
Compositional Verification of Higher-Order Masking
Application to a Verifying Masking Compiler

Gilles Barthe2, Sonia Belaı̈d1,5, François Dupressoir2, Pierre-Alain Fouque4,6, and
Benjamin Grégoire3
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Abstract. The prevailing approach for building masked algorithms that can re-
sist higher-order differential power analysis is to develop gadgets, that is, masked
gates used as atomic blocks, that securely implement basic operations from the
original algorithm, and then to compose these gadgets, introducing refresh op-
erations at strategic places to guarantee that the complete circuit is protected.
These compositional principles are embedded in so-called masking transforma-
tions, which are used as heuristics to achieve secure composition. Unfortunately,
these transformations are seldom proved secure rigorously, and in fact, some-
times yield algorithms that are not secure against higher-order attacks. In this
paper, we define a notion of strong simulatability that naturally supports composi-
tional principles. Although this notion is stronger than the notion of simulatability
(or perfect simulation) from previous works, we show that it is satisfied by sev-
eral gadgets from the literature, including the mask refreshing gadget from Duc,
Dziembowski and Faust (Eurocrypt 2014), the secure multiplication gadget from
Rivain and Prouff (CHES 2010) and the secure multiplication gadget between de-
pendent inputs from Coron et al. (FSE 2013). Then, we exploit a tight connection
between strong simulatability and probabilistic information flow policies to de-
fine a (fine-grained, incremental) type system that checks (strong) simulatability
of algorithms. We use the type system to validate a novel and automated transfor-
mation that outputs masked algorithms at arbitrary orders. Finally, we measure
the performance of masked algorithms of AES, Keccak-f, Simon, and Speck gen-
erated by our transformation. The results are encouraging: for AES, masking at
order 5, 20, and 100 respectively incur slowdowns of 100x, 750x, and x1500 w.r.t.
the unmasked implementation given as input to our tool.
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1 Introduction

While most cryptosystems are assumed, or proved, to be secure against classical black-
box attacks, their implementations often fail to resist side-channel attacks [16] which
exploit, in addition to the inputs and outputs of the algorithm, the physical leakage
(for example, time, power consumption or electromagnetic radiations) of the device



on which they execute. Among them, the attacks gathered under the term Differen-
tial Power Analysis [17] (DPA) are very powerful. These attacks exploit dependencies
between the physical leakage and sensitive values, that depend on both secret inputs
and adversarially-controlled public inputs, to recover the algorithm’s secrets, sometimes
from a few observation traces only.

To protect cryptographic algorithms against these attacks, Chari et al. [5] intro-
duce the technique of masking, that is now widely used, in particular for protecting im-
plementations of symmetric cryptosystems against DPA. Masking takes its inspiration
from multi-party computation and more specifically from secret sharing. Secret sharing
splits each sensitive intermediate variable of a program intom shares in such a way that
any set ofm−1 shares is independent from the secret, which can however be recovered
given all m shares. Masking uses the same principles to ensure that an adversary which
can make at most t observations of the leakage cannot extract key-dependent informa-
tion. This limitation in the number of observations is directly related to the difficulty to
combine t + 1 dependent data when they come with a sufficient level of noise. Natu-
rally, there is a trade-off between the level of protection provided by masking, which
increases with the masking order t, and the efficiency of masked implementations. On
the one hand, the number of execution traces required to mount practical attacks and
the complexity to provide concrete evaluations increase exponentially with m [5,23].
On the other hand, the complexity of masked implementations increases polynomially
with t (since it must be that m ≥ t + 1). Nevertheless, there is a growing interest in
developing methods for building higher-order masked algorithms. Ultimately, the va-
lidity of these methods is assessed by the level of protection they offer. This assessment
is typically performed in two steps; first, by giving a security proof of algorithms in
an appropriate model of leakage, and second, through experiments for some particular
implementation on the targeted component. In this paper, we consider the first step and
leave the second step for future work. With this in mind, our first task is to choose a
suitable security model.

In their seminal work, Chari et al. [5] introduce the noisy leakage model where
the adversary gets leaked values sampled according to a Gaussian distribution centered
around the actual value of the sensitive variables. More recently, Prouff and Rivain [20]
extend this model by considering more general noise distributions, removing the limi-
tation on the observations’ sizes and integrating the principle of Micali and Reyzin [18]
according to which only computation leaks information. They also provide the first for-
mal information-theoretic analysis for a whole block cipher although it relies on a leak-
free component and on input and output values remaining secret. Ishai, Sahai and Wag-
ner [15] propose another leakage model, called the t-threshold probing model, where
the adversary can probe at most t intermediate variables in a circuit without any noise.
During ten years, the noisy leakage model was viewed as more relevant and close to ex-
perimental work, while the t-threshold probing model was extensively used to prove the
security for masking schemes. However, Duc, Dziembowski and Faust [9] show that se-
curity in the noisy model of Prouff and Rivain is implied by security in the t-threshold
model, by reducing security in the latter to the former under standard cryptographic
assumptions. Recently, Duc, Faust, and Standaert [10] unveil another connection be-



tween the security of proofs in the noisy theoretical model and more concrete hardware
assumptions quantified in the information theoretic framework of [22].

Thanks to these results, the t-threshold probing model can now realistically be used
to prove the security of masked basic building blocks used in cryptographic algorithms,
including for instance multipliers and S-boxes. However, proving the security of com-
pletely masked algorithms, such as AES or Keccak, remains a challenge. Existing works
apply compositional principles to derive the security of a masked algorithm from the
security of its components, but these works have two main shortcomings. Some of them
lack a rigorous justification, and as a consequence the resulting masked algorithms are
sometimes insecure; for instance, the mask refreshing operation proposed by Rivain and
Prouff [21] leads to an insecure S-box [8] when composed with other secure gadgets.
The others tend to overprotect the algorithms which might affect their performances; for
instance, [20,9] propose to insert refresh gadgets between each operation or each time
a sensitive variable is reused. Doing so, they prove the security of their algorithms but
leave open the possibility of achieving the same goal with a smaller number of refresh
gadgets.

Our Contributions. Our first contribution is definitional: starting from the observa-
tion that simulatability7 used by Rivain and Prouff [21] is not sufficient to guarantee
that the composition of masked algorithms remains secure, we define strong simulata-
bility. Intuitively, simulatability ensures that, any set of d ≤ t observations made by the
adversary can be simulated with at most d inputs while strong simulatability ensures
that the number of input shares necessary to simulate the adversary observations should
be independent from the number of observations made on output wires.

We validate our definition of strong simulatability through two main theoretical
contributions: first, we prove that several gadgets from the literature are strongly sim-
ulatable: the multiplication of Rivain and Prouff [21], the (same) multiplication-based
mask refreshing algorithm and the multiplication between linearly dependent inputs
proposed by Coron et al. in [8]. The proofs of the first and second gadgets are machine-
checked in EasyCrypt [3,2], a computer-aided tool for reasoning about the security
of cryptographic constructions and relational properties of probabilistic programs. The
distinguishing feature of our machine-checked proofs is that they show security at arbi-
trary levels, whereas previous machine-checked proofs are limited to low orders (1 or
2, and in some cases up to 5). Second, we use the strongly simulatable multiplication-
based mask refreshing algorithm of Rivain and Prouff to define a sound method for
securely composing masked algorithms. More specifically, our main composition result
shows that sensitive data can be reused as inputs to different gadgets without security
flaw using judiciously placed strongly simulatable gadgets. Then, we describe a novel
and efficient technique (Theorem 4) to securely compose two gadgets (without requir-
ing that they be strongly simulatable) when the adversary can place t probes inside
each of them. The characteristics of our technique make it particularly well-suited to
the protection of algorithms with sensitive state in the adaptive model of Ishai, Sahai
and Wagner [15]. In particular, we do not require that the masking order be doubled
throughout the circuit.

7 In [21], Rivain and Prouff use the term perfect simulation to define this notion.



We also make two practical contributions to support the development of secure
masking algorithms based on our notions and results. First, we define and implement
an automated approach for verifying that an algorithm built by composing provably
secure gadgets is itself secure; our approach is inspired from information-flow type
systems, a thriving area in language-based security, and exploits the tight connection
between (strong) simulatability and information flow policies. Second, and using ad-
vanced tools from programming languages, we implement an algorithm that takes as
input an unprotected program P and an arbitrary order t and automatically outputs a
functionally equivalent algorithm that is protected at order t, inserting mask refreshing
gadgets where required.

Finally, our last contribution is experimental; using our transformation, we generate
secure (for selected orders up to 20) masked algorithms for AES, Keccak, Simon, and
Speck, and evaluate their running time.

In summary, our main contributions are: (i.) the notion of strong simulatability,
and sound compositional principles for reasoning about security of masked algorithms;
(ii.) proofs that existing gadgets are strongly simulatable at arbitrary order; (iii.) an auto-
mated method for verifying for any order that complete algorithms (built by composing
gadgets) is secure; (iv.) a source-to-source transformation that takes an unmasked al-
gorithm and outputs an algorithm protected at order t (where t is arbitrary and chosen
by the user); (v.) experimental evaluation which shows that the generated algorithms
behave reasonably well.

Related work. There has been significant work on building secure implementations
of S-boxes and other core functionalities; however, most of the work is based on the
weaker notion of simulatability and is justified with pen-and-paper proofs of secu-
rity [15,21,14,8,6]) which remain hard to verify without formal tools. Only Faust et
al. in [13] consider formally this problem in a restricted version of the noisy leakage
model. In contrast, there has been relatively little work on developing automated tools
for checking that an implementation is correctly masked, or for automatically producing
a masked implementation from an unprotected program. This practical line of work was
first considered in the context of first-order boolean masking [19]. Subsequent works
extend this approach to accommodate higher-order and arithmetic masking, using type
systems and SMT solvers [4], or model counting and SMT solvers [12,11]. The algorith-
mic complexity of the latter approach severely constrains its applications; in particular,
tools based on model counting can only analyze first or second order masked implemen-
tations, and can only deal with round-reduced versions of the algorithms; for instance,
only analyzing a single round of Keccak. Another recent alternative [1] exploits the
tight connection between simulatability and non-interference and develops efficient al-
gorithms for analyzing the security of masked implementations in the threshold probing
model. Their approach outperforms previous work and can analyze first-order masked
implementations of full AES, second-order masked implementations of round-reduced
AES (4 rounds), and several third and fourth-order masked implementations of S-boxes.
However, their work does not address the problem of composition and does not readily
scale to higher orders or to larger algorithms. In contrast, our method scales to com-



plete algorithms at arbitrary orders, and is implemented as a source to source program
transformation.

Outline. We first define our new security property of strong simulatability and some
useful lemmas to achieve composition in Section 2. Then, we prove in Section 3 the
strong simulatability of three gadgets which form the cornerstone of secure implemen-
tations: a multiplication-based refresh algorithm, the widely used secure multiplication
and a multiplication between linearly dependent data. In Section 4, we informally de-
scribe our method to securely compose gadgets when the adversary can observe t inter-
mediate variables in the whole circuit. We also give a complete and compositional proof
of security for the well-known inversion algorithm in the Rijndael field. In Section 5, we
explain the principle of our type system to prove the security of large circuits. In Sec-
tion 6, we introduce a new method to securely compose two circuits when the adversary
may place t probes in each of them. Finally, in Section 7, we evaluate the practicality
of our approach by generating secure implementations from unprotected versions and
measuring verification statistic and the performance of the resulting masked programs.

2 Composition

In this section, we review existing concepts from the literature and we display the cur-
rent issues with composition. We then present an advantageous way of composing affine
gadgets and introduce a new and useful notion which forms the basis of sound compo-
sitional reasoning: t-strong non-interference.

2.1 Gadgets

We consider programs that operate over a single finite structure (K, 0, 1,⊕,	,�); how-
ever, our techniques and tools extend smoothly to more complex scenarios. Widely used
examples of such structures include binary fields, boolean rings, and modular arithmetic
structures. In particular cases, it may be beneficial to consider group structures rather
than rings (or fields), but we do not do so in this paper.

We define gadgets as probabilistic functions that return, in addition to their actual
output, all intermediate values (including inputs) obtained during the computation. For
example, the order 1 mask refreshing gadget shown in Algorithm 1 can be interpreted
as the following probabilistic function where r is sampled uniformly at random in K.

