
Efficient, Pairing-Free, One Round Attribute-Based
Authenticated Key Exchange

Suvradip Chakraborty1 , Srinivasan Raghuraman1, C. Pandu Rangan1

1 – Theoretical Computer Science Lab, Department of Computer Science and Engineering, Indian Institute of
Technology Madras, Chennai, India

suvradip1111@gmail.com, srini131293@gmail.com, prangan55@gmail.com

Abstract. In this paper, we present a single round two-party attribute-based authenticated key ex-
change protocol. Since pairing is a costly operation and the composite order groups must be very large
to ensure security, we focus on pairing free protocols in prime order groups. We propose a new pro-
tocol that is pairing free, working in prime order group and having tight reduction to Strong Diffie
Hellman (SDH) problem under the Attribute-based CK model which is a natural extension of the CK
model for the public key setting. Our proposed attribute based authenticated key exchange protocol
(ABAKE) also does not depend on any underlying attribute based encryption schemes unlike the pre-
vious solutions for ABAKE. Ours is the first scheme that removes this restriction. Thus, the first major
advantage is that smaller key sizes are sufficient to achieve comparable security. Our scheme has several
other advantages. The major one being the capability to handle active adversaries. Most of the previous
Attribute-Based authenticated key exchange protocols can offer security only under passive adversaries.
Our protocol recognizes the corruption by an active adversary and aborts the process. In addition to
this property, our scheme satisfies other security properties that are not covered by CK model such as
forward secrecy, key compromise impersonation attacks and ephemeral key compromise impersonation
attacks.

Keywords: Authenticated Key Exchange, attribute based authenticated key exchange, CK model, ABCK
model, Random Oracle Model, Forward Secrecy, Key Compromise Impersonation attacks.

1 Introduction

Attribute based encryption (ABE) was introduced by Sahai and Waters [SW05] which allows for fine-grained
access control on encrypted data and reduces bulk encryptions to a number of people who have several com-
mon characteristics. After that a lot of other ABE schemes were proposed [GPSW06], [BSW07], [GJPS08],
[OSW07], [LOS+10], [OT10]. The goal of an Authenticated Key Exchange (AKE) protocol is for two par-
ties to establish a common shared session key which they can later use to securely communicate with each
other. Attribute-based AKE (ABAKE) is a new variant of the AKE that allows users to authenticate each
other using their attributes unlike in the PKI settings where the users authenticate each other using their
identities. ABAKE can hide the identity information of an individual, which allows users to achieve mutual
authentication and establish a secret session key by their attributes and some fine grained access control
policy. Attribute based key exchange finds its application in distributed collaborative systems where it is
more convenient for users to communicate with other users using their roles or responsibilities which can be
described by attributes, interactive chat rooms , online forums where a user can have read/write access to
threads only if they have desired attributes etc. Hence an authenticated key exchange protocol that facili-
tates attribute usage can be employed in this setting. Besides it may also be used to securely transfer some
sensitive information such as medical history which is established by some AKE scheme.

1.1 Related Works

In the recent literature some ABAKE are proposed. Ateniese et al. [AKB07] proposed a fuzzy handshake
technique that is closely related to the ABAKE model. However there are some differences between the two

as their scheme can only handle simple authentication condition by allowing only a single threshold gates as
opposed to several threshold gates in AB-AKE settings. Gorantla et al. [GBN10] proposed the first ABAKE
scheme based on key encapsulation mechanism which provides parties with the fine-grained access control
based on parties attributes. However it does not provide the flexibility of each user to select their access
structures which they want their peers to satisfy. So in that sense their scheme is not an ABAKE scheme.
Besides the security of their scheme is based on the BR model [BR94].
Birkett and Stebila [BS10] introduced the concept of predicate based key exchange with fine-grained access
control with a predicate-based signature and here the parties can specify the condition the peer is expected
to satisfy. However their scheme is proven secure in the random oracle model in BR model. The BR model
does not allow the adversary to reveal the session specific informations and ephemral keys. Yoneyama [Yon10]
proposed a two-pass attribute based key exchange secure in the random oracle model under the Gap Bilinear
Diffie Hellman assumption in the attribute based eCK [LLM07] model. But it does not achieve full security
(i.e. adaptive security) as it relies on Waters CP-ABE which is selectively secure.

