
The Iterated Random Permutation Problem
with Applications to Cascade Encryption?

Brice Minaud and Yannick Seurin

ANSSI, Paris, France
brice.minaud@gmail.com,yannick.seurin@m4x.org

Abstract. We introduce and study the iterated random permutation
problem, which asks how hard it is to distinguish, in a black-box way, the r-
th power of a random permutation from a uniformly random permutation
of a set of size N . We show that this requires Ω(N) queries (even for a
two-sided, adaptive adversary). As a direct application of this result, we
show that cascading a block cipher with the same key cannot degrade its
security (as a pseudorandom permutation) more than negligibly.

Keywords: iterated random permutation problem, block cipher, pseudorandom
permutation, cascade encryption

1 Introduction

A Simple Question. Assume that, as a cautious and slightly paranoid cryptog-
rapher, you are not at ease with using AES (say, with 256-bit keys) as is. Instead,
you define the block cipher myAES as

myAES(k, x) def= AES(k,AES(k, x)),

that is, you encipher the plaintext x twice with the same key k, hoping that
this will increase security. After all, this seems like a cheap, “black-box” way of
doubling the number of rounds of AES-256, and it is heuristically well established
that increasing the number of rounds of a cipher improves its resistance to various
attacks. Another motivation is some contexts could be to slow down brute force
attacks.1 How can you be sure that the security of your new custom block cipher
does not suddenly collapse, becoming much worse than the security of AES-256?
This seems quite implausible, but can we hope to formally prove that this cannot
happen?
? c© IACR 2015. This article is the final version submitted by the authors to the IACR
and to Springer-Verlag in June 2015, which appears in the proceedings of CRYPTO
2015.

1 For example, the traditional UNIX password protection mechanism crypt uses DES
iterated 25 times. However this is in a hashing context and hence not directly relevant
to our work.

Cascade Encryption. This question is obviously related to what is called
cascade encryption (or multiple encryption), i.e., self-composition of a block cipher.
Given a block cipher E, the cascade of length r associated with E encrypts a
message x as

E′k1,...,kr
(x) def= (Ekr ◦ · · · ◦ Ek1)(x).

Cascade encryption has been extensively studied in the setting where the keys
(k1, . . . , kr) for the r calls to the underlying block cipher E are independent:
there are results in the computational setting [LR86, Mye99, MT09, Tes11],
in the information-theoretic setting (where only computationally unbounded
adversaries are considered) [Vau98, Vau99, Vau03, MP04, MPR07, CPS14], and
in the ideal cipher model (in the context of key-length extension) [ABCV98,
BR06, GM09, Lee13, DLMS14]. In particular, it is known that cascading a given
block cipher with independent keys is security-amplifying: if E is a (q, t, ε)-
pseudorandom permutation2 (PRP), then the r-fold cascade with independent
keys for the r calls to E is a (q′, t′, rεr)-PRP [Tes11], with q′ ' q and t′ ' t. In
the information-theoretic setting, the following slightly weaker result has been
shown: if E is a (q, ε)-PRP, then the r-fold cascade of E with independent keys
is a (q, 2r−1εr)-PRP [Vau98, Vau99].

On the other hand, virtually nothing is known regarding the security of cascade
encryption when the keys used for each call to the underlying block cipher are not
independent.3 Not only is it not known whether this might amplify security (and
indeed, proving even a tiny security amplification result for cascade encryption
without increasing the total key-length would be a major breakthrough), but
there is absolutely no guarantee that this might not in some cases dramatically
deteriorate security.

Our Result. In this short paper, we prove that cascading a block cipher with
the same key cannot degrade its security beyond negligible. By security, we mean
the standard notion of (strong) pseudorandomness, defined as follows.

Definition 1 (Strong Pseudorandom Permutation (SPRP)). Let E be a
block cipher with key space K and message space S, and Perm(S) be the set of all
permutations of S. Let D be a distinguisher with oracle access to a permutation
and its inverse, and returning a single bit. The SPRP-advantage of D against E

2 A block cipher E = (Ek)k∈K with key space K is a (q, t, ε)-PRP if any adversary
making at most q oracle queries and running in time at most t can distinguish Ek

(for a random key k) from a uniformly random permutation with advantage at most
ε. See also Definition 1 below.

3 This setting is sometimes called product encryption [Sha49, MM93], cascade encryp-
tion being reserved to the case where the keys are independent. Yet since the wording
product encryption carries the idea of iterating a very weak round function rather
than a entire block cipher, we will not use it here.

2

is defined as

Advsprp
E (D) =

∣∣∣Pr
[
P ←$ Perm(S) : DP,P −1

= 1
]

− Pr
[
k ←$ K : DEk,(Ek)−1

= 1
] ∣∣∣.

For integers q and t, the SPRP-advantage of E is defined as

Advsprp
E (q, t) = max

D
Advsprp

E (D),

where the maximum is taken over all distinguishers making at most q oracle
queries and running in time at most t. E is a (q, t, ε)-SPRP if Advsprp

E (q, t) ≤ ε.

A block cipher is deemed secure if its SPRP-advantage is “small” for all
“reasonable” parameters q and t. We show the following.

