is n · k in the worst case. The reduction from 3-CNF-SAT to Exact-
Cover generates an instance of size 2n′ +7k′ +1. Hence the encoding producesO(m) group
elements and the evaluation time and multilinearity level are alsoO(m) withm = n · k in the
worst case. There are three instantiations of witness encryption for CNF formulas in [46].
Two of them are specific to the composite order multilinear groups. The prime-order groups
are usually more natural and result in simpler security assumptions. The conversion from
composite-order construction to prime-ordermultilinear groups (ormore generally, groups of
arbitrary order) is very expensive [46] and results in a ciphertext of O(n5k2) group elements.

A direct encoding for Subset- Sum is given in [71] which encodes every integer vector
in a different group. As a result, the encoding of the CNF formula is of the size of n +
m − k group elements which is O(n · k) in the worst case. The multilinearity level and the
evaluation time are both n + m − k. In comparison, our encoding for Subset- Sum only
encodes the same integer vector once which results in 2n+2k+1 group elements. Although
subgroups of multilinear maps used in [71] are indexed by numbers G1, . . . ,Gn , they have
to be instantiated with integer vectors (Sect. 7 in [71]). In fact, subgroups indexed by integer
vectors or integers do not affect the size of the group in the current instantiations ofmultilinear
maps [31,32,40,54]. Our witness encryption scheme has the same level of mulitilinearity
as [71], i.e., n + m − k, but we can further optimise this as stated above. Another main
difference of our witness encryption scheme and the one in [71] is that we prove our scheme
is extractable while [71] simply assumes its scheme is extractable.

1.2 Related work and further applications of time-lock encryption

Timed-release encryptionwas introduced byRivest et al. [66] and considered inmany follow-
up works, including [15,23,27,69]. Our approach is fundamentally different from theirs.
In particular, we neither need trusted third parties, nor have a considerable computational
overhead for decryption. Time-lock puzzles and proofs of (sequential) work [24,29,34,35,
58,59,65,66] are computational problems that can not be solved without running a computer
continuously for a certain time. In a sense, our computational reference clocks can be seen
as algorithms that continuously and publicly solve publicly verifiable [59] instances of an
infinite sequence of time-lock puzzles. Essentially, we show how this computational effort,
performed independently of any time-lock encryption scheme, can be “reused” to construct
time-lock encryption with efficient decryption.

Time-lock encryption can be used to construct the first timed commitment scheme in the
sense of Boneh and Naor [17] that does not require an inefficient forced opening. A clever
idea to use Bitcoin deposits to facilitate fairness in multiparty computation was presented by
Andrychowicz et al. [1,1,2]. Very recently, Azar et al. [3] construct “timed-delay”multi-party
computation (MPC)protocols,where participating parties obtain the result of the computation
only after a certain time, possibly some parties earlier than others. This is similar to the timed-
release schemes of [17,66,69], in particular it inherits the drawback of inefficient decryption
and the assumption that all parties are able to solve the puzzles in about the same time.

Garay et al. [39] analyze the Bitcoin “backbone” protocol, and show how to realize Byzan-
tine agreement on top of this protocol in a synchronous network. Pass et al. [64] formalises
the blockchain consensus mechanism in an asynchronous network. Another recent work,
which shows how to construct useful cryptographic primitives under the assumption that no
adversary is able to outperform the huge computational resources of the collection of all

123

J. Liu et al.

Bitcoin miners, is due to Katz et al. [53], who show how to obtain secure computation and
so-called pseudonymous authenticated communication from time-lock puzzles.

Formal computational models capturing “real-world time” were described for instance
by Cathalo et al. [23], who gave a security model for timed-release encryption with a “time
oracle” that sequentially releases specific information, and recently by Schwenk [67], who
described a security model for time-based key exchange protocols. Both works [23,67] may
assume that the party implementing the clock is honest. In contrast, we will have to deal
with adversaries that may want to “put the clock forward”, therefore we need to model the
computational hardness of doing so in our setting.

Independent work The idea of combining Bitcoin with witness encryption to construct time-
lock encryption was described independently in [51,57]. This paper is a merged version of
these works. In March 2015, Andrew Miller sketched the basic idea of combining witness
encryption with Bitcoin to get time-lock encryption in a public chat room [60]. The drafts of
both [51,57] have been done before the end of 2014 and are independent of [60].

2 Preliminaries

Definition 1 Let R be a relation.We say that R is anNP-relation, if there exists a deterministic
polynomial-time (in |x |) algorithm that, on input (x, w), outputs 1 if and only if (x, w) ∈ R.

2.1 Witness encryption

Syntax Witness encryption was originally proposed by Garg et al. [43]. It provides a means
to encrypt to an instance, x , of an NP language and to decrypt by a witness w that x is in the
language.

Definition 2 (Witness encryption (WE) [43])Awitness encryption scheme for anNP relation
R consists of the following two polynomial-time algorithms:

– WE.Enc
(
1λ, x,m

)
is an encryption algorithm that takes as input a security parameter

1λ, an unbounded-length string x , and a message m ∈ M, and outputs a ciphertext c.
– WE.Dec(c, w) is a decryption algorithm that takes as input a ciphertext c and a bit-vector

w, and outputs a message m or the symbol ⊥.
– Correctness. For any (x, w) ∈ R, we have that

Pr
[
WE.Dec

(
WE.Enc

(
1λ, x,m

)
, w

) = m
] = 1

Security A strong security notion for witness encryption is called extractable security which
is originally proposed in [48]. The extractability says that when the adversary can distinguish
two ciphertext encrypting different messages by using the same instance, then it must know
a witness of the instance. Below we give a variant of extractable security in an oracle model.
Intuitively, the oracle models the Bitcoin blockchain and will be instantiated with a compu-
tational reference clock defined in the next Sect. 3 when modelling our time-lock encryption.
The extractability is possible to achieve for most of the non-artificial oracles. We will show
that this definition is sufficient for our application of time-lock encryption. In Sect. 6, we
propose a novel witness encryption scheme and we prove our new scheme achieves this form
of extractable security.

123

How to build time-lock encryption

Definition 3 (Extractable security) Let R be an NP relation, (WE.Enc,WE.Dec) be a
witness encryption scheme for R, and ExpWEWE.Enc,WE.Dec,O

A be the following security
experiment.

ExpWEWE.Enc,WE.Dec,O
A (1λ, x) :

(m0,m1, st)
$← AO

0 (1λ, x); b
$← {0, 1}

c
$← WE.Enc(1λ, x,mb); b′ $← AO

1 (c, st)
Return b = b′

We say that (WE.Enc,WE.Dec) is (t, t ′, q, q ′, ε, ε′)-secure w.r.t. an oracleO, if for any
adversaryA = (A0,A1) that performs at most t operations and queries the oracle for at most
q times, there exists an extractor E that performs at most t ′ operations and queries the oracle
for at most q ′ times, such that for all x ∈ {0, 1}∗, the following holds:

2 · Pr
[
ExpWEWE.Enc,WE.Dec,O

A (1λ, x) = 1
]

− 1 > ε

�⇒ Pr
[
w

$← EO(
1λ, x

) : (x, w) ∈ R
]

> ε′

The above definition states that if an adversary that runs in time t and queries the oracle
for at most q times can break the encryption scheme with probability more than ε, then there
exists an extractor E that runs in time t ′ and extracts a witness with probability more than ε′.
In the above definition, we give the adversary access to an oracle O. We do not yet specify
what the oracle does. In the next section, we shall prove the extractable security w.r.t. an
oracle in the generic model of multilinear maps. This is due to the fact that we have our proof
in an idealised model, which allows us to circumvent the impossibility result [42].

2.2 SNARKs

Definition 4 (SNARKs [12,13,44,56]) A SNARK for a relation R is a triple of polynomial-
time algorithms (SNARK.Gen,SNARK.Prove,SNARK.Verify):

– (ek, vk)
$← SNARK.Gen

(
1λ, x

)
takes as input a security parameter λ and an instance

x . It computes and outputs a public evaluation key ek and public verification key vk.

– π
$← SNARK.Prove(ek, x, w): on input (x, w) ∈ R, the prover outputs a non-

interactive proof π

– b
$← SNARK.Verify(vk, x, π): on input a verification key vk, an input x , and a proof

π , the verifier outputs b = 1 if he is convinced that (x, w) ∈ R.

A SNARK satisfies the following properties.

– Completeness For every security parameter λ, any instance x and its witness w such that
(x, w) ∈ R, the hones prover can convince the verifier:

Pr

⎡

⎢
⎣

(ek, vk)
$← SNARK.Gen

(
1λ, x

)

π
$← SNARK.Prove(ek, x, w)

b
$← SNARK.Verify(vk, x, π)

: b = 1

⎤

⎥
⎦ = 1

– Succinctness An honestly-generated proof π has Oλ(1) bits and SNARK.Verify runs in
time Oλ(|x |)

123

J. Liu et al.

– Proof of knowledge If the verifier accepts a proof output by a bounded prover, then
the prover “knows” a witness for the given instance. Similarly as above, we consider the
security definition in an oracle model. We say a SNARK is (t, t ′, q, q ′, ε, ε′)-secure w.r.t.
an oracle O if for every adversary A that performs at most t operations and queries the
oracle for at most q times, there exists an extractor E that performs at most t ′ operations
and queries the oracle for at most q ′ times, such that for all x ∈ {0, 1}∗, the following
holds:

Pr

⎡

⎢
⎣

(ek, vk)
$← SNARK.Gen

(
1λ, x

)

π
$← AO(1λ, ek, vk, x)

1
$← SNARK.Verify(vk, x, π)

⎤

⎥
⎦ > ε

�⇒ Pr
[
w

$← EO(1λ, x) : (x, w) ∈ R
]

> ε′

3 Definitions of time-lock encryption

In this section we will formally define secure time-lock encryption, computational reference
clocks, and their associated relations.

On formally defining time-lock encryption Defining security of time-lock encryption schemes
will require a slightly more fine-grained notion of “computational hardness” than most other
cryptographic primitives.Wewill consider two TuringmachinesA and C, which both attempt
to solve the same super-polynomial-time computational problem.Although the computational
problem is super-polynomial, its instances we consider are with a relatively small difficulty
parameter which makes the problem solvable within a reasonable and practical time. We
will assume that C has access to significantly more computational resources than A, such
that it is infeasible for A to solve the problem faster than C. Clearly, modeling both A and C
simply as polynomial-time algorithms is not useful here. We will overcome this by making
the concrete bounds on the running times of algorithms A and C explicit.

A remark on nomenclature We will have to deal with two different notions of “time”. First,
the running time of algorithms, usually measured in the number of computational steps
an algorithm performs. Second, our computational equivalent of physical time, measured in
some abstract discrete time unit. To avoid ambiguity, we will use the word “time” only for our
computational equivalent of physical time. Rather than specifying the “running time” of an
algorithm, we will specify the “number of operations” performed by the algorithm, assuming
that all algorithms are executed on universal Turing machines with identical instruction sets.
For example, we will write “algorithm A performs t operations” instead of “algorithm A
runs in time t”.

Computational reference clocks (CRCs) The concepts of computational reference clocks and
their associated relations will be necessary to define time-lock encryption.

Definition 5 A computational reference clock (CRC) is a stateful probabilistic machine
C(1κ) that takes input a difficulty parameter κ and outputs an infinite sequence w1, w2, . . .

in the following way. The initial state of C is w0. It runs a probabilistic algorithm fC which
computes wτ = fC(wτ−1) and outputs wτ .

123

How to build time-lock encryption

We write wτ
$← C(1κ , τ) for τ ∈ N to abbreviate the process of executing the clock τ times

in a row, starting from initial state w0, and outputting the state wτ of C after τ executions.

Intuition for Definition 5 The intuition behind this definition is that themachine C performs an
iterative, public computation, which iteratively computes fC . It takes super-polynomial time
T (κ) to compute each fC . C outputs its complete internal state after each execution, therefore
no secret keys or other secret values can be hidden inside C. Algorithm fC is public, too.When
executed for the τ -th time, the machine responds with the current state of the computation
at “time” τ . Intuitively, wτ serves as a “witness” that the current time is “at least τ”.

Definition 5 will be useful for the construction of secure time-lock encryption, whenever it
is computationally very hard, but not completely infeasible (e.g., when κ is relatively small),
to computewτ fromwτ−1. Think of C as a very fast machine that works on solving an infinite
sequence of computational puzzles. Jumping slightly ahead, we will later instantiate C with
the collection of all Bitcoin miners that contribute to expanding the publicly known Bitcoin
blockchain. When executed for the τ -th time, the machine returns the blockchain of length
τ .

Definition 6 We say that relation R is associated to C, if R is an NP-relation, and for all
x ≤ τ holds that

Pr
[
(1x , wτ) ∈ R : wτ

$← C(1κ , τ)
]

= 1

Intuition for Definition 6 The purpose of the relation is to describe which values wτ are
acceptable as a “witness for time τ”. Note that it makes sense to accept a witness wτ with
“for time τ” also as a witness for any “earlier time” x with x ≤ τ . Hence we require that
(1x , wτ) ∈ R holds for all x ≤ τ .

Definition 7 Let C be a computational reference clock. We say that an adversaryA (t, τ, ε)-
breaks the security of C with respect to R, if it performs at most t operations and τ ∈ N such
that Pr[ExpC,R,A

clk (1κ , τ) = 1] > ε, where ExpC,R,A
clk is the following experiment.

ExpC,R,A
clk (1κ , τ) :

w := w0

wτ
$← AC(1κ , τ)

Return (1τ , wτ) ∈ R

C(1κ) :
w := fC(w)

Return w

The adversary is allowed to make at most τ − 1 times queries to C in total.