Refresh1(a0, a1) = ((a0, a1, r), (a0 ⊕ r, a1 	 r))

where (a0, a1, r) is the gadget’s leakage (which depends on its implementation), and
(a0 ⊕ r, a1 	 r) is the gadget’s output.

Definition 1 (Gadgets). Let m,n, `, o ∈ N. An (m,n, `, o)-gadget is a probabilistic
function G : (Km)n → K` × (Km)o. Parameter m denotes the gadget’s bundle size
(the number of shares over which values in K are shared), n is the gadget’s arity (or
number of input bundles), ` is the gadget’s number of leakage wires (or side-channel
wires), and o is the number of output bundles.



Algorithm 1 Example of a Gadget
1: function Refresh1(a)
2: r

$← K
3: c0 ← a0 ⊕ r
4: c1 ← a1 	 r
5: return c

By convention, we will always include input wires in a gadget’s leakage (and therefore
always havem ·n ≤ `), but will never count output wires in a gadget’s leakage (to avoid
double counting). For example, function Refresh1 (Algorithm 1) is a (2, 1, 3, 1)-gadget.
In the following, we fix m and omit it unless relevant, and write K̃ for Km. We also
assume that leakage wires are numbered following program order where relevant.

In practice, adversaries are never given direct access to the raw gadgets, but rather to
projections of the gadget, that restrict the number of leaks and outputs the adversary can
observe each time he queries the oracle. For anyO ⊆ N, we define the projector πO that,
given a tuple, projects out the positions indicated by O. For example, π{0,2}(x, y, z) =
(x, z). We generalize as expected to projections on tuples of tuples.

2.2 t-simulatability and t-non-interference

Our goal is to prove the security of a gadget in the t-threshold probing model of Ishai,
Sahai and Wagner [15]. To this end, we first define a notion of t-non-interference for
gadgets that is sufficient to prove security in their stateless model. (We treat stateful
oracles later on, in Section 5 and Appendix C.)

A set of observations is represented by a pair (I,O) such that I ⊆ N is the set of
internal observations and O ⊆ N∗ is the set of output observations, that is, a set of sets
of indices describing which wires are observed for each output bundle; in the remainder,
we often useΩ to denote observation sets. Given an (n, `, o)-gadgetG, we say that a set
of observations (I,O) is admissible for G whenever I ⊆ [0..`), O = (O0, . . . ,Oo−1),
and Oi ⊆ [0..m) for every i = 0, . . . , o − 1. We say that (I,O) is t-admissible for G
if it is admissible for G and |I| +

∑o−1
i=0 |Oi| ≤ t. Intuitively, a set of observations is

admissible if only existing wires are observed, and is t-admissible if it is admissible and
the total number of wires observed is bounded by t. We omitGwhen clear from context,
and abuse notation, often writing |(I,O)| to denote the quantity |I|+

∑0−1
i=0 |Oi|.

An input projection is a set S ⊆ N∗. Given an (n, `, o)-gadget G, we say that an
input projection S is compatible for G whenever S = (S0, . . . ,Sn−1) and Si ⊆ [0..m)
for i = 0, . . . , n − 1. As before, we say that an input projection S is t-compatible for
G if it is compatible for G and is such that |Si| ≤ t. Intuitively, an input projection is
compatible if it only projects existing input wires, and is t-compatible if it is compatible
and projects at most t wires of each input bundle. Here too, we abuse notation and write
|S| to denote the quantity

∑n−1
i=0 |Si|

Definition 2 ((S, Ω)-Simulation, -Non-Interference). LetG be an (n, `, o)-gadget, S
be a compatible input projection, and Ω be an admissible observation set.



1. We say thatG is (S, Ω)-simulatable (or (S, Ω)-SIM) if there exists a simulatorGΩ
such that πΩ ◦G = GΩ ◦ πS .

2. We say that G is (S, Ω)-non-interfering (or (S, Ω)-NI) if for any s0, s1 in K̃n such
that πS(s0) = πS(s1), we have πΩ ◦G(s0) = πΩ ◦G(s1).

Lemma 1 (Simulation⇔ Non-Interference). For all (n, `, o)-gadget G, compatible
S and admissible Ω, G is (S, Ω)-SIM iff G is (S, Ω)-NI.

We now define t-NI , which is equivalent to the (I,O)-non-interference notion of
Barthe et al. [1], and therefore characterizes security in the t-threshold probing model.

Definition 3 (t-Non-Interference). An (n, `, o)-gadget G is t-non-interfering iff, for
every t-admissible Ω, there exists a t-compatible S such that G is (S, Ω)-NI. (Equiva-
lently, G is (S, Ω)-SIM.)

Inspecting proofs of security from the literature reveals that gadgets often satisfy a
slightly stronger property, which we find convenient to introduce as it is more clearly
suited to compositional reasoning, and is critically used in the definition of robust com-
position (Section 6).

Definition 4 (t-Tight Non-Interference). We say that an (n, `, o)-gadgetG is t-tightly
non-interfering (t-TNI) whenever for any t-admissible observation set Ω on G, there
exists a |Ω|-compatible S such that G is (S, Ω)-NI.

2.3 Issues with composition

We justify the need for intuitive and correct composition results with simple examples,
that also serve to illustrate the need for stronger simulation properties and the basic
principles of our verification techniques. We consider the circuits shown in Figures 1
and 2, that compute G(x, x) for some shared variable x and some (2, `, 1)-gadget G. R
is some (1, `′, 1)-gadget implementing the identity function.

with |I|+ |O| ≤ t.

Fig. 1: Diagram 1

with |I2|+ |I1|+ |O| ≤ t.

Fig. 2: Diagram 2
Fig. 3: Affine-NI compo-
sition.

Let us first consider the circuit shown in Diagram 1 (Figure 1), assuming that G is
t-NI (for example, G could be Rivain and Prouff’s secure multiplication gadget [21]),
and that the adversary makes a t-admissible set of observations Ω = (I,O).



From the fact thatG is t-NI, we know thatΩ can be perfectly simulated using shares
S1 of its first input and shares S2 of its second input. This means that the simulator for
the entire circuit must be given shares S1 ∪ S2 of x. The problem is of course that the
number of shares of x needed to simulate the full circuit cannot be proved, in general,
to be less than t + 1, since we only know that |S1 ∪ S2| < 2t + 1. A similar argument
applies when G is t-TNI.

However, the circuit from Figure 1 is secure under some specific conditions on G.
One such condition, which we call the affine condition, states that the gadget G can be
simulated in such a way that S1 = S2. In this case, the circuit is therefore t-NI.

Assume now that G can be simulated using a number of shares of its inputs that is
bounded by the number of observations made in G by the adversary, rather than by the
number of observations made in the entire circuit (that is, t). In other words, we now
know that |S1|, |S2| ≤ |I|+ |O|. This is obviously still insufficient to guarantee that the
whole circuit can be simulated without knowledge of x, since the simulator could need
up to 2(|I| + |O|) shares of x. However, if we consider the circuit shown in Diagram
2 (Figure 2), we can prove that the circuit is secure under some conditions on R. One
such condition, which we call the strong simulatability condition, states that the input
of gadget R can be simulated in such a way that |S2| ≤ |I2| whenever |I2 ∪ S12 | ≤ t.
Under this assumption, we can prove that the whole circuit is t-NI. Indeed, in such a
setting, the entire circuit can be simulated using at most |S11 ∪ S2| shares of x. Since
|S11 | ≤ |I1|+ |O|, |S2| ≤ |I2| and |I2|+ |I1|+ |O| ≤ t, then |S11 ∪ S2| ≤ t.

The next two paragraphs formalize these conditions. For clarity, we only consider
gadgets that output a single wire bundle and omit the value of o in descriptions. We
generalize our reasoning to arbitrary gadgets in Section 5.

2.4 Affine Non-Interference

We define the class of affine gadgets and show that they satisfy useful security properties
which can be used to build efficient compositions. Informally, a gagdet is affine if it
performs sharewise computations. By extension, the class of affine functions is the class
of functions that can be computed using affine gadgets. For example, using boolean
masking in K = GF(2n), affine functions include linear operators (field addition, shifts
and rotations), bitwise negation and scalar multiplication.

Definition 5 (Affine Gadgets). A (n, `)-gadget G is said to be affine whenever there
exists a family (Gi)0≤i<m of probabilistic functions Gi ∈ Kn → K`i × K such that∑m−1
i=0 `i = `, and G =

∏m−1
i=0 Gi (where the product on functions reorders outputs so

that side-channels appear first and in the right order).

Intuitively, an affine gadget G can be seen as the product (or parallel composition) ofm
gadgets (Gi)0≤i<m such thatGi takes as input the ith share of each ofG’s n inputs and
outputs the ith share of G’s output. It is important to note that the leakage computation
should also be distributed. Note that the composition of affine gadgets is affine.

Affine gadgets fulfill a more precise property that partially specifies the set of shares
of each input required to simulate a given set of observations. We define this more
precise property as affine non-interference.



Definition 6 (Affine-Non-Interference). An (n, `)-gadget G is affine-NI iff for every
admissible set of observations Ω = (I,O), there exists a |I|-compatible Ŝ such that G
is (Ŝ ∪ O, Ω)-NI.

We now show that every affine gadget is affine-NI, and illustrate how this precise prop-
erty can be used to prove t-NI in contexts where other gadget-level properties may be
insufficient.

Theorem 1. Every affine (n, `)-gadget G is affine-NI.

Proof. We prove that G is (Ŝ ∪ O, Ω)-SIM instead. The simulator GΩ can simply be
constructed as the product of all the Gi components of G in which adversary observa-
tions occur. This requires the O shares, plus at most |I| additional ones due to obser-
vations on side-channels. Intuitively, internal observations are simulated using shares
indexed by Ŝ, and output observations are simulated using shares indexed by O. ut

We now consider a simple example which allows us to see how the details of affine-
NI allow fine-grained compositional security proofs.

Lemma 2 (Composition of affine-NI gadgets). Assuming bothG andH are affine-NI,
the circuit shown in Figure 3, is affine-NI.

Proof. Let Ω = ((IG, IH),O) be a t-admissible observation set for the circuit shown
in Figure 3. By affine-NI of H , we know that there exists ŜH such that |ŜH | ≤ |IH |
and H is ((ŜH ∪O, ŜH ∪O), (IH ,O))-NI. It is therefore sufficient for us to simulate
shares ŜH ∪O of each ofH’s inputs. One of them is given byG’s outputs. By affine-NI
of G, we know that there exists ŜG such that |ŜG| ≤ |IG| and G is (ŜG ∪ (ŜG ∪
O), (IG, ŜG ∪O))-NI. It is therefore sufficient for us to simulate shares ŜG ∪ ŜH ∪O
of G’s input. Note that G’s input is also H’s second input. We therefore need shares
(ŜG∪ (ŜH ∪O))∪ (ŜH ∪O) to simulate the whole circuit. Simplifying, we obtain that
we need ŜG ∪ ŜH ∪ O shares of the circuit’s inputs to simulate the whole circuit. By
the constraint on the sizes of ŜG and ŜH and the t-admissibility constraint on Ω, we
deduce that the circuit can be simulated using at most t shares of its input and conclude.

ut

Note that the precise expression for the set of input shares used to simulate leakage
given by the notion of affine-NI is key in finishing this proof. In particular, this fine-
grained example of composition would be impossible without knowing that the sets of
shares of each of H’s inputs required to simulate H are equal, and without knowing, in
addition, that the set of shares of G’s inputs required to simulate G is an extension of
the set of shares of its outputs we need to simulate.

2.5 t-Strong Non-Interference

We now introduce our main notion for which we will derive sound and secure compo-
sition principles: t-strong non-interference.



Definition 7 (t-Strong Non-Interference).
A (n, `)-gadget G is said to be t-strongly non-interfering (or t-SNI) whenever, for

every t-admissible Ω = (I,O), there exists a |I|-compatible S such that G is (S, Ω)-
NI.

Essentially, a t-SNI gadget can be simulated using a number of each of its input shares
that is only bounded by the number of observations made by the adversary on inner leak-
age wires, and is independent from the number of observations made on output wires,
as long as the total number of observations does not exceed t. This independence with
the output observations is critical in securely composing gadgets with related inputs.
More specifically, the following lemma illustrates how t-SNI supports compositional
reasoning.