Theorem 1. Let E be a block cipher with message space of size N , and r > 0
be an integer. Let Er be the block cipher obtained by r-fold self-composition of E
with the same key. (Note that E and Er have the same message and key spaces.)
Then

Advsprp
Er (q, t) ≤ Advsprp

E (rq, t′) + (2r + 1)q
N

,

with t′ = O(t).

Hence, cascade encryption with the same key does not hurt security beyond
negligible, or, to phrase it more positively, it can only improve the security of
a given PRP. Theorem 1 follows straightforwardly from a purely information-
theoretic result that we now expose in details.

The Iterated Random Permutation Problem. Let S be a set of size
N > 0, and let Perm(S) be the group of all permutations of S. For a permutation
P ∈ Perm(S) and an integer r ≥ 1, we denote P r the r-fold self-composition of
P . Consider an adversary (later called distinguisher) D having two-sided oracle
access to an element P ∈ Perm(S): it can either query P (x) and receive the
corresponding image y, or query P−1(y) and receive the corresponding antecedent
x. We assume that D makes at most q (adaptive queries) before outputting a bit
b. The iterated random permutation problem asks how many queries q needs D
to distinguish with a noticeable probability the following two situations:
1. a permutation P is drawn at random from Perm(S), and D is given oracle

access to P and P−1;
2. a permutation P is drawn at random from Perm(S), and D is given oracle

access to P r and (P r)−1.
In other words, defining the advantage of D for the iterated random permutation
problem as

AdvP,P r (D) =
∣∣∣Pr

[
P ←$ Perm(S) : DP,P −1

= 1
]

− Pr
[
P ←$ Perm(S) : DP r,(P r)−1

= 1
] ∣∣∣,

3

and the best advantage at q queries as

AdvP,P r (q) = max
D

AdvP,P r (D),

where the maximum is taken over all distinguishers making at most q queries, we
ask how q must grow with N for AdvP,P r (q) to be constant, say AdvP,P r (q) ≥
1/2. We show that this requires q = Ω(N/r). More precisely, we have the following
theorem.

Theorem 2. For any integer q, one has

AdvP,P r (q) ≤ (2r + 1)q
N

.

This theorem is proved in Section 2. Theorem 1 follows from Theorem 2 by a
simple hybrid argument that we give for completeness.

Proof of Theorem 1. Let D be a distinguisher against the strong pseudorandom-
ness of Er making at most q oracle queries and running in time at most t. By
definition,

Advsprp
Er (D) =

∣∣∣Pr
[
P ←$ Perm(S) : DP,P −1

= 1
]

− Pr
[
k ←$ K : D(Ek)r,((Ek)r)−1

= 1
] ∣∣∣

≤ AdvP,P r (D) + AdvP r,Er (D)

≤ (2r + 1)q
N

+ AdvP r,Er (D),

where the last inequality follows from Theorem 2 and where

AdvP r,Er (D) =
∣∣∣Pr

[
P ←$ Perm(S) : DP r,(P r)−1

= 1
]

− Pr
[
k ←$ K : D(Ek)r,((Ek)r)−1

= 1
] ∣∣∣.

Consider the following distinguisher D′ against the strong pseudorandomness of
E. It has oracle access to some permutation oracle O (which is either a random
permutation P or Ek for a random key k) and works as follows: it runs D,
answering each oracle query of D by querying its own oracle r times to return
Or(x) for a direct query or (Or)−1(y) for an inverse query, and outputting the
same decision as D. Clearly, the SPRP-advantage of D′ against E is exactly
AdvP r,Er (D), and D′ makes at most rq queries and runs in time t′ = O(t).
Hence

AdvP r,Er (D) ≤ Advsprp
E (rq, t′),

which concludes the proof.

4

Remark 1. It can be noted in the proof above that even when D is non-adaptive
(i.e., D chooses all its queries at the beginning of the security experiment and
issues them all at once), D′ seems to inherently have to query its oracle adaptively.
And indeed, Theorem 1 does not extend to the non-adaptive variant of (strong)
pseudorandomness. This can be seen from the following simple example: Consider
a (single-key) Even-Mansour cipher [EM97], defined by Ek(x) = k ⊕ P (k ⊕ x),
where P is a public (efficiently computable and invertible) permutation. Assume
that P is an involution (i.e., P 2 is the identity). Then, the block cipher E2

obtained by composing E twice with the same key is highly insecure (even against
non-adaptive adversaries making one single query) since it is equal to the identity
for any key. On the other hand, modeling P as a public random involution oracle,
it can be shown [DKS12] that E is secure against non-adaptive distinguishers
making at most q = 2n/2 encryption/decryption queries and evaluating P on
at most t = 2n/2 values.4 This shows that, unlike what Theorem 1 ensures for
adaptive security, cascading with the same key can completely ruin security
against non-adaptive distinguishers.

We also exhibit a distinguisher whose advantage matches the upper bound
of Theorem 2 (up to some constant term which depends on r), establishing the
following lower bound.

Theorem 3. For q ≤ N/r, one has

AdvP,P r (q) ≥ q

2N −
r

N
.

The adversary that we use to arrive at Theorem 3 simply picks a random
message x ∈ S and travels along the cycle on which this point lies, hoping to
cycle back to x. Details of the analysis can be found in Section 3. A different
attack, based on the search of a fixed point, has been analyzed by Courtois et
al. [BAC12].

