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ABSTRACT
We propose a new time-release protocol based on the bitcoin
protocol and witness encryption. We derive a “public key”
from the bitcoin block chain for encryption. The decryption
key are the unpredictable information in the future block-
s (e.g., transactions, nonces) that will be computed by the
bitcoin network. We build this protocol by witness encryp-
tion and encrypt with the bitcoin proof-of-work constraints.
The novelty of our protocol is that the decryption key will
be automatically and publicly available in the bitcoin block
chain when the time is due.

Witness encryption was originally proposed by Garg, Gen-
try, Sahai and Waters. It provides a means to encrypt to
an instance, x, of an NP language and to decrypt by a wit-
ness w that x is in the language. Encoding CNF-SAT in
the existing witness encryption schemes generate poly(n · k)
group elements in the ciphertext where n is the number of
variables and k is the number of clauses of the CNF for-
mula. We design a new witness encryption for CNF-SAT
which achieves ciphertext size of 2n + 2k group elements.
Our witness encryption is based on an intuitive reduction
from SAT to Subset-Sum problem. Our scheme uses the
framework of multilinear maps, but it is independent of the
implementation details of multilinear maps.

Keywords
time-release crypto, bitcoin mining, proof-of-work, witness
encryption, SAT, Subset-Sum, multilinear maps

1. INTRODUCTION
Security researchers have often received legal threats from
vendors and government agencies seeking to stop publishing
vulnerability information or “proof of concept” code demon-
strating the security flaws. A long list of legal threats against
security researchers can be found in [2]. On one hand, dis-
covering security flaws and releasing a public advisory on
vulnerabilities can help vendors repair their products and

inform and protect the customers. On the other hand, ven-
dors fear negative publicity challenges of the security of their
products. Also the vulnerability information can give at-
tackers information to exploit a security hole and cause har-
m.

We picture a new (conference) publication system based on
time-release protocol to mitigate the above issues. Image
Alice wants to publish a paper about security flaws of some
product on Usenix Security, but the vendor of the product
tries to inhibit her. Instead, Alice can publish an encrypt-
ed version of her paper by using a time-release encryption
scheme. Her paper can only be decrypted after a certain
period of delay, e.g., 90-day. This delay is the notice period
which gives the vendor time to fix their products. When
the 90-day deadline hits, the decryption key will be avail-
able to the public and everyone can decrypt. During this
waiting period, Alice cannot change her paper and the ven-
dor cannot change their mind to thwart the recovery of the
decryption key.

1.1 Time-release crypto
The concept of time-release crypto was first suggested by
May [25] in 1993 and further studied by Rivest, Shamir and
Wagner [23]. The goal is to “send information into the fu-
ture”. This problem has been found to have many real-world
applications such as electronic auctions, scheduled payment
methods, sealed-bid auctions, lotteries. Two essential ap-
proaches have been investigated to solve the problem: the
computational complexity approach [23, 4, 6] and trusted
third party [13, 23, 5, 8, 22].

Our proposed time-release protocol is based on computa-
tional complexity. The nolvety of our protocol is that we
integrate the protocol with the existing decentralised bitcoin
protocol. As a result, the decryptor in our protocol does not
have to invest the computational effort to decrypt. The bit-
coin network will do the computational work instead. In the
previous time-release crypto, the actual decryption time de-
pends on the moment at which the decryption starts and the
computational power the decryptor owns. The decryption
will be delayed if the decryptor starts late. In comparison,
in our protocol, when the time is up, the decryption key
will be automatically and publically available in the bitcoin
block chain. Moreover, we do not have to modify the exist-
ing bitcoin protocol. The integration with bitcoin protocol
is seamless and the bitcoin protocol functions like a public



time clock.

The basic idea of our time-release protocol is to extract a
“public key” from bitcoin block chain for encryption, and
the decryption key will be the information in bitcoin blocks
(e.g., transactions, nonces, hashes) that will only be deter-
mined in future by bitcoin network. Clearly, the difficulty
of building such a protocol is that the decryption key is
unpredictable. However, among all of those unpredictable
information, there is one thing that is actually predictable
and can be used as a public key for encryption. That is the
bitcoin proof-of-work constraints:

SHA256 (SHA256 (block header)) ≤ target

The block chain in the bitcoin protocol is an ordered, back-
linked list of blocks of transactions. Each block is identified
by a hash, generated using the SHA256 cryptographic hash
algorithm on the header of the block. For a new block to be
accepted by bitcoin network as the next head of block chain,
its block header must satisfy the above constraint. Hence
the “public key” for our time-release encryption will be the
proof-of-work constraints, and witness encryption [16] can
allow us to encrypt with a constraint and decrypt with any
solution of the constraint.

A new block in the bitcoin network is created every 10 min-
utes on average and this can be controlled by adjusting the
value of the target. The smaller the target is, the longer it
takes to generate a valid block. We specify a recent block
as a starting point in the “public key” for encryption and
we can customise the time-delay we want in the encryption
by choosing the right number of blocks in the proof-of-work
constraints, for example 5 blocks for 50 minutes delay from
the specified starting point. Similar to all the previous com-
putational complexity based time-release crypto, the accu-
racy of the time-delay is hard to achieve. The users do not
have to wait for the bitcoin network to compute the values
that satisfy the hash constraint; they can always compute
by themselves if they have enough computing power. How-
ever, the bitcoin network possesses a huge computing power
(currently around 30,000 Tera hashes per second) and it is
unlikely for any individual to acquire such power alone.