Lemma 3 (Composition of t-SNI). IfG andR are t-SNI, the circuit shown in Figure 2
is t-SNI.

Proof. Let Ω = (I,O) be a t-admissible set of observations on the circuit, where
I = (I1, I2) is partitioned depending on the subgadget in which observations occur.
The set Ω1 = (I1,O) of observations made on G is t-admissible, and we therefore
know, by t-SNI, that there exists an —I1—-compatible input projection S1 = (S11 ,S12 )
for G such that G is (S, Ω1)-NI. Simulating G and considering that simulator part of
the adversary, the set of adversary observations made on R is now Ω2 = (I2,S12 ).
Since |S12 | ≤ |I1|, we know that Ω2 is t-admissible and can make use of the fact that R
is t-SNI. This yields the existence of a |I2|-compatible input projection S2 for R such
that R is (S2, Ω2)-NI. We now have a simulator for the whole circuit that makes use of
the set of shares S11 ∪ S2 of x. Since |S11 | ≤ |I1|, |S2| ≤ |I2|, and |I1|+ |I2| ≤ t, we
can conclude. Note that this proof method also constructs the simulator for the circuit
by composing the simulators for the core gadgets after checking that they exist. ut

An interesting example, based on Rivain and Prouff’s algorithm to compute an in-
verse in GF(28) is discussed in Section 3 (Figure 4 and Theorem 2).

A remark on efficiency. An unexpected benefit of strong non-interference is that it leads
to significant efficiency gains: specifically, one can safely dispense from refreshing the
output of a strongly non-interfering gadget. We exploit this insight to improve the effi-
ciency of algorithms transformed by our compiler.

3 Some Useful SNI Gadgets

In this section, we show that the mask refreshing gadget from Rivain and Prouff [21]
does not satisfy t-SNI, and hence should be used very carefully (or not at all), whereas
the refreshing gadget from Duc, Dziembowski and Faust [9] satisfies t-SNI and thus
can be used to compositionally define masked algorithms. Then, we show that the mul-
tiplication gadget provided by Rivain and Prouff in [21] is also t-SNI. Finally, we also
show that the gadget proposed by Coron et al. [8] to compute h : x 7→ x ⊗ g(x) for
some linear function g and some internal, associative ⊗ that distributes over addition in
K is also t-SNI.



The proofs for the mask refreshing and multiplication gadgets have been verified
formally in EasyCrypt; for convenience, we also provide pen-and-paper proof sketches
for these proofs and that of the combined gadget from [8] in Appendix B.

3.1 Mask Refreshing Algorithms

We consider here two mask refreshing algorithms: the RefreshMasks algorithm intro-
duced in [21], that consists in adding a uniform sharing of 0, and an algorithm based on
multiplying by a trivial sharing of 1 using secure multiplication algorithm SecMult [21].
Below, we show that the former is not t-SNI, whilst the latter is t-SNI and can therefore
be used to compositionally build secure implementations.

Addition-Based Mask Refreshing Algorithm. Algorithm 2 presents the addition-
based refreshing algorithm introduced by Rivain and Prouff [21]. Since it only samples

Algorithm 2 Addition-Based Mask Refreshing Algorithm
1: function RefreshMasks(a)
2: for i = 1 to t do
3: u

$← K
4: a0 ← a0 ⊕ u
5: ai ← ai ⊕ u
6: return a

a number of random masks linear in the masking order, this algorithm is very efficient,
and is in fact t-NI (as proved by its authors [21]). However, it is not t-SNI. Indeed, for
any order t ≥ 2, observing the intermediate variable a0⊕u and the output a1⊕u (in the
first loop iteration) lets the adversary learn the sum a0 ⊕ a1, which cannot be perfectly
simulated from less than two of a’s shares. Since it is not t-SNI, the RefreshMasks
algorithm cannot be used as illustrated in Section 2 to compositionally guarantee the
security of masked algorithms. This explains, in particular, the flaw it induces [8] when
used in Rivain and Prouff’s secure S-box algorithm [21]. In fact, the counterexample
we gave to t-SNI is central to the flaw exhibited by Coron et al. [8].

Multiplication-Based Mask Refreshing Algorithm. Algorithm 3 presents the mask
refreshing algorithm by Duc et al. [9], based on applying the secure multiplication of
Rivain and Prouff [21] to a trivial sharing of 1 as (1, 0, . . . , 0).

Proposition 1. Algorithm 3 is t-SNI.

The proof is given in Appendix B. In the following, we call Refresht (omitting the index
when clear from context) the core gadget implemented using Algorithm 3.



Algorithm 3 Multiplication-Based Mask Refreshing Algorithm
1: function RefreshMult(a)
2: for i = 0 to t do
3: ci ← ai
4: for i = 0 to t do
5: for j = i+ 1 to t do
6: r

$← K /* this random value is referred to as ri,j */
7: ci ← ci ⊕ r /* the result is referred to as ci,j */
8: cj ← cj 	 r /* the result is referred to as cj,i */
9: return c

3.2 Secure Multiplication Algorithms

We focus here on two multiplication algorithms: the SecMult algorithm introduced in
[21] and Algorithm 4 from [8], which computes function h : x 7→ x � g(x) for some
linear function g.

SecMult algorithm. We show Rivain and Prouff’s multiplication algorithm SecMult
in Algorithm 4 [21]. Note that this algorithm is correct and secure for the computation of
any internal, associative and commutative operation ⊗ that distributes over addition in
K (⊕). This includes, for example, field multiplication� in GF(2n), and multiplication
& in the boolean ring Bn. In addition to being t-NI as claimed by Rivain and Prouff [21],

Algorithm 4 Secure Multiplication Algorithm [21]
1: function SecMult(a, b)
2: for i = 0 to t do
3: ci ← ai ⊗ bi
4: for i = 0 to t do
5: for j = i+ 1 to t do
6: r

$← K /* this random value is referred to as ri,j */
7: ci ← ci ⊕ r /* referred to as ci,j */
8: r ← ai ⊗ bj 	 r ⊕ aj ⊗ bi /* referred to as rj,i */
9: cj ← cj ⊕ r /* referred to as cj,i */

10: return c

we show that it is also t-SNI (Proposition 2) in Appendix B. This stronger security
property makes it valuable for performance whilst retaining provable security, since it
may reduce the number of mask refreshing gadgets required to compositionally prove
security.

Proposition 2. Algorithm 4 is t-SNI.



MultLinear algorithm to compute x⊗ g(x). Coron et al. [8] introduce an extended
multiplication algorithm, which we recall as Algorithm 5, and prove that it is t-NI. In
fact, their proof even shows that the gadget is t-TNI, but the authors do not identify
this stronger property. We show here that this algorithm is in fact t-SNI and therefore
dispenses the user from having to refresh its output’s masks.

Algorithm 5 h : x 7→ x⊗ g(x) [8, Algorithm 4]
1: function MultLinear(a)
2: for i = 0 to t do
3: for j = i+ 1 to t do
4: ri,j

$← K
5: r′i,j

$← K
6: t← ai ⊗ g(r′i,j)	 ri,j
7: t← t⊕ (r′i,j ⊗ g(ai))
8: t← t⊕ (ai ⊗ g(aj 	 r′i,j)
9: t← t⊕ ((aj 	 r′i,j)⊗ g(ai))

10: rj,i ← t /* rj,i = ri,j ⊕ ai ⊗ g(aj)⊕ aj ⊗ g(ai) */
11: for i = 0 to t do
12: ci ← ai ⊗ g(ai)
13: for j = 0 to t, j 6= i do
14: ci ← ci ⊕ ri,j /* referred to as ci,j */
15: return c

Proposition 3. Algorithm 5 is t-SNI.

A pen-and-paper proof of Proposition 3 is given in Appendix B.

4 Simple Compositional Proofs of Security

In this section, we show how the various notions of non-interference, and more specif-
ically the notion of t-SNI can be used to obtain compositional proofs of security for
large circuits. We start by abstractly describing a generic proof method for composi-
tionally proving a circuit t-NI based only on affine, t-SNI, and t-TNI properties of core
gadgets and checking simple arithmetic side-conditions. We then illustrate it by detail-
ing a compositional proof of security for a masked version of an inversion algorithm in
GF(28) [21].

4.1 Securely Composing Secure Gadgets

We consider a masked circuit P constructed by composition of n chosen core gadgets
(affine gadgets or those t-SNI gadgets discussed in Section 3), and a topological or-
dering on P ’s gadgets (using 1, rather than n, to denote the last gadget according to



that ordering). Let Ω be an arbitrary t-admissible observation set on P . We split Ω ac-
cording to whether observations occur on P ’s output bundles (we name those Oi, one
for each of P ’s o outputs) or are internal to a gadget in P ’s (we name those Ii, one
for each core gadget in P ). The t-admissibility constraint on Ω implies the following
global constraint on its components:

|Ω| =
∑

1≤i≤o

|Oi|+
∑

1≤i≤n

|Ii| ≤ t

The process starts with:
– an initial set of constraint C that only contains the global constraint;
– for each wire that serves as a connection between core gadgets in P , a set Oij , that

intuitively corresponds to gadget i’s jth output bundle; all Oij are initially empty
except for those that correspond to P ’s output bundles, to which the correspond-
ing Ok (or union of Oks, if the same bundle is used multiple times as output) is
assigned.
Starting from Gadget 1 (the last gadget according to the chosen topological order-

ing) and the initial state described above, and for each gadget Gi (progressing back
through the chosen ordering), the following operations are performed:
1. check that the side condition for gadget Gi’s non-interference property follows

from the constraints in C:
– if Gi is t-TNI or t-SNI, check that C ⇒ |Ii|+

∑
1≤j≤oi |O

i
j | ≤ t;

– if Gi is affine, the side-condition is trivial.
2. using the corresponding non-interference property, derive a set of shares for each

ofGi’s inputs that suffice to simulate the internal and output leakage inGi, and add
the corresponding constraints to C:

– if Gi is t-TNI, a fresh set of indices Sij is introduced for each input bundle j,
and the constraint |Sij | ≤ |Ii|+

∑
1≤k≤oi |O

i
k| is added to C for all j;

– if Gi is t-SNI, a fresh set of indices Sij is introduced for each input bundle j,
and the constraint |Sij | ≤ |Ii| is added to C for all j;

– if Gi is affine, a fresh set of indices Ŝi is introduced, and the constraint |Ŝi| ≤
|Ii| is added to C.

3. the newly computed sets of shares on Gi’s inputs are propagated to become output
observations on the gadget from which they come (except if they correspond to C’s
inputs):

– ifGi is t-TNI or t-SNI, for all j, ifGi’s jth input bundle is connected to another
gadget Gi

′
’s kth output bundle, set Oi′k ← Oi

′

k ∪ Sij ;
– if Gi is affine, if any of Gi’s input bundles is connected to another gadget Gi

′
’s

kth output bundle, set Oi′k ← Oi
′

k ∪ Ŝi ∪ Oi.
If, at any point in this process, a side-condition fails to check, the circuit is not

compositionally secure (although it may still be t-NI). However, the only case in which
such a failure could occur is if a gadget’s output serves as input to multiple gadgets. In
this case, the failure in checking the side-condition can in fact be used to automatically
insert a mask refreshing gadget as needed, and resume the proof from that point on.

Once all gadgets in the circuit are simulated as described, one can then easily check
whether the accumulated constraints in C are sufficient to guarantee that the set of



shares associated with each one of P ’s input bundles is of a size smaller than or equal
to t.

4.2 An Example: AES inversion algorithm by Rivain and Prouff

We now illustrate this process on Rivain and Prouff’s algorithm for computing inversion
in GF(28) [21,8] when implemented over t + 1 shares. A circuit implementing this
operation securely is shown in Figure 4. We use a simple composition argument to
prove that this inversion is t-SNI, relying on the fact that the multiplication gadget ⊗
and the refreshing gagdetR (that is, Refresh) are both t-SNI. We recall that the function
x 7→ x2

n

for any n is linear in binary fields and rely on affine gadgets ·2, ·4 and ·16 to
compute the corresponding (linear) functionalities.

Fig. 4: Gadget ·254

Theorem 2. Gadget ·254, shown in Figure 4, is t-SNI.

Proof. The proof follows the process described above. We detail it here to illustrate the
compositional proof process on a practical example.