Perspectives. A natural question is whether it is possible to prove any kind of
security amplification for cascade encryption with non-independent keys, which
in its full generality would take the form

E′k(x) = (Efr(k) ◦ · · · ◦ Ef1(k))(x),

where the fi’s are permutations of the key space of E.5 However, in the particular
scenario where the same key is reused (i.e., all fi’s are equal to the identity),
this clearly requires additional assumptions on the underlying block cipher E,
as indicated (again) by the simple example of a single-key Even-Mansour cipher
4 But note that E can be distinguished from random by an adaptive adversary making
two queries; namely, denoting O the adversary’s oracle, it queries y := O(x), y′ :=
O(y), and checks whether y′ = x.

5 Remark that, seeing E as a round function rather than a full-fledged block cipher
and (f1, . . . , fr) as a key-schedule, this is exactly how most modern block ciphers are
designed.

5

Ek(x) = k⊕P (k⊕ x), where P is a public (efficiently computable and invertible)
permutation. There is a generic6 attack on any block cipher of this class requiring
q = 2n/2 queries to the encryption/decryption oracle and t = 2n/2 evaluations
of the inner permutation P [Dae91, DKS12]. Note that for any r > 1, the r-fold
cascade with the same key Er is again a one-round single-key Even-Mansour
cipher, with inner permutation P r, so that it can be generically attacked with
q = 2n/2 queries to the encryption/decryption oracle and t = r2n/2 evaluations
of P . Hence, under the assumption that P is such that the best attack against E
is the generic one, composition with the same key does not amplify the security
of such a block cipher. The same argument applies if the fi’s are of the form
fi(k) = k ⊕ ci for public constants ci. Indeed, this yields again a one-round
single-key Even-Mansour cipher with inner permutation

P ′(x) = cr ⊕ P (cr ⊕ cr−1 ⊕ P (cr−1 ⊕ · · · ⊕ c1 ⊕ P (c1 ⊕ x) · · ·)).

Besides, slide attacks [BW99] show that iterating a truly weak cipher cannot
make it arbitrarily strong, independently of the number of iterations. For instance,
in the information-theoretic setting, if E is so weak that it can be distinguished
from random using a single plaintext/ciphertext pair with advantage 1− 2n/2,
then Er can be distinguished from random using 2n/2 queries with constant
probability of success, regardless of the value of r.7

We leave open the problem whether it is possible to find assumptions on the
block cipher E (e.g. resistance to related-key attacks, resistance to key-dependent
messages attacks, etc.) sufficient to prove that cascading with non-independent
keys is security amplifying.

2 Proof of the Main Result

In this section, we prove Theorem 2. We rely on the game-playing framework, and
we assume some familiarity of the reader with this technique (see [Sho04, BR06]
for more details).

In all the following, given a non-empty set S, we denote Card(S) the number
of elements in S. Let Cycl(S) denote the set of cyclic permutations of S, i.e., the
subset of Perm(S) consisting of permutations with a single cycle. Overall, we will
consider the following four games:
6 In this context, an attack is said to be generic if it only uses the inner permutation
P as a black-box.

7 Indeed, given 2n/2 plaintext/ciphertext pairs (p, c) for (Ek)r, the distinguisher against
E can be used to recognize so-called slid pairs ((p, c), (p′, c′)) satisfying Ek(p) = p′,
and hence Ek(c) = c′. By the birthday paradox, such a slid pair is ensured to
exist with constant probability when making 2n/2 random queries to (Ek)r. Hence,
the distinguisher between (Ek)r and a random permutation can count the number
of plaintext/ciphertext pairs ((p, c), (p′, c′)), such that the distinguisher against E
outputs 1 on both inputs (p, p′) and (c, c′): the expected result is roughly 1 for a
random permutation and 2 for (Ek)r.

6

– GP, which gives access to P and P−1 for P ←$ Perm(S);
– GPr , which gives access to P r and (P r)−1 for P ←$ Perm(S);
– GC, which gives access to C and C−1 for C ←$ Cycl(S);
– GCr , which gives access to Cr and (Cr)−1 for C ←$ Cycl(S).

Each game provides two interfaces to the distinguisher, denoted Q and Q−1,
for querying the underlying permutation respectively in the direct and inverse
direction. For example, the formal definition of GP is:

1 Game GP:
2 Initialization:
3 P ←$ Perm(S)
4 procedure Q(x):
5 return P (x)

6 procedure Q−1(y):
7 return P−1(y)

For any games G, H, we write AdvG,H(q) to denote the maximal advantage
attainable by distinguishers between G and H within q queries. We say that two
games G and H are equivalent (within q queries) if AdvG,H(q) = 0. Our goal is
to bound AdvGP,GPr (q). The layout of the proof is summarized by the following
picture:

GP

GC GCr

GPr

Adv ≤ q/N Lemma 1 Adv ≤ rq/NLemma 2

Adv ≤ rq/N
Lemma 3

Lemma 1.
AdvGP,GC

(q) ≤ q

N
.

Proof. We start with some useful definitions. A partial permutation graph (V,E)
of size N is a directed graph (with loops allowed) with set of vertices V of size N
and set of edges E ⊂ V 2, where each vertex has out- and in-degree 0 or 1. Given
a partial permutation graph (V,E) containing no cycles and a vertex z ∈ V , the
source of z, denoted So(z), is the unique x ∈ V with in-degree 0 such that there
is a path from x to z (with the convention that So(z) = z if z has in-degree 0),
and the sink of z, denoted Si(z), is the unique y ∈ V with out-degree 0 such
that there is a path from z to y (with the convention that Si(z) = z if z has
out-degree 0). The existence and uniqueness of So(z) and Si(z) when (V,E) is
acyclic are straightforward to prove.