The previous works on attribute based key agreement do not consider an active adversary. An active adversary
is one which can extract the messages that are exchanged during key agreement and modify them arbitrarily
during transit. In the scheme presented in [Yon10], the adversary can extract the ephemeral component
(X, {U}) and change it to (X ′, {U ′}) and chooses an access structure by itself that is trivially satisfied by
the attributes of user B and send it to B. Similarly he can extract the ephemeral component (Y, {V }) and
change it to (Y ′, {V ′}) and chooses an access structure by itself that is trivially satisfied by the attributes of
user A and send it to A. Thus the final shared secret key of A and B will not be in agreement. Our protocol
avoids this kind of an attack by a signature on the ephemeral components. In our scheme, we use a Schnorr
group and hence the exponentiation operations are cheaper even though it involves more exponentiation
operations. This is because in a Schnorr group the exponent is from a group Zp

∗ where size of p is 224 bits
according to http://www.keylength.com/en/4/.

1.2 Our Contribution

– In this paper, we present an attribute based key agreement protocol which can be proved secure under
the Strong-Diffie Hellman (SDH) assumption [AKO09] in the random oracle model. We extend the tech-
niques used in [VSVR13] for attribute based settings. Doing this is not trivial since in an attribute based
system the keys and the ciphertexts have much more richer structure than identity based encryption
schemes. We are able to achieve a tight reduction to the Strong Diffie Hellman problem based on the
random oracle model.

– All the previous known attribute based key agreement protocols use well known existing attribute based
encryption schemes to get a key agreement among the users. Hence the security of the key agreement
were implicitly relying on the security guarantees provided by the underlying encryption schemes. Ours
is the first scheme that removes this restriction and we get a key agreement protocol that does not rely on
any attribute based encryption scheme. Moreover our construction is also efficient as it does not involve
any pairing computations.

– Our scheme is also resistant to a dynamic active adversary which is allowed to modify the components
exchanged during the key agreement. The scheme performs a check which will detect any tampering
done on the components. In this way, a fully authenticated key agreement protocol (both the parties are
mutually authenticated to each other) is achieved.

– The protocol also satisfies additional security properties like forward secrecy, key compromise imperson-
ation attacks.

– In a practical sense, we can use any string as an attribute in our protocol because the setup algorithm of
our protocol does not depend on the number of attribute candidates (i.e., the setup algorithm outputs

constant size parameters).

– Finally, we prove the security of our ABAKE system in the attribute based CK (ABCK) model which is a
natural extension of the CK model for public key settings. In the ABCK model the adversary is allowed
to pose queries that allows him to reveal the static secret key, master secret key and the ephemeral
secret key. Also the freshness conditions are a little different than the CK model and the parties are
identified by a set of attribute SP . We prove the security of our ABAKE in this model under the SDH
assumption. From the relation between hard problem and the instance of the protocol, it is clear that the
key size be just same as the problem size that makes the SDH problem hard. Such tight reductions imply
stronger security even with smaller keys. Thus, in practice, we may obtain a decent degree of security
with reasonable sized keys.

1.3 Organization

In section 2, we present the preliminaries required for our ABAKE protocol. In more details, subsections
2.1- 2.4 provide the required notations and the necessary details on access structure,linear secret sharing
schemes and the security assumptions. In section 3, we describe ABCK model and define the security of
ABAKE schemes in this ABCK model. In section 4 we present our ABAKE scheme and in section 5 we
prove the security of our ABAKE scheme. Section 6 describes the additional security guarantees that our
scheme achieves. Finally section 7 concludes the paper.

2 Preliminaries

2.1 Notation

Throughout this work, we denote the security parameter by κ.
We denote by x ∈R X the fact that the value of the variable x is chosen uniformly at random from the

set of values X.
We set up notations for vectors which are used extensively. We denote by −→a a vector, which is the tuple

of values (a1, . . . , an), where n is the length of the vector −→a . We define the outcome of various operations
on a vector as used in this work.