Let Ω = (
⋃

1≤i≤9 Ii,O) be a t-admissible observation set. In particular, we know
that the global constraint |O| +

∑
1≤i≤9 |Ii| ≤ t holds. The proof constructs the sim-

ulator by simulating each gadget in turn, starting from the final multiplication (Gadget
1) and progressing from right to left and upward.

Gadget 1 - since ⊗ is t-SNI and |I1 ∪ O| ≤ t (by the global contraint), we know
that there exist observation sets S11 , S12 such that |S11 | ≤ |I1|, |S12 | ≤ |I1| and Gadget 1
is ((S11 ,S12 ), (I1,O))-NI; (note that S11 and S12 become output observations on Gadgets
8 and 2, respectively)

Gadget 2 - since ⊗ is t-SNI and |I2 ∪ S12 | ≤ t (by the simulation of Gadget 1
and the global constraint, we know that there exist observations sets S21 , S22 such that
|S21 | ≤ |I2|, |S22 | ≤ |I2|, and Gadget 2 is ((S21 ,S22 ), (I2,S12 ))-NI;

Gadget 3 - since ·16 is affine, we know that there exists an observation set S3 such
that |S3| ≤ |I3|+ |S21 | ≤ |I3|+ |I2| (by the simulation of Gadget 2) and Gadget 3 is
(S3, (I3,S21 ))-NI;



Gadget 4 - since ⊗ is t-SNI and |I4 ∪ S3| ≤ t (by the simulation of Gadget 3
and the global constraint), we know that there exist observation sets S41 , S42 such that
|S41 | ≤ |I4|, |S42 | ≤ |I4|, and Gadget 4 is ((S41 ,S42 ), (I4,S3))-NI;

Gadget 5 - since RefreshMult is t-SNI and |I5 ∪ S41 | ≤ t (by the simulation of
Gadget 4 and the global constraint), we know that there exist observation sets S51 , S52
such that |S51 | ≤ |I5|, |S52 | ≤ |I5|, and Gadget 5 is ((S51 ,S52 ), (I5,S41 ))-NI;

Gadget 6 - since ·4 is affine, we know that there exists an observation set S6 such
that |S6| ≤ |I6|+ |S22 ∪ S42 | ≤ |I6|+ |I2|+ |I4| (by the simulation of Gadgets 2 and
4) and Gadget 6 is (S6, (I6,S22 ∪ S42 ))-NI;

Gadget 7 - since⊗ is t-SNI and |I7∪S5∪S6| ≤ t (by the simulation of Gadgets 5
and 6 and the global constraint), we know that there exist observation sets S71 , S72 such
that |S71 | ≤ |I7|, |S72 | ≤ |I7|, and Gadget 7 is ((S71 ,S72 ), (I7,S5 ∪ S6))-NI;

Gadget 8 - since ·4 is affine, we know that there exists an observation set S8 such
that |S8| ≤ |I8|+ |S11 ∪ S71 | ≤ |I8|+ |I1|+ |I7| (by the simulation of Gadgets 1 and
7) and Gadget 8 is (S8, (I8,S11 ∪ S71 ))-NI;

Gadget 9 - since ⊗ is t-SNI and |I9 ∪ S72 | ≤ t (by the simulation of Gadget 7
and the global constraint), we know that there exists an observation set S9 such that
|S9| ≤ |I9|, and Gadget 9 is (S9, (I9,S7))-NI;

Each of these steps gives us the existence of a simulator for the relevant gadget.
Composing them together constructs a simulator for the whole circuit that expects |S8∪
S9| shares of x. Since we have |S8| ≤ |I7| + |I1| and |S9| ≤ |I9|, we can conclude
that |S8 ∪ S9| ≤

∑
1≤i≤9 |Ii| and therefore that gadget ·254 is t-SNI. ut

Remark 1. In the proof of Theorem 2, we do not precisely keep track of the simulation
sets for affine gadgets as the more general bounds on their size are sufficient to conclude.
In practice, when considering large affine sub-circuits, it is often important to keep track
of the precise composition of the simulation sets rather than just their size in order to
avoid false negatives.

5 Formalization

Although proofs of t-NI (or t-SNI) using the compositional methods described in Sec-
tion 2 are easier to write and check than existing proofs, they quickly get cumbersome
on large programs, and simply typing sub-circuits as gadgets and reusing the results
may be imprecise in general (in particular when the sub-circuit has multiple outputs).
We automate the construction and verification of these compositional proofs using a
type system that tracks, at every program point, the number of shares of each sensitive
variable required to simulate the rest of the circuit. The judgments of the type system
can express soundly and precisely the notions of affine-NI, t-TNI and t-SNI introduced
in Section 2. This allows us to typecheck that a gadget is, say, affine-NI in isolation,
and to use it as is, without having to retype it in context. In addition, our type sys-
tem generalizes on the ideas presented in Sections 2 and 4 in several ways: i. it clearly
differentiates between sensitive and public wires, which prevents many false positives
and allows the selection of more efficient gadgets for some operations (for example,
multiplication by a public variable in GF(2n) is simply scalar multiplication); and ii. it
supports gadgets with multiple outputs, which allows us in particular to deal with state.



After laying down some formal definitions, we define a notion of typing judgment
that is sufficient to prove t-NI. We then illustrate why a type system that simply im-
plements and automates the proof technique discussed in Section 4 does not immedi-
ately allow incrementality. This, in conjunction with the fact that simply retyping every
sub-procedure in an algorithm every time it is used would not scale well, justifies the
complexity of our incremental type system.

5.1 Language and Types

For clarity in the formalization, we consider a small language (Figure 5) that allows us
to provide compact descriptions of circuits as compositions of gadgets. Note that this
is done without loss of generality: variables in the language can be seen as descriptions
of the wiring between gadgets that fix one particular choice of topological ordering on
the circuit’s gadgets. In practice, we extend the language slightly to allow for simple

p ::= | x← G(y) gadget call (x and y may be tuples)
| p; p sequential composition

where G may be a core gadget or a defined gadget.

Fig. 5: A Small Language for Describing Circuits

control-flow, restricted table lookups and array manipulation. We detail practical im-
plementation trivia in Section 7.

Importantly, our type system is split in two layers. The first layer simply distin-
guishes public variables (and their size, for example, using sized unsigned integer types)
from sensitive shared variables in K̃. The second layer of the type system keeps track,
for sensitive variables, of the subsets of their shares that are required to simulate the
gadgets in which they are used. We focus here on this second layer, leaving details of
the first layer to Section 7. Our compiler does not decide whether a particular input is
secret or public, or whether a particular output is safe to declassify and unmask. Rather,
we are content with propagating and making use of user-provided annotations on the
inputs and outputs of a circuit through our type-checker. These annotations are part of
the theorem statements and should be checked carefully by the user.

Formally, we see programs in our language as gadgets from states to states, where
a state St ∈ Var → K̃ simply maps each variable in the circuit (in Var) to the value of
its shares. To each program point (or gadget), we wish to associate a concrete typemap
Γ ∈ Var → [0..m) that intuitively keeps track, for each variable (or bundle), of a set
of its shares that is sufficient to simulate the leakage of later gadgets in the circuit.
However, computing the concrete typemaps for each possible set of adversary observa-
tions would quickly become unfeasible in practice, and we instead compute symbolic
typemaps over X, that is, Γ ∈ Var→ P(X) where O, I and S are disjoint sets of names.
Intuitively, we will use symbols in O to denote adversary observations on a circuit’s
outputs, symbols in I to denote adversary observations on a gadget’s intermediate vari-
ables (associating a symbol in I to each core gadget in the circuit), and symbols in S



to denote existentially quantified sets of shares, as given to us by the non-interference
properties of core gadgets. Given a set of abstract names X (in P(O ∪ I ∪ S)), we use
JXK to denote the interpretation of X, that is the set of concrete sets of indices that can
be used to instantiate them. We use standard notations for map lookups (Γ [·]) and up-
dates (Γ [· 7→ ·]). We extend the notion of input and output projections indexed by sets
of shares to state projections indexed by typemaps as follows.

Given a state St ∈ Var→ K̃ and a concrete typemap Γ ∈ Var→ [0..m), we define
the projected state πΓ ◦St as the map πΓ ◦St x = π⋃

X∈Γ [x]X
St[x], that is, the reduced

state where each x only maps to those shares that appear in its type by Γ .

5.2 t-NI by Typing

We consider typing judgments of the form

`O,I]Ip,S]S′ {Cpre;Γpre} p {Cpost;Γpost}

whereCpre and Γpre are a constraint and a typemap over O∪I∪Ip∪S∪S′, andCpost

and Γpost are a constraint and a typemap over O∪ I∪S. We say that such a judgment is
valid whenever, for all O ∈ JOK, for all I ∈ JIK, for all Ip ∈ JIpK, and for all S ∈ JSK
such that Cpost∧|O|+ |I| ≤ t, there exists S ′ ∈ JS′K such that p, seen as a gadget from
state to state, is (Γpre, (Ip, Γpost))-NI.

Intuitively, Cpost makes explicit the size constraints that are known to hold on sym-
bols in S following the construction of the simulator for such observations (and also
keeps track of the global constraint that (I,O) is t-compatible. The judgment holds
whenever it is sufficient to know shares Γpre before executing p in order to simulate
the adversary’s observations internal to p itself (those in Ip) and the shares of the fi-
nal state indicated by Γpost. The construction of the simulator for p produces sets of
shares S′ on p’s initial state and additional constraints given in Cpre. During the course
of type-checking, we will always construct judgments such that the shares of the final
state indicated by Γpost are sufficient to simulate the observations in O and I.

To illustrate the expressiveness of this typing judgment, we use it to express the
properties of some of the core gadgets discussed in Section 3 (as well as an affine
gadget). We write arg and res for the input and output bundles of each gadget (in some
cases, arg may be a vector of bundles).

The Refresh gadget can be given the following type

`{O},∅]{I},∅]{S} {|S| ≤ |I| ∧ C0;Γ0[arg 7→ {S}]} Refresh {C0;Γ0}

where C0 = |O|+ |I| ≤ t is the global constraint on adversary observations and Γ0 is
the map that associates to res the set of names {O}, and is empty everywhere else. This
type states exactly the t-SNI property of Refresh: for all (I,O) such that |I|+ |O| ≤ t,
there exists S such that |S| ≤ |I| and Refresh is (Γ0[arg 7→ S], (I, Γ0))-NI.

The � gadget can be given the following type

`{O},∅]{I},∅]{S1,S2} {|S1| ≤ |I| ∧ |S2| ≤ |I| ∧ C0;Γ0[argi 7→ {Si}]} � {C0;Γ0}

where C0 = |O|+ |I| ≤ t is the global constraint on adversary observations and Γ0 is
the map that associates to res the set of names {O}, and is empty everywhere else. This



type states exactly the t-SNI property of �: for all (I,O) such that |I|+ |O| ≤ t, there
exist S1, S2 such that |Si| ≤ |I| and � is (Γ0[argi 7→ Si], (I, Γ0))-NI.

The ⊕ gadget can be given the following type

`{O},∅]{I},∅]{Ŝ} {|Ŝ| ≤ |I| ∧ C0;Γ0[argi 7→ {Ŝ,O}]} ⊕ {C0;Γ0}

where C0 = true is the trivial global constraint on adversary observations and Γ0 is the
map that associates to res the set of names {O}, and is empty everywhere else. This
type is exactly the lifting to states of the affine-NI property of ⊕: for all (I,O), there
exists Ŝ such that |Ŝ| ≤ |I| and ⊕ is (Γ0[argi 7→ Ŝ ∪ O], (I, Γ0))-NI.

In order to express our main theorem, we also consider arithmetic judgments of the
form

O; I;S;C �P Γ

where P is a whole circuit, with designated input and output bundles. Such a judg-
ment is said to be valid whenever for all O ∈ JOK, for all I ∈ JIK, and for all
S ∈ JSK such that C holds then for each variable x that is an input to P , we have
|
⋃
X∈Γ [x]X| ≤ t.
We now state our main composition theorem, Theorem 3, which states the security

of well-typed programs under constraints on the size of the inferred types of its input
variables.

Theorem 3 (Non-Interference by Typing). Given a circuit P if the following judg-
ments are valid, then P is t-NI.