We consider lazily sampled versions of GP and GC. To describe the lazy sampling
procedure, we assume that GP internally maintains a partial permutation graph
over V = S (with initially no edge). This graph represents the current state of
the sampling process. We let E ⊂ S2 denote the (time-dependent) set of edges
of the graph. We also let X be the set of vertices with out-degree 1 and Y be

7

the set of vertices with in-degree 1, these two sets being time-dependent as well.
Slightly abusing notation, for x ∈ X, we denote E(x) the unique y ∈ S such
that (x, y) ∈ E, and for y ∈ Y , we denote E−1(y) the unique x ∈ S such that
(x, y) ∈ E. The lazy sampled version of GP is as follows:

1 Game Glazy
P :

2 Variables:
3 Set of edges E, initially empty
4 procedure Q(x):
5 if x /∈ X then
6 y ←$ S \ Y
7 E := E ∪ {(x, y)}
8 return E(x)

9 procedure Q−1(y):
10 if y /∈ Y then
11 x←$ S \X
12 E := E ∪ {(x, y)}
13 return E−1(y)

Claim. GP and Glazy
P are equivalent (for any number q of queries).

Proof. This is a folklore result (see e.g. [BR06, Section 7.4]). Proving it amounts
to showing, with the previous notation, that if P ←$ Perm(S) agrees with
a partial permutation graph (S,E), for x ∈ S \ X, then P (x) is uniformly
distributed over S \ Y . Equivalently, for any x, x1, . . . , xn pairwise distinct in S,
and yA, yB , y1, . . . , yn pairwise distinct in S, we have

Card{P ∈ Perm(S) : P (x) = yA, P (x1) = y1, . . . , P (xn) = yn}
= Card{P ∈ Perm(S) : P (x) = yB , P (x1) = y1, . . . , P (xn) = yn}.

To see this, observe that left-hand side composition with transposition (yA yB) is
a bijection between the two sets. The reasoning for an inverse query is similar. �

Similarly, the lazy version of GC is:

1 Game Glazy
C :

2 Variables:
3 Set of edges E, initially empty
4 procedure Q(x):
5 if x /∈ X then
6 y ←$ S \ (Y ∪ {So(x)})
7 E := E ∪ {(x, y)}
8 return E(x)

9 procedure Q−1(y):
10 if y /∈ Y then
11 x←$ S \ (X ∪ {Si(y)})
12 E := E ∪ {(x, y)}
13 return E−1(y)

Claim. GC and Glazy
C are equivalent (for any number q of queries).

Proof. Here, we must show that for any partial permutation graph (S,E) con-
taining no cycle, with the previous notation and letting X = {x1, . . . , xn},
Y = {y1, . . . , yn}, x ∈ S \X and yA, yB ∈ S \ (Y ∪ {So(x)}), we have

Card{C ∈ Cycl(S) : C(x) = yA, C(x1) = y1, . . . , C(xn) = yn}
= Card{C ∈ Cycl(S) : C(x) = yB , C(x1) = y1, . . . , C(xn) = yn}.

8

Once again, we prove this equality by building a bijection between the two sets.
This bijection is: C 7→ (yA yB) ◦ C ◦ (Si(yA) Si(yB)), where (a b) denotes the
transposition swapping a and b. If C is seen as a cyclic graph, this bijection
swaps the position of the longest chain starting from yA in E with the longest
chain starting from yB . Thus it preserves the cyclic structure and is an involutive
bijection between the two sets considered. The reasoning for an inverse query is
similar. �

From the lazy sampling versions of the games, it becomes apparent that
Glazy

C and Glazy
P are identical, unless the event [Q(x) = So(x) or Q−1(y) = Si(y)]

happens for some query in Glazy
P . More precisely, we can rewrite Glazy

C using a flag
bad as follows:

1 Game Glazy2
C :

2 Variables:
3 Set of edges E, initially empty
4 bad← false
5 procedure Q(x):
6 if x /∈ X then
7 y ←$ S \ Y
8 if y = So(x) then
9 bad← true

10 y ←$ S \ (Y ∪ {So(x)})
11 E := E ∪ {(x, y)}
12 return E(x)

13 procedure Q−1(y):
14 if y /∈ Y then
15 x←$ S \X
16 if x = Si(y) then
17 bad← true
18 x←$ S \ (X ∪ {Si(y)})
19 E := E ∪ {(x, y)}
20 return E−1(y)

Clearly, Glazy
C and Glazy2

C are equivalent (this technique is called resampling,
see [BR06, Section 7.2]). Moreover, Glazy

P and Glazy2
C are syntactically identical

unless bad is set to true. By the fundamental lemma of game-playing (see [BR06,
Lemma 2]), one has

AdvGlazy
P ,Glazy2

C
(q) ≤ max

D
Pr
[
D sets bad to true in Glazy2

C

]
,

where the maximum is taken over all distinguishers making at most q queries.
For any distinguisher D, the probability that bad is set to true at the i-th

query of D in Glazy2
C is exactly 1/(N − i). Hence, we finally obtain

AdvGP,GC
(q) = AdvGlazy

P ,Glazy2
C

(q) ≤ 1−
q−1∏
i=0

(
1− 1

N − i

)
= q

N
.