Intuition for Definition 7 Definition 7 essentially requires a lower bound on the number of
operations that have to be performed in order to compute thewitnesswτ for τ ∈ N. Even given
witness wτ−1 for τ − 1, it should be unlikely for any adversary to output wτ by performing
significantly less than t additional operations.

Time-lock encryption Based on the notion of computational reference clocks, we can now
define time-lock encryption schemes and their security.

Definition 8 A time-lock encryption scheme for computational reference clock C(1κ) with
message space M consists of two polynomial-time algorithms (TL.Enc,TL.Dec).

123

J. Liu et al.

Encryption The encryption algorithm c
$← TL.Enc(1λ, τ,m) takes as input the security

parameter λ, an integer τ ∈ N, and amessagem ∈ M. It computes and outputs
a ciphertext c.

Decryption The decryption algorithmTL.Dec(w, c) takes as inputw ∈ {0, 1}∗ and cipher-
text c, and outputs a message m ∈ M or a distinguished error symbol ⊥.

Correctness For correctness we require that

Pr

⎡

⎢
⎣m = m′ :

c
$← TL.Enc(1λ, τdec,m)

wτ
$← C(1κ , τ)

m′ := TL.Dec(wτ , c)

⎤

⎥
⎦ = 1

for all λ ∈ N, all τ ∈ N with τ ≥ τdec, and all m ∈ M.

Remark 1 One may relax the correctness requirement from “perfect correctness” (as above)
to correctness up to a negligible error term. We will work with the above perfect correctness
condition for simplicity.

Definition 9 We say an adversary A = (A0,A1) (t, τ, ε)-breaks time-lock encryption
scheme (TL.Enc,TL.Dec) for a clock C, ifA performs at most t operations and τ ∈ N such
that 2 Pr[ExpTLTL.Enc,TL.Dec,C

A (1λ, τ) = 1] − 1 > ε, where ExpTLTL.Enc,TL.Dec,C
A (1λ, τ) is

the following experiment.

ExpTLTL.Enc,TL.Dec,C
A (1λ, τ) :

(m0,m1, st)
$← AC

0 (1λ, τ); b
$← {0, 1}

c
$← TL.Enc(1λ, τ,mb); b′ $← AC

1 (1λ, c, st)
Return b = b′

We require that |m0| = |m1|. The adversary is allowed to make at most τ − 1 queries to C in
total.

Intuition for Definition 9 The intuition behind this security definition is essentially that no
adversary should be able to distinguish an encryption of m0 from an encryption of m1 by
performing significantly less operations than the number of operations required to compute
w with (1τ , w) ∈ R. At a first glance it might appear that security in this sense is impossible
to achieve, because C computes such values and it is a polynomial-time algorithm. Thus,
the adversary is a polynomial-time algorithm, too, then it could simply perform the same
computations as C. Therefore we put an explicit bound t on the number of operations that
A may perform. This makes this definition useful when it is reasonable to assume that the
number of operations t that can be performed within a certain time by the adversary is
much smaller than the (also polynomially bounded, but much larger) number of operations
t ′ performed by C to compute w with (1τ , w) ∈ R.

4 Constructing time-lock encryption

We first construct a time-lock encryption using witness encryption, then we show how to
reduce ciphertext size and multilinearity level using SNARKs.

123

How to build time-lock encryption

4.1 Constructing time-lock encryption from witness encryption

Construction 1 Let C be a computational reference clock and let R be an NP-relation, such
that R is associated to C. Let (WE.Enc,WE.Dec) be a witness encryption scheme for R.
Define algorithms (TL.Enc,TL.Dec) of a time-lock encryption scheme as

TL.Enc(1λ, τ,m) := WE.Enc(1λ, 1τ ,m) and TL.Dec(w, c) := WE.Dec(w, c)

Let us first prove correctness. We have to show that

Pr

⎡

⎢
⎣m = m′ :

c
$← WE.Enc(1λ, 1τdec ,m)

wτ
$← C(1κ , τ)

m′ := WE.Dec(wτ , c)

⎤

⎥
⎦ = 1

holds for all λ ∈ N, all τ ≥ τdec, and all m ∈ M. The correctness of the witness encryption
scheme guarantees that

Pr
[
m = m′ : c $← WE.Enc(1λ, 1τdec ,m),m′ = WE.Dec(w, c)

]
= 1

for all λ ∈ N, all w with (1τdec , w) ∈ R, and all m ∈ M. Thus, it remains only to show that

Pr[(1τdec , wτ) ∈ R : wτ
$← C(1κ , τ)] = 1

holds for all τ ≥ τdec. Since R is associated to C, this follows by Definition 5.

Remark 2 If we use a witness encryption scheme and/or a computational reference with
negligible correctness error in the same construction as above, then we obtain a time-lock
encryption scheme with negligible correctness error.

Remark 3 When the CRCs are instantiated with Bitcoin, the size of witnesses grows linearly
with τ . However, the Bitcoin blockchain generation time is O(τ · T (κ)) with T (κ) a super-
polynomial, while the computational time of our witness encryption is O(τ). In our time-lock
encryption, the super-polynomial T (κ) computationalwork is done by theBitcoin community
which possesses the huge computational resources. The current block mining difficulty is
about κ ≈ 71 which means the Bitcoin community needs to hash 271 (≈ 1021) times on
average to find a nonce for a new block. It is worth pointing out that size of witnesses
growing linearly holds for Bitcoin, but not necessarily for any other instantiation of CRCs.
Bitcoin is just one practical example that illustrates that the concept of CRCs indeed makes
sense.

Moreover, we choose the concrete setting as the “right” setting for time-lock encryption,
because it simplifies the treatment of “difficult, but not too difficult to compute functions”
(such as computational reference clocks) very significantly, which would be much more
difficult to express precisely with traditional asymptotic formulations.

Theorem 1 For each adversary Atl that (ttl, τ, εtl)-breaks (TL.Enc,TL.Dec), we can con-
struct an adversary Aclk that (t ′, τ, ε′)-breaks computational reference clock C, provided
that the witness encryption scheme is (ttl, t ′, τ − 1, τ − 1, εtl, ε′)-secure w.r.t. C.

Proof Consider the following adversaryAclk against C, which runsAtl as a subroutine.Aclk
definesAwe by settingAwe

C
0 := Atl

C
0 andAwe

C
1 := Atl

C
0 . Then it runs the extractor algorithm

E for (WE.Enc,WE.Dec) on Awe, and outputs whatever E outputs.

123

J. Liu et al.

By construction of Awe and the definition of experiments ExpTLTL.Enc,TL.Dec,C
Atl

and

ExpWEWE.Enc,WE.Dec,C
Awe

we have

εtl < 2 · Pr
[
ExpTLTL.Enc,TL.Dec,C

Atl
(1λ, τ) = 1

]
− 1

= 2 · Pr
[
ExpWEWE.Enc,WE.Dec,C

Awe
(1λ, τ) = 1

]
− 1

Thus, by the (ttl, t ′, τ − 1, τ − 1, εtl, ε′)-security of (WE.Enc,WE.Dec), the extractor E
(and therefore alsoAclk) issues at most τ − 1 queries to C. It runs in time t ′, and computes a
witness w with (1τ , w) ∈ R with probability at least ε′. Thus, Aclk (t ′, τ, ε′)-breaks C. ��
4.2 Reducing multilinearity level using SNARKs

For the existing constructions of witness encryption [7,21,41,43,46], as well as our proposed
scheme in the following Sect. 6, the size of the ciphertext and the running time for encryption
and decryption is linear in terms of the length of witness. Usually the linear complexity
is very natural and efficient. Unfortunately, this is not good enough for witness encryption
because all the instantiations of witness encryption are based on multilinear maps [18] of
which the research is still in its infancy [31,32,40,54] and is not yet practical regardless
of recent lines of attacks. Furthermore, the existing implementations for multilinear maps
are not compact, that is, the size of the group elements is polynomial in the multilinearity
level (i.e., the maximum number of pairings). The multilinearity level is polynomial in the
length of the witness. To mitigate this issue, we propose our second construction of time-lock
encryption by using SNARKs [12–14,44,49,55,56,62] togetherwithwitness encryption. The
idea is to encrypt with SNARKs verification procedure for the statement (x, w) ∈ R, instead
of directly encrypting with an instance x . This idea of using SNARKs to gain efficiency is
not new [48,71]. However, we show that using SNARKs can achieve constant multilinearity
level regardless of the instance and witness, rather than the previous linear complexity stated
in [48,71].

Construction 2 Let C be a computational reference clock and let R be an NP-relation that
is associated to C. Let (WE.Enc,WE.Dec) be a witness encryption scheme for R and
(SNARK.Gen,SNARK.Prove,SNARK.Verify) for R. Algorithms (TL.Enc,TL.Dec) of
a time-lock encryption scheme are defined as

– TL.Enc(1λ, τ,m):

(1) Run the SNARK generator to get (ek, vk)
$← SNARK.Gen(1λ, 1τ).

(2) Let x∗ = SNARK.Verify(vk, 1τ , ·) and define a relation

R∗ = {(x∗, w∗) : x∗(w∗) = 1}. Compute ct $← WE.Enc(1λ, x∗,m) for the relation
R∗.

(3) Output c := (τ, ek, ct).

– TL.Dec(w, c) where c = (τ, ek, ct):

(1) Run the SNARK prover to get π
$← SNARK.Prove(ek, 1τ , w)

(2) Let w∗ = π . Compute and outputWE.Dec(w∗, ct)

123

How to build time-lock encryption

For correctness, we will show that

Pr

⎡

⎢
⎣m = m′ :

c
$← TL.Enc(1λ, 1τdec ,m)

wτ
$← C(1κ , τ)

m′ := TL.Dec(wτ , c)

⎤

⎥
⎦ = 1

holds for all λ ∈ N, all τ ≥ τdec, and allm ∈ M. By Definition 2, we know that (1τdec , wτ) ∈
R. By the completeness of SNARK, we have

Pr

⎡

⎢
⎣

(ek, vk)
$← SNARK.Gen

(
1λ, 1τdec

)

π
$← SNARK.Prove(ek, 1τdec , wτ)

b
$← SNARK.Verify(vk, 1τdec , π)

: b = 1

⎤

⎥
⎦ = 1

Let x∗ = SNARK.Verify(vk, 1τdec , ·) and w∗ = π . Then (x∗, w∗) ∈ R∗ as defined above.
The correctness of the witness encryption scheme guarantees that

Pr
[
m = m′ : c $← WE.Enc(1λ, x∗,m),m′ = WE.Dec(w∗, c)

]
= 1

Hence we can easily see the correctness holds.

Theorem 2 For each adversary Atl that (ttl, τ, εtl)-breaks (TL.Enc,TL.Dec), we can con-
struct an adversary Aclk that (tc, τ, εc)-breaks computational reference clock C, provided
that the witness encryption scheme is (ttl, te, τ − 1, τ − 1, εtl, εe)-secure w.r.t. C and SNARK
is (te, tc, τ − 1, τ − 1, εe, εc)-secure w.r.t. C.

Proof Suppose an adversaryAtl (ttl, τ, εtl)-breaks time-lock encryption by querying the clock
for at most τ − 1 times. The basic idea of the proof is: we construct a witness encryption
adversary Awe who uses Atl as a subroutine to break witness encryption and triggers the
witness extractor to extract a valid SNARK proof. This extractor breaks the SNARK security
and triggers the SNARK extractor to extract a witness for 1τ which breaks the security of
the computational reference clock.

First the SNARK challenger runs (ek, vk)
$← SNARK.Gen

(
1λ, 1τ

)
and gives

(ek, vk, x) to a SNARK adversary As. Then As constructs a new instance x∗ =
SNARK.Verify(vk, 1τ , ·) and a challenge ciphertext c∗ = WE.Enc(1λ, x∗,mb) of witness
encryption and give them to a witness encryption adversary Awe. Then Awe forwards c∗ to
Atl. As queries to C and forwards the answers to Awe and then Awe forwards them to Atl.
Awe outputs whatever Atl outputs. By assumption, we know witness encryption scheme is
(ttl, te, τ − 1, τ − 1, εtl, εe)-secure. Therefore, there exists an extractor E that performs at
most te operations, queries to the oracle at most τ − 1 times and outputs a witness w∗ for x∗
with probability more than εe. Recall that x∗ = SNARK.Verify(vk, 1τ , ·). This means the
extractor outputs a valid proof π such that SNARK.Verify(vk, 1τ , π) = 1. This extractor
is clearly a SNARK adversary with at most τ − 1 times queries from the oracle. Since the
SNARK is (te, tc, τ −1, τ −1, εe, εc)-secure, this gives us another extractor E ′ that performs
at most tc operations and queries the oracle at most τ − 1 times and outputs a witness w

such that (1τ , w) ∈ R with probability more than εc. Therefore can see E ′ is in fact a clock
adversary who (tc, τ, εc)- breaks the clock C. ��

Constant level of multilinearity for witness encryption In Construction 2, the witness
encryption encrypts to an instance x∗ = SNARK.Verify(vk, 1τ , ·) which is the verifi-
cation procedure of a SNARK proof. The only input of x∗ is a SNARK proof π which

123

J. Liu et al.

is succinct, i.e., a constant number of group elements. The original verification procedure
SNARK.Verify(·, ·, ·) takes as input the verification key and the instance which means its
size and computing time is at least linear in the description of the instance. Intuitively, x∗
has already been initialised with the verification key and the instance, and thus its size and
running time can be constant.

