
1

Notes on Two Fully Homomorphic Encryption
Schemes Without Bootstrapping

Yongge Wang
UNC Charlotte

Charlotte, NC 28223, USA
yonwang@uncc.edu

Abstract

Last week, IACR ePrint archive posted two fully homomorphic encryption schemes without bootstrapping. In
this note, we show that these schemes are trivially insecure.

I. INTRODUCTION

Though it is a very challenging problem to design fully homomorphic encryption schemes without bootstrapping.
We still see that quite a few researchers post candidate designs frequently. This note points out that the two schemes
posted to IACR ePrint archive last week are trivially insecure: the scheme by Masahiro Yagisawa [4] on 19 May
2015 and the scheme by Dongxi Liu [3] on 17 May 2015.

II. MASAHIRO YAGISAWA [4]’S SCHEME

Octonion (see, e.g., Conway and Smith [2] or Baez [1]) is the largest of the four normed division algebra and
is the only normed division algebra that is neither commutative nor associative. Each octonion number is a vector
a = [a0, · · · , a7] ∈ R8 where R is the real number. For each octonion number a = [a0, · · · , a7], we define an
associate 8× 8 matrix

Aa =



a0 −a1 −a2 −a3 −a4 −a5 −a6 −a7
a0 a1 a2 a3 −a4 a5 −a6 −a7
a0 −a1 a2 a3 a4 −a5 a6 −a7
a0 −a1 −a2 a3 a4 a5 −a6 a7
a0 a1 −a2 a3 a4 a5 a6 −a7
a0 −a1 a2 −a3 −a4 a5 a6 a7
a0 a1 −a2 a3 −a4 −a5 a6 a7
a0 a1 a2 −a3 a4 −a5 −a6 a7


(1)

For two octonions a = [a0, · · · , a7] and b = [b0, · · · , b7], we can add them as a + b = [a0 + b0, · · · , a7 + bt] and
multiply them as ab = bAT

a .
Using octonions over GF (q), Yagisawa [4] introduced a fully homomorphic encryption scheme. Though Yagisawa

[4] defined his fully homomorphic encryption scheme in terms of a sequence of private octonion numbers, the
scheme could be simplified using matrix operations. Let GF (q) be the underlying finite field that we will work
with and 1 = [1, 0, 0, 0, 0, 0, 0, 0]. Then the protocol works as follows:
Key Setup. Choose a random invertible 8× 8 matrix K ∈ GF (q)8×8. K is the private key.
Encryption. For a message m ∈ GF (q)8, compute the cipher text Cm = Enc(K,m) = K−1AmK ∈ GF 8×8

where Am is the associate matrix for m when m is considered as an octonion number.
Decryption. For a received ciphertext Cm, compute Am = KCmK

−1. m can then be recovered from Am.
Ciphertext addition. The addition of two ciphertexts Cm0

and Cm1
is defined as the component wise addition

Cm0+m1
= Cm0

+ Cm1
. That is, this is just the regular matrix addition.

Ciphertext multiplication. The multiplication of two ciphertexts Cm0
and Cm1

is defined as the regular matrix
multiplication Cm0×m1

= Cm0
Cm1

= KAm0
K−1KAm1

K−1 = KAm0
Am1

K−1.
First we note that the above scheme is not fully homomorphic over GF (q). Indeed, it is only fully homomorphic

over the octonion numbers over GF (q) since the multiplication of ciphertexts is the ciphertext of an octonion
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number which is a multiplication over the octonions. Since the multiplication in octonions is neither associative nor
commutative, we generally cannot get a fully homomorphic scheme for GF (q) using the above scheme. Though it
is possible to revise the scheme to make it fully homomorphic over GF (q). For example, for a plain text message

m ∈ GF (q) one may define an associate matrix Aa =

(
m 0
bT B

)
∈ GF (q)8×8 with uniformly at random chosen

b ∈ GF (q)7 and B ∈ GF (q)7×7.
Next we briefly mention that the above scheme could not be secure. The major issue for the above scheme is

that the plaintext 0 = [0, 0, 0, 0, 0, 0, 0, 0] is encrypted to the zero matrix. In other words, we can easily distinguish
the ciphertext of m and −m since Cm + C−m = 0.

III. DONGXI LIU [3]’S SCHEME

Liu [3] proposed a candidate fully homomorphic encryption scheme using linear algebra over GF (q). Though
the design in [3] is very complicated, we give a simple (equivalent) description of the protocol in [3]. From the
simplified description, it is straightforward that the public evaluation keys leak all of the private key.

Let l, n be given numbers with l ≤ n− 2. It is recommended to use n = 5 and l = 3 in [3]. The protocol works
as follows.
Key Setup.
• Choose random vectors k = [k0, · · · , kn] ∈ GF (q)n+1 and Θ = [θ0, · · · , θl−1] ∈ GF (q)l.
• For each m ∈ GF (q), let cm = ENC(k,m) = [c0, · · · , cn] ∈ GF (q)n+1 such that m = k · cm where · is the

inner product of k and cm. That is, k · cm = c0k0 + c1k1 + · · ·+ cnkn.
• Let Φ = [ENC(k, θ0), · · · , ENC(k, θl−1), ENC(k, 1)].
• The private key is k and Θ.
• The public evaluation key is pek = {pi,j = ENC(k, kikj) : 0 ≤ i, j ≤ n}

Encryption. For a message m ∈ GF (q), choose random r0, · · · , rl ∈ GF (q) with m = r0 ⊕ r1 ⊕ · · · ⊕ rl. The
ciphertext of m is cm = (r0 · ENC(k, θ0))⊕ · · · ⊕ (rl−1 · ENC(k, θl−1))⊕ (rl · ENC(k, 1)).
Decryption. For a received ciphertext cm, compute m = k · cm.
Ciphertext addition. The addition of two ciphertexts cm0

and cm1
is defined as the component wise addition

cm0+m1
= cm0

+ cm1
. That is, this is just the regular component wise vector addition.

Ciphertext multiplication. The multiplication of two ciphertexts cm0
= [c0, · · · , cn] and cm1

= [c′0, · · · , c′n] is
defined as cm0m1

=
∑n

i,j=0 cicjpi,j .
The correctness of the protocol could be easily verified (for details, it is referred to the original paper [3].

However, the protocol cannot be secure since the private key k could be trivially derived from the public evaluation
key pek. As an example, we can assume that pi,j = [pi,j,0, · · · , pi,j,n]. Then we have the equations

k0k0 = p0,0,0k0 + · · ·+ p0,0,nkn
· · ·
kikj = pi,j,0k0 + · · ·+ pi,j,nkn
· · ·
knkn = pn,n,0k0 + · · ·+ pnn,,nkn

(2)

Using equation (2), one can easily obtain the private key k by constructing polynomial equations f(ki) = 0 in one
variable and then using the Euclidean algorithm to compute gcd(f(x), xq−x) (or use Berlekamp’s algorithm). For
example, from the first equation, one can obtain an expression of kn in terms of k0, · · · , kn−1. By substituting this
kn into all remaining equations, one eliminates the occurrence of kn from all remaining equations.
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