1.2 Witness encryption
Witness encryption, originally proposed by Garg, Gentry,
Sahai and Waters in [16], as a means to encrypt to an in-
stance, x, of an NP language and decrypt by a witness w
that x is in the language. The GGSW construction for wit-
ness encryption is based on the Exact-Cover problem and
multilinear maps [7]. The efficiency of encoding CNF-SAT
depends on the reduction which is unspecified in [16]. As far
as we know, the best reductions from CNF-SAT to Exact-
Cover is CNF-SAT→ 3-CNF-SAT→ Exact-Cover (The
details of the second reduction can be found in Appendix C).
However, for a CNF formula of n variables and k clauses,
the reduction from CNF-SAT to 3-CNF-SAT increases the
number of variables and clauses by the size of the original
CNF formula, that is the total number of literals occurred
in the formula which is O(n · k) in the worst case. Suppose
the resulting 3-CNF has n′ variables and k′ clauses, then the
reduction to Exact-Cover generates 2n′+ 7k′ sets. Hence
even if it is on 3-CNF, our ciphertext is smaller and on-

ly consists of 2n′ + 2k′ elements, and 3-CNF usually has a
large number k′ for clauses.

The security of GGSW construction [16] is based on instance
dependent family of assumptions that they called the “De-
cision Graded Encoding No-Exact-Cover Problem.” To im-
prove the security assurances, Gentry, Lewko and Water-
s proposes a proof framework in [17] for proving witness
encryption schemes secure under instance independent as-
sumptions. The security analysis of their constructions of
witness encryption is based on multilinear subgroup decision
assumption and multilinear subgroup elimination assump-
tion which are affected by the recent attacks on multilinear
maps [9, 18]. Moreover, to compensate the security factor
loss caused by their proof technique, the security parame-
ters must be set quite large. There are three instantiations
of witness encryption for CNF formulas in [17]. Two of
them are specific to the composite order multilinear groups.
The conversion from composite-order construction to prime-
order multilinear groups (or more generally, groups of arbi-
trary order) results in a ciphertext of n · (4n+ 1)2 · (n+ k)2

group elements.

Program obfuscation is the task of making code “unintel-
ligible”, so that the obfuscated code reveals nothing about
the implementation beyond its functionality. Garg, Gentry,
Halevi, Raykova, Sahai, and Waters propose the first gen-
eral purpose indistinguishability obfuscator (iO) [15] based
on multilinear maps [7]. Conceptually program obfuscation
generalises witness encryption, but witness encryption is in
principle easier to achieve in terms of security and efficiency.
This is because program obfuscation must hide the details of
the program while witness encryption does not have to. The
obfuscation size is typically of poly

(
s, 2d, n

)
group elements

for circuits of size s, depth d and input length n [15, 3, 28].

1.3 Contributions
Our first contribution is to design a new time-release pro-
tocol based on bitcoin. We derive a “public key” from the
bitcoin block chain for encryption. The decryption key will
be the unpredictable values (e.g., transactions, nonces) that
will be computed in future by bitcoin network. We build
this protocol by witness encryption and encrypt with the
bitcoin proof-of-work constraints..

Our second contribution is to propose a new witness encryp-
tion for CNF-SAT which achieves ciphertext size of 2n+ 2k
group elements, where n is the number of variables and k
is the number of clauses of the CNF formula. Our wit-
ness encryption is based on an intuitive reduction of SAT
to Subset-Sum problem and the framework of multilinear
maps. In fact, the reduction itself is in the size of the for-
mula which is n · k in the worst case, but we can compress
and represent it by just 2n+ 2k elements in encryption.

1.4 Outline
The rest of this paper proceeds as follows. In Section 2 we
provide a brief overview of the Bitcoin protocol. In Section
3, we propose our new time-release protocol. In Section 4,
we propose our new witness encryption. In Section 5, we
discuss the instantiation of our witness encryption and the



Field Size Description

Version 4 bytes Block version number

hashPrevBlock 32 bytes Reference to the hash of the
previous block header

hashMerkleRoot 32 bytes The root of the merkle tree of
all of the transactions in the
block

Timestamp 4 bytes The approximate creation time
of this block

Bits 4 bytes The proof-of-work difficulty
target for this block

Nonce 4 bytes A counter used for the
proof-of-work

Figure 1: The structure of the block header

plausibility of the design of our time-release protocol. The
paper concludes in Section 6.

2. OVERVIEW OF BITCOIN PROTOCOL
In this section we provide a short overview of the Bitcoin
protocol [24].

Bitcoin is a peer-to-peer electronic cash which allows users
to directly transact without going through any central au-
thority or financial institution. Everyone can take part in
managing transactions and issuing bitcoins. Transactions
are broadcast to and verified by bitcoin network nodes and
recorded in a public distributed ledger called the block chain.

The block chain is an ordered, back-linked list of blocks of
transactions. Each block is identified by a hash, generated
using the SHA256 cryptographic hash algorithm on the head-
er of the block. The data structure of block header is given
in Figure 1. Each block references a previous block through
the “hashPreBlock” field in the block header, as shown in
Figure 2. The fields of difficulty, timestamp, and nonce in
Figure 1 are related to the mining competition. The merkle
tree root is a data structure used to efficiently summarize
all the transactions in the block.

To generate the next block, bitcoin peers compete to solve
a proof-of-work based on identifying specific SHA256 preim-
ages, specifically to find a nonce, as part of the bitcoin block
header, hashes below a certain value:

SHA256 (SHA256 (block header)) ≤ 0`‖1256−` (1)

When mining bitcoin, the proof-of-work algorithm repeated-
ly hashes the block header while incrementing the counter
Nonce. Whenever Nonce overflows, an extra nonce portion
of the generation transaction is incremented, which changes
the Merkle root. The value ` is the number of leading zeroes
which represents the difficulty of bitcoin mining. The bigger
` is, the longer the bitcoin mining takes. The difficulty is se-
lected by a periodic network vote to ensure that on average
a block is created every 10 minutes. When a peer generates
a valid solution, it broadcasts the new block to all nodes
in the network. If the block is valid, then the new block is
accepted as the head of the block chain.