We shall explain how the constant complexity can be achieved with the most recent
implementations of SNARKs [12–14,16,44,56]. We first consider the SNARKs based on
quadratic span programs [12,13,44,56] and we use the general notations from [44]. To verify
a SNARK proof, the verifier processes the instance to obtain coefficients {ai }i∈I such that
vin(x) = ∑

i∈I aivi (x) and then computes an encoding E(vin(s)) of vin(s) = ∑
k∈Iin

ak ·
vk(s) by using the verification key. This is the only part of the verification that is linear in
the instance and the rest of the verification can be done in a constant number of steps. Notice
that verifying the instance becomes unnecessary when encrypting with witness encryption.
This is because the verification of the instance can be pre-computed and hard-coded into
the ciphertext of witness encryption. More specifically, when encrypting with the SNARK
verification procedurewithwitness encryption,we can pre-compute those coefficients {ai }i∈I
and the encoding E(vin(s)), then directly hard-code E(vin(s)) into the verification procedure
and obtain SNARK.Verify(vk, 1τ , ·). This reduces the size and computing time of x∗ into
a constant, therefore the computing complexity of the ciphertext of witness encryption and
the underlying multilinearity level become constant. The constant multilinearity level can
also be achieved when using SNARKs from PCPs and linear-only encryption [14,16]. In this
case, SNARK.Verify(vk, 1τ , ·) consists of a decryption algorithm of linear-only encryption
and an LPCP verification decision algorithm for the instance 1τ . To discuss the complexity
of the SNARK verification, we use the notations from Construction 4.5 from [16]. For an
�-query LPCP, the complexity of the decryption of the linear-only encryption is linear in �,
and the complexity of the LPCP verification decision algorithm depends on the size of the
instance x . For boolean circuit and arithmetic circuit satisfaction, 3-query LPCPs are given
in Appendix A in [14], where the computation on instance x in the LPCP decision algorithm
can be easily pre-computed and removed when encrypting with witness encryption. Since
� = 3 and x is removed, the witness encryption for encrypting the SNARK verification is of
constant complexity.

We note that using a third party to set up SNARK parameters is not necessary for our time-
lock encryption scheme. The party who produces the ciphertext can generate the SNARK
parameters itself. This party can be assumed to be trusted, since it is the owner of the plaintext.
The receiver of the ciphertext can outsource the computation of generating a SNARK proof
from a blockchain to a third party, but this party does not have to be trusted either since
the proof can be verified. The receiver can also do this computation himself, of course.
There are practical implementations of SNARKs [13,63] and used in real-world applications,
such as [11,33], in contrast to current multilinear maps. Introducing a third party to set up
public parameters for using SNARK can further improve efficiency. One can generate these
parameters e.g. by using multi-party protocols [10,20] that are tailored to support state-of-
art SNARK constructions [13,63]. These multi-party protocols guarantee that even a party
controlling all but one of the parties cannot construct fraudulent proofs. One has to run the
set-up protocol only once and re-use the parameters across many ciphertexts.

4.3 Extension to adaptively-secure computational reference clocks

In our Bitcoin-based instantiation of a computational reference clock C described below,
the adversary will also be able to modify the state of C to a certain degree (for instance, by

123

How to build time-lock encryption

executing Bitcoin transactions). This is not yet captured by Definitions 5 and 7 and the proof
of Theorem 1. In this section, we extend the definitions and the security proof from the Sect. 3
to this case.

Definition 10 A computational reference clock with auxiliary input is a stateful probabilistic
machine C that outputs an infinite sequencew1, w2, . . . in the following way. The initial state
of C is w0. On input a string aux ∈ {0, 1}∗, it runs a probabilistic algorithm fC which
computes wτ = fC(wτ−1,aux) and outputs wτ .

Intuition for Definition 10 Themain difference to Definition 5 is that nowwe allow the output
wτ to depend on some auxiliary input aux, which is motivated by the specific computational
reference clock given by the Bitcoin blockchain. In Bitcoin the auxiliary input will consist of
a list of Bitcoin transactions broadcasted by Bitcoin users in the network. An adversary may
influence this list of transactions to somedegree, byperforming andbroadcasting transactions.
We will reflect this in the security definition given below, by letting the adversary choose the
entire auxiliary input for each iteration of the fC-function.

Definition 11 We say that an adversary A adaptively (t, τ, ε)-breaks a computational
reference clock C w.r.t. R , if A performs at most t operations and it holds that
Pr[ExpC,R,A

clk (1κ , τ) = 1] > ε and τ ∈ N, where ExpC,R,A
clk is the following experiment.

ExpC,R,A
clk (1κ , τ) :

w := w0

wτ
$← AC(1κ , τ)

Return (1κ , wτ) ∈ R

C(1κ ,aux) :
w := fC(w,aux)
Return w

A may query C at most τ − 1 times.

Intuition for Definition 11 The main difference to Definition 7 is that now the adversary has
access to a stateful oracle C, which takes as input aux chosen by the adversary (possibly
adaptively and depending on previous oracle responses). The initial state of the oracle is
equal to the initial state w0 of reference clock C. When queried on input aux, the oracle
computes fC(w,aux), using its internal state w and the adversarially-provided input aux. It
updates its internal state by assigning w = fC(w,aux), and returns w.

Remark 4 Note that we do not have to adapt the security definition for time-lock encryption
(Definition 9) to adaptive computational reference clocks, because Definition 9 already fits
to the adaptive setting. Technically, we would have to adopt the correctness requirement in
Definition 8 by adding the additional auxiliary inputs aux1, . . . ,auxτ of each clock iteration.
However, this is straightforward and therefore omitted. We only note that correctness should
hold for all possible auxiliary inputs, of course.

Theorem 3 From each adversaryAtl that (ttl, τ, εtl)-breaks (TL.Enc,TL.Dec) in Construc-
tion 1 by querying C, we can construct an adversary Aclk that adaptively (t ′, τ, ε′)-breaks
C, provided that the witness encryption scheme is (ttl, t ′, τ − 1, τ − 1, εtl, ε′)-secure w.r.t. C.
The proof is identical to the proof of Theorem 1 and therefore omitted.

Theorem 4 For each adversary Atl that (ttl, εtl)-breaks (TL.Enc,TL.Dec) in Construction
2, we can construct an adversary Aclk that adaptively (t ′, τ, ε′)-breaks C, provided that the
witness encryption scheme is (ttl, te, τ − 1, τ − 1, εtl, εe)-secure w.r.t. C and SNARKs is
(te, t ′, τ − 1, τ − 1, εe, ε′)-secure w.r.t. C.
The proof follows the same pattern as the proof of Theorem 2 and is therefore omitted.

123

J. Liu et al.

5 Time-lock encryption based on bitcoin

In this section, we will first describe the necessary background on Bitcoin. Then we explain
how the scheme from Sect. 4 can be instantiated based on Bitcoin. Finally, we discuss some
engineering tasks that arise in the context of Bitcoin-based time-lock encryption.

5.1 The bitcoin blockchain

Cryptocurrencies are a cryptographic equivalent of regular currencies. The concept of decen-
tralized cryptocurrencies has recently received a lot of attention, mostly motivated by the
tremendous success of the most prominent decentralized cryptocurrency Bitcoin [61] and the
emerge of a large number of alternative decentralized cryptocurrencies.2

Using Bitcoin as an example, we will show how decentralized cryptocurrencies can be
used as a concrete instantiation of the abstract concept of computational reference clocks.
We stress, however, that Bitcoin serves merely as one concrete example. For instance, other
decentralized cryptocurrencies also provide mechanisms that may be used to instantiate such
reference clocks.

A complete description of the full Bitcoin system is out of scope of this paper. In particular,
we omit all details about Bitcoin transactions, and give only a simplified description that
captures the relevant features of Bitcoin. In the sequel we focus on one central building block
of Bitcoin, the so-called Bitcoin blockchain. We refer to [61] for a description of the full
system.

The Bitcoin blockchain The blockchain is used in Bitcoin to prevent double-spending of
Bitcoin (cf. Appendix B). It is a sequence of tuples

(T1, r1, D1, B1), . . . , (Ts, rs, Ds, Bs)

that satisfies

Bi := H(Ti , ri , Di , Bi−1)

where H is a cryptographic hash function based on SHA-256 and B1, . . . , Bs are called
blocks. B0 is a distinguished value, called the genesis block, which is a hard-coded constant
in the Bitcoin software. The values Ti , ri , Di are described below.

Bitcoin users may attempt to find the next block Bs+1 in the chain, which is a compu-
tationally expensive (but feasible) task, because Bs+1 must meet certain conditions that we
will describe below. Users contributing to this search are called miners. The main incentive
to contribute significant computational resources to the progress of the blockchain is that for
each new block the respective miner is rewarded with a certain amount of Bitcoin.3

Each miner keeps a full local copy of the blockchain, and collects all recent transactions
broadcasted by other Bitcoin peers. For each transaction, the miner first checks if it is “mali-
cious”, that is, if it contains any coins that, according to the transaction ledger, are not in
possession of the spending party. These transactions are discarded. Ts+1 denotes the list of
new transactions which are not discarded. The miner now attempts to approve these transac-
tions, by finding that a new block Bs+1 in the blockchain which includes these transactions.
To this end, the miner increments a counter value rs+1, until the hash

Bs+1 := H(Ts+1, rs+1, Ds+1, Bs)

2 See http://altcoins.com/ for an overview of Bitcoin alternatives.
3 12.5 bitcoins per block, at a value of approximately 2378 US-$ per Bitcoin, in July 2017.

123

http://altcoins.com/

How to build time-lock encryption

satisfies Bs+1 ≤ Ds+1, where the binary string Bs+1 is interpreted canonically as an integer,
and Ds+1 is the current value of a variable public system parameter called the target. The
size of the target determines the computational hardness of finding new blocks. It is related
to the Bitcoin difficulty by the definition

difficulty := σ

target

where σ = (216 − 1) × 2208 is a constant, called the Bitcoin maximum target. Each new
block Bs+1 serves as a proof of work for the computational resources contributed by the
miner that found Bs+1. New blocks are broadcasted to all other Bitcoin peers, along with
their associated data (Ts+1, rs+1, Ds+1, Bs). All miners receiving the new block Bs+1 will
then turn to searching for the next block Bs+2.

It may happen that at some point the blockchain forks (for instance, if it happens that two
miners simultaneously find a new block Bs+1), such that different miners continue their work
on different branches of the fork. This problem is resolved in Bitcoin by considering only
these transactions as valid, which correspond to the longest branch of the fork. Only newly
mined blocks that correspond to the longest branch are rewarded. This provides an incentive
for miners to contribute only to the longest branch.

Remark 5 Actually, the “length” of a chain in Bitcoin is not determined by the number of
blocks, but by sum of the difficulty of all blocks in the chain. This is done to prevent that
an adversary forks the chain by appending some low-difficulty blocks.4 This distinction is
not relevant for our paper. As in [1], we will therefore assume that the longest chain also
corresponds to the chain with the largest sum of difficulties. When referring to the Bitcoin
blockchain” in the sequel, we will mean the longest chain.

Note that the complexity of the problem of finding a new block Bs+1 with Bs+1 ≤ Ds+1

grows with decreasing Ds+1.5 This allows to dynamically modify the complexity of finding
a new block by modifying the difficulty. The Bitcoin system frequently adjusts the difficulty,
depending on the computational power contributed by miners to the progress of the Bitcoin
blockchain,6 such that about every 10 minutes a new block is appended to the blockchain.

Important properties of the Bitcoin Blockchain The Bitcoin blockchain has the following
two properties, which are particularly relevant to our work.

– Bitcoin miners have an incentive to contribute significant computational resources to the
progress of the blockchain, and to publish their solutions in order to get rewarded for
their effort.
The total computing power contributed to the Bitcoin blockchain is huge, as of August
2017 the network computes more than 6.6 × 1018 ≈ 262 hashes per second.

– The Bitcoin blockchain grows constantly and with predictable progress. The difficulty,
and thus the size of the target, is frequently adjusted (about every two weeks) to the
computational power currently available in the Bitcoin network, such that about every
10 minutes on average a new block is appended to the chain.

4 See https://en.bitcoin.it/wiki/Block_chain.
5 Under the assumption that H is a sufficiently secure hash function.
6 See https://bitcoinwisdom.com/bitcoin/difficulty for a chart depicting the recent development of the diffi-
culty in Bitcoin.

123

https://en.bitcoin.it/wiki/Block_chain
https://bitcoinwisdom.com/bitcoin/difficulty

J. Liu et al.

5.2 NP-relations based on hash blockchains

Let H : {0, 1}∗ → {0, 1}d be a hash function for some constant d . Let β ∈ {0, 1}d , and let
δ : N → [0, 2d − 1] be a function with polynomially-bounded description. We will call β

the starting block and δ the target bound function.

Definition 12 Let Rβ,δ be the relation where (1x , w) ∈ Rβ,δ if and only if

w = ((T1, r1, D1, B1), . . . , (Tτ , rτ , Dτ , Bτ))

and w satisfies all the following properties:

– |Ti | and |ri | are polynomially bounded, and Di ∈ [0, 2d − 1]
– w contains at least x tuples (Ti , ri , Di , Bi)
– B1 = H(T1, r1, D1, β)

– Bi = H(Ti , ri , Di , Bi−1) for all i ∈ [2, x]
– δ(i) ≥ Bi for all i ∈ [1, x], where we interpret bit strings B1, . . . , Bx canonically as

integers.

Note that Rβ,δ is an NP-relation, because there is an efficient deterministic algorithm
that, given (1x , w), β, and δ, verifies that (1x , w) ∈ Rβ,δ by checking the conditions from
Definition 12. Note also that the problem of finding a witness w for a given statement 1x

corresponds to the problem of finding a valid blockchainw of length x with respect to (β, δ),
which gets increasingly difficult with decreasing δ.