`O,∅]I,∅]S {Cpre;Γpre} P {C0;Γ0} (1)
O; I;S;Cpre �P Γpre (2)

with C0 = |O| ≤ t; and Γ0 the typemap that associates, to each output bundle of P
a different symbol in O.

It is relatively easy to come up with a simple type system that formalizes and auto-
mates the kind of reasoning used in the proof of Theorem 2. However, we wish to make
it more efficient by allowing sub-procedures, such as that computing the AES S-box,
to be type-checked independently of context and used anywhere whilst retaining both
soundness and a sufficient level of precision. This is rather difficult in general. For ex-
ample, consider the gadget shown in Figure 6 (which is affine). It is perfectly safe to use
it as is in the context of Figure 7 (which is also affine), but using it in the circuit shown
in Figure 8 leads to an insecure algorithm. On the other hand, making it safe to use in
any context (by refreshing, say, its first output) makes its use in Figure 7 less efficient
than necessary.

We describe our type system, in all its generality, in Appendix D.

6 Stronger Composition Results

So far, we have shown that a simple compositional proof system and some machine-
checked proofs are sufficient to prove an algorithm secure in Ishai, Sahai and Wagner’s



Fig. 6: A gadget G

Fig. 7: A safe use of G Fig. 8: An unsafe use of G

stateless t-threshold probing model [15]. However, this is not enough to guarantee se-
curity against an adversary that may move probes between oracle queries when these
queries make use of some shared secret state. For instance, if an adversary can move his
probes between two executions of an AES (with related inputs/outputs), then the afore-
mentioned compositional properties do not hold anymore. To protect against such an
adversary, the literature [15,8,9] recommends to protect the circuit using 2t + 1 shares
and refresh the entirety of the secret state between oracle queries.

We propose a novel method to protect an algorithm against adaptive probing that
does not require doubling the number of shares in the entire circuit. Rather, we only
double the number of shares on the state when it is stored between oracle queries.
More clearly, the state is stored as 2m = 2t + 2 shares, but computation is performed
over m = t + 1 shares only. To enable this, we rely on algorithms Double and Half
(Algorithm 6), that double the number of shares and divide it by 2, respectively, in
combination with a mask refreshing gadget over 2m shares. The security proof for this
mechanism is made feasible by the compositional proof system presented in this paper.

Algorithm 6 Robust Mask Refreshing: Double and Half

1: function Double(a)
2: for i = 0 to t do
3: c2i

$← K
4: c2i+1 ← ai 	 c2i
5: return c

1: function Half(a)
2: for i = 0 to t do
3: ci ← a2i ⊕ a2i+1

4: return c

For simplicity, we express our composition theorem (Theorem 4) on gadgets that
have a single input and a single output, that we use to model the state. It is easy to gen-
eralize to arbitrary scenarios, taking care to use Double, Refresh and Half as specified
on all the variables that encode the shared state in both gadgets.

Theorem 4 (Robust Composition). Given two t-TNI gadgets F and G, for any t-
admissible observations set ΩF

′
on F ′ and any t-admissible observation set ΩG

′
on

G′, there exists a |ΩF ′ |-compatible S such that the composition F ′;G′ described below
is (S, (ΩF ′

, ΩG
′
))-NI.



y ← F (x);
ȳ ← Double(y);
ȳ ← Refresh2t+2(ȳ);

 F ′
ȳ ← Refresh2t+2(ȳ);
y ← Half(ȳ);
z ← G(y);

 G′

Intuitively, any set made of t1 6 t observations on F ′ and t2 6 t observations on G′

can be perfectly simulated by only t1 shares of each F ′’s input.

Corollary 1. Any number n of t-TNI gadgets (Gi)0≤i<n can be composed in a robust
way as outlined in Theorem 4.

The proof of Theorem 4 is given in Appendix C, which also discusses how these
results can be used to prove that a masked algorithm is secure in the stateful and adaptive
probing model of Ishai, Sahai and Wagner [15].

7 Implementation and Evaluation

As a proof of concept, we implement our compiler to read and produce programs in
a reasonable subset of C (including basic operators, constant for loops, table lookups
at public indices in public tables, and mutable secret state), equipped with libraries
implementing core and extended operations for some choices of K. The techniques and
results we present in this paper are in no way restricted to this language and could be
adapted to many other settings (ASM or VHDL, for example) given a concrete target.
We see such an adaptation purely as a programming language challenge, as it requires
properly formalizing the semantics and side-channels of such low-level platforms. As
is standard in compilation, our compiler performs several passes over the code in order
to produce its final result.

7.1 Compiler Implementation

Parsing and Pre-Typing. This pass parses C code into our internal representation,
checks that the program is within the supported subset of C, performs C type-checking
and checks that variables marked as sensitive (variables given type K) are never im-
plicitly cast to public types. Implicit casts from public types to K (when compatible,
for example, when casting a public uint8 t to a protected variable in GF(28)) are
replaced with public sharing gadgets.

Gadget Selection and Generic Optimizations. This pass heuristically selects optimal
gadgets depending on their usage. For example, multiplication of a secret by a public
value can be computed by an affine gadget that multiplies each share of the secret,
whereas the multiplication of two secrets must be performed using the SecMult gadget.
Further efforts in formally proving precise types for specialized core gadgets may also
improve this optimization step. This pass also transforms the C code to clarify calling
conventions (ensuring that arguments are passed by value when necessary), to make it
follow a simpler form (see Figure 5) that makes it easier to type-check, and to optimize
the use of intermediate registers.



Type-Checking and Refresh Insertion. This is the core of our compiler. We note that
the type system from Section 5 fails exactly when a mask refreshing operation is needed.
At the cost of tracking some more information and reinforcing the typing constraint
on sub-gadgets, we use this observation to automatically insert Refresh gadgets where
required. When type-checking fails, the variable whose masks need to be refreshed is
duplicated and one of its uses is replaced with the refreshed duplicate. To avoid having
to re-type the entire program after insertion of a refresh gadget, our compiler keeps track
of typing information for each program point already traversed and simply rewinds the
typing to the program point immediately after the last modification.

The source program can also be annotated with explicit refresh operations that may
help the compiler in its type-checking operations. The compiler itself can also be run
in a mode that only performs type-checking and reports failures without attempting to
correct the program, allowing it to be used for the direct verification of implementations
clearly structured as compositions of gadgets.

Code-Generation. Finally, once all necessary mask refreshing operations have been
inserted and the program has been type-checked, we produce a masked C program.
This transformation is almost a one-to-one mapping from the instructions in the type-
checked programs to calls to a library of verified core gadgets or to newly defined gad-
gets. Some cleanup is performed on loops to clarify the final code whenever possible.

7.2 Practical Evaluation

To test the effectiveness of our compiler, we apply it to implementations of different
algorithms, generating masked implementations at various orders. We apply our com-
piler to the following programs: AES (�), a full block of AES-128 masked using the
standard multiplication gadget, and implemented in GF(28) (see Appendix E for in-
put and output S-box algorithms); AES (x � g(x)), a full block of AES-128 masked
using Coron et al.’s gadget for computing x� g(x), and implemented in GF(28); Kec-
cak, a full computation (24 rounds) of Keccak-f[1600], implemented in B64; Simon, a
block of Simon(128,128), implemented in GF(264); Speck, a block of Speck(128,128),
implemented in B64.

Speck makes use of both bitwise operations (that are difficult to perform on addi-
tively shared variables) and modular addition (which is costly to perform on boolean
shared variable). We choose to mask Speck using a Boolean secret-sharing scheme, im-
plementing the algorithm in B64 and using Coron, Großschädl and Vadnala’s algorithm
to compute modular addition directly on boolean-shared variables [7]. Since this is a
defined gadget, it is compiled as part of the program and the security of its masked
version is proved by typing during compilation.

Table 1 shows resource usage statistics for generating the masked algorithms (at
any order) from unmasked implementations of each algorithm. The table shows the
total number of mask refreshing operations inserted in the program8, the compilation

8 Note that the number of mask refreshing operations executed during an execution of the pro-
gram may be much greater, since the sub-procedure in which the insertion occurs may be
called multiple times.



time, and the memory consumption. The first Keccak line refers to an implementation
of Keccak where the mask refreshing operation is already inserted (as a noop) in the
unmasked algorithm, and the compiler is run in pure verification mode. The second line
refers to the compiler being run on a purely unmasked algorithm. The difficulty here
comes from the large number of mask refreshing gadgets that need to be inserted, requir-
ing the type-checker to backtrack and start over multiple times. However, first running
the type-checker on a round reduced version of Keccak and identifying the problematic
program point allows the user to manually insert the mask refreshing operation and sim-
ply use the compiler as a verifier to check that the resulting algorithm is indeed secure.
Apart from this extreme example, which is due to the particular shape of the Keccak
χ function and the way it is used in Keccak-f’s round function, all compilations are
rather cheap. Also note that even costly compilations only have to be performed once to
transform an unmasked algorithm into a masked algorithm that is secure at any order.

Table 1: Time taken to generate masked implementation at any order
Scheme # Refresh Time Memory
AES (�) 2 0.09s 4Mo

AES (x� g(x)) 0 0.05s 4Mo
Keccak 0 121.20 456Mo

Keccak(2) 600 2728.00s 22870Mo
Simon 67 0.38s 15Mo
Speck 61 6.22s 38Mo

Remark 2. The compiler reports that the modular addition gadget used in Speck is in-
deed secure without inserting any refresh gadgets. This serves as a compositional and
machine-checked proof of security for this algorithm at any order t.

Table 2 reports the time taken to execute the resulting programs 10,000 times at
various orders.9

Table 2: Time taken by 10,000 executions of each program at various masking orders
Scheme unmasked Order 1 Order 2 Order 3 Order 5 Order 10 Order 15 Order 20
AES (�) 0.078s 2.697s 3.326s 4.516s 8.161s 21.318s 38.007s 59.567s

AES (x⊗ g(x)) 0.078s 2.278s 3.209s 4.368s 7.707s 17.875s 32.552s 50.588s
Keccak 0.238s 1.572s 3.057s 5.801s 13.505s 42.764s 92.476s 156.050s
Simon 0.053s 0.279s 0.526s 0.873s 1.782s 6.136s 11.551s 20.140s
Speck 0.022s 4.361s 10.281s 20.053s 47.389s 231.423s 357.153s 603.261s

9 On a Intel(R) Xeon(R) CPU E5-2667 0 @ 2.90GHz with 64Go of memory running Linux
(Fedora)



For AES and Speck, the figures shown in the “unmasked” column are execution
times for the input to our compiler: a table-based implementation of AES or an imple-
mentation of Speck that uses machine arithmetic, rather than Coron, Großschädl and
Vadnala’s algorithm would be much faster, but cannot be masked directly. As an addi-
tional test to assess the performance of generated algorithms at very high order, we ran
10,000 instances of AES masked at order 100; it took less than 18 minutes to complete
(so 0.108 secondes per instance).

Modifying our compiler to make use of the addition-based mask refreshing gadget
shown in Algorithm 2 (and therefore produce insecure programs) yields virtually the
same figures as those shown for AES, highlighting the fact that the cost of using a secure
mask refreshing gadget is negligible. However, it is important to keep in mind that fresh
randomness is much less costly in our setting than, say, on an embedded device, and that
the use of a secure refresh gadget may cause a more important performance degradation
in such a setting.

8 Conclusion

We have addressed the theoretical problem of secure composition in higher-order mask-
ing implementations, by introducing the notion of strong simulatability, and by showing
that it supports provably correct compositional security analyses. We have displayed a
general method to verify composition or to build a higher-order secure algorithm by
properly positioning strong simulatable refresh gadgets. Moreover, we have observed
that other gadgets from the literature are strongly simulatable, thereby reducing the
needs in refresh gadgets instances, and leading to more efficient design. To exploit
these new results on large circuits, we have constructed a concrete and efficient com-
piler, which allows us to obtain secure implementations for masking at any higher-order
of several cryptographic algorithms. Finally, we have extended our compilation results
to protect protocols during which the adversary is able to regularly move his probes.
There are many avenues to extend our theoretical results and program transformation.
Given that the masked algorithms generated by our tool are provably secure in the t-
threshold probing model, and that the relationship of this model with the noisy leakage
model, we expect that our algorithms will resist practical attacks, but it would also be
comforting to carry out a practical security evaluation of our algorithms and validate
their security experimentally.