3. TIME-RELEASE PROTOCOL FROM BIT-
COIN

We design a new time-release protocol by using bitcoin block
chain as a time clock. We derive a “public key” from bitcoin
block chain for encryption, and the decryption key will be
the unpredictable information in bitcoin blocks (e.g., trans-
actions, nonces, hashes) that will only be determined in fu-
ture by bitcoin network. We can specify how much time-
delay we want in the encryption. When the time is due, the
decryption key will be automatically and publicly available
in the bitcoin block chain. Bitcoin network is decentralised
and there is no trusted third party involved in our protocol.

The future values of blocks are unpredictable since we can-
not foresee what products users are going to buy, how much
they are going to spend and when the transactions will take
place. Among all of those unpredictable future information,
there is one thing that is actually predictable and can be
used as a public key for encryption. What transactions are
going to be included in each block are uncontrollable, but
the header of each new block must satisfy the proof-of-work
constraints (1) in order for the new block to be added into
the main chain. Instead of encrypting with traditional keys,
we encrypt with the proof-of-work constraints and any so-
lution to the constraints will be a valid decryption key. In
fact, both witness encryption [16] and indistinguishability
Obfuscation (iO) [15] can allow us to encrypt with such a
constraint and decrypt with its solution.

To build our time-release protocol, we can use iO to obfus-
cate a program consisting of the proof-of-work constraints
and a secret key, and let the obfuscator cough out the key
when the checking of the constraints succeeds. More gener-
ally, we can let the program directly check the actual time
from different time servers all over the world instead of bit-
coin block chain and cough out the key when the time is
due.

Witness encryption is in principle easier to achieve than pro-
gram obfuscation in terms of security and efficiency. This
is because the latter must hide the details of the program
while the former does not have to. We will further dis-
cuss witness encryption in the next section. In order to en-
crypt with witness encryption, we write C program for the
bitcoin proof-of-work constraints and translate it into CNF
clauses by using the tool CBMC [10]. Then we can use the
witness encryption to encode the CNF clauses to produce
a ciphertext. Our C program (about 300 loc) implements
SHA256 and the proof-of-work constraints (as described in
Figure 3) for 5 linked block headers. We specify a recent
block as a starting point for the timing, for example, the
Block 350108 which was generated in March 2015 [1]. S-
ince a new block is created every 10 minutes on average,
we can customise the time-delay we want in the encryption
by choosing the right number of blocks in the proof-of-work
constraints, for example 5 blocks for 50 minutes delay from
the specified starting point. Specifically, in the C program,
in the“hashPrevBlock”field of the first block header, we put
the hash value of the header of the Block 350108. The value
of “hashPrevBlock” field of the second block header is the
hash of the first block header, and so on. The other fields
are unpredictable, so they are initialised with a nondeter-
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Figure 2: Bitcoin block chain

hash1 = SHA256
(
SHA256

(
ver1, hash0,merkle1, time1, bit1, nonce1

))
≤ target

hash2 = SHA256
(
SHA256

(
ver2, hash1,merkle2, time2, bit2, nonce2

))
≤ target

hash3 = SHA256
(
SHA256

(
ver3, hash2,merkle3, time3, bit3, nonce3

))
≤ target

· · · · · · · · · · · ·
hashk = SHA256

(
SHA256

(
verk, hashk−1,merklek, timek, bitk, noncek

))
≤ target

Figure 3: Proof-of-work constraints

ministic value “nondet uint()” which are handled as input
variables in CBMC. Those nondeterministic values are the
decryption key that will be generated by bitcoin network in
future. More details about the source code can be found
in Appendix A. Similar to all the previous computational
complexity based time-release crypto, the accuracy of the
time-delay is hard to achieve. The users do not have to wait
for the bitcoin network to compute the values that satisfy
the hash constraints; they can always compute by them-
selves if they have enough computing power. However, the
bitcoin network possesses a huge computing power (current-
ly around 30,000 Tera hashes per second) and it is unlikely
for any individual to acquire such power alone.

CBMC [19, 10] is a Bounded Model Checker for C and C++
programs. CBMC transforms the program into static single
assignment form [19], by unwinding loops (duplicating the
loop body n times), expanding the (recursive) function calls
and replacing the variables by bit vectors. This procedure
produces two bit-vector equations: C (for the program con-
straints) and P (for the property). Then CBMC converts
C∧¬P into CNF by adding intermediate variables. By con-
struction, the CNF formula encodes the semantics of the
program exactly: the CNF formula is satisfiable if and on-
ly if there is a program execution in the unwound program
leading to an assertion violation.

By using CBMC, we transform our C program into the CNF
formulas. The size of the resulting CNF formula is given in
Figure 4. We use the tool Coprocessor [21], a CNF simpli-
fier, for a quick simplification. We can see that the number
of variables and clauses of the CNF formula increases lin-
early with the number of blocks. For the mining difficulty,
the number of leading zeroes of the hash of block header
is checked in an assertion statement. From the comparison
of Figure 4a and Figure 4b, we can see that the change of
mining difficulty does not affect the size of CNF formula.
These figures will be useful for the plausibility discussion of
the design of our protocol in Section 5.

4. WITNESS ENCRYPTION FOR SAT
We propose a new witness encryption for encrypting with
CNF formula which generates smaller ciphertexts compared
to the existing ones.

Definition 4.1. A witness encryption scheme [16] for an
NP language L with corresponding witness relation R con-
sists of the following two polynomial-time algorithms:

• Encryption. The algorithm Encrypt
(
1λ, x,M

)
takes

as input a security parameter 1λ, an unbounded-length
string x, and a message M ∈ {0, 1}, and outputs a
ciphertext CT .

• Decryption. The algorithm Decrypt (CT ,w) takes
as input a ciphertext CT and a bit-vector w, and out-
puts a message M or the symbol ⊥.