5.3 Time-lock encryption from bitcoin

We will now describe the Bitcoin-based computational reference clock Cbtc along with a
suitable associated relation Rβ,δ . As described in Sect. 3, we can then combine these building
blocks with witness encryption, to obtain a Bitcoin-based time-lock encryption scheme.

NP-relations based on the Bitcoin blockchain Let H : {0, 1}∗ → {0, 1}256 be the hash
function used in Bitcoin. Let Rβ,δ be the relation from Definition 12, instantiated with H and
the following parameters β and δ.

– Set β := B0, where B0 is the Bitcoin genesis block.
– Fix a target bound function δ : N → [0, 2256 − 1].

Bitcoin-based computational reference clock Let fbtc be the function that expands theBitcoin
blockchain. That is, on input

wτ−1 = (T1, r1, D1, B1), . . . , (Tτ−1, rτ−1, Dτ−1, Bτ−1)

and auxiliary input aux = Tτ , it computes and outputs the new state wτ such that wτ =
(T1, r1, D1, B1), . . . , (Tτ , rτ , Dτ , Bτ) with H(Tτ , rτ , Dτ , Bτ−1) = Bτ ≤ Dτ , where Dτ is
the current Bitcoin target.

Let Cbtc denote the computational reference clock that computes fbtc. Then the state of
Cbtc at “time” τ consists of the first τ tuples of the Bitcoin blockchain. Recall that the progress
of the chain is relatively predictable. Assuming that the current length of the chain is τ tuples,
and that new blocks will continuously be found at a rate of approximately one block every
10 minutes, then we know that in approximately 10 · x minutes the blockchain will contain
τ + x tuples.

123

How to build time-lock encryption

Note that the relations Rβ,δ from Definition 12 are associated to Cbtc in the sense of
Definition 6, provided that β = B0 and δ satisfies δ(i) ≥ Bi for all i ∈ N. Unfortunately, the
latter is not guaranteed, as it depends on the choice of the target bound function δ and the
future development of the size of the Bitcoin target. Therefore δ must be chosen carefully.
Choosing δ carefully. Let x such that x > τ , that is, no witness w for (1x , w) ∈ Rβ,δ is yet
contained in the Bitcoin blockchain. We note that any sequence

w = ((T1, r1, D1, B1), . . . , (Tx , rx , Dx , Bx)

computed by the Bitcoin network in the future is only a potential witness for (1x , w) ∈ Rβ,δ .
This is because relation Rβ,δ depends on the target bound function δ. By definition, w will
only be a witness for (1x , w) ∈ Rβ,δ , if Bi ≤ δ(i) holds for all i ∈ [1, x]. It might happen
that at some point γ ∈ [τ +1, x] in the future the Bitcoin target increases to a value Dγ such
that Dγ ≥ δ(γ). In this case we will have (1x , w) /∈ Rβ,δ .

It is possible to overcome this by choosing δ carefully. To this end, consider the following
observations.

– First, note that we must not choose δ too small More precisely, we must not choose δ

such that there exists i ∈ N with δ(i) < Bi . This is because then our reference clock
Cbtc would not provide suitable witness wi for (1i , wi) ∈ Rβ,δ . Thus, the time-lock
encryption scheme would not be correct.

– Observe also that δ must not be too large For instance, recall that Bi ∈ {0, 1}d . Thus, we
could try to simply set δ such that δ(i) = 2d for all i ∈ N. Then δ(i) > Bi holds trivially
for all i ∈ N.
However, then it becomes very easy to compute witnesses wi for (i, wi) ∈ Rβ,δ , by
simply evaluating the hash function H i-times to build a chain of length i . Essentially,
we have eliminated the size restriction on the Bi values, such that breaking the security
of clock Cbtc is clearly not hard for any such relation Rβ,δ and any reasonable t . The
resulting time-lock encryption scheme would be trivially insecure.

Ideally, δ is chosen such that δ(i) = Di matches the Bitcoin target parameter Di for
all future i > τ . However, since Di depends on the computational resources that currently
contribute to the Bitcoin network, this would require to predict the amount of these resources.
Therefore it seems impossible to predict Di exactly. But we can try to approximate Di with
δ as closely as possible, such that it always holds that δ(i) = Di − εi for small values εi .

Dependence on the sender’s preferences Note that the “right” choice of δ depends on the pref-
erence of the sender, which one of the following options is more desirable for the encrypted
message.

– If δ is chosen too small, then the witness required to decrypt the message may never be
contained in the public Bitcoin blockchain. This may happens if the Bitcoin difficulty
decreases faster than expected by the encrypting party choosing δ. Thus, it may be
infeasible to decrypt the ciphertext in reasonable time, such that nobody will ever learn
the message (at least not within close time distance to the desired deadline).

– If δ is chosen too large, then an adversary that is able to perform a very large number
of computations within a short time may be able to decrypt the message before the
deadline, even though its computational resources are significantly below the resources
of all Bitcoin miners.

Since it is not clear which of the above options is preferable in general, we think it makes
most sense to let the sender choose δ application-dependent, or possibly even individually

123

J. Liu et al.

for each encrypted message. If it is more desirable that an encrypted message remains secret
(possibly for a much longer time than originally desired by the sender), rather than being
decrypted before the deadline, then one would choose a very small target bound function δ.
If it is preferred that the message is rather decrypted earlier than possibly never, then one
would choose δ larger. The substantial computational resources currently contributed to the
Bitcoin network provide a generous margin of error for the choice of δ.

We consider the “right” choice of δ as an application-dependent engineering problem,
which we will discuss in Appendix C, along with other engineering questions arising from
the Bitcoin-based instantiation of time-lock encryption.

Correctness of the Bitcoin-based time-lock encryption scheme In order to argue correctness
of the Bitcoin-based time-lock encryption scheme, we assume that Rβ,δ is associated to C in
the sense of Definition 6. Note that this is implied by the assumption that Bitcoin is correct.

Security of the Bitcoin-based time-lock encryption scheme The following theorem follows
from Theorem 3.

Theorem 5 Let (TL.Enc,TL.Dec) be the time-lock encryption scheme obtained from com-
bining computational reference clock Cbtc with a witness encryption scheme for relations
Rβ,δ by applying the construction from Sect. 4. For each adversary Atl that (ttl, εtl)-breaks
(TL.Enc,TL.Dec) by querying Cbtc at most q times, we can construct an adversary Aclk
that adaptively (t ′, ε′)-breaks Cbtc with at most q ′ queries with q ′ ≤ q, provided that the
witness encryption scheme is (ttl, t ′, q, q ′, εtl, ε′)-secure.

The assumption that (t ′, ε′)-breaking the security of C with respect to Rβ,δ and reasonable
values of t ′ and ε′, can be analyzed in the Random Oracle Model [9]. To this end, consider
the following lemma.

Lemma 1 Let Rβ,δ be a relation according to Definition 12, instantiated with a random
oracle H : {0, 1}∗ → {0, 1}d . Let AH be an adversary, which receives as input (β, δ) and
(1τ , wτ) with (1τ , wτ) ∈ Rβ,δ , and issues at most t random oracle queries. Then for all
x ∈ N holds that

Pr
[
(1τ+x , w) ∈ R : w

$← AH (1λ, δ, β, 1τ , wτ)
]

≤
(
e · (t + x) · δmax

x · 2d
)x

where e is Euler’s number and δmax := maxi∈{1,...,x}{δ(τ + i)}.
The Proof of this lemma can be found in Appendix D

Further game-theoretic aspects Ideally, the target bound function δ is chosen such that
decrypting the ciphertext earlier would require so many computational resources, that from a
game-theoretic perspective it is more reasonable to use these resources to perform a different
computation. This is always the casewhen the value of learning the encryptedmessage before
the deadline is below the revenue obtainable from the different computation.

In particular, an adversarymight gainmore revenue fromminingBitcoin directly than from
trying to learn the time-lock encrypted message earlier than others. The revenue obtainable
from Bitcoin mining is easily quantifiable, we think this is a very nice aspect of the Bitcoin-
based instantiation of time-lock encryption.

Time-lock encryption beyond Bitcoin In order to obtain a stable and robust time-lock encryp-
tion scheme from Bitcoin, it is required that Bitcoin miners will continue to contribute

123

How to build time-lock encryption

significant computational resources to the progress of the Bitcoin blockchain. It is conceiv-
able that Bitcoin will be discontinued at some point in the future. This may happen, for
instance, due to a market crash making Bitcoin worthless, or simply because its popular-
ity decreases over time, possibly replaced by a different cryptocurrency. This is of course
unpredictable.

Currently, there are several alternate cryptocurrencies, which are colloquially referred to
as “altcoins”, any of which could be used in place of Bitcoin in our construction. Of particular
interest is the fact that a large number of these are either Bitcoin derivatives or are built using
the same techniques. This means that our construction can be used almost directly for these
“altcoins”. Of course we can also replace Bitcoin with any other cryptocurrency.

In particular, one alternative is Ethereum [37,38], which is the most popular cryptocur-
rency after Bitcoin, at the time of writing. One particular advantage of Ethereum over Bitcoin
is that the average block time is significantly shorter, with a new block every 25 seconds
on average (September 2017). However on the other side, we do have a lower hashrate of
approximately 9×104 ≈ 216.5. As with Bitcoin, these figures are liable to change and would
then affect the final construction.

We stress that the approach for constructing time-lock encryption described in Sect. 3
is generic. That is, it is motivated by, but not reliant on Bitcoin, nor on any other cryp-
tocurrency for that matter. In principle, our approach can be used with completely different
types of iterative, public, large-scale computations. For instance, time-lock encryption could
be based on other decentralized cryptocurrencies, or even on completely different types of
public computations. The construction from Sect. 5.3 is only one concrete application of
the techniques developed in Sect. 3, motivated by the fact that Bitcoin currently seem to be
the most interesting candidate instantiation, in particular due to their wide adoption and the
significant computational resources contributed to the Bitcoin network.

6 Extractable witness encryption

6.1 Extractable witness encryption from SUBSET-SUM

In this section, we propose a construction for extractable witness encryption from a special
Subset- Sum problem and we prove the extractable security in the generic model of multi-
linear maps. We will show that the CNF- SAT can be reduced to this special Subset- Sum
problem in the next section.

We use notations u, v,w to represent integer vectors. We call a vector of n elements the
n-vector. We define u ≤ v as the component-wise comparison. We denote by {(vi : �i)}i∈I a
multi-set in which the element vi occurs �i times and v1, . . . , v|I | are pairwise-distinct. Let
α := (α1, . . . , αd) and v := (v1, . . . , vd). We write αv for α

v1
1 α

v2
2 . . . α

vd
d .

Our witness encryption scheme makes use of asymmetric multilinear maps in which
groups are indexed by integer vectors [19,40,72]. Suppose we have a s-multilinear group
family consisting of groups {Gv}v of the same order p and v ≤ s, where s, v ∈ Z

� are
positive integer vectors and the comparison between the vectors holds component-wise. The
groups are equipped with a set of multilinear maps, eu,v : Gu ×Gv → Gu+v for u+ v ≤ s,

satisfying eu,v

(
gα
u , gβ

v

)
= gαβ

u+v. We often omit the subscripts and just write e.

The original Subset- Sum problem is: given a (multi)set of integer vectors and a target
integer vector s, does there exist a subset of the integer vectors such that the sum of its

123

J. Liu et al.

elements is equal to s? To achieve extractability in witness encryption, our encoding will be
performed on a special Subset- Sum problem defined as below:

– Instance given a multi-set of d-vectors Δ = {(vi : �i)}i∈I of positive integers, and a sum
d-vector s of positive integers such that (�i + 1)vi � s for each i ∈ I .

– Decide is
∑

i∈I bivi = s for some integers 0 ≤ bi ≤ �i with i ∈ I?

Construction 1 (Extractable witness encryption) Suppose x is an instance of the above
special Subset- Sum problem and we use the above notations in the following discussion.
We construct a witness encryption scheme as below:

– WE.Enc
(
1λ, x,m

)
: run param ←− G(

1λ,Δ, s
)
to get the description of a set of

multilinear maps eu,v : Gu × Gv → Gu+v for u + v ≤ s, together with group
generators {gv}v≤s. Choose a random vector α := 〈α1, . . . , αd〉. The ciphertext is

c :=
(
param,

{
gαvi
vi

}

i∈I ,m · gαs

s

)
.

– WE.Dec(c,w): let w := (b1, b2, . . . , b|I |). Compute the decryption key by

K := e(gαv1
v1 , · · · , gαv1

v1︸ ︷︷ ︸
b1

, gαv2
v2 , · · · , gαv2

v2︸ ︷︷ ︸
b2

, · · · , gα
v|I |

v|I | , · · · , gα
v|I |

v|I |︸ ︷︷ ︸
b|I |

)

If
∑

i∈I bivi = s, then K = gα
∑

i∈I bi vi∑
i∈I bivi

= gαs

s .

In the above construction, each vector vi is only encoded once as a group element gαvi
vi .

The multiple usage of vi corresponds to the multiple pairing of gαvi
vi . However, we cannot

allow the encoded element to be used for more than �i times. This is why we have the side
condition (�i + 1)vi � s. If gαvi

vi is paired for more than �i times, then the group index will
be no longer smaller than the index of the target group s. Note that the encoding described
above does not directly work for the general Subset- Sum problem. For example, given {1},
there is no subset-sum for 3, but we can obtain the encoding gα3

3 for the sum by computing

e
(
gα1

1 , gα1

1 , gα1

1

)
. The problem is caused by the fact that the encoding gα1

1 can be used for

multiple times but the element 1 can only be used for at most once in the Subset- Sum
instance.