1. For any function f , we denote by f (−→a) the tuple of values (f (a1) , . . . , f (an)).
2. For any function f and scalar c, we denote by f (c,−→a) the tuple of values (f (c, a1) , . . . , f (c, an)).

3. For any function f , we denote by f
(−→a ,−→b) the tuple of values (f (a1, b1) , . . . , f (an, bn)), where n is the

length of the vectors −→a and
−→
b .

As illustrations to each of the aforementioned,

1. Suppose H is a hash function with domain {0, 1}∗. This could be a keyed-hash function, and for simplicity,
we ignore mentioning the key repeatedly. We denote by H (−→a) the tuple of values (H (a1) , . . . ,H (an)).

2. Suppose G is a multiplicative group and g ∈ G. We denote by g
−→a the tuple of values (ga1 , . . . , gan).

3. We denote by −→a +
−→
b and −→a ·

−→
b , respectively, the tuple of values (a1 + b1, . . . , an + bn) and the tuple

of values (a1 · b1, . . . , an · bn), respectively, where n is the length of the vectors −→a and
−→
b .

2.2 Access Structure

Definition 1. Access Structure [Bei96] Let {P1, · · ·Pn} be a set of parties. A collection X ⊆ 2{P1,···Pn}

is monotone if ∀B,C: if B ∈ X and B ⊆ C, then C ∈ X. An access structure (respectively, monotone
access structure) is a collection (respectively, monotone collection) X of non-empty subsets of P1, · · ·Pn,
i.e A ⊆ 2{P1,···Pn}\{∅}. The sets in A are called the authorized sets, and the sets not in X are called the
unauthorized sets.

In our setting, attributes will play the role of parties and we will only deal with monotone access structures.
We note that it is possible to (inefficiently) realize general access structures with our techniques by having
the negation of an attribute be a separate attribute (so the total number of attributes will be doubled).

2.3 Linear Secret Sharing

Our construction will employ linear secret sharing schemes (LSSS). We use the definition adapted from
[Wat11].

Definition 2. (Linear Secret Sharing (LSSS)) A secret sharing scheme π over a set of parties P is called
linear (over Zp) if

1. The shares for each party form a vector over Zp.
2. There exists a matrix A called the share-generating matrix for Π. The matrix A has l rows and n columns.

For all i = 1, . . . , l, the ith row of A is labeled by a party ρ(i) (ρ is a function from {i = 1, . . . , l} to
P). When we consider the column vector v = (s, r2 · · · rn), where s ∈ Zp is the secret to be shared and
r2, · · · rn ∈ Zp are randomly chosen, then Av is the vector of l shares of the secret s according to Π. The
share (Av)i belongs to party ρ(i).

We note the linear reconstruction property: we suppose that Π is an LSSS for access structure A. We let S
denote an authorized set, and define I ⊆ {i = 1, · · · , l, } as I = {i|ρ(i) ∈ S}. Then the vector (1, 0, · · · , 0)
is in the span of rows of A indexed by I, and there exist constants {wi ∈ Zp}i∈I such that for any valid
shares {λi} of a secret s according to Π, we have:

∑
i∈I wiλi = s. These constants {wi} can be found in

time polynomial in the size of the share-generating matrix A [Wat11]. We note that for unauthorized sets,
no such constants {wi} exist.

Boolean Formulas Access policies might also be described in terms of monotonic boolean formulas. LSSS
access structures are more general and can be derived from such representations. More precisely, one can use
standard techniques to convert any monotonic boolean formula into a corresponding LSSS matrix. We can
represent the boolean formula as an access tree, where the interior nodes are AND and OR gates, and the
leaf nodes correspond to attributes. The number of rows in the corresponding LSSS matrix will be same as
the number of leaf nodes in the access tree.

2.4 Complexity Assumptions

In this section, we present a brief overview of the hard problem assumptions.

Definition 3. Computation Diffie-Hellman Problem (CDH) - Given (g, ga, gb) ∈R G3 for unknown
a, b ∈ Z∗q , where G is a cyclic prime order multiplicative group with g as a generator and q the order of the

group, the CDH problem in G is to compute gab.