Acknowledgments Pierre-Yves Strub contributed greatly to early discussions and to the
compiler implementation and infrastructure. Discussions with Thomas Roche were use-
ful in developing the pen and paper proofs of t-SNI for core gadgets, and in particular
for the secure multiplication algorithm.

This work was partially supported by Spanish project S2013/ICE-2731 N-GREENS
Software-CM and TIN2012-39391-C04-01 StrongSoft, Madrid regional project S2013/ICE-
2731 N-GREENS Software-CM, and ANR projects ANR-10-SEGI-015 PRINCE and
ANR-14-CE28-0015 BRUTUS. The third author’s research is supported by an FP7
Marie Curie Actions-COFUND programme (grant no. 291803).



References

1. Gilles Barthe, Sonia Belaı̈d, François Dupressoir, Pierre-Alain Fouque, Benjamin Grégoire,
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6. Jean-Sébastien Coron. Higher order masking of look-up tables. In Phong Q. Nguyen
and Elisabeth Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 441–458.
Springer, May 2014.
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A Proof of Lemma 1

Proof (Lemma 1). We consider a (n, `, o)-gadget G, a compatible S and an admissible
Ω.

We first prove that (S, Ω)-SIM implies (S, Ω)-NI. Assume that G is (S, Ω)-SIM.

For any s0, s1 in K̃n such that πS(s0) = πS(s1), we have πΩ ◦ G(s0)
Def. 2

= GΩ ◦
πS(s0) = GΩ ◦ πS(s1)

Def. 2
= πΩ ◦G(s1). Thus, G is (S, Ω)-NI.

Assume now that G is (S, Ω)-NI. From Definition 2, we have πΩ ◦G(s0) = πΩ ◦
G(s1) for any s0, s1 in K̃n such that πS(s0) = πS(s1). We construct a simulator
GΩ by returning, given a projected input σ, the result of πΩ ◦ G(σ||0) for wires in
Ω and random values on all other wires (where σ||0 injects σ into K̃n by assigning
0 to all missing inputs). Since πS(πS(s)||0) = πS(s) for all full input s, we have

GΩ ◦ πS(s) = πΩ ◦ G(πS(s)||0)
Def.2

= πΩ ◦ G(s) for all full input s. Thus, G is
(S, Ω)-SIM.

B Proofs of Strong Simulatability

We prove that the gadgets we consider are t-SNI and functionally correct. The definition
of correctness is standard and can be stated formally using the notion of unmasking,
where for any n and x ∈ Kn, the unmasking of x is defined as the sum JxK =

⊕n−1
i=0 xi.

B.1 Multiplication-Based Refreshing

We provide a pen-and-paper proof of Proposition 1; the proof matches closely its for-
malization in EasyCrypt.

Proof (Proposition 1). For functional correctness, we have to prove that the algorithm
implements the identity function: JRefreshMult(a)K = JaK. This can be seen by ex-
panding its results and simplifying the sums.

To prove t-SNI, we construct a simulator similar to those previously used to prove
the t-NI of several masking transformations (e.g., [15,21,8]). Let Ω = (I,O) be a t-
admissible set of observations, and let d1 = |I| and d2 = |O|. Note that d1 + d2 ≤ t.
Our goals are: i. to find a d1-compatible set S, ii. to construct a perfect simulator that
uses only shares S of the inputs.

First, we identify which variables are internals and which are outputs. Internals are
the ai, the ri,j (the value of r at iteration i, j), and the ci,j (resp. cj,i) which correspond
to the value of the variable ci (resp. cj) at iteration i, j. Outputs are the final values of
ci (i.e. ci,t).

We define S as follows: for each observation among ai, ri,j and ci,j (with j < t)
we add the index i to S. It is clear that S contains at most d1 indices. We now construct
the simulator. For clarity, observe that the RefreshMult algorithm can be equivalently



represented using the following matrix:


a0 0 r0,1 r0,2 · · · r0,t
a1 	 r0,1 0 r1,2 · · · r1,t
a2 	r0,2 	r1,2 0 · · · r2,t
...

...
...

...
. . .

...
ad 	 r0,t 	 r1,t 	r2,t · · · 0

 .

In this setting, ci,j corresponds to the partial sum of the j+2 first elements of line i. For
each i ∈ S (that is, for each line i that contains at least one observed internal value), ai
is provided to the simulator (by definition of S). Thus, the simulator can sample all ri,j
and compute all partial sums ci,j and the ith output normally. At this point, all values
on line i ∈ S (internal and output) are perfectly simulated.

We still have to simulate the observed output values for rows on which no internal
values are observed. Remark that simulating the ith line also necessarily fixes the value
of all random variables appearing in the ith column (so that dependencies between
variables are preserved). After internal observations are simulated, at most d1 lines of
the matrix are fully filled. Therefore, at least t−d1 ≥ d2 random values are unsimulated
on lines on which no internal observations are made. For each output observation made
on one such line (say i), we can therefore pick a different ri,j that we fix so that output
i can be simulated using a freshly sampled uniform value. ut

In order to formally verify this proof with EasyCrypt, we need to prove the equiv-
alence between two programs which share the same inputs {ai}i∈I . That is, we show
that whatever the observations made by adversary, as soon as they are upper bounded
by t, he cannot distinguish between both programs. To proceed, we need to write dif-
ferent derivations of the original program in order to simplify the proof of equivalence
for Easycrypt. Thus, we organize the security proof of Proposition 1 as a sequence of
games and a sequence of codes. We use different colors in the codes to underline the
differences with the previous game.

Game 0. The first game repre-
sents the original refreshing function
RefreshMult which computes the t + 1
shares ci without any observation.

function RefreshMult(a) :
for i = 0 to t do
ci ← ai;
for i = 0 to t do
for j = i+ 1 to t
ri,j ← $;
ci ← ci ⊕ ri,j ;
cj ← cj 	 ri,j ;

return c



Game 1. The second game also repre-
sents the original refreshing function but
on which the attacker can make up to t
observations whose t1 on the internal vari-
ables and t2 = t − t1 on the outputs. All
the observations are given in argument of
the function and for each intermediate vari-
able, if it belongs to the observations, it is
stored in a table. We refer to this function
as R0.
As explained in Section 3, there are three
kinds of internal observations ai, ri,j , ci,j
and the final ci. With this first function, we
can build the subscript I . If we define by
indk the kth index of a variable, we have
I = ind1(ai) ∪ ind1(ri,j) ∪ ind1(ci,j). In
this step, we formally verify with Easy-
crypt that the cardinal of I is at most t1 and
we show that RefreshMult and R0 com-
putes the same outputs.

Function R0(a,O) :
for i = 0 to d do
ci ← ai;
if (ai ∈ O) then ai ← ai;
for i = 0 to d do
for j = i+ 1 to d do
ri,j ← $;
if (ri,j ∈ O) then ri,j ← ri,j ;
ci ← ci ⊕ ri,j ;
if (ci,j ∈ O) then ci,j ← ci;
cj ← cj 	 ri,j ;
if (cj,i ∈ O) then cj,i ← cj ;

for i = 0 to d do
if (ci ∈ O) then ci ← ci;

return c

Game 2. We make a few changes on R0:
– we generate all the fresh random values at

the beginning of the function with the ran-
dom oracle-like function Sample and we
store them in a matrix,

– we compute all the values corresponding to
the internal observations,

– we compute the outputs (ci)i∈I ,
– we compute the outputs (ci)i/∈I .

We refer to this new function as R1 and we
use EasyCrypt to prove that R0 and R1 are
equivalent if they share the same inputs (ai)i∈I .

Function SumCij(i, j) :
s← ai;
for k = 0 to j do
if (i < k) then s← s⊕ ri,k;
elseif (i > k) then s← s	 rk,i;

return s;

Function R1(a,O) :
for i = 0 to t do
for j = i+ 1 to t do
ri,j ← Sample(i, j);

for i = 0 to t do
if (ai ∈ O) then ai ← ai;

for i = 0 to t do
if (i ∈ I) then
for j = 0 to t do
if (ri,j ∈ O) then
ri,j ← ri,j ;

if (ci,j ∈ O) then
ci,j ← SumCij(i, j);

if (ci ∈ O) then
ci ← SumCij(i, t);

for i = 0 to d do
if (i /∈ I) then
if (ci ∈ O) then
ci ← SumCij(i, t);

return c



Game 3. We now make a conceptual change to
Game 2. We delay the generation of the random
values as late as possible, i.e., that is just before
their first use. We refer to this new function as
R2. We prove the equivalence between Games 2
and 3 if they share the same inputs {ai}i∈I with
a generic proof made in EagerLazy.
Function SumCij(i, j) :
s← ai;
for k = 0 to j do
if (i < k) then s← s⊕ Sample(i, k);
elseif (i > k) then s← s	 Sample(k, i);

return s;

Function R2(a,O) :
for i = 0 to t do
if (ai ∈ O) then ai ← ai;

for i = 0 to t do
if (i ∈ I) then
for j = 0 to d do
if (ri,j ∈ O) then
ri,j ← Sample(i, j);

if (ci,j ∈ O) then
ci,j ← SumCij(i, j);

if (ci ∈ O) then
ci ← SumCij(i, t);

for i = 0 to d do
if (i /∈ I) then
if (ci ∈ O) then
ci ← SumCij(i, t);

return c;

Game 4. In this game, we make a significant change in the computation of the ci for
all the i which are not in I . Concretely, we show that there exist a non empty set of
indices L such that ∀` ∈ L, ri,` is not assigned yet. Then, instead of computing the ci
(for i /∈ I) as follows:

∀` ∈ L, ri,` ← $,

ci ← ai ⊕
i−1⊕
j=0

ri,j 	
t⊕

j=i+1

ri,j ,

we make the following change:

ci ← $,

∀` ∈ L\{k}, ri,` ← $,

if (i < k), ri,k ← ci 	 ai 	
i−1⊕

j=0,j 6=k

ri,j ⊕
t⊕

j=i+1,j 6=k

ri,j ,

if (i > k), ri,k ← 	ci ⊕ ai ⊕
i−1⊕

j=0,j 6=k

ri,j 	
t⊕

j=i+1,j 6=k

ri,j .

We prove the equivalence between Game 3 and Game 4 with EasyCrypt when functions
R2 and R3 share the same inputs {ai}i∈I . The most critical part of this step is undoubt-
edly to ensure that the subscript J contains at least one index. To do so, we need to
show that the elements ri,` with ` ∈ L were not already used and won’t be reused any-
where. Eventually, we formally prove that the results of R3, which represents the final
simulator, only depends on the inputs {ai}i∈I .



Function SumCij(i, j) :
s← ai;
for k = 0 to j do
if (i < k) then
s← s⊕ Sample(i, k);

else if (i > k) then
s← s	 Sample(k, i);

return s;
Function SetCi(i);
s← ai; k ← 0;
while ((k 6 t) ∧ ((i == k)∨
(k < i ∧ ((i, k) ∈ dom r))∨
(i < k ∧ ((k, i) ∈ dom r))) do
if (i < k) then s← s⊕ ri,k;
else then s← s	 ri,k;
k ← k + 1;
k′ ← k; r′ ← $;
for k = k′ to t do
s← s⊕ ri,k;
if (i < k′) then ri,k′ ← s⊕ r′;
else rk′,i ← s	 r′;
return r′;

Function R3(a,O) :
for i = 0 to t do
if (ai ∈ O) then
ai ← ai;

for i = 0 to t do
if (i ∈ I) then
for j = 0 to t do
if (ri,j ∈ O) then
ri,j ← Sample(i, j);
if (ci,j ∈ O) then
ci,j ← SumCij(i, j);

if (ci ∈ O) then
ci ← SetCi(i);

for i = 0 to t do
if (i /∈ I) then
if (ci ∈ O) then
ci ← SetCi(i);

return c;

Finally, we have formally proved that an adversary could not distinguish between
two programs which share the same inputs {ai}i∈I with at most t observations and that
the cardinal of I was upper bounded by the number of internal observations d1.

B.2 Secure Multiplication

We now prove Proposition 2 informally. A formal proof has also been done in Easy-
Crypt on the same model than for the multiplication-based refresh algorithm.