Theorem 6 Our Construction 1 of witness encryption achieves extractable security with
t ′ = poly(t · λ) and ε′ = ε and q ′ ≤ q in the generic model of multilinear maps.

A proof of this theorem can be found in Appendix F
Our special Subset- Sum problem can directly encode the Exact- Cover problem by

representing each set of the instance of Exact- Cover as a vector and the side condition
holds because each set can be used for at most once. This encoding converts the witness
encryption scheme [43] into an extractable witness encryption scheme.

A weaker security guarantee for witness encryption is the soundness security. The sound-
ness security states that if x /∈ L then no polynomial-time algorithm can decrypt. An
alternative definition for soundness security called adaptive soundness is given in [8]. In
fact, the extractable security implies the soundness security since the probability that the
extractor can extract a witness is 0 when x /∈ L . We also give a discussion about the sound-
ness security of our witness encryption scheme in the Appendix G.

Since the breakthrough construction of Garg et al. [40] in 2013, multilinear maps [31,32,
40,45,54] becomes a very active research area, as well as its cryptanalysis [25,26,28,30,52,

123

How to build time-lock encryption

70]. Our design of witness encryption is independent of the underlying implementations of
multilinear maps. In particular, our scheme seems not susceptible to the zeroising attacks
since constructing top-level encodings of zeroes is difficult and requires the knowledge of
a sufficient number of witnesses. We leave it as a future work to formally investigate the
security of our scheme when instantiated with the current approximate multilinear maps.

6.2 Reducing CNF-SAT to Subset-Sum

In this section, we show how to construct an extractable witness encryption for any NP
language. This is achieved by constructing an intuitive reduction from an instance of CNF-
SAT to an instance of our special Subset- Sum. This results in a more efficient encoding for
CNF formulas compared to the encoding in the existing witness encryption schemes.

The Boolean satisfiability problem (SAT) is, given a formula, to check whether it is
satisfiable. Let B be a Boolean formula. A literal is either a variable x or the negation of a
variable x . A clause is a disjunction of literals, e.g., C = x1 ∨ x2 ∨ x3 ∨ x4. The formula B is
said to be in conjunctive normal form (CNF) if it is a conjunction of clausesC1∧C2∧· · ·∧Cm .
The SAT problem for CNF formulas is called CNF- SAT.

Definition 13 (Reduction from CNF-SAT to special Subset- Sum) Assume a CNF for-
mula has n variables x1, x2, . . . , xn , and k clauses C1,C2, . . . ,Ck , each clause C j contains
m j literals. The reduction to an instance of special Subset- Sum is performed as below:

(1) For each variable xi with 1 ≤ i ≤ n, construct two vectors ui,0 and ui,1 of (n + 2k)
integers as follows:

– The i-th element of ui,0 and ui,1 is 1
– For 1 ≤ j ≤ k, the (n + j)-th element of ui,0 is 1 if xi is in clause C j

– For 1 ≤ j ≤ k, the (n + j)-th element of ui,1 is 1 if xi is in clause C j

– All other elements of ui,0 and ui,1 are 0

(2) For each clause C j with 1 ≤ j ≤ k, assume there are m j literals in the clause C j ,
construct vectors v j,1, v j,2, . . . , v j,m j−1 of n + 2k integers:

– The (n + j)-th element and the (n + k + j)-th element of v j,1, v j,2, . . . , v j,m j−1 are
equal to 1

– All other elements of v j,1, v j,2, . . . , v j,m j−1 are 0

(3) For each clause C j , we construct vectors z j,1, z j,2, . . . , z j,m j−1 of n + 2k integers as
counters:

– The (n + k + j)-th element of z j,1, z j,2, . . . , z j,m j−1 is equal to 1
– All other elements of z j is 0

(4) Finally, construct a target sum vector s of n + 2k integers:

– For 1 ≤ j ≤ n, the j-th element of s is equal to 1
– For 1 ≤ j ≤ k, the (n + j)-th element of s is equal to m j .
– For 1 ≤ j ≤ k, the (n + k + j)-th element of s is equal to m j − 1.

Intuitively, the vector ui,0 corresponds to the negative occurrences of variable xi in
the formula while the vector ui,1 corresponds to its positive occurrences. The vectors
v j,1, v j,2, . . . , v j,m j−1 for each clause C j will sum to m j − 1 at most, but to complete
the sum m j at least one will have to come from one of the ui,0 or ui,1 for 1 ≤ i ≤ n, which
means the clause has to be satisfied by some literals. An example for explaining this reduction

123

J. Liu et al.

Fig. 1 Reducing (x1 ∨ x2) ∧
(x1 ∨ x2 ∨ x3 ∨ x4) ∧
(x1 ∨ x2 ∨ x3) to an instance in
special Subset- Sum

Variables Clauses Counter
x1 x2 x3 x4 C1 C2 C3

u1,0 1 1
u1,1 1 1 1
u2,0 1 1 1
u2,1 1 1
u3,0 1
u3,1 1 1 1
u4,0 1 1
u4,1 1
v1,1 1 1
v2,1 1 1
v2,2 1 1
v2,3 1 1
v3,1 1 1
v3,2 1 1
z1,1 1
z2,1 1
z2,2 1
z2,3 1
z3,1 1
z3,2 1
s 1 1 1 1 2 4 3 1 3 2

is given in the following example. Notice that when adding these integer vectors, there is no
“carry” between adjacent columns.

Example 1 (x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x3) is encoded in Figure 1. The
assignment x1 = 1, x2 = 0, x3 = 1, x4 = 0 evaluates the formula to true, and it corresponds
to the subset sum u1,1+u2,0 +u3,1 +u4,0 +v2,1 +v2,2 +v3,1+z1,1 +z2,1+z2,2 +z3,1 = s.

We shall analyse that the above reduction transforms an instance of CNF-SAT into an
instance of our special Subset- Sum, that is the side-condition (�i + 1)vi � s is satisfied.
Each vector ui,b can occur for at most once in the sum, otherwise the i-th element of the sum
will be bigger than 1. The vectors v j,1, . . . , v j,m j−1 are the same vectors and at most m j − 1
of them can occur in the sum, otherwise the n + k + j-th element of the sum will be bigger
thanm j −1. Similarly the vectors z j,1, . . . , z j,m j−1 are the same and at mostm j −1 of them
can be used in the sum otherwise the n + k + j-th element of the sum will be bigger than
m j − 1.

Theorem 7 The CNF formula is satisfiable iff subset sum exists.

Proof If there is a subsequence of integer vectors summing to the sum vector s, this must use
exactly one of each of the pairs

(
ui,0,ui,1

)
(corresponding to each variable xi being either

false or true but not both) to make the first n elements of the sum correct. Also, each clause
of C j must have been satisfied by at least one variable, or the next k elements of the sum
cannot be big enough. The last k elements of the vectors are the auxiliary counters that will
be used for encoding.

When theCNF formula is satisfiablewith assignment x1, x2, . . . , xn , thenwe can construct
a sub-set sum. We first choose u1,x1 ,u2,x2 , . . . ,un,xn . Then for each 1 ≤ j ≤ k, we compute
the number of literals that evaluate to true in C j and denote it by � j . For each 1 ≤ j ≤ k,
we choose vectors v j,1, . . . , v j,m j−1−� j and z j,1, z j,2, . . . , z j,� j−1. It is easy to see that these
vectors add up to the sum vector s.

Therefore, there is a satisfying assignment to C1 ∧ C2 ∧ · · · ∧ Ck if and only if there is a
subsequence of the numbers that sums to s. ��

123

How to build time-lock encryption

The reduction of the CNF formula to an instance of the special Subset- Sum consists of
2n+m vectors. However, whenwe encryptwithConstruction 1, the vectors v j,1, . . . , v j,m j−1

are encoded as one group element gα
v j,1

v j,1
since they are the same vectors. Similarly, the vectors

z j,1, . . . , z j,m j−1 are encoded as gα
z j,1

z j,1 . The ciphertext for encrypting a message m is

{
gα

ui,0
ui,0 , gα

ui,1
ui,1

}

1≤i≤n
∪

{
gα

v j,1

v j,1
, gα

z j,1

z j,1

}

1≤ j≤k
∪

{
m · gαs

s

}

Hence the size of the ciphertext for the CNF formula is of 2n + 2k + 1 group elements.
The decryption involves n + m − k mapping operations, that is the n maps to compute

gα

∑n
i=1 ui,xi∑n

i=1 ui,xi
, and m − k maps for gα

δ j v j,1

δ jv j,1
, gα

(m j−δ j)z j,1

(m j−δ j)z j,1
for 1 ≤ j ≤ k which can be done

in time O
(∑k

j=1

(
log(δi) + log

(
m j − δi

))) ≤ O
(
klog m

2k

)
. Hence the decryption has time

complexity n + O
(
klog m

2k

)
. where m is the total number of literals occurred in the CNF

formula. The multilinearity level is n + m − k and can be optimised to n + O(
klog m

2k

)
as

follows. Instead of encoding v j,1 as gα
v j,1

v j,1
, we can encode v j,1 as 2�log

(
m j

)� elements:

gα
v j,1

v j,1
, gα

2v j,1

2v j,1
, gα

4v j,1

4v j,1
, · · · , gα

dv j,1

dv j,1

where d = 2�log(m j)�. As a result, this will keep the multilinearity as n + ∑k
j=1 log

(
m j

)
,

instead of n + ∑k
j=1

(
m j − 1

)
, while the size of the encoding is of 2n + 2

∑k
i=1�log

(
m j

)�
group elements. This optimisation is helpful when the size of elements in the groups depends
on the multilinearity in the instantiation of multilinear maps.

7 Conclusions and future work

We have proposed our novel time-lock encryption scheme, which in contrast to previous
works requires neither a trusted third party, nor a large computation on the side of the receiver.
Our construction leverages any large public computations, such as those involved in Bitcoin,
to realise a computational reference clock. We then couple this with an extractable wit-
ness encryption to get our final time-lock encryption scheme. However, there is scope for
improvement.

As this scheme is essentially the first of its kind, it is more of a proof of concept than a
concrete proposal. The current parameters would make an implementation of this scheme
quite cumbersome. Thus the first avenue for future work would be to try and find a more
practical scheme based on our construction, or indeed a more practical specific construction.
Additionally, we get immediate gains from any improvements to our underlying building
blocks, or indeed from any new, more efficient building blocks.

This leads us to the first avenue for improvement, which lies in the primitives themselves.
As immediate improvement could be realised if we could use a more efficient extractable
witness encryption scheme. It would be of particular interest to see if one could realisewitness
encryption without the use of multilinear maps. Alternatively, one could consider witness
encryptions for other languages and see if there are any gains to be made there.

Another potential for improvement would be investigating the possibility of othermethods
of realising our computational reference clock from other forms large public computations.
Or indeed, one may consider what kinds of computation, if carried out on a large distributed
scale would allow us a computational reference clock.

123

J. Liu et al.

Acknowledgements Jia Liu’s work has been funded by the UK EPSRC as part of the PETRAS IoT Research
Hub Cybersecurity of the Internet of Things grant no: EP/N02334X/1. Tibor Jager and Saqib A. Kakvi were
supported by the Federal Ministry of Education and Research, Germany, project REZEIVER, funding code
16K1S0711. Part of this work was done while Jia Liu and Saqib A. Kakvi were employed at the University of
Bristol.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

Appendix A: Other approaches for time-lock encryption

A software published at Github [68] presents the idea of Bitcoin-incentivized timed-release
encryption. The scheme in [68] is called “time-lock encryption”, but it is not a time-lock
encryption in our sense because it requires expensive exhaustive-search computations for
both encryption and decryption, where encryption can be parallelized, but decryption (most
likely) not. Moreover, their scheme essentially encrypts the message along with a secret
key, which allows to retrieve Bitcoin published in a public deposit. The first party which
successfully decrypts the ciphertext is able to collect the deposited coins, which serves as an
additional incentive to perform expensive computations to decrypt themessage. Therefore, in
our terminology, the scheme from [68] is a timed-release encryption scheme in the classical
sense of Rivest etr al. [66], where decryption is additionally incentivized by a Bitcoin deposit,
but not a time-lock encryption scheme in our sense, where ciphertexts essentially decrypt
“automatically” (given the public computational reference clock) and the plaintext becomes
publicly available.

Among many examples of timed-release encryption schemes in the sense of Rivest et
al. [66], the survey in [50] (referring to [47]) describes the idea to combine “public keys”,
which are generated from a public seed with a pseudorandom number generator, with a
special-purpose cryptocurrency where “mining” of coins corresponds to computing the cor-
responding secret keys. As already mentioned in [47], we do not know how to make this idea
work. The reason is that cryptocurrencies and time-lock encryption inherently require that
progress in the underlying computations can be made only sequentially (in [47] this is called
“progress-free”). For example, Bitcoin achieves sequentiality by making each block in the
blockchain dependent on all previous blocks. Thus, the approach of [47] requires the exis-
tence of “progress-free sequences of public keys”. We are not aware of any proof-of-concept
construction of such sequences, and it is unclear whether these objects exists. Moreover, in
order to encrypt with the approach described in [47,50] for “time τ”, one would already need
to know at least the τ -th public key in the sequence, which clearly contradicts sequentiality.