These algorithms satisfy the following two conditions:

• Correctness. For any security parameter λ, for any
M ∈ {0, 1} and for any x ∈ L such that R (x,w) = 1
holds, we have that

Pr
[
Decrypt

(
Encrypt

(
1λ, x,M

)
, w
)

= M
]

= 1

• Soundness Security. For any PPT adversary A,
there exists a negligible function neg(λ) such that for
any x 6∈ L, we have:∣∣∣Pr [A(Encrypt

(
1λ, x, 0

))
= 1
]

−Pr
[
A
(
Encrypt

(
1λ, x, 1

))
= 1
]∣∣∣ < neg(λ)

The correctness states that an algorithm can decrypt if the
instance x is in the language L (i.e., x ∈ L), and it knows a
witness w such that R(x,w) = 1. The security states that if
x 6∈ L, then no polynomial-time algorithm can decrypt.

4.1 SAT and Subset-Sum
We first briefly review the definition of SAT and Subset-
Sum. Then we describe an intuitive textbook reduction from
CNF-SAT to Subset-Sum.

We use notations u,v,w to represent integer vectors. We
call a vector of n elements the n-vector. We write 0i for
a vector constructed by i zeroes, and 1j for a vector con-
structed by j ones. We denote by (u,v) a vector obtained



CNF generated by CBMC Simplified by Coprocessor
#blocks #vars #clauses #vars #clauses time(s)

1 205, 679 1, 015, 943 135, 628 915, 243 3.17
2 412, 663 2, 041, 922 271, 092 1, 813, 510 7.07
3 619, 647 3, 067, 901 408, 547 2, 733, 842 10.58
4 826, 631 4, 093, 880 545, 973 3, 654, 405 14.96
5 1, 033, 615 5, 119, 859 683, 452 4, 574, 855 18.19

(a) Bitcoin mining difficulty: 64-bit leading zeroes

CNF generated by CBMC Simplified by Coprocessor
#blocks #vars #clauses #vars #clauses time(s)

1 205, 689 1, 016, 025 135, 429 916, 279 3.16
2 412, 683 2, 042, 086 272, 764 1, 824, 906 7.01
3 619, 677 3, 068, 147 410, 180 2, 745, 325 10.56
4 826, 671 4, 094, 208 547, 661 3, 671, 326 12.60
5 1, 033, 665 5, 120, 269 685, 198 4, 595, 175 15.84

(b) Bitcoin mining difficulty: 128-bit leading zeroes

Figure 4: Size of CNF clauses for bitcoin mining procedure

by appending vector v to vector u. Let α := (α1, · · · , αd)
and v := (v1, · · · , vd). We write αv for αv11 α

v2
2 · · ·α

vd
d .

The Boolean satisfiability problem (SAT) is, given a formula,
to check whether it is satisfiable.

Let B be a Boolean formula. A literal is either a variable x
or the negation of a variable x. A clause is a disjunction of
literals, e.g., C = x1∨x2∨x3∨x4. The formula B is said to
be in conjunctive normal form (CNF) if it is a conjunction
of clauses C1 ∧ C2 ∧ · · · ∧ Cm. The SAT problem for CNF
formulas is called CNF-SAT.

The Subset-Sum problem is: given a (multi)set ∆ of inte-
ger vectors and a target integer vector s, does there exist a
subset of ∆ such that the sum of its elements is equal to s?

Reducing CNF-SAT to Subset-Sum. Assume a CNF for-
mula of n variables x1, x2 . . . xn and k clauses C1, C2 . . . Ck.
For each clause Cj , assume there aremj literals in the clause.
We consider the following textbook reduction from SAT to
Subset-Sum:

1. For each variable xi, construct two vectors ui,0 and
ui,1 of (n+ k) integers as follows:

• The i-th element of ui,0 and ui,1 is equal to 1

• For 1 ≤ j ≤ k, the (n+ j)-th element of ui,0 is
equal to 1 if xi is in clause Cj

• For 1 ≤ j ≤ k, the (n+ j)-th element of ui,1 is
equal to 1 if xi is in clause Cj

• All other elements of ui,0 and ui,1 are 0

2. For each clause Cj , construct vectors vj,1,vj,2, · · · ,vj,mj−1

of n+ k integers:

• The (n + j)-th element of vj,1,vj,2, · · · ,vj,mj−1

is equal to 1

• All other elements of vj,1,vj,2, · · · ,vj,mj−1 are 0

3. Finally, construct a sum vector s of n+ k integers:

• For 1 ≤ j ≤ n, the j-th element of s is equal to 1

• For 1 ≤ j ≤ k, the (n+ j)-th element of s is equal
to mj .

Intuitively, the vector ui,0 corresponds to the negative oc-
currences of variable xi in the formula while the vector
ui,1 corresponds to its positive occurrences. The vectors
vj,1,vj,2, · · · ,vj,mj−1 for each clause Cj will sum to mj − 1
at most, but to complete the sum mj at least one will have
to come from one of the ui,0 or ui,1 for 1 ≤ i ≤ n.

Example 4.2. (x1 ∨ x2)∧(x1 ∨ x2 ∨ x3 ∨ x4)∧(x1 ∨ x2 ∨ x3)
is reduced into Subset-Sum as follows:

Variables Clauses
x1 x2 x3 x4 C1 C2 C3

u1,0 1 1
u1,1 1 1 1
u2,0 1 1 1
u2,1 1 1
u3,0 1
u3,1 1 1 1
u4,0 1 1
u4,1 1
v1,1 1
v2,1 1
v2,2 1
v2,3 1
v3,1 1
v3,2 1
s 1 1 1 1 2 4 3

Theorem 4.3. The CNF formula is satisfiable iff subset
sum exists.

Proof. If there is a subsequence of integer vectors sum-
ming to the sum vector s, this must use exactly one of each



of the pairs (ui,0,ui,1) (corresponding to each variable xi
being either false or true but not both) to make the first n
columns correct. Also, each clause of Cj must have been
satisfied by at least one variable, or the last k columns can-
not be correct. Therefore, there is a satisfying assignment
to C1 ∧C2 ∧ · · · ∧Ck if and only if there is a subsequence of
the numbers that sums to s.