Lemma 2.
AdvGPr ,GCr (q) ≤

rq

N
.

Proof. Any distinguisher between P r and Cr can be used to distinguish between
P and C at the cost of multiplying the number of queries by r. More formally,
given a distinguisher D between P r and Cr making at most q queries, consider

9

the distinguisher D′ with oracle access to some permutation oracle O (which
is either P or C) working as follows: it runs D, answering each oracle query
of D by querying its own oracle r times to return Or(x) for a direct query or
(Or)−1(y) for an inverse query, and outputting the same decision as D. Clearly,
the advantage of D′ in distinguishing GP and GC is equal to the advantage of D
in distinguishing GPr and GCr , and D′ makes at most rq queries if D makes at
most q queries. Hence, by Lemma 1,

AdvGPr ,GCr (q) ≤ AdvGP,GC
(rq) ≤ rq

N
.

Lemma 3.
AdvGC,GCr (q) ≤

rq

N
.

Proof. Let d = gcd(N, r). The key observation is that GCr is equivalent to querying
a random permutation with d cycles of equal length.8 This follows from the fact
that the mapping C 7→ Cr sends Cycl(S) onto the set of permutations with
exactly d cycles of the same length, and that each such permutation has the same
number of preimages in Cycl(S) under this mapping (the interested reader can
refer to Appendix A where we prove this claim). In particular, if d = 1 (when
N and r are coprime), the games GC and GCr are identical and we are done. If
d > 1, we need to upper bound the advantage of an adversary distinguishing
between a random permutation with a single cycle, and a random permutation
with d cycles of equal length.

We now describe a new game G∗Cr , which we claim is an equivalent description
of GCr .

1 Game G∗Cr :
2 Initialization:
3 C ←$ Cycl(S)
4 s0 ←$ S

5 for i < d, si = CN/d(si−1)
6 procedure Q(x):
7 if x = si for some i then
8 return C(s(i−1) mod d)
9 else

10 return C(x)

11 procedure Q−1(y):
12 if y = C(si) for some i then
13 return s(i+1) mod d

14 else
15 return C−1(y)

Intuitively, G∗Cr may be pictured as shown on Fig. 1.
We show in Appendix A that the sampling process underlying game G∗Cr is

also equivalent to sampling a random permutation with d cycles of equal length.
Meanwhile, we define the game G∗C as being identical to G∗Cr , except queries Q(x)
(resp. Q−1(y)) simply return C(x) (resp. C−1(y)): the si’s play no special role.
This corresponds to step 2 in the picture above. The point is that G∗C is clearly
an equivalent description of GC (since procedures Q and Q−1 are syntactically
8 When we say “a random permutation with some property”, more formally we mean
“a uniformly random element among permutations with this property”.

10

s0

s1

s2

s0

s1

s2

1. Pick a random cycle. 2. Pick a random point
s0. Split into d equal

chains.

3. Redirect the si’s to
form d cycles.

Fig. 1. Representation of the game G∗Cr .

the same in both games), while G∗Cr is an equivalent description of GCr (indeed,
by the two claims proved in Appendix A, they are both equivalent to querying a
random permutation with d cycles of length N/d).

Thus AdvGC,GCr (q) = AdvG∗
C ,G∗

Cr (q). The following claim completes the proof.

Claim.
AdvG∗

C ,G∗
Cr (q) ≤

dq

N
.

Proof. The only difference between G∗C and G∗Cr occurs when Q(si) is queried for
some i (or Q−1(C(si)) for backward queries). So AdvGC,GCr (q) is upper bounded
by the advantage of an adversary playing the following game: she queries G∗C,
and wins iff one of the queries is an si (or C(si) for a backward query). We now
prove that the advantage of such an adversary is at most dq/N .

To show this, we give extra information to the adversary: we grant her full
knowledge of the cycle C before queries begin. Clearly this can only increase
her advantage. The point is that queries no longer provide any new information.
Thus the game becomes equivalent to the adversary simply trying to guess one
of the si’s within q tries.

Notice that the position of the si’s in the cycle C is essentially defined modulo
a = N/d. Guessing the position of one of the si’s in the cycle amounts to guessing
a value modulo a. Thus the game is equivalent to guessing a value among a
possibilities, within q tries. The advantage of an adversary in this game is:

1−
q−1∏
i=0

(
1− 1

a− i

)
= 1− a− q

a
= 1− N − dq

N
= dq

N
.

By the previous reasoning, this is an upper bound for AdvG∗
C ,G∗

Cr (q). �

Thus, we have

AdvGC,GCr (q) = AdvG∗
C ,G∗

Cr (q) ≤
dq

N
≤ rq

N
.

11

The proof of Theorem 2 is now complete. Combining Lemmas 1, 2, and 3, we
obtain

AdvGP,GPr (q) ≤ AdvGP,GC
(q) + AdvGC,GCr (q) + AdvGCr ,GPr (q) ≤

(2r + 1)q
N

.

3 A Matching Attack

In this section, we describe a simple attack matching the bound in Theorem 2
within a constant factor, when the number of iterations r is constant. Our attack
uses the following distinguisher Dcycle between GP and GPr . It makes q queries to
the interface Q (corresponding to P in GP and P r in GPr), ignoring Q−1.