Appendix B: The double-spending problem in cryptocurrencies

A central problem that a secure digital currency has to solve is to prevent double-spending of
digital coins. It seems that this is only achievable by somehow keeping track of all previous
transactions, in order to be able to determine whether a malicious party tries to spend the
same digital coin more than once. There are essentially two approaches to prohibit double-
spending:

123

http://creativecommons.org/licenses/by/4.0/

How to build time-lock encryption

(1) A central trusted third party (“the bank”) keeps a ledger, which contains all transactions
executed in the past. This allows the trusted third party to keep track of which party is
in possession of which coin. Coins can only be transferred from one party to another
if the trusted third party approves the transaction. Note that this approach is inherently
centralized, as it requires a central trustworthy instance that keeps track of all transactions.

(2) The approach used by decentralized cryptocurrencies, like Bitcoin, is somewhat similar,
however, the trusted third party is implemented by all (or most) parties simultaneously.
Instead of a centralized ledger, the transaction ledger is distributed among all (or many)
parties. Essentially, all transactions are broadcasted to all other parties and stored in
the ledger, such that each party is able to check whether a given coin already appeared
in a previous transaction, and if the claimed owner of a coin is still in possession of
this coin. Thus, all parties jointly implement “the bank”. All the recently successful
cryptocurrencies, in particular Bitcoin, are decentralized.

The decentralized approach requires a mechanism that allows to find a mutual agreement on
the sequence of approved transactions. In Bitcoin, this mechanism is implemented by the
Bitcoin blockchain.

Appendix C: Variants and further analysis

In this section, we will discuss several ideas for solving the engineering tasks and further
questions related to the Bitcoin-based instantiation of time-lock encryption.
Choosing δ for short time periods Let Rβ,δ for some particular choice of δ, and let

c = WE.Enc(1λ, 1τdec ,m)

be a time-lock encryption with a witness encryption scheme for R = Rβ,δ . Observe that for
this particular ciphertext we do not need δ(i) ≥ Bi for all i ∈ N in order to be able to use a
witnesses provided by Cbtc to decrypt c. It suffices if δ(i) ≥ Bi holds for all i ≤ τdec.

Given that the computational resources available in the Bitcoin network were relatively
predictable in the past, and that the huge computational power gathered in the network
provides a generous margin of error, we think that it is relatively easy to determine a suitable
target bound function δ for all ciphertexts which should be decrypted within a short period
of time. By “short” we mean hours, days, or a few weeks.

More robust relations and time-lock encryption for long time periods The longer the time
between encryption and decryption of a ciphertext is, the more difficult it becomes to find a
suitable target bound function δ. One could, however, instead use relations which are more
“robust” than the ones described in Definition 12. For example, a sender may choose a
relation Rβ,δ,ω, which is defined almost identical to the relations Rβ,δ defined above, with
the exception that Rβ,δ,ω accepts

w = (T1, r1, D1, B1), . . . , (Tτ , rτ , Dτ , Bτ)

as a witness for (1τ , w) ∈ Rβ,δ,ω, even if δ(i) ≤ Bi holds at most ω times for i ∈ {1, . . . , τ }.
More generally, if a witness encryption scheme for all NP-relations is used as a building
block, then a sender could in principle choose any NP-relation it considers reasonable here.

On the difficulty of advancing the Bitcoin blockchain faster Note that an adversary A has
two options to advance the Bitcoin blockchain faster than one block every ten minutes.

123

J. Liu et al.

The first option is that A performs all its computations secretly. This means that it does
not contribute any blocks to the public Bitcoin blockchain, but instead keeps all newly found
block secret. This is the approach of an adversary which wants to be exclusively able to
decrypt the ciphertext before the deadline. Note that in this case the adversary would have to
compute all missing blocks to decrypt a ciphertext on its own. If the target bound function δ is
chosen well, such that it closely approximates the actual Bitcoin target, then this essentially
means that the adversary would have to perform about the same amount of computations as
all Bitcoin miners together (unless it finds a better algorithm for solving the computational
problemprocessedby theminers).Assuming that no single adversary is capable of performing
this large amount of computations, this is infeasible.

Alternatively, an adversary might not be interested in being exclusively able to decrypt
the ciphertext before the deadline. Instead, it might simply want that the ciphertext can
be publicly decrypted earlier than desired by the sender. In this case, the adversary could
contribute its computational resources to the public Bitcoin blockchain. Even though the
Bitcoin system adjusts the difficulty of advancing the blockchain frequently bymodifying the
size of the target, note that this happens only relatively slowly, every 2016 blocks. Therefore
the difficulty adjustment in Bitcoin is not able to completely prevent such attacks, it may
only cushion its effectiveness. However, an adversary that aims at a speed-up by, say, 10%
would have to contribute additional resources in the order of 10% of the resources of all
other Bitcoin miners together. Thus, the larger the speedup desired by the adversary, the
larger are the computational resources it would have to contribute. Moreover, the incentive
of other Bitcoin miners to contribute their resources depends on the current difficulty. If this
difficulty is too high, then the cost of contributing resources to Bitcoin mining exceeds the
revenue obtainable from Bitcoin mining. This would deter other Bitcoin miners from further
contributing to the Bitcoin blockchain, which cushions the effectiveness of the resources
contributed by the adversary further.

A detailed analysis of adversarial strategies to advance theBitcoin blockchain significantly
faster than one block every ten minutes therefore needs to take such game-theoretic aspects
into account, it is therefore out of scope of this paper. See [36] for a related work.

Appendix D: Proof of Lemma 1

Proof We have to bound the probability that AH outputs

w = ((T1, r1, D1, B1), . . . , (Tτ+x , rτ+x , Dτ+x , Bτ+x)

such that w satisfies all conditions of Definition 12. Note that A receives as input (1τ , wτ)

with (1τ , wτ) ∈ Rβ,δ , which corresponds to a chain

wτ = ((T1, r1, D1, B1), . . . , (Tτ , rτ , Dτ , Bτ)

A has to find at least the remaining x tuples (Tτ+i , rτ+i , Dτ+i , Bτ+i), such that

Bτ+i = H(Tτ+i , rτ+i , Dτ+i , Bτ+i−1) ≤ δ(τ + i)

holds for all i ∈ {1, . . . , x}. A necessary condition for this is that A outputs at least x values
whose randomoracle hash is smaller than or equal to δmax, where δmax = maxi∈{1,...,x}{δ(τ +
i)}. Note also that A is able to output at most t + x , namely the at most t queries h1, . . . , ht
to the random oracle, plus the values ht+1, . . . , ht+x returned by A, where

ht+i := (Tτ+i , rτ+i , Dτ+i , Bτ−1+i)

123

How to build time-lock encryption

We will bound the probability that at least x of these t + x values satisfy H(h j) ≤ δmax,
j ∈ {1, . . . , t + x}.

Each output h j corresponds to an independent Bernoulli experiment, which evaluates to
1 if and only if H(h j) ≤ δmax. Let

X j :=
{
1, if H(h j) ≤ δmax

0, otherwise

be random variables, and let X denote the random variable X := ∑t+x
j=1 X j . In order to bound

the probability that X ≥ x , we will apply the Chernoff bound. Note that the the probability
that a single Bernoulli experiment outputs 1 is at most δmax/2d , and the expected number X
of experiments that output 1 after (t + x) trials is μ := (t + x) · δmax/2d . Then we have

Pr[X ≥ x] ≤ exμx

eμxx
= 1

eμ
·
(eμ
x

)x ≤
(
e · (t + x) · δmax

x · 2d
)x

where e is Euler’s number, the first inequality is the Chernoff bound,7 and the second inequal-
ity uses that μ > 0. ��

Appendix E: Generic multilinear map model

We will make use of asymmetric multilinear maps in which groups are indexed by integer
vectors [19,40,72].

Given a ring R and a universe multi-set U , an element is [x]S where x ∈ R is the value
of the element and S ⊆ U is the index of the element. The binary operations over elements
are defined as follows:

– For two elements e1 := [x1]S and e2 := [x2]T such that S = T , e1 + e2 is defined as
[x1 + x2]S , and e1 − e2 is defined as [x1 − x2]S .

– For two elements e1 := [x1]S and e2 := [x2]T , e1 · e2 is defined as (x1x2, S � T) for
S � T ⊆ U where � is the multi-set union.

A generic multilinear map oracle [4,72] is a stateful oracle M that responds to queries
as follows:

– InitializationM will be initialized with a ring R, a universe set U , and a list L of initial
elements. For every [x]S ∈ L , M generates a handle h. The value of the handles are
chosen to be independent of the elements being encoded, and the handles are distinct.
M outputs the handles generated for all the elements in L . After the initialisation, all
subsequent calls to initialization queries fail.

– Algebraic operations Given two input handles h1, h2 and an operation ◦ ∈ (+,−, ·),M
first locates the relevant elements e1, e2 in the handle table. If any of the input handles
does not appear in the handle table, the call to M fails. Then M computes e1 ◦ e2; the
call fails if e1 ◦ e2 is undefined.M generates a new handle for e1 ◦ e2, saves this element
and the new handle in the handle table, and returns the new handle.

– Zero-testGiven an input handle h,M first locates the relevant element [x]S in the handle
table. If h does not appear in the handle table, the call fails. If S �= U the call fails. Then
M returns 1 if x = 0, otherwise returns 0.

7 Obtained from the classical formulationPr[X ≥ (1+�)μ] ≤ e�μ/(1+�)μ(1+�) by substituting x := (1+�)μ

and � := x/μ − 1.

123

J. Liu et al.

The zero-test is only available on the top-level index. The zeros on different index levels
are different.

Appendix F: Extractability security

Theorem 6 Our Construction 1 of witness encryption achieves extractable security with
t ′ = poly(t · λ) and ε′ = ε and q ′ ≤ q in the generic model of multilinear maps.

Proof of Theorem 6 Assume an adversary A = (A0,A1) that run in time t , and an instance
x ∈ {0, 1}∗

2Pr

⎡

⎢
⎣

(m0,m1, St)
$← AO

0

(
1λ, x

)

b
$← {0, 1}; c $← WE.Enc

(
1λ, x,mb

)

b′ $← AO
1

(
1λ, x,m0,m1, c, St

)
: b = b′

⎤

⎥
⎦ − 1 > ε

Then we shall prove there exists an extractor E that run in time Θ(t · λ2) such that

Pr
[
w

$← EO(
1λ, x

) : (x, w) ∈ RL

]
> ε

To ease the discussion, we consider the instances of the special Subset- Sum problem
defined in Definition 15, rather than the original SAT problem.

We construct an extractor E by using A as subroutine to extract a witness. E queries to
the oracle O and forwards the responses to the adversary whenever the adversary queries to
O. E gives x toA.A chooses (m0,m1) and sends them to E . Let x be the instance of special
Subset- Sum: given a multi-set of d-vectors Δ = {(vi : �i)}i∈I of positive integers and a
target sum vector s of positive integers such that (�i + 1)vi � s for each i ∈ I .

E chooses b
$← (0, 1) uniformly at random. E encodes the instance x according to our

witness encryption scheme as
{
gαvi
vi

}

i∈I ∪ {
gαs

s
}
where α is chosen uniformly at random.

E chooses d fresh formal symbols X = (X1, . . . , Xd) and creates an initial list L :={
hi �→ [yi]Vi

}
i∈I ∪ {

h �→ [y]T , h′ �→ [
y′]

T , h′′ �→ [
y′′]

T

}
where

– Vi := X vi and T := X s.
– The handles hi , h are chosen uniformly at random.
– yi , y are fresh variables.

Intuitively, yi represents αvi , y represents mb + αs, y′ represents m0 and y′′ represents m1.
Those variables are used to keep track of adversary’s computation. E gives those handles
{hi }i∈I ∪ {

h, h′, h′′} to A. E answers the multilinear maps oracle queries for addition,
subtraction and multiplication as defined in Appendix E. To answer the zero-test queries, E
instantiates those variables with its real values and test whether the results are zeros.

Note that our proof also works when the handles for group generators ĥ �→ [1]T and
ĥi �→ [1]Vi) for i ∈ I are given to the adversary, although our scheme itself does not need
to give the group generators. The elements of the other index level are hidden.

123

How to build time-lock encryption

We define an extraction function ext over the polynomials z produced by the adversary.
The ext(z) returns an |I |-vector of integers as follows:

For i ∈ I,ext(yi) = u with u a |I |-vector of 0 except a 1 on its i-th element

ext(y) = ext
(
y′) = ext

(
y′′) = 0

ext(z1 · z2) = ext(z1) + ext(z2)

ext(z1 + z2) =
{
ext(z1) if ext(z1) �= 0
ext(z2) otherwise

ext(z1 − z2) =
{
ext(z1) if ext(z1) �= 0
ext(z2) otherwise ��

Apparently this extraction function can be efficiently computed for any polynomial z.

Lemma 2 For any formal polynomials z produced by A at an index level U := X u with
U ⊆ T for some d-vector u (u ≤ s). Let ext(z) = (

δ1, . . . , δ|I |
)
.

(1) ext(z) = 0 iff z is constructed by only using variable y, y′, y′′.
(2) If ext(z) �= 0, then

∑
i∈I δivi = u and 0 ≤ δi ≤ �i for each i ∈ I .

Proof The proof of the two results goes by induction on the structure of z.

(1) if z = yi , its index level is X vi and ext(z) = (δ1, . . . , δ|I |) with δi = 1 and δ j = 0 for
j �= i . Clearly we have

∑
j∈I δ jv j = vi .