4.2 Our construction
The (cryptographic) multilinear maps [7] only allow certain
times of “multiplication”, but not “division”. We will make
use of asymmetric multilinear maps in which groups are in-
dexed by integer vectors. Suppose we have a t-multilinear
group family consisting of groups {Gv}v of the same order

p and v ≤ t, where t,v ∈ Z` are positive integer vectors
and the comparison between the vectors holds component-
wise. The groups are equipped with a set of multilinear
maps, eu,v : Gu × Gv → Gu+v for u + v ≤ t, satisfying

eu,v

(
gαu , g

β
v

)
= gαβu+v. We often omit the subscripts and just

write e.

A direct encoding of Subset-Sum is given by Zhandry in
[27]: for a collection m integers v1, ..., vm and a target in-

teger t, choose a random α
R←− Zp, and encode each inte-

ger as gα
vi

i and the target as gα
t

T , with a map e such that
e (g1, g2, · · · , gm) = gT . This encoding is simple and effec-
tive, but it has to encode the same integers multiple times.
We optimise the encoding for Subset-Sum by ensuring the
same integer will only be encoded once, and our encoding is
performed on the reduction of SAT to Subset-Sum, instead
of directly on Subset-Sum.

Assume a CNF formula has n variables and k clauses, each
clause Cj containsmj literals and the total number of literals

occurred is m =
∑k
j=1mj . The reduction from SAT to

Subset-Sum mentioned in Section 4.1 is not linear in the
size of n+k by itself; it is of the size of the CNF formula, that
is, the total number of literals occurred in all the clauses m.
However, we can optimise the encoding for this reduction.
The main ideas of our encoding and optimisation are:

1. Each non-zero element of the vector is encoded as a
secret random, and an integer vector is encoded as the
multiplications of these randoms.

2. Notice that for each clause Cj , the integer vectors
vj,1,vj,2, · · · ,vj,mj−1 are all the same. Instead of en-
coding them one-by-one, we can encode just one “seed”
and the combination of these integers can be comput-
ed from the seed dynamically. However, we cannot
allow the seed to be used for more than mj − 1 times,
otherwise the correctness of the reduction is not guar-
anteed. For this purpose, we associate each seed with
a unique secret random as a counter to control usage
of the seed.

Encrypt
(
1λ, x,M

)
: Choose n randoms a1, a2, . . . , an for en-

coding variables, k randoms b1, . . . , bk for encoding clauses
and another k randoms c1, . . . , ck for encoding the auxiliary
counter. These randoms are kept secret.

1. Assume the vector ui,xi = (u1, · · · , un, un+1, · · · , un+k)
with xi = 0, 1. The encoding for ui,xi is Ui,xi :

Ui,xi := g
βi,xi

(ui,xi
,0k)

where

βi,xi := ai
∏

un+j=1
1≤j≤k

bj

2. For 1 ≤ j ≤ k, let yj = (yj,1, · · · , yj,k) be a k-vector
of zero except yj,j = 1. We encode vj,1 as (Vj,0, Vj,1):

Vj,0 := g
bjcj

(vj,1,yj)

Vj,1 := g
cj

(0n+k,yj)

Here cj ,yj are used as a “counter” to guarantee that
bj in Vj,0 can be used for at most mj − 1 times.

3. Correspondingly we extend the sum vector s with the
auxiliary counter, then the sum becomes a (n+ 2k)-
vector

t = (s,m1 − 1, · · · ,mk − 1)

We encode the sum as

S := g
a1···anb

m1
1 ···bmk

k
c
m1−1
1 ···cmk−1

k
t

4. The ciphertext for encrypting a message M consists of
enc (M,S) with

{Ui,0, Ui,1}1≤i≤n ∪ {Vj,0, Vj,1}1≤j≤k

Decrypt (CT ,w): Given a witness w = (x1, x2, · · · , xn) which
is an assignment for n variables. For each Cj , compute the
number of literals that are evaluated to true and assume this
number is zj .

1. Compute themj−zj times mapping of Vj,0 = g
bjcj

(vj,1,yj)

2. Compute the zj−1 times of mapping of Vj,1 = g
cj

(0n+k,yj)

3. Compute the mapping of the above two results to ob-
tain Wj :

Wj := e

(
g
b
mj−zj
j c

mj−zj
j

((mj−zj)vj,1,(mj−zj)yj)
, g
c
zj−1

j

((zj−1)0n+k,(zj−1)yj)

)

= g
b
mj−zj
j c

mj−1

j

((mj−zj)vj,1,(mj−1)yj)

4. Compute e (U1,x1 , U2,x2 , · · · , Un,xn ,W1, · · · ,Wk) which
will give the encoding for the sum.

Our encoding for the CNF formula of n variables and k
clauses is of the size of 2n + 2k group elements and it is
independent of the underlying implementation of multilin-
ear maps. The multilinearity κ is n + m − k consisting of
n mapping operations among the variables and m− k map-
ping operations among {Vj,0, Vj,1}1≤j≤k since each pair of

(Vj,0, Vj,1) will only be mapped for mj − 1 times in total.



The current candidate multilinear maps [14, 11, 20] are not
compact, that is, the size of elements in the groups depend-
s on the multilinearity κ. We will further discuss this in
the next section and we shall provide a method to balance
the multilinearity level and the number of group elements in
the ciphertext in order to compromise with the state-of-art
implementation of multilinear maps.

Example 4.4. (x1 ∨ x2)∧(x1 ∨ x2 ∨ x3 ∨ x4)∧(x1 ∨ x2 ∨ x3)
is encoded as below. Since all the vectors (except the sum)
are sparse and only contain 0 and 1, for notational conve-
nience, the group is indexed by the set of the positions of the
non-zero elements, instead of the vector. For example, the
set {1, 5, 7} represents the vector (1, 0, 0, 0, 1, 0, 1, 0, 0, 0).