The advantage of any probabilistic polynomial time algorithm A in solving the CDH problem in G is defined
as

AdvCDHA = Pr
[
A(g, ga, gb) = gab | a, b ∈ Z∗q

]
The CDH Assumption is that, for any probabilistic polynomial time algorithm A, the advantage AdvCDHA is
negligibly small.

Definition 4. Decisional Diffie-Hellman Problem (DDH) - Given (g, ga, gb, h) ∈ G4 for unknown
a, b ∈ Z∗q , where G is a cyclic prime order multiplicative group with g as a generator and q the order of the

group, the DDH problem in G is to check whether h
?
= gab.

The advantage of any probabilistic polynomial time algorithm A in solving the DDH problem in G is defined
as

AdvDDHA = |Pr
[
A(g, ga, gb, gab) = 1

]
− Pr

[
A(g, ga, gb, h) = 1

]
| | a, b ∈ Z∗q

The CDH Assumption is that, for any probabilistic polynomial time algorithm A, the advantage AdvCDHA is
negligibly small.

Definition 5. Strong Diffie Hellman Problem (SDH) [AKO09]): Let κ be the security parameter
and G be a multiplicative group of order q, where |q| = κ. Given (g, ga, gb) ∈R G3 and access to a Decision
Diffie Hellman (DDH) oracle DDHg,a(., .) which on input gb and gc outputs True if and only if gab = gc,
the strong Diffie Hellman problem is to compute gab ∈ G (i.e., the problem of solving Computational Diffie
Hellman Problem (CDH) using a DDH oracle)

The advantage of an adversary A in solving the strong Diffie Hellman problem is defined as the probability
with which A solves the above strong Diffie Hellman problem.

AdvSDHPA = Pr[A(g, ga, gb) = gab|DDHg,a(., .)]

The strong Diffie Hellman assumption holds in G if for all polynomial time adversaries A, the advantage
AdvSDHPA is negligible.

Note: In pairing groups (also known as gap groups), the DDH oracle can be efficiently instantiated and
hence the strong Diffie Hellman problem is equivalent to the Gap Diffie Hellman problem [OP01].

3 ABCK security model

In this section we describe the ABCK model which is a natural extension of the CK model for PKI settings.
An ABAKE consists of three polynomial time algorithms – Setup, KeyGen and KeyExchange. These algorithms
are discussed below.

Setup: The setup algorithm takes as input the implicit security parameter κ and the attribute universe U
and outputs the master public key MPK and master secret key MSK.

KeyGen: The key generation algorithm takes in the master secret key MSK, the master public key MPK,
and a set of attributes SP given by a party P , and outputs a static secret key SKSP corresponding to SP.

KeyExchange: This algorithm is run between two or more users or parties in the system(in our case the number
of users is two as it is two-party setting). Each party in the AB-AKE protocol executes the KeyExchange
algorithm which initially takes as input the master public key MPK, an access structure X and a private key
for a set of attributes S. If S satisfies X, KeyExchange proceeds as per specification and may generate outgoing
messages and also accept incoming messages from other parties as inputs. The output of KeyExchange is
either a session key Z or ⊥. Both parties compute the same session key Z if and only if SA ∈ XB and SB ∈ XA
(i.e, the attributes of one party satisfies the access structure of its peer).

Session. An instance of the protocol as described above when run at a party is called a session. The
user/entity that initiates a session is called the owner and the other user is called the peer.A session is
activated with an incoming message of the forms (I,SA,SB) or (R,SB ,SA,m1), where I and R with role
identifiers, and A and B with user identifiers. If A was activated with (I,SA,SB), then A is called the session
initiator. If B was activated with (R,SB ,SA,m1), then B is called the session responder. The components
exchanged between the owner and the peer constitute the session state. The shared secret key obtained
after exchange of components among both the parties is called the session key. On successful completion of
a session, each entity outputs the session key and deletes the session state. Otherwise, the session is said
to be in abort state and no session key is generated in this case. Each entity participating in a session
assigns a unique identifier to that session. If A is the initiator of the session it sets the session id sid as
(I,SA,SB , out, in) where out and in are respectively the components sent to B and received by A. If B is
the responder of a session initiated by A, it sets the sid as (R,SB ,SA, out′, in′).
Adversary. The adversary A is also modelled as a probabilistic polynomial time turing machine which
has full control on the communication network over which protocol messages can be altered, injected or
eavesdropped at any time. There are three types of adversary:

– Type I : The adversary of this type does not belong to the system and hence has access only to the
PKG’s parameters. It is not given access to the private keys of users and does not impersonate anyone.
This is the weakest adversary.