1 Distinguisher DQ
cycle(q)

2 s0 ←$ S
3 for i in {0, . . . , q − 1}:
4 si+1 ← Q(si)
5 end for
6 if all si’s are distinct
7 return 0
8 else
9 return 1

Thus, DQ
cycle returns 1 iff the point s0 ←$ S belongs to a cycle of length

at most q. We have the following result (from which Theorem 3 is a direct
application).

Lemma 4. Assume q ≤ N/r. Then

C(r) q
N
− r

N
≤ AdvGP,GPr (Dcycle) ≤ C(r) q

N
+ r

N
with C(r) =

∑
d|r

φ(d)
d
− 1

where d|r denotes “d divides r”, and φ is Euler’s totient function. Moreover
C(r) ≥ 1/2 for r ≥ 2.

Proof. By definition:

AdvGP,GPr (Dcycle) =
∣∣∣Pr

[
P ←$ Perm(S) : DP r

cycle = 1
]

− Pr
[
P ←$ Perm(S) : DP

cycle = 1
] ∣∣∣.

We now set out to compute these two probabilities.
If we pick a random point in a random permutation on N points, and look at

the length of the cycle it belongs to, all lengths 1 ≤ k ≤ N are equally probable.
This is a standard result. It can be shown, for instance, using Glazy

P : if we choose
s0 ←$ S and query q times along a chain, and assume the first i queries do not

12

create a cycle, then the probability that the next query does is exactly 1/(N − i).
Thus, the probability that s0 belongs to a cycle of length k is precisely

k−1∏
i=0

(
1− 1

N − i

)
· 1
N − k

= 1
N
.

As a consequence, one has

Pr
[
P ←$ Perm(S) : DP

cycle(q) = 1
]

= q

N
.

We now turn to the case where Dcycle interacts with P r instead of P . We let

p
def= Pr[P ←$ Perm(S) : DP r

cycle(q) = 1].

First, we recall two classic equalities regarding the totient function:∑
d|n

φ(d) = n (1) φ(n) = n
∏

p|n,p∈P

(
1− 1

p

)
(2)

where P is the set of prime numbers. Now let k be the length of the cycle
containing s0. In P r this cycle is broken up into d = gcd(k, r) cycles of length
k/d. Hence Dcycle(q) detects a cycle iff q ≥ k/d. Since all lengths k are equally
probable, we have

p = 1
N

Card
{
k ≤ N : q ≥ k

gcd(k, r)

}
= 1
N

Card{k ≤ N : ∃d|r, gcd(k, r) = d and k ≤ dq}

= 1
N

Card{k : ∃d|r, gcd(k, r/d) = 1 and k ≤ min(q,N/d)} with k ← k/d

= 1
N

Card{k : ∃d|r, gcd(k, r/d) = 1 and k ≤ q} using q ≤ N/r

= 1
N

∑
d|r

Card{k : gcd(k, d) = 1 and k ≤ q} since d 7→ r/d is 1-to-1 over d|r

≥ 1
N

∑
d|r

Card
{
k : gcd(k, d) = 1 and k ≤ d

⌊ q
d

⌋}
= 1
N

∑
d|r

φ(d)
⌊ q
d

⌋
≥ 1
N

∑
d|r

φ(d)
(q
d
− 1
)

= q

N

∑
d|r

φ(d)
d
− r

N
by (1).

13

One can upper bound p in a very similar manner, and we obtain the main
inequality.

Finally, we show that C(r) ≥ 1/2 for r ≥ 2. In fact it holds that for all r,
C(r) ≥ 1− 1/r. To see this, observe that if r > 2 is not prime, we have:

C(r) =
∑
d|r

φ(d)
d
− 1

= φ(1)
1 +

∑
d|r,1<d<r

φ(d)
d

+
∏

p|r,p∈P

(
1− 1

p

)
− 1 by (2)

≥
∑

d|r,1<d<r

φ(d)
d

+
(

1−
∑

p|r,p∈P

1
p

)
by the union bound

≥ 1 since {p ∈ P : p|r} ⊆ {1 < d < r : d|r}.

On the other hand, if r is prime then C(r) = 1 − 1/r, hence this is the lower
bound.

Corollary 1. For constant r, the best distinguisher between GP and GPr has
advantage Θ(q/N) as N →∞ and q ≤ N is any function of N .

Proof. Theorem 2 shows that the advantage is O(q/N). Theorem 3 shows that
it is Ω(q/N) if q ≤ N/r. On the other hand if q > N/r, as the advantage can
only increase with q, it is at least C(r) N/r

N + o(1) ≥ 1
2r + o(1) = Ω(1) = Ω(q/N).

Hence overall the advantage is Θ(q/N).

For concreteness, if r = 2, Theorem 3 exhibits a distinguisher with advantage
0.5q/N (under the assumption q < N/2), while the main theorem upper bounds
the advantage of any such distinguisher by 5q/N . Note that if r is not constant,
the behavior is more complex; informally, only cycles whose length is not coprime
with r are affected by the transformation P 7→ P r. In particular, if r is prime
and r > N , P 7→ P r is a permutation of Perm(S) and GP is indistinguishable
from GPr .