Variables Clauses Encoding

x1 x2 x3 x4 C1 C2 C3

a1 a2 a3 a4 b1 b2 b3

u1,0 1 1 ga1b2{1,6}

u1,1 1 1 1 ga1b1b3{1,5,7}

u2,0 1 1 1 ga2b1b2{2,5,6}

u2,1 1 1 ga2b3{2,7}

u3,0 1 ga3{3}

u3,1 1 1 1 ga3b2b3{3,6,7}

u4,0 1 1 ga4b2{4,6}

u4,1 1 ga4{4}

v1,1 1 gb1c1{5,8}, g
c1
{8}

v2,1 1 gb2c2{6,9}, g
c2
{9}

v2,2 1

v2,3 1

v3,1 1 gb3c3{7,10}, g
c3
{10}

v3,2 1

s 1 1 1 1 2 4 3 g
a1a2a3a4b

2
1b

4
2b

3
3c1c

3
2c

2
3

(1,1,1,1,2,4,3,1,3,2)

Security analysis. Let α = (a1, · · · , an, b1, · · · , bk, c1, · · · , ck).
Essentially, the above encoding for a vector v is of the for-
m gα

v

v . However, this encoding does not directly work for
the general Subset-Sum problem. For example, given {1},
there is no subset-sum for 3, but for the encoding we can

obtain gα
3

3 by computing e
(
gα

1

1 , gα
1

1 , gα
1

1

)
.

The above encoding works on a special class of Subset-Sum
problem in which the given vectors occur sufficiently many
times compared to the elements in the target sum. We adapt
the multilinear subset-sum Diffie-Hellman assumption in [27]
to multilinear counting subset-sum Diffie-Hellman assump-
tion:

Assumption 4.5. Our security assumption concerns a spe-
cial class of Subset-Sum problem.

Given a multi-set of vectors ∆ = {(vi : `i)}i∈I
1 with vi ∈

{0, 1}d, and a target sum vector t = (t1, · · · , td) of positive
integers such that: for each i ∈ I, let vi = (vi,1, · · · , vi,d),
then `i ≥ min{ tj | vi,j = 1, 1 ≤ j ≤ d }.

Choose a vector of randoms α := (α1, · · · , αd). If t can-
not be represented as a subset-sum of elements from set ∆,

then given
{
gα

vi

vi

}
i∈I

, gα
t

t is indistinguishable from a ran-

dom group element.

We name this assumption multilinear counting subset-sum
Diffie-Hellman assumption.

Theorem 4.6. Our witness encryption for SAT is a sound
scheme under multilinear counting subset-sum Diffie-Hellman
assumption.

Proof. See Appendix B.

We remark that our assumption depends on the challenge in-
stance which means it is not instance independent. A frame-
work for proving witness encryption schemes secure under
instance independent assumptions is given in [17]. However,
the proof techniques in [17] require large security parame-
ters (e.g., for λ-bit security, the actual security parameter is

λ′ = λ + Õ(n + k)), and are subject to the recent attacks
[9, 18] on current candidate multilinear maps. Our scheme
achieves smaller ciphertext and is independent of the imple-
mentations of multilinear maps. We leave it as a future work
to improve the security analysis to be based on instance in-
dependent assumptions.

5. INSTANTIATION AND PLAUSIBILITY
Since the breakthrough construction of Garg, Gentry and
Halevi [14] in 2013, multilinear maps [14, 11, 20, 12] becomes
a very active research area, as well as its cryptanalysis [9,
18, 26]. Current candidate multilinear maps [14, 11, 26,
12] are only approximate and do not satisfy the ideal model
outlined in Section 4.2.

We instantiate our witness encryption with the CLT multi-
linear maps [11, 12] in order to estimate the efficiency and
justify the plausibility of the design of our time-release pro-
tocol. We will show that the time-delay caused by efficiency
of current candidate multilinear maps is essentially different
and independent of the time-delay of bitcoin mining proce-
dure. The attacks [9] on the original CLT maps [11] heavily
rely on sufficiently many low-level encodings of zero which
are usually not explicitly published in applications like wit-
ness encryption and indistinguishability obfuscation because
whomever generates the encryption sets up the map and
knows all the secret parameters. A tentative fix of the CLT
maps is given in [12] which has the same CLT encodings
but a different zero-testing procedure. The security analy-
sis of the instantiation is not of the concern of this paper
and we leave it as a future work. Our design of witness en-
cryption is independent of the underlying implementations

1(vi : `i) means vi occurs `i times in the multiset.



of multilinear maps. This means whenever there is a bet-
ter implementation of multilinear maps (for better security
assurances or better efficiency), we can simply swap it in.

The CLT maps generates N secret primes pi and publish-
es x0 = ΠN

i=1pi, and also generates N small secret primes
gi. The message space is R = Zg1 × · · · × ZgN . For imple-
menting the asymmetric multilinear maps, we select a series
of random secret integers zj mod x0, j = 1, · · · , `. For an
index vector v = (v1, · · · , v`), the encoding of a message
m = (mi) ∈ R relative to the index is then an integer c such
that for all 1 ≤ i ≤ N :

c ≡ ri · gi +mi

zv11 zv22 · · · z
v`
`

(mod pi)

for some small random integers ri. Encodings can then be
added and multiplied modulo x0, as long as the noise ri is
such that ri · gi + mi < pi for each i. The encodings of
group elements are noised and thus not unique. There is
an extraction procedure that takes an encoding of a group
element in the the target group and outputs a canonical
representation.

According to the suggestions of parameters settings of the
CLT maps [11, 12], we can take the size of group elements
as Ω

(
κ2λ3

)
for λ-bit security. The multilinearity κ equals

to the number of multiplication operations.