Proof. As for the multiplication-based mask refreshing algorithm, we first focus on the
functional correctness by proving that the algorithm implements the field multiplication
function: JSecMult(a, b)K = Ja⊗ bK. Similarly, this can be easily verified by simplify-
ing the sums and by the ring axioms (in particular distributivity of ⊗ over ⊕).

Let Ω = (I,O) be a t-admissible set of observations, and let d1 = |I| and d2 =
|O|. Note that d1 + d2 ≤ t. To prove t-SNI, we aim to find two d1-compatible sets S
and S ′, and to construct a perfect simulator that uses only shares S of a and shares S ′
of b.

First, we identify which variables are internals and which are outputs. We directly
split the internals in four groups for the needs of the proof:

Group 1: the ai, the bi, and the ai ⊗ bi,
Group 2: the ci,j (resp. cj,i) which correspond to the value of the variable ci (resp. cj)

at iteration i, j,



Group 3: the ri,j (the first value of r at iteration i, j), and the rj,i (the second value of
r at iteration i, j),

Group 4: the ai ⊗ bj and the ai ⊗ bj 	 ri,j .

The output variables are the final values of ci (i.e., ci,t).
As the algorithm takes two inputs a and b, we define two subscripts Sa and Sb which

will contain the indices of each input’s shares that will be further used for the simulation
of the observations. For each observation in the first or the second group, we add the
index i to Sa and to Sb. For each observation in the third or in the fourth group: if the
index i is already in Sa, we add the index j to Sa, otherwise we add the index i to Sa
and if the index i is already in Sb, we add the index j to Sb, otherwise we add the index
i to Sb. It is clear that the final sets Sa and Sb contain each one at most d1 indices, with
d1 ≤ t.

We now construct the simulator. For clarity, observe that the SecMult algorithm can
be equivalently represented using the following matrix:

a0 ⊗ b0 0 r0,1 r0,2 · · · r0,t
a1 ⊗ b1 r1,0 0 r1,2 · · · r1,t
a2 ⊗ b2 r2,0 r2,1 0 · · · r2,t

...
...

...
...

. . .
...

at ⊗ bt rt,0 rt,1 rt,2 · · · 0

 .

In this setting, ci,j corresponds to the partial sum of the j+2 first elements of line i. For
each variable ri,j (i < j) entering in the computation of an observation, we assign it a
fresh random value. Then, for each observation in the first group, ai and bi are provided
to the simulator (by definition of Sa and Sb) thus the observation is perfectly simulated.
For an observation in the third group, we distinguish two cases. If i < j, ri,j is already
assigned to a fresh random value. If i > j, either (i, j) ∈ Sa∧Sb and the observation is
perfectly simulated from rj,i, ai, bi, aj and bj or rj,i does not enter in the computation
of any internal variable that was observed and ri,j (line 8) is assigned to a fresh random
value. Each observation made in the fourth group is perfectly simulated using ri,j , ai
and bj . As for an observation in the second group, the corresponding variable is a partial
sum composed of a product ai ⊗ bi and of variables ri,j . Since ai and bi are provided
to the simulator in this case, we focus on each remaining ri,j . Each one of them such
that i < j is already assigned to a fresh random value. For the others, if rj,i enters
in the computation of any other internal observation, then (i, j) ∈ Sa ∧ Sb and ri,j is
simulated with rj,i, ai, bi, aj and bj . Otherwise, ri,j is assigned to a fresh random value.

We still have to simulate the observations on output variables. We start with the
ones whose intermediate sums (group 2) are also observed. For each such variable ci,
the biggest partial sum which is observed is already simulated. Thus, we consider the
remaining terms ri,j . Each one of them such that i < j is already assigned to a fresh
random value. For the others, either (i, j) ∈ (Sa ∩ Sb) and ci is perfectly simulated
from rj,i, ai, bi, aj and bj or rj,i does not enter in the computation of any internal
variable observed and ci is assigned to a fresh random value. We now consider output
observations whose partial sums are not observed. Each of them is composed of t ri,j .
And at most one of them can enter in the computation of each other variable ci. Since,



we already considered (without this one) at most t − 1 observations, at least one ri,j
does not enter in the computation of any other observed variable. Thus, ci is assigned
to a fresh random value.

B.3 Gadget x⊗ g(x)

We provide a pen-and-paper proof of Proposition 3. This proof has not yet been for-
malized in EasyCrypt, and we leave this as future work if a fully certified compiler or
verifier is desired.

Proof (Proposition 3). For functional correctness, we have to prove that the algorithm
implements the function: Jh(x)K = Jx⊗ g(x)K. This can be seen by expanding its
results and simplifying the field expressions.

Let Ω = (I,O) be a t-admissible set of observations, and let d1 = |I| and d2 =
|O|. Note that d1 + d2 ≤ t. To prove t-SNI, we need to: i. find a d1-compatible set S,
ii. construct a perfect simulator that uses only shares S of the input.

First, we identify which variables are internals and which are outputs. For the sake
of clarity, we denote by ri,j and r′i,j the random variables for which i < j. Internals
are:

1. the ai, the g(ai), the ai ⊗ g(ai) that only depend on ai,
2. the r′i,j , the g(r′i,j), the ai⊗ g(r′i,j) and the r′i,j ⊗ g(ai) that depend on both ai and
r′i,j ,

3. the aj 	 r′i,j , the g(aj 	 r′i,j), the ai⊗ g(aj 	 r′i,j) and the (aj 	 r′i,j)⊗ g(ai) that
depend on ai, aj and r′i,j ,

4. the ri,j , the ai⊗g(r′i,j)	ri,j , the ai⊗g(r′i,j)⊕r′i,j⊗g(ai)	ri,j , the ai⊗g(r′i,j)⊕
r′i,j ⊗ g(ai)⊕ ai ⊗ g(aj 	 r′i,j)	 ri,j and the ai ⊗ g(aj)⊕ aj ⊗ g(ai)	 ri,j that
are inversible in ri,j ,

5. the ai⊗g(ai)⊕
⊕j0

j=0(ai⊗g(aj)⊕aj⊗g(ai)⊕ rj,i) with 1 6 j0 6 i−1 and the
ai⊗g(ai)⊕

⊕i−1
j=0(ai⊗g(aj)⊕aj⊗g(ai)	rj,i)⊕

⊕j0
j=i+1 ri,j with i < j0 < d.

Outputs are the final values of ci (i.e. ci,t).
We define S as follows. For each observation among the first or the fifth group we

add the index i to S . For each observation in groups 2, 3 or 4, we add the index j
to S if i ∈ S , otherwise we add i to S . Since we only consider internal observations
when constructing S, it is clear that S contains at most d1 indices. We now construct
the simulator. For clarity, observe that the MultLinear algorithm can be equivalently
represented using the following matrix:

a0 ⊗ g(a0) 0 r0,1 r0,2 · · · r0,t
a1 ⊗ g(a1) f(a0, a1)	 r0,1 0 r1,2 · · · r1,t
a2 ⊗ g(a2) f(a0, a2)	 r0,2 f(a1, a2)	 r1,2 0 · · · r2,t

...
...

...
...

. . .
...

ad ⊗ g(ad) f(a0, at)	 r0,t f(a1, at)	 r1,t f(a2, at)	 r2,t · · · 0


with f(x, y) = x ⊗ g(y) ⊕ y ⊗ g(x). In this setting, ci,j corresponds to the partial
sum of the j + 2 first elements of line i. For each variable ri,j or r′i,j entering in the



computation of an observation, we assign it a fresh random value. Then, for each ob-
servation in the first group, ai is provided to the simulator (by definition of S) thus
the observation is perfectly simulated. For each observation in the second group, ai is
provided to the simulator and r′i,j is already assigned to a random value thus the ob-
servation is perfectly simulated. For each observation in the third group, we consider
two cases. If j ∈ S, then aj is also provided to the simulator and the observation can
be perfectly simulated with ai, aj and r′i,j . If j /∈ S , then r′i,j does not enter in the
computation of any other observation and aj 	 r′i,j can be assigned to a fresh random
value. The observation is thus perfectly simulated with ai. For each observation in the
fourth group, we also consider two cases. If j ∈ S, then aj is also provided to the sim-
ulator and the observation is perfectly simulated using ai, aj , ri,j and r′i,j . If j /∈ S,
then ri,j does not enter in the computation of any other observation. Thus, since this
observation is invertible with respect to ri,j it can be perfectly simulated by a fresh
random value. Finally, for each observation in the fifth group, we consider the different
terms. The first product ai⊗ g(ai) can be perfectly simulated with ai. Then, the sum of
ri,j can be perfectly simulated with the corresponding random values. As for the sum
of (ai ⊗ g(aj) ⊕ aj ⊗ g(ai) 	 rj,i) we consider two cases. If j ∈ S , this sum can be
perfectly simulated with ai, aj and rj,i. Otherwise, rj,i does not enter in the computa-
tion of any other observation and we can simulate the entire term using a fresh random
value.

We still have to simulate the observed output values for rows on which no internal
values are observed. Remark that simulating the ith line also necessarily fixed the value
of all random variables appearing in the ith column (so that dependencies between
variables are preserved). After internal observations are simulated, at most d1 lines of
the matrix are fully filled. Therefore, at least t− d1 > d2 (with d2 > 0 if the adversary
makes an output observation) random values are not yet simulated on lines on which no
internal observations are made. For each output observation made on one such line (say
i), we can therefore pick a different ri,j that we fix so that output i can be simulated
using a freshly sampled uniform value. ut

Remark 3. Note that the first part of the proof, involving the simulation of internal
observations only, was initially made in [8] to prove the gadget t-NI. However, the
authors omitted one internal variable: ai ⊗ g(r′i,j)	 ri,j . We thus fix the proof of t-NI
and further extend it to t-SNI by simulating outputs without any additional input shares.

Remark 4. In the compiler, we use the second algorithm provided by Coron et al. (Al-
gorithm 5 in [8]) to compute the multiplication x⊗ g(x) using a table. The algorithm is
not exactly the same but the security proof is a priori similar. Namely, even if the inter-
mediate variables are quite different, they can be classified like the ones of Algorithm
4 with the same dependencies (group 5 is exactly the same for both algorithms). Since
we use these same dependencies in the aforementioned proof to explain the simulation
of all possible sets of observations independently from the secret, we can reasonably
claim that Algorithm 5 from [8] is also t-SNI.



C Proof of Theorem 4.

The proof makes use of the following facts, that can be used to construct a simulator
for Robust(F,G) and bound the size of the sets of shares of the inputs it requires. We
easily extend the notions of gadget and (S/T)NI to include algorithms such as Half and
Double that do not use the same m on inputs and outputs.

– For any observation set ΩH on Half, there exists a (2|ΩH|)-compatible input pro-
jection SH such that Half is (SH, ΩH)-NI. Indeed, whenever share i of the output is
observed, we can give the simulator both shares 2i and 2i+ 1 of the input.

– For an observation set ΩD = (I,O) on Double, there exists a (|I| + |O|)-
compatible input projection SD such that Double is (SD, ΩD)-NI. Indeed, whenever
both output shares 2i and 2i+ 1 are observed, the simulator is given input share i, oth-
erwise, no input share is needed; internal observations are exactly the inputs and are
trivially simulated. ut

Proof (Theorem 4). Let ΩG
′

= ((IRG, IH, IG),OG′
) be a t-admissible observation set

on G′, and ΩF
′

= ((IF , ID, IRF ),OF ′
) be a t-admissible observation set on F ′.

ΩG = (IG,OG′
) is t-admissible, therefore there exists a (|IG|+|OG′ |)-compatible

SG such that G is (SG, ΩG)-NI.
By the property on Half, there exists a (2(|IH| + |SG|))-compatible SH such that

Half is (SH, (IH,SG))-NI.
Now, the observation set ΩR

G = (IR,SH) on the Refresh is 2t-admissible. There-
fore, there exists a |IRG|-compatible SG′

such that this instance of Refresh is (SG′
, ΩR

G)-
NI. It is important to note here that |SG′ | ≤ |IRG| ≤ t.