(2) if z is y, y′, or y′′, we have ext(z) = 0.
(3) if z = z1+ z2, according to the definition ofM, we know z1, z2 are both the polynomials

of the same index level X u. By induction hypothesis, ext(z1) = 0 (ext(z2) = 0) iff z1
(z2) is constructed by only using y. By definition of ext, for ext(z) to be 0, it must be
ext(z1) and ext(z2) are both 0, i.e., both z1 and z2 are constructed by only using y, y′, y′′.
That is to say ext(z) = 0 iff z is constructed by only using y, y′, y′′. Hence the first result
holds.
W.l.o.g., assume ext(z1) �= 0. Let ext(z1) = (

δ1, . . . , δ|I |
)
. By induction hypothesis, we

have
∑

i∈I δivi = u, and δi ≤ �i for each i ∈ I . By definition, ext(z) = (δ1, . . . , δ|I |),
and hence the second result holds.

(4) if z = z1 − z2, simiar as above.
(5) if z = z1 · z2, by definition of ext, for ext(z) to be 0, it must be ext(z1) and ext(z2)

are both 0, i.e., both z1 and z2 are constructed by only using y, y′, y′′. That is to say
ext(z) = 0 iff z is constructed by only using y, y′, y′′. Hence the first result holds.
Let ext(z1) =

(
δ′
1, . . . , δ

′|I |
)
and ext(z2) =

(
δ′′
1 , . . . , δ

′′|I |
)
. Assume z1 is a polynomial

on index level X u and z2 is a polynomial on index level Xw. Then z is a polynomial on
index level X u+w. By induction hypothesis, we know that

∑
i∈I δ′

ivi = u and δ′
i ≤ �i

for each i ∈ I , and
∑

i∈I δ′′
i vi = w and δ′′

i ≤ �i for each i ∈ I . Since ext(z) =(
δ′
1 + δ′′

1 , . . . , δ
′|I | + δ′′|I |

)
, we have

∑
i∈I (δ′

i + δ′′
i)vi = u + w.

We are now left to show that for any i ∈ I , δ′
i + δ′′

i ≤ �i . Assume for some i ∈ I ,
δ′
i + δ′′

i > �i . We shall show that U � T . From the condition �ivi � s, we know that
(u1, . . . , ud) � s. But this multiplication will be rejected by the multilinear map oracle.
This contradicts the assumption. ��

Lemma 3 A formal polynomial z produced by the adversary A on the top index level s can
be rewritten into z = f (y1, . . . , y|I |) + a · y + a′ · y′ + a′′ · y′′ for some integers a, a′, a′′ by

123

J. Liu et al.

only collecting the like terms of y, y′, y′′. Moreover the polynomial f (y1, . . . , y|I |) is on the
top index level and does not contain y, y′, y′′ and can also be computed by the adversary.

Proof The initial top index level elements h �→ [y]T , h′ �→ [
y′]

T , h′′ �→ [
y′′]

T can only be
added and subtracted. No multiplication is allowed on the top level. Even if the polynomial
only contains z′ − z′ with z′ on the top index level, this polynomial cannot be multiplied
since z′ − z′ is a zero on the top index level. That is to say y, y′, y′′ do not occur inside of
any multiplication operations. Hence we can separate y, y′, y′′ by using communicative and
associative rules on +. After collecting the like terms of y (no expansion or cancellation of
the other terms), z can be rewritten as z = f (y1, . . . , y|I |) + ay + a′y′ + a′′y′′ for some
polynomial f (which does not contain y, y′, y′′) and some integers a, a′, a′′. Clearly for
any polynomial produced by A, its communicative and associative equivalence can also be
computed efficiently by A by simply changing the order of addition and subtraction on the
top level. ��

Let Good be an event that the adversary can construct such a z = f (y1, . . . , y|I |) +
ay + a′y′ + a′′y′′ with f (y1, . . . , y|I |) �= 0 (note that we didn’t cancel terms in f . So
f (y1, . . . , y|I |) can only be 0 when it does not exist at all. Even if f only contains terms
like z′ − z′, f is not 0). If Good occurs, by definition ext

(
f (y1, . . . , y|I |)

) �= 0. Assume
ext

(
f (y1, . . . , y|I |)

) = (δ1, . . . , δ|I |), then from Lemma 2, we have
∑

i∈I δivi = s and
0 ≤ δi ≤ �i for i ∈ I . In other words, we get a subset sum for s. IfGood does not occur, this
means the adversary is not able to construct any polynomial that contains elements from both{
y1, . . . , y|I |

}
and

{
y, y′, y′′}, hence the adversary can only constructs the polynomial of the

form f1
(
y1, . . . , y|I |

)
and f2

(
y, y′, y′′). Recall that y represents mb + αs, y′ represents m0

and y′′ representsm1. In any polynomial f2(mb + αs,m0,m1), the distribution ofmb +αs is
exactly the same as any uniform random in the ring because α is chosen uniformly at random.
Hence the adversary can only guess the value of b and we have

Pr
[
b = b′] = Pr

[
b = b′ ∧ Good

] + Pr
[
b = b′ ∧ ¬Good

] ≤ Pr
[
Good

] + 1

2
Pr

[¬Good
]

= 1

2
+ 1

2
Pr

[
Good

]

Since 2 · Pr[b = b′] − 1 > ε, we have Pr
[
Good

]
> 2ε − 1. And the event Good is in fact

the event the extractor can extract a witness for the instance of Subset- Sum.
The extractor initialises the multilinear map oracle and it takes time poly(λ). The extrac-

tor performs the group operations of addition, subtraction, multiplication and zero-testing
queried by the adversary and it takes t · poly(λ) time since the addition, subtraction and
multiplication take time poly(λ) and zero-testing is in time t · poly(λ) since polynomial
produced by the adversary is of depth at mostΘ(t). The extraction algorithm is in timeΘ(t).
Hence it takes the extractor poly(t · λ) times in total. This concludes the proof.

Appendix G: Soundness security

Definition 14 (Soundness security [43] for WE) A witness encryption scheme for a NP
language L is (t, ε)-secure if for any adversaryA that runs in time t , for any x /∈ L , we have:

∣∣Pr
[A(

WE.Enc
(
1λ, x, 0

)) = 1
] − Pr

[A(
WE.Enc

(
1λ, x, 1

)) = 1
]∣∣ ≤ ε

123

How to build time-lock encryption

The soundness security states that if x /∈ L then no adversary that runs in time t can break
the scheme with probability more than ε. An alternative definition for soundness security
called adaptive soundness is given in [8].

The soundness security of our scheme will be based on the followingmultilinear counting
subset-sum Diffie-Hellman (mCSDH) assumption:

Definition 15 ((t, ε)-secure mCSDH Assumption) Given a multi-set of d-vectors Δ =
{(vi : �i)}i∈I of positive integers and a sum d-vector s of positive integers such that
(�i + 1)vi � s for each i ∈ I .

Let param
$← G(

1λ,Δ, s
)
be a description of a multilinear group family with a set of

multilinear maps eu,v : Gu × Gv → Gu+v for u + v ≤ s, together with group generators
{gv}v≤s. Choose a vector of randoms α := 〈α1, . . . , αd 〉 and a random r . If s cannot be
represented as a subset-sum of elements from set Δ, then for any distinguisher D that runs
in time t ,

∣
∣
∣Pr

[
D

(
param,

{
gαvi
vi

}

i∈I , g
αs

s

)
= 1

]
− Pr

[
D

(
param,

{
gαvi
vi

}

i∈I , g
r
s

)
= 1

]∣∣
∣ ≤ ε

Theorem 8 Our Construction 1 for witness encryption is (t, ε)-secure scheme under (t ′, ε)-
mCSDH assumption where t ′ = t + poly(λ) where poly(λ) is the time for setting up the
game and computing the challenge ciphertext.

Proof Let x be an instance of our special Subset- Sum: given a multi-set of d-vectors
Δ = {(vi : �i)}i∈I of positive integers and a target sum d-vector s of positive integers such
that �ivi � s for each i ∈ I .

Suppose an adversary A breaks the (t, ε)-security on x , then we can construct a dis-

tingusher to break Assumption 15. Let param
$← G(

1λ,Δ, s
)
be a description of a

multilinear group family. Choose a vector of randoms α := 〈α1, . . . , αd 〉. D is given

U0 :=
(
param,

{
gαvi
vi

}

i∈I , g
αs

s

)
or U1 :=

(
param,

{
gαvi
vi

}

i∈I , g
r
s

)
as input. We denote

this input by
(
param,

{
gαvi
vi

}

i∈I , K
)
where K = gαs

s or grs . D chooses b
$← {0, 1} and

encrypts as cb =
(
param,

{
gαvi
vi

}

i∈I , g
b
s · K

)
. D gives cb to A. A outputs its guess b′ for

b. If b = b′ then D outputs 1; otherwise outputs 0. When D gets U1, K is uniformly at
random and hence c contains no information about b. In this case, A can only guess. That
is Pr[D(U1) = 1] = 1/2. When D gets U0, from A’s view, A is playing the perfect sound-
ness security game. Hence Pr[D(U0) = 1] = 1

2 · Pr[A(c0) = 0] + 1
2 · Pr[A(c1) = 1] =

1
2 − 1

2 · (Pr[A(c0) = 1] − Pr[A(c1) = 1]). We have |Pr[D(U0) = 1] − Pr[D(U1) = 1]| =
1
2 |Pr[A(c0) = 1] − Pr[A(c1) = 1]|. Hence ifA breaks the (t, ε)-security, then D breaks the
(t ′, ε)-mCSDH assumption, where t ′ = t + poly(λ) and poly(λ) denotes a constant number
of steps used for computing the challenge ciphertext. ��
Theorem 9 The mCSDH assumption achieves (t, ε)-security with t = poly(λ) and ε = 0
in the generic model of multilinear maps.

Proof The proof is similar to the analysis in Appendix F. In fact, the extractable secu-
rity implies the soundness security since the probability that the extractor can extract a
witness is 0 when the subset sum does not exist. The main difference is that if the tar-
get encoding gαs

s can be constructed then the subset-sum for s exists which contradicts

with the fact that x /∈ L . We can easily see that Pr
[
D

(
param,

{
gαvi
vi

}

i∈I , g
αs

s

)
= 1

]
=

Pr
[
D

(
param,

{
gαvi
vi

}

i∈I , g
r
s

)
= 1

]
. ��

123

J. Liu et al.

Appendix H: 3SAT to exact-cover

We give the textbook reduction from 3SAT to Exact- Cover (the best reduction we can
find) for the convenience of reader.

Definition 16 (Exact- Cover)

– Instance A set X and a family A of subsets of X
– Decide Is there an exact cover of X by A?

Reducing 3SAT to Exact-Cover Let f be an instance of 3SAT, with variables x1, . . . , xn and
clauses f1, . . . , fk . We first construct a graph G from f by setting:

V (G) = { xi | 1 ≤ i ≤ n } ∪ { xi | 1 ≤ i ≤ n } ∪ { f j | 1 ≤ j ≤ k }
E(G) = { xi xi | 1 ≤ i ≤ n } ∪ { xi f j | xi ∈ f j } ∪ { xi f j | xi ∈ f j }

where the notation xi ∈ f j (resp. xi ∈ f j) signifies that xi (resp. xi) is a literal of the clause
f j . We then obtain an instance (X,A) of the Exact- Cover problem from this graph G by
setting:

X = { f j | 1 ≤ j ≤ k } ∪ E(G)

A = { E(xi) | 1 ≤ i ≤ n } ∪ { E(xi) | 1 ≤ i ≤ n } ∪ { {
f j

} ∪ Fj | Fj ⊂ E(f j), 1 ≤ j ≤ k }
where E(x) denotes the set of edges incident to vertex x in the graph G.

It can be verified that the formula f is satisfiable if and only if the set X has an exact cover
by the familiy of A.

Remark Although the above reduction does not explicitly refer to 3SAT, for a clause of
length �, the reduction would generate 2� sets. Hence, the CNF formula has to be reduced
into 3CNF first to keep it as an polynomial reduction. Clearly, the number of sets in A is
2n + 7k.

References

1. Andrychowicz M., Dziembowski S., Malinowski D., Mazurek L.: Secure multiparty computations on
Bitcoin. In: 2014 IEEE Symposium on Security and Privacy, pp. 443–458, Berkeley, May 18–21, IEEE
Computer Society Press (2014).

2. AndrychowiczM., Dziembowski S.,MalinowskiD.,Mazurek Ł.: Fair two-party computations via Bitcoin
deposits. Cryptology ePrint Archive, Report 2013/837, http://eprint.iacr.org/ (2013).

3. Azar P., Goldwasser S., Park S.: On time and order in multiparty computation. Cryptology ePrint Archive,
Report 2015/178, http://eprint.iacr.org/ (2015).

4. Barak B., Garg S., Kalai Y.T., Paneth O., Sahai A.: Protecting obfuscation against algebraic attacks. In:
EUROCRYPT, pp. 221–238 (2014).

5. Barak B., Goldreich O., Impagliazzo R., Rudich S., Sahai A., Vadhan S.P., YangK.: On the (im)possibility
of obfuscating programs. In: Kilian J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Berlin
(2001).

6. Barak B., Goldreich O., Impagliazzo R., Rudich S., Sahai A., Vadhan S.P., YangK.: On the (im)possibility
of obfuscating programs. J. ACM 59(2), 6 (2012).

7. Bellare M., Hoang V.T.: Adaptive witness encryption and asymmetric password-based cryptography.
Cryptology ePrint Archive, Report 2013/704, http://eprint.iacr.org/ (2013).

8. Bellare M., Hoang V.T.: Adaptive witness encryption and asymmetric password-based cryptography. In:
PKC, pp. 308–331 (2015).

9. Bellare M., Rogaway P.: Random oracles are practical: a paradigm for designing efficient protocols. In:
Ashby V. (ed). ACM CCS 93, pp. 62–73, Fairfax, November 3–5, ACM Press (1993).