In our scheme, the decryption involves n + m − k map-
ping operations as analysed in Section 4.2. The compu-

tation of g
cij

i(0n+k,yj)
from Vj,1 = g

cj

(0n+k,yj)
can be done in

time O (log (i)). Hence the decryption has time complexity

O
(
n+

∑k
j=1 log (mj)

)
. However, this will not help reduce

the multilinearity level when instantiating the scheme in the
CLT maps and the multilinearity will still be n + m − k.
To better suit the CLT maps, instead of encoding vj,1 as(
g
bjcj

(vj,1,yj)
, g
cj

(0n+k,yj)

)
, we encode vj,1 as 2blog (mj)c ele-

ments:

g
bjcj

(vj,1,yj)
, g

b2jc
2
j

2(vj,1,yj)
, g

b4jc
4
j

4(vj,1,yj)
, · · · , g

bdj c
d
j

d(vj,1,yj)

g
cj

(0n+k,yj)
, g

c2j

2(0n+k,yj)
, g

c4j

4(0n+k,yj)
, · · · , g

cdj

d(0n+k,yj)

where d = 2blog(mj)c. As a result, this will keep the multilin-
earity as n+

∑k
j=1 log (mj), instead of n+

∑k
j=1 (mj − 1).

The current candidate multilinear maps are far from prac-
tical. For the application of witness encryption, the current
time for encryption and decryption is astronomical. How-
ever, this time-delay is essentially independent of the time-
delay introduced in bitcoin mining procedure. The former is
due to the state-of-art technology which will be improved in
future, while the latter can be easily tuned. That is, the time
for encryption and decryption will not be necessarily longer
than the time of bitcoin mining. To illustrate this point, as-
sume there is only one block involved in our time-releasing
protocol. According to Figure 4 and the above analysis, the
multilinearity κ is around 106. Let λ = 256. Then the size of
group elements is around 1019. The modulo multiplication
a · b (mod x0) has time complexity O

(
log2 (x0)

)
. Hence we

estimate the time for multiplications in group of size 1019

from the time for multiplications in group of size 106 by the
implementation in [11]. One multiplication in the group of
size 1019 takes around 1024 seconds and the total decryption
time is around 106 · 1024 = 1030(≈ 2100) seconds. Regard-
less of future scientific improvement of multilinear maps, just
imaging our computing power is 1030 times faster at some
point in future, then the decryption time will become 1 sec-
ond, while the bitcoin mining difficulty (which is currently
64-bit leading zeroes) can be adjust to 164-leading zeroes in
order to keep the speed of block generation at 10 minutes
per block. The change of mining difficulty will not change
the size of CNF formula as demonstrated in Figure 4, which
will not affect the decryption time.

6. CONCLUSION
We have presented a new time-release protocol based on the
bitcoin protocol. We build this protocol by witness encryp-
tion. The public key for encryption is the proof-of-work con-
straints and the decryption key are the unpredictable values
in the future blocks. The unique feature of our protocol is
that the decryption key will be automatically and publicly
available in the bitcoin block chain when the time is due.

We have proposed a new witness encryption for CNF-SAT
which achieves ciphertext size of 2n + 2k group elements,
where n is the number of variables and k is the number of
clauses of the CNF formula. Our witness encryption is based
on an intuitive reduction of SAT to Subset-Sum problem.
Our scheme is built on the framework of multilinear maps,
but it is independent of the underlying implementations of
multilinear maps.
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APPENDIX
A. PSEUDO-CODE FOR PROOF-OF-WORK CONSTRAINTS
// v e r i f i c a t i o n o f proof−of−work f o r the f i r s t b lock

block1 [ 2 0 ] = {
nondet u int ( ) , // ve r s i on number
0 x5f faaa03 , // hash o f the block 350108
0 xf11aa3ee ,
0xd376d630 ,
0x7ac05dc9 ,
0x12d023bf ,
0x0ae3d1a3 ,
0x00000000 ,
0x00000000 ,
nondet u int ( ) , // merkle root o f t r a n s a c t i o n s
nondet u int ( ) ,
nondet u int ( ) ,
nondet u int ( ) ,
nondet u int ( ) ,
nondet u int ( ) ,
nondet u int ( ) ,
nondet u int ( ) ,
nondet u int ( ) , // timestamp
nondet u int ( ) , // b i t s
nondet u int ( ) // nonce

} ;

hash1 = SHA256(SHA256( block1 ) ) ; // hash o f the f i r s t block ,
//we omit the implementation d e t a i l s f o r SHA256

a s s e r t ( ! ( hash1 [ 7 ] == 0 && hash1 [ 6 ] == 0 ) ) ; // v e r i f y i n g the l ead ing 64−b i t s are z e r o e s

// v e r i f i c a t i o n o f proof−of−work f o r the second block

block2 [ 2 0 ] = {
nondet u int ( ) , // ve r s i on number
hash1 [ 0 ] , // hash o f the f i r s t b lock
hash1 [ 1 ] ,
hash1 [ 2 ] ,
hash1 [ 3 ] ,
hash1 [ 4 ] ,
hash1 [ 5 ] ,
hash1 [ 6 ] ,
hash1 [ 7 ] ,
nondet u int ( ) , // merkle root o f t r a n s a c t i o n s
nondet u int ( ) ,
nondet u int ( ) ,
nondet u int ( ) ,
nondet u int ( ) ,
nondet u int ( ) ,
nondet u int ( ) ,
nondet u int ( ) ,
nondet u int ( ) , // timestamp
nondet u int ( ) , // b i t s
nondet u int ( ) // nonce

} ;

hash2 = SHA256(SHA256( block2 ) ) ; // hash o f the second block

a s s e r t ( ! ( hash2 [ 7 ] == 0 && hash2 [ 6 ] == 0 ) ) ; // v e r i f y i n g the l ead ing 64−b i t s are z e r o e s



B. SECURITY ANALYSIS

Theorem 4.6. Our witness encryption for SAT is a sound scheme under multilinear counting subset-sum Diffie-Hellman
assumption.