We can now move on to simulating F ′, augmenting the observation set ΩF
′

with
the observations SG′

on its output necessary to perfectly simulate G′.
The observation set ΩR

F = (IRF ,OR
F ∪SG

′
) is 2t-admissible. Therefore, there exists

a |IRF |-compatible input projection SRF such that this instance of the Refresh gadget is
(SRF , ΩR

F )-NI. Note again that |SRF | ≤ t, here.
Considering the observation set ΩD = (ID,SR) on the Double procedure, we de-

duce the existence of a (|ID|+ |SRF |)-compatible input projection SD (in fact, the bound
is tighter than this, but we only need this one).

Finally, we use the fact that F is t-TNI to finish constructing the simulator and
bounding the size of the final input projection S. ut

C.1 Application: Compilation of Stateful Circuits

We now consider the compilation of stateful circuits, or programs meant to be run in
contexts where the adversary fully controls the rate at which public inputs are provided,
and may therefore accommodate large break periods between executions (or loop it-
erations) during which he can move probes adaptively. Such stateful circuits can be
compiled using the stateless compiler in combination with the robust mask refreshing
operations described in Section 6, in a way similar to that of Ishai, Sahai and Wag-
ner [15].

More explicitly, the secret state is initially shared uniformly over m = t + 1
shares (away from the adversary’s observations), and is stored over 2m shares using



the Double;Refresh2t+1 program (possibly in view of the adversary if desired, let-
ting him place t probes). Each oracle G is compiled using our compiler from Sec-
tion 7 (or any other techniques providing the desired level of security) into a gad-
get Ḡ. Queries to oracle G are then answered using the transformed oracle Ḡ′ =
Refreshst;Halfst; Ḡ;Doublest;Refreshst, where the st subscript indicates that the an-
notated gadget should be executed on each variable in the shared state. We let the ad-
versary adaptively place t probes during each run of Ḡ′.

Following Theorem 4 (and its Corollary 1), it is clear that each adversary query’s
leakage can be perfectly simulated without having access to the initial secret, simply by
composing the simulators and applying them to a uniformly sampled initial secret.

D Details of the Type System

In Section 5, we present a simple typing judgment that is suitable to capture basic
non-interference notions on core gadgets and their compositions. A simple type system
could be devised to essentially mimic and automate the proof technique presented in
Section 4. However, such a type system would fail to scale to large programs where a
few non-affine components are reused many times and interleaved with complex linear
operations. In such a setting, it is important for our verification tool to support incre-
mental verification, where sub-procedures can be verified once, and their inferred type
used many times in the verification of the full algorithm. On the other hand, Section 5
also illustrates through a simple example that obtaining incrementality without losing
soundness or precision is challenging. We therefore consider here more complex typing
judgments and formally relate them to those discussed in the body of the paper.

Our type system relies on two kinds of judgements: one expressing types on gadgets
(used to type core gadgets, but also defined gadgets), and the other expressing types on
statements and code.

We call constraints pairs of the form C = (CO, Cφ) with CO ⊆ O and Cφ a for-
mula of the form

∧
φ(CO), where φ is a predicate expressing that |

⋃
X∈CO X| can be

bounded by a sum of cardinals of distinct symbols in I. We call inferred guarantees (or
simply guarantees) tuples of the form G = (GI ,GS ,G≤) with GI ⊆ I, GS ⊆ S, and
G≤ is a formula of the form

∧
|S| ≤ |I| where I ∈ I and S ∈ S. Given an (n, `, o)

gadget G and a constraint C and guarantee G, we call input types n-tuples ∆in of set
expressions in CO ∪ GI ∪ GS , and output types o-tuples ∆out of set expressions in CO
(in fact it is exactly CO seen as a tuple).

Essentially, when checking a side-condition in order to simulate a gadget, our type
system collects those constraints about the current sub-procedures output observations
that it has not successfully discharged into the constraint. Accumulated constraints are
then used as a side-condition to the simulation of that sub-procedure, and therefore
checked when type-checking its call.

Judgments on Gadgets Given a gadget G, constraint C = (CO, Cφ), guarantee
G = (GI ,GS ,G≤) and input and output types ∆in and ∆out, we write

C ` G : G, ∆in → ∆out

to mean that, for all O ∈ JCOK such that Cφ holds, and for all I ∈ JGIK, there exists
S ∈ JGSK such that G≤ holds and G is (∆in, (GI , ∆out))-NI.



Judgments on Code Given a statement p, a constraint C = (O, Cφ2 ), guarantees
G = (GI ,GS ,G≤) and G2 = (GI2 ,GS2 ,G

≤
2 ), and typemaps Γ1 and Γ2, we write

Cφ2 ,G2 `O p : G, Γ1 → Γ2

to mean (considering p as a gadget from state to state): for all O ∈ JOK, for all I2 ∈
JGI2 K and for all S2 ∈ JGS2 K such that Cφ2 and G≤2 hold, and for all I ∈ JGIK, there exists
S ∈ JGSK such that G≤ holds and p is (Γ1, (GI , Γ2))-NI.

Axioms in our type system are typing judgments on affine gadgets and on the
Refresh and SecMult gadgets. They are as follows:

– ({O}, φ(|O|)) ` Refresh : ({I}, {S}, |S| ≤ |I|),S → O
– ({O}, φ(|O|)) ` SecMult : ({I}, {S1,S2},

∧
i∈{1,2}

|Si| ≤ |I|), (S1,S2)→ O

Propositions 1 and 2 justify these types. Indeed, they imply the existence of an input
projection S that fulfills the desired non-interference property as soon as |I ∪ O| ≤ t.
This follows from the condition φ(|O|) and the global constraint that the total number
of observations is bounded by t (note that I is disjoint from all other observation sets).
The guarantees are exactly the compatibility constraints on S stated in the Propositions.
Similarly, an affine (n, `, 1)-gadget G can be equipped with the following type, which
is justified by theorem 1

({O}, ∅) ` G : ({I}, {S}, |S| ≤ |I|), (S ∪ O)n → O

Typing rules. Figure 9 presents the rules of our type system.
Rule (SEQ) is as expected. Typing the sequential composition c1; c2 proceeds as

follows. First the intermediate typemap Γ on variables occurring in c2 and the corre-
sponding sets of constraints Cφ2 and guarantees G2 are computed from the desired output
typemap Γ2 and guarantees G. Then, the input typemap Γ1 on variables occurring in c1
and the corresponding sets of constraints Cφ1 and guarantees G1 are computed from the
intermediate typemap Γ and combined guarantees G ∪ G2. The final constraints and
guarantees on c1; c2 are obtained by gathering those obtained on both sub-statements.

Rule (CALL) is the heart of the type system. When defining sub-gadgets, we identify
their arguments and results by variable name, and consider that the body reads inputs
directly from the indicated variables and writes output directly into result variables. To
check a call we first check that the called gadget is well-typed (either by axiom if it
is a core gadget, or by using Rule (GADGET) if it is user-defined). The set names in
GI and GS are refreshed (to ensure unicity), and we check, using G2 � Cφ{CO ←
Γ (x)} Cφ2 , that the gadget’s Cφ constraints hold under G when the output names CO
are instantiated with the types of x, potentially producing a new set of constraints Cφ2
on the caller’s output type. When computing the call’s input typemap Γ ′, we reset the
type of x (since its shares no longer need to be simulated) and associate to each output
variable y in y the union of its output type in Γ and of its output type in gadget G.

Rule (GADGET) typechecks the code of a gadgetG assuming distinct and fresh out-
put types on each variable. This produces a first set of constraints Cφ1 and of guarantees



G. From these and the computed input types on the gadget’s input variables, we then
compute a sufficient set of constraints on the output types to ensure that the guaran-
tees are sufficient to imply the cardinality condition on input types. The constraints are
conjoined to form a constraint on the gadget itself.

We now discuss how conditions of the form G � Cφ{CO ← Γ (x)}  Cφ2 are
checked. After substituting Γ (x) for CO in Cφ, the constraint is a conjunction of φ(Ei),
where Ei ∈ E(O′ ∪ GI ∪ GS), where O′ is a subset of O disjoint from CO. Since we
know that the Os are disjoint from the Is and Ss, the constraint can be rewritten as a
conjunction CO′

=
∧
φ(EO

′

i ) with EO
′

i ∈ E(O′) on the one hand, and a conjunction of
CG = φ(EGi ) with EGi ∈ E(GI ∪ GS) on the other. CO′

is output as the new constraint
on the caller’s output type, and the guarantees in G are used to check whether CG holds.

Cφ2 ,G `
O c2 : G2, Γ → Γ2 Cφ1 ,G ∪ G2 `

O c1 : G1, Γ1 → Γ

Cφ1 ∧ C
φ
2 ,G `

O c1; c2 : G1 ∪ G2, Γ1 → Γ2

(SEQ)

C ` G : G,∆1 → ∆2 set names in GI ,GS are refreshed
Γ ′ = Γ [x 7→ ∅]

⊔
y

∆1{CO ← Γ (x)} G2 � Cφ{CO ← Γ (x)} Cφ2

Cφ2 ,G2 `
O x← G(y) : G, Γ ′ → Γ

(CALL)

G = (x, cG, r) Cφ1 , ∅ `
∆2 cG : G, Γ → ⊥[r 7→ ∆2]

G � φ(Γ (x)) Cφ2 names in ∆2 are distinct

(∆2, Cφ1 ∧ C
φ
2 ) ` G : G, Γ (x)→ ∆2

(GADGET)

Fig. 9: Typing rule for t-NI

Theorem 5. Given an (n, `, o)-gadget G, if C ` G : G, ∆in → ∆out for some G, ∆in

and ∆out, and for some C such that Cφ = φ(CO), then the following judgments (as
defined in Section 5) are valid.

`CO,∅]GI ,∅]GS {G≤;∆in} G {|CO| ≤ t;∆out} (3)

CO;GI ;GS ;G≤ �G ∆in (4)

Therefore, G is t-NI.

E Input/Generated code for AES S-box

The following codes show the input code sent to the compiler (AES S-Box) and the
resulting generated code. Notice that the compiler automatically introduces the needed
refresh (in function pow254) and use the affine gadget and_pub instead of the one
based on SecMult.



AES S-Box input code

bint8_t pow254(bint8_t x){
bint8_t r, w, z;

z = gf256_pow2(x);

r = gf256_mul(x,z);
w = gf256_pow4(r);

r = gf256_mul(r,w);
r = gf256_pow16(r);
r = gf256_mul(r,w);
r = gf256_mul(r,z);
return r;

}

bint8_t affine (bint8_t a){
uint8_t j;
bint8_t res = 0x00;
bint8_t t;

for (j = 0; j < 8; j++){
t = a >> j;
t ˆ= a >> ((j + 4)%8);
t ˆ= a >> ((j + 5)%8);
t ˆ= a >> ((j + 6)%8);
t ˆ= a >> ((j + 7)%8);
t &= 0x01;
res ˆ= t << j;

}

res = res ˆ 0x63;
return res;

}

bint8_t sbox(bint8_t a){
bint8_t r;

r = pow254(a);
r = affine(r);
return r;

}

Generated code

void pow254 (bint8_t r, bint8_t x){
bint8_t x0;
bint8_t w;
bint8_t z;
bint8_t aux;
bint8_copy(x0, x);
gf256_pow2(z, x0);
bint8_refresh(aux, z);
gf256_mul(r, x0, aux);
gf256_pow4(w, r);
bint8_refresh(aux, w);
gf256_mul(r, r, aux);
gf256_pow16(r, r);
gf256_mul(r, r, w);
gf256_mul(r, r, z);
return;

}

void affine (bint8_t res, bint8_t a){
bint8_t aux;
bint8_t a0;
uint8_t j;
bint8_t t;
bint8_copy(a0, a);
bint8_to_base(res, 0);
for(j = 0; j < 8; j++) {
bint8_rshift(t, a0, j);
bint8_rshift(aux, a0, (j+4)%8);
bint8_xor(t, t, aux);
bint8_rshift(aux, a0, (j+5)%8);
bint8_xor(t, t, aux);
bint8_rshift(aux, a0, (j+6)%8);
bint8_xor(t, t, aux);
bint8_rshift(aux, a0, (j+7)%8);
bint8_xor(t, t, aux);
bint8_and_pub(t, t, 1);
bint8_lshift(aux, t, j);
bint8_xor(res, res, aux);

}
bint8_xor_pub(res, res, 99);
return;

}

void sbox (bint8_t r, bint8_t a){
bint8_t a0;
bint8_copy(a0, a);
pow254(r, a0);
affine(r, r);
return;

}
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