123

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

How to build time-lock encryption

10. Sasson E.B., Chiesa A., GreenM., Tromer E., VirzaM.: Secure sampling of public parameters for succinct
zero knowledge proofs. In: 2015 IEEE Symposium on Security and Privacy, pp 287–304 (2015).

11. Ben-Sasson E., Chiesa A., Garman C., Green, M., Miers I., Tromer E., Virza M.: Zerocash: danonymous
payments from Bitcoin. In: IEEE Symposium on Security and Privacy, pp. 459–474 (2014).

12. Ben-Sasson E., Chiesa A., Genkin D., Tromer E., Virza M.: Snarks for C: verifying program executions
succinctly and in zero knowledge. CRYPTO 2, 90–108 (2013).

13. Ben-Sasson E., Chiesa A., Tromer E., Virza M.: Succinct non-interactive zero knowledge for a von
neumann architecture. In: 23rd USENIX Security Symposium (USENIX Security 14), pp. 781–796
(2014).

14. Bitansky N., Chiesa A., Ishai Y., Ostrovsky R., Paneth O.: Succinct non-interactive arguments via linear
interactive proofs. In: TCC, pp. 315–333 (2013).

15. Boneh D., Boyen X., Goh E.-J.: Hierarchical identity based encryption with constant size ciphertext. In:
Cramer R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 440–456. Springer, Berlin (2005).

16. Boneh D., Ishai Y., Sahai A., Wu D.J.: Lattice-based SNARGs and their application to more efficient
obfuscation, pp. 247–277. Cham (2017).

17. Boneh D., Naor M.: Timed commitments. In: Bellare M. (ed). CRYPTO 2000. LNCS, vol. 1880, pp.
236–254. Springer, Berlin (2000).

18. Boneh D., Silverberg A.: Applications of multilinear forms to cryptography. Contemp. Math. 324, 71–90
(2003).

19. Boneh D., Waters B., Zhandry M.: Low overhead broadcast encryption from multilinear maps. In:
CRYPTO, pp. 206–223 (2014).

20. Bowe S., Gabizon A., Green M.D.: A multi-party protocol for constructing the public parameters of the
pinocchio zk-snark. The 5th Workshop on Bitcoin and Blockchain Research (BITCOIN’18) (2018).

21. Boyle E., Chung K.-M., Pass R.: On extractability obfuscation. In: Lindell, Yehuda (ed)., TCC 2014.
LNCS, vol. 8349, pp. 52–73. Springer, Berlin (2014).

22. Brakerski Z., Rothblum G.N.: Virtual black-box obfuscation for all circuits via generic graded encoding.
IACR Cryptology ePrint Archive, vol. 2013, p. 563 (2013).

23. Cathalo J., Libert B., Quisquater J.-J.: Efficient and non-interactive timed-release encryption. In: Qing S.,
Mao W., López J., Wang G. (eds). ICICS 05. LNCS, vol. 3783, pp. 291–303. Springer, Berlin (2005).

24. Chalkias K., Hristu-Varsakelis D., Stephanides G.: Improved anonymous timed-release encryption. Com-
put. Secur. 2007, 311–326 (2007).

25. Chen Y., Gentry C., Halevi S.: Cryptanalyses of zcandidate branching program obfuscators, pp. 278–307
(2017).

26. Cheon J.H., Han K., Lee C., Ryu H., Stehlé D.: Cryptanalysis of the multilinear map over the integers.
In: EUROCRYPT, pp. 3–12 (2015).

27. Cheon J.H., Hopper N., Kim Y., Osipkov I.: Provably secure timed-release public key encryption. ACM
Trans. Inf. Syst. Secur. 11(2), 4 (2008).

28. Cheon J.H., Lee C., Ryu H.: Cryptanalysis of the new clt multilinear maps. Cryptology ePrint Archive,
Report 2015/934, http://eprint.iacr.org/ (2015)

29. Sherman S.M., Chow V.R., Rieffel E.G.: General certificateless encryption and timed-release encryption,
In: SCN, pp. 126–143.

30. Coron J.-S., Gentry C., Halevi S., Lepoint T., Maji H.K., Miles E., Raykova M., Sahai A., Tibouchi M.:
Zeroizing without low-level zeroes: new MMAP attacks and their limitations, pp. 247–266 (2015).

31. Coron J.-S., Lepoint T., Tibouchi M.: Practical multilinear maps over the integers. In: CRYPTO, pp.
476–493 (2013).

32. Coron J.-S., Lepoint T., Tibouchi M.: New multilinear maps over the integers. In: CRYPTO, pp. 267–286
(2015).

33. Danezis G., Fournet C., Kohlweiss M., Parno B.: Pinocchio coin: building zerocoin from a succinct
pairing-based proof system. In: PETShop, pp. 27–30 (2013).

34. Dwork C., Naor M.: Pricing via processing or combatting junk mail. In: Brickell E.(ed.) CRYPTO’92.
LNCS, vol. 740, pp. 139–147. Springer, Berlin (1993).

35. Dwork C., Naor M., Wee H.: Pebbling and proofs of work. In: Shoup V. (ed.) CRYPTO 2005. LNCS,
vol. 3621, pp. 37–54. Springer, Berlin (2005).

36. Eyal I., Sirer E.G.: Majority is not enough: Bitcoin mining is vulnerable. In: Christin N., Safavi-Naini R.
(eds.) FC 2014. LNCS, vol. 8437, pp. 436–454. Springer, Berlin (2014).

37. Ethereum Foundation. Ethereum documentation. http://www.ethdocs.org/en/latest Retrieved (2017).
38. Ethereum Foundation. Ethereum white paper. http://www.ethdocs.org/en/latest Retrieved (2017).
39. Garay J.,KiayiasA., Leonardos,N.: TheBitcoin backbone protocol: analysis and applications.Cryptology

ePrint Archive, Report 2014/765, http://eprint.iacr.org/, accepted to EUROCRYPT 2015 (2014).

123

http://eprint.iacr.org/
http://www.ethdocs.org/en/latest
http://www.ethdocs.org/en/latest
http://eprint.iacr.org/

J. Liu et al.

40. Garg S., Gentry C., Halevi S.: Candidate multilinear maps from ideal lattices. In: EUROCRYPT. pp. 1–17
(2013).

41. GargS.,GentryC.,Halevi S., RaykovaM., SahaiA.,WatersB.: Candidate indistinguishability obfuscation
and functional encryption for all circuits. In: 54th FOCS, pp. 40–49. IEEE Computer Society Press (2013)

42. Garg S., Gentry C., Halevi S., Wichs D.: On the implausibility of differing-inputs obfuscation and
extractable witness encryption with auxiliary input. In: CRYPTO, pp. 518–535 (2014).

43. Garg S., Gentry C., Sahai A., Waters B.: Witness encryption and its applications. STOC ’13, pp. 467–476
(2013).

44. Gennaro R., Gentry C., Parno B., Raykova M.: Quadratic span programs and succinct NIZKs without
PCPs. In: EUROCRYPT, pp. 626–645 (2013).

45. Gentry C., Gorbunov S., Halevi S.: Graph-induced multilinear maps from lattices, pp. 498–527 (2015).
46. Gentry C., Lewko A.B., Waters B.: Witness encryption from instance independent assumptions. In:

CRYPTO, pp. 426–443 (2014).
47. Gmaxwell. Gmaxwell/alt ideas. https://en.bitcoin.it/wiki/User:Gmaxwell/alt_ideas (2014).
48. Goldwasser S., Kalai Y.T., Popa R.A., Vaikuntanathan V., Zeldovich N.: How to run turing machines on

encrypted data. In: CRYPTO, pp. 536–553 (2013).
49. Groth J.: Short pairing-based non-interactive zero-knowledge arguments. In: ASIACRYPT, pp. 321–340

(2010).
50. gwern.net. Time-lock encryption. http://www.gwern.net/Self-decrypting (2015).
51. Jager T.: How to build time-lock encryption. Cryptology ePrint Archive, Report 2015/478. http://eprint.

iacr.org/ (2015).
52. Coron J.-S., Lepoint T., Tibouchi M.: Cryptanalysis of two candidate fixes of multilinear maps over the

integers. https://eprint.iacr.org/2014/975.pdf.
53. Katz J., Miller A., Shi E.: Pseudonymous secure computation from time-lock puzzles. Cryptology ePrint

Archive, Report 2014/857, http://eprint.iacr.org/ (2014)
54. Langlois A., Stehlé D., Steinfeld R.: GGHLite: more efficient multilinear maps from ideal lattices. In:

EUROCRYPT, pp. 239–256 (2014).
55. Lipmaa H.: Progression-free sets and sublinear pairing-based non-interactive zero-knowledge arguments.

In: TCC, pp. 169–189 (2012).
56. Lipmaa H.: Succinct non-interactive zero knowledge arguments from span programs and linear error-

correcting codes. ASIACRYPT 1, 41–60 (2013).
57. Liu J., Kakvi S.A., Warinschi B.: Time-release protocol from Bitcoin and witness encryption for sat.

Cryptology ePrint Archive, Report 2015/482, http://eprint.iacr.org/ (2015)
58. Mahmoody M., Moran T., Vadhan S.P.: Time-lock puzzles in the random oracle model. In: Rogaway P.

(ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 39–50, Springer, Berlin (2011).
59. Mahmoody M., Moran T., Vadhan S.P.: Publicly verifiable proofs of sequential work. In: Kleinberg, R.D.

(ed), ITCS 2013, pp. 373–388. ACM, Berkeley (2013)
60. Miller A.: #bitcoin-wizards chat forum. 2015. https://botbot.me/freenode/bitcoin-wizards/2015-03-13/?

msg=34092097&page=3.
61. Nakamoto S.: Bitcoin: a peer-to-peer electronic cash system. http://www.bitcoin.org/bitcoin.pdf (2009).
62. Parno B., Howell J., Gentry C., RaykovaM.: Pinocchio: nearly practical verifiable computation. In: IEEE

Symposium on Security and Privacy, pp. 238–252 (2013).
63. Parno B., Howell J., Gentry C., Raykova M.: Pinocchio: nearly practical verifiable computation. In:

Proceedings of the 2013 IEEE Symposium on Security and Privacy, SP ’13, pp. 238–252 (2013).
64. Pass R., Seeman L., Shelat A.: Analysis of the blockchain protocol in asynchronous networks, pp. 643–

673. Cham (2017).
65. Paterson K.G., Quaglia E.A.: Time-specific encryption. In: Proceedings of the 7th International Confer-

ence on Security and Cryptography for Networks, SCN’10, pp. 1–16 (2010).
66. Rivest, Ronald L., Shamir A., Wagner D.A .: Time-lock puzzles and timed-release crypto. Technical

report, Massachusetts Institute of Technology (1996).
67. Schwenk J.: Modelling time for authenticated key exchange protocols. In: KutylowskiM., Vaidya J. (eds.)

ESORICS 2014, Part II. LNCS, vol. 8713, pp. 277–294, Springer, Berlin (2014).
68. Todd, P.: Timelock encryption incentivised by Bitcoin. https://github.com/petertodd/timelock (2014).
69. Unruh D.: Revocable quantum timed-release encryption. In: Nguyen P.Q., Oswald E. (eds.) EURO-

CRYPT 2014. LNCS, vol. 8441, pp. 129–146, Springer, Berlin (2014).
70. Hu Y., Jia H.: Cryptanalysis of GGH map. https://eprint.iacr.org/2015/301.pdf.
71. Zhandry M.: How to avoid obfuscation using witness PRFs. In: Proceedings of TCC (2016).
72. Zimmerman J.: How to obfuscate programs directly. EUROCRYPT Part 9057, 439–467 (2015).

123

https://en.bitcoin.it/wiki/User:Gmaxwell/alt_ideas
http://www.gwern.net/Self-decrypting
http://eprint.iacr.org/
http://eprint.iacr.org/
https://eprint.iacr.org/2014/975.pdf
http://eprint.iacr.org/
http://eprint.iacr.org/
https://botbot.me/freenode/bitcoin-wizards/2015-03-13/?msg=34092097&page=3
https://botbot.me/freenode/bitcoin-wizards/2015-03-13/?msg=34092097&page=3
http://www.bitcoin.org/bitcoin.pdf
https://github.com/petertodd/timelock
https://eprint.iacr.org/2015/301.pdf

	How to build time-lock encryption
	Abstract
	1 Introduction
	1.1 Contributions
	1.1.1 Time-lock encryption
	1.1.2 Extractable witness encryption

	1.2 Related work and further applications of time-lock encryption

	2 Preliminaries
	2.1 Witness encryption
	2.2 SNARKs

	3 Definitions of time-lock encryption
	4 Constructing time-lock encryption
	4.1 Constructing time-lock encryption from witness encryption
	4.2 Reducing multilinearity level using SNARKs
	4.3 Extension to adaptively-secure computational reference clocks

	5 Time-lock encryption based on bitcoin
	5.1 The bitcoin blockchain
	5.2 NP-relations based on hash blockchains
	5.3 Time-lock encryption from bitcoin

	6 Extractable witness encryption
	6.1 Extractable witness encryption from Subset-Sum
	6.2 Reducing CNF-SAT to Subset-Sum

	7 Conclusions and future work
	Acknowledgements
	Appendix A: Other approaches for time-lock encryption
	Appendix B: The double-spending problem in cryptocurrencies
	Appendix C: Variants and further analysis
	Appendix D: Proof of Lemma 1
	Appendix E: Generic multilinear map model
	Appendix F: Extractability security
	Appendix G: Soundness security
	Appendix H: 3SAT to exact-cover
	References