The problem of finding a tight bound for variable r is interesting from a
purely theoretical standpoint, although we do not know of a situation where such
a result would be applicable.

References

[ABCV98] William Aiello, Mihir Bellare, Giovanni Di Crescenzo, and Ramarathnam
Venkatesan. Security Amplification by Composition: The Case of Doubly-
Iterated, Ideal Ciphers. In Hugo Krawczyk, editor, Advances in Cryptology
- CRYPTO ’98, volume 1462 of LNCS, pages 390–407. Springer, 1998.

[BAC12] Gregory V. Bard, Shaun Van Ault, and Nicolas T. Courtois. Statistics of
Random Permutations and the Cryptanalysis of Periodic Block Ciphers.
Cryptologia, 36(3):240–262, 2012.

14

[BR06] Mihir Bellare and Phillip Rogaway. The Security of Triple Encryption and
a Framework for Code-Based Game-Playing Proofs. In Serge Vaudenay,
editor, Advances in Cryptology - EUROCRYPT 2006, volume 4004 of
LNCS, pages 409–426. Springer, 2006. Full version available at http:
//eprint.iacr.org/2004/331.

[BW99] Alex Biryukov and David Wagner. Slide Attacks. In Lars R. Knudsen,
editor, Fast Software Encryption - FSE ’99, volume 1636 of LNCS, pages
245–259. Springer, 1999.

[CPS14] Benoit Cogliati, Jacques Patarin, and Yannick Seurin. Security Ampli-
fication for the Composition of Block Ciphers: Simpler Proofs and New
Results. In Antoine Joux and Amr M. Youssef, editors, Selected Areas in
Cryptography - SAC 2014, volume 8781 of LNCS, pages 129–146. Springer,
2014.

[Dae91] Joan Daemen. Limitations of the Even-Mansour Construction. In Hideki
Imai, Ronald L. Rivest, and Tsutomu Matsumoto, editors, Advances in
Cryptology - ASIACRYPT ’91, volume 739 of LNCS, pages 495–498.
Springer, 1991.

[DKS12] Orr Dunkelman, Nathan Keller, and Adi Shamir. Minimalism in Cryptog-
raphy: The Even-Mansour Scheme Revisited. In David Pointcheval and
Thomas Johansson, editors, Advances in Cryptology - EUROCRYPT 2012,
volume 7237 of LNCS, pages 336–354. Springer, 2012.

[DLMS14] Yuanxi Dai, Jooyoung Lee, Bart Mennink, and John P. Steinberger. The
Security of Multiple Encryption in the Ideal Cipher Model. In Juan A.
Garay and Rosario Gennaro, editors, Advances in Cryptology - CRYPTO
2014 (Proceedings, Part I), volume 8616 of LNCS, pages 20–38. Springer,
2014.

[EM97] Shimon Even and Yishay Mansour. A Construction of a Cipher from a
Single Pseudorandom Permutation. Journal of Cryptology, 10(3):151–162,
1997.

[GM09] Peter Gazi and Ueli M. Maurer. Cascade Encryption Revisited. In Mitsuru
Matsui, editor, Advances in Cryptology - ASIACRYPT 2009, volume 5912
of LNCS, pages 37–51. Springer, 2009.

[Lee13] Jooyoung Lee. Towards Key-Length Extension with Optimal Security:
Cascade Encryption and Xor-cascade Encryption. In Thomas Johansson
and Phong Q. Nguyen, editors, Advances in Cryptology - EUROCRYPT
2013, volume 7881 of LNCS, pages 405–425. Springer, 2013.

[LR86] Michael Luby and Charles Rackoff. Pseudo-random Permutation Generators
and Cryptographic Composition. In Symposium on Theory of Computing -
STOC ’86, pages 356–363. ACM, 1986.

[MM93] Ueli M. Maurer and James L. Massey. Cascade Ciphers: The Importance
of Being First. 6(1):55–61, 1993.

[MP04] Ueli M. Maurer and Krzysztof Pietrzak. Composition of Random Systems:
When Two Weak Make One Strong. In Moni Naor, editor, Theory of
Cryptography Conference - TCC 2004, volume 2951 of LNCS, pages 410–
427. Springer, 2004.

[MPR07] Ueli M. Maurer, Krzysztof Pietrzak, and Renato Renner. Indistinguisha-
bility Amplification. In Alfred Menezes, editor, Advances in Cryptology -
CRYPTO 2007, volume 4622 of LNCS, pages 130–149. Springer, 2007. Full
version available at http://eprint.iacr.org/2006/456.

15

http://eprint.iacr.org/2004/331
http://eprint.iacr.org/2004/331
http://eprint.iacr.org/2006/456

[MT09] Ueli M. Maurer and Stefano Tessaro. Computational Indistinguishability
Amplification: Tight Product Theorems for System Composition. In Shai
Halevi, editor, Advances in Cryptology - CRYPTO 2009, volume 5677 of
LNCS, pages 355–373. Springer, 2009.

[Mye99] Steven Myers. On the Development of Block-Ciphers and Pseudo-Random
Function Generators Using the Composition and XOR Operators. PhD
thesis, University of Toronto, 1999.

[Sha49] Claude Shannon. Communication Theory of Secrecy Systems. Bell System
Technical Journal, 28(4):656–715, 1949.