Proof. Our witness encryption is for the SAT problem. The encoding described in Section 4.2 essentially extends the
original reduction from SAT to Subset-Sum. Hence we will show this extension gives equivalent Subset-Sum problem and
satisfy the condition in Assumption 4.5.

We describe this extended reduction as follows. Assume a CNF formula of n variables x1, x2, · · · , xn and k clauses C1, C2, · · · , Ck.

1. For each variable xi, construct two vectors u′i,0 and u′i,1 of (n+ 2k) integers as follows:

• The i-th element of u′i,0 and u′i,1 is equal to 1

• For n+ 1 ≤ j ≤ n+ k, the j-th element of u′i,0 is equal to 1 if xi is in clause Cj−n

• For n+ 1 ≤ j ≤ n+ k, the j-th element of u′i,1 is equal to 1 if xi is in clause Cj−n

• All other elements of u′i,0 and u′i,1 are 0

2. For each clause Cj , assume there are mj literals in the clause Cj , construct vectors v′j,1,v
′
j,2, · · · ,vj,mj−1 of n + 2k

integers:

• The (n+ j)-th element and the (n+ k + j)-th element of v′j,1,v
′
j,2, · · · ,v′j,mj−1 are equal to 1

• All other elements of v′j,1,v
′
j,2, · · · ,v′j,mj−1 are 0

3. For each clause Cj , we add vectors fj,1, fj,2, · · · , fj,mj−1 of n+ 2k integers as counters:

• The (n+ k + j)-th element of fj,1, fj,2, · · · , fj,mj−1 is equal to 1

• All other elements of fj is 0

4. Finally, construct a sum vector t of n+ 2k integers:

• For 1 ≤ j ≤ n, the j-th element of t is equal to 1

• For 1 ≤ j ≤ k, the (n+ j)-th element of t is equal to mj .

• For 1 ≤ j ≤ k, the (n+ k + j)-th element of t is equal to mj − 1.

Compared to the original reduction in Section 4.1, this extended reduction appends k extra integers to the vectors which corre-
sponds to the counter information. We use the notations in the encoding of Section 4.2 and let α = (a1, · · · , an, b1, · · · , bk, c1, · · · , ck).

We encode a vector v as gα
v

v and we use this encoding method to encode the above vectors. Comparing with the encoding in
Section 4.2, we can easily see that

Ui,0 = gα
u′i,0

u′i,0
and Ui,1 = gα

u′i,1
u′i,1

for 1 ≤ i ≤ n

Vj,0 = gα
v′j,1

vj,1
and Vj,1 = gα

fj,1

fj,1
for 1 ≤ j ≤ k

That is to say, encoding the above vectors generates the same encoding as the one described in Section 4.2.

Next we shall check the above Subset-Sum problem satisfy the condition in Assumption 4.5.

1. For 1 ≤ i ≤ n, u′i,0 only occurs once.2 Let u′i,0 = (u1, · · · , un+2k). We can easily see that min{ tj | uj = 1, 1 ≤ j ≤
n+ 2k } = 1. Hence the condition holds.

2. The analysis for u′i,1 is similar.

3. The vectors v′j,1,v
′
j,2, · · · ,v′j,mj−1 are the same vectors and the number of occurrence of this vector is mj − 1. Only

the n + j-th and n + k + j-th elements of those vectors are 1. The n + j-th element of the sum vector t is mj and the
n+ k + j-th element of the sum vector t is mj − 1. Hence the condition holds.

4. The vectors fj,1, fj,2, · · · , fj,mj−1 are the same vectors and the number of occurrence of this vector is mj − 1. Only the
n+ j + k-th element of those vectors is 1. The n+ k + j-th element of the sum vector t is mj − 1. Hence the condition
holds.

The soundness security of our witness encryption scheme follows immediately.

2Note that the two vectors u′i,0 and u′i,1 might be the same. However, that means xi and xi occur at the same time in the
same clauses. In this case, these clauses are definitely satisfiable and can be removed.



C. 3SAT TO EXACT-COVER
We give the textbook reduction from 3SAT to Exact-Cover (the best reduction we can find) for the convenience of reader.

Definition C.1 (Exact-Cover).

• Instance: a set X and a family A of subsets of X

• Decide: Is there an exact cover of X by A?

Reducing 3SAT to Exact-Cover. Let f be an instance of 3SAT, with variables x1, · · · , xn and clauses f1, · · · , fm. We first
construct a graph G from f by setting:

V (G) = {xi | 1 ≤ i ≤ n } ∪ {xi | 1 ≤ i ≤ n } ∪ { fj | 1 ≤ j ≤ m }
E(G) = {xixi | 1 ≤ i ≤ n } ∪ {xifj | xi ∈ fj } ∪ {xifj | xi ∈ fj }

where the notation xi ∈ fj (resp. xi ∈ fj) signifies that xi (resp. xi) is a literal of the clause fj . We then obtain an instance
(X,A) of the Exact-Cover problem from this graph G by setting:

X = { fj | 1 ≤ j ≤ m } ∪ E(G)

A = {E(xi) | 1 ≤ i ≤ n } ∪ {E(xi) | 1 ≤ i ≤ n } ∪ { {fj} ∪ Fj | Fj ⊂ E(fj), 1 ≤ j ≤ m }

where E(x) denotes the set of edges incident to vertex x in the graph G.

It can be verified that the formula f is satisfiable if and only if the set X has an exact cover by the familiy of A.

Remark. Although the above reduction does not explicitly refer to 3SAT, for a clause of length `, the reduction would
generate 2` sets. Hence, the CNF formula has to be reduced into 3CNF first to keep it as an polynomial reduction. Clearly,
the number of sets in A is 2n+ 7m.