[Sho04] Victor Shoup. Sequences of Games: A Tool for Taming Complexity in
Security Proofs. IACR ePrint Archive, Report 2004/332, 2004. Available
at http://eprint.iacr.org/2004/332.pdf.

[Tes11] Stefano Tessaro. Security Amplification for the Cascade of Arbitrarily
Weak PRPs: Tight Bounds via the Interactive Hardcore Lemma. In Yuval
Ishai, editor, Theory of Cryptography - TCC 2011, volume 6597 of LNCS,
pages 37–54. Springer, 2011.

[Vau98] Serge Vaudenay. Provable Security for Block Ciphers by Decorrelation. In
Michel Morvan, Christoph Meinel, and Daniel Krob, editors, Symposium
on Theoretical Aspects of Computer Science, STACS 98, volume 1373 of
LNCS, pages 249–275. Springer, 1998.

[Vau99] Serge Vaudenay. Adaptive-Attack Norm for Decorrelation and Super-
Pseudorandomness. In Howard M. Heys and Carlisle M. Adams, editors,
Selected Areas in Cryptography - SAC ’99, volume 1758 of LNCS, pages
49–61. Springer, 1999.

[Vau03] Serge Vaudenay. Decorrelation: A Theory for Block Cipher Security. Journal
of Cryptology, 16(4):249–286, 2003.

A Omitted Proofs

We prove here two claims that we used in the proof of Lemma 3. We denote
Cycld(S) the set of permutations of S with exactly d cycles of length N/d (note
that Cycl(S) = Cycl1(S)).

Claim. Let S be a set of size N , r ≥ 1 be an integer, and d = gcd(N, r). Let φ
be the mapping

φ : Cycl(S)→ Perm(S)
P 7→ P r.

Then φ(Cycl(S)) = Cycld(S) and all permutations in Cycld(S) have exactly the
same number of preimages by φ.

Proof. First, we show that for any C ∈ Cycl(S), φ(C) ∈ Cycld(S). Let a = N/d.
Denote

C = (x1 x2 · · · xN).

Then it is easy to see that Cr is the product of d disjoint cycles Ci, 1 ≤ i ≤ d,
with

Ci = (xi x(i+r) mod N x(i+2r) mod N · · · x(i+(a−1)r) mod N).

16

http://eprint.iacr.org/2004/332.pdf

For A ∈ Cycld(S), we denote φ−1(A) the set of preimages of A by φ. We now
show that for any A,B ∈ Cycld(S), |φ−1(A)| = |φ−1(B)|. For P ∈ Perm(S), we
denote fP the conjugation by P , namely fP (Q) = P ◦ Q ◦ P−1. Since A and
B have the same cycle structure, they belong to the same conjugacy class, i.e.,
there exists a permutation P such that fP (A) = B. Hence, for any C ∈ φ−1(A),
fP (C) ∈ Cycl(S) since conjugation preserves the cycle structure, and one has

fP (C)r = (P ◦ C ◦ P−1)r = P ◦ Cr ◦ P−1 = P ◦A ◦ P−1 = B.

This implies that fP (φ−1(A)) ⊆ φ−1(B), and hence |φ−1(A)| ≤ |φ−1(B)| since
fP is one-to-one. By symmetry, |φ−1(A)| = |φ−1(B)|. �

Claim. Let ψ denote the mapping which sends a pair (C, s0) ∈ Cycl(S)× S to
the permutation defined by game G∗Cr . Then ψ(Cycl(S)× S) = Cycld(S) and all
permutations in Cycld(S) have exactly the same number of preimages by ψ.

Proof. The fact that ψ(C, s0) ∈ Cycld(S) for any (C, s0) ∈ Cycl(S)× S is clear.
We now show that for any A,B ∈ Cycld(S), |ψ−1(A)| = |ψ−1(B)|. As in the
previous claim, there exists a permutation P such that fP (A) = B. We show
that for any (C, s0) ∈ ψ−1(A), (fP (C), P (s0)) ∈ ψ−1(B). First, fP (C) ∈ Cycl(S)
since conjugation preserves the cycle structure. For i < d, let si = CiN/d(s0). By
definition of ψ, A(si) = C(s(i−1) mod d) and A(x) = C(x) for x /∈ {s0, . . . , sd−1}.
Let s′0 = P (s0) and for i < d, s′i = fP (C)iN/d(s′0) = P (si). Then

ψ(fP (C), P (s0))(s′i) = fP (C)(s′(i−1) mod d)
= P ◦ C(s(i−1) mod d) = P ◦A(si) = fP (A)(s′i) = B(s′i),

and for x /∈ {s′0, . . . , s′d−1}, since P−1(x) /∈ {s0, . . . , sd−1}, one has

ψ(fP (C), P (s0))(x) = fP (C)(x) = P ◦ C ◦ P−1(x) = P ◦A ◦ P−1(x) = B(x),

which shows that ψ(fP (C), P (s0)) = B. Hence, the image of ψ−1(A) by the one-
to-one mapping (C, s0) 7→ (fP (C), P (s0)) is a subset of ψ−1(B), thus |ψ−1(A)| ≤
|ψ−1(B)|. By symmetry, |ψ−1(A)| = |ψ−1(B)|. �

17

	The Iterated Random Permutation Problem with Applications to Cascade Encryption
	Introduction
	Proof of the Main Result
	A Matching Attack
	References
	Omitted Proofs