– Type II : The adversary belongs to the attribute based system and can query for the private keys of
polynomial number of users. It is not allowed to impersonate as any user.

– Type III : The adversary of this type belongs to the attribute based system and it is given access to
the private keys of polynomial number of users. It can also impersonate as any other user. This is the
strongest adversary and we prove our scheme secure against this type of adversary.

Since we prove our scheme secure against the Type III adversary, it is also secure against Type I and Type
II because they are weaker adversaries compared to Type III. We allow the adversary to access some of the
parties secret information, via the following oracle queries:

Send(Message): The ability of the adversary to control the communication network is modelled by the Send
query. Here the adversary can send a message of the form (I,SA,SB ,m). It sends a message m to the party
A on behalf of party B and return A’s response to this message to the adversary. If m = 0, this query makes
party A to start an AKE session with B and to provide communication from B to A. Else it will send the
message m from party A to party B and makes B respond to the supposed session (I,SA,SB ,m, ?)
SessionStateReveal(sid): The adversary A is given all the ephemeral secrets or the session state corresponding
to the session sid. This could be possible if the session-specific secret information is stored in insecure memory,
or if the random number generator of the party be guessed.
SessionKeyReveal(sid): A is given the session key for sid, provided that the session holds a session key.

Party Corruption(SP): The adversary learns the static secret key corresponding to the set of attributes SP .

Establish(P,SP): This query allows the adversary to register a set of attributes SP on behalf of the party P ;

the adversary totally controls that party. If a party is established by Establish(P,SP) query issued by the
adversary, then we call the party P dishonest or corrupt. If not, we call the party honest.

We now give the definition for a matching session and what it means for a session to be fresh.

Definition 6. (Matching Sessions). Let Π be a protocol and sid = (ζ,SA,SB , out, in) and sid′ =
(ζ ′,SB ,SA, in′, out′) be the identifier of two sessions. Then sid and sid′ are called matching (or partnered)
sessions if:

– The attributes of user B satisfy the access structure of user A i.e. SB ∈ XA.

– The attributes of user A satisfy the access structure of user B i.e. SA ∈ XB.

– out = in′ and in = out′ and

– ζ 6= ζ ′

Definition 7. (Freshness). A session with identifier sid is called fresh if none of the following queries by
an adversary are allowed on that session sid or it’s matching session sid′ (if it exists)

– The adversary A issues a SessionKeyReveal query on sid.

– The adversary A issues a SessionStateReveal query on sid.

– The adversary A issues a Party Corruption(SP) query on the party P holding the session sid or a
Establish(P,SP) query on P .

The adversary begins the second phase of the game by choosing a fresh session sid* and issuing a Test(sid*)
query, where the fresh session and test query are defined as follows:

Test(sid*): Here the session sid* must be a fresh session. On the Test query, a bit b ∈ {0, 1} is randomly
chosen.The session key is given to the adversary A , if b = 0, otherwise a uniformly chosen random value
from the distribution of valid session keys is returned to A. Only one query of this form is allowed for the
adversary. Of course, after the Test query has been issued, the adversary can continue querying the oracles

provided that the test session is fresh. A outputs his guess b′ in the test session. An adversary wins the game
if the selected test session is fresh and if he guesses the challenge correctly i.e., b′ = b. The advantage of A
in the ABAKE scheme Π is defined as

AdvABCK
Π (A) = Pr[A wins]− 1

2

We now define the ABCK security definition as follows:

Definition 8. (ABCK security). We say that an ABAKE scheme Π is secure in the ABCK model, if the
following conditions hold:

1. If two honest parties complete matching sessions and SA ∈ XB and SB ∈ XA, then, except with negligible
probability, they both compute the same session key.

2. For any probabilistic polynomial-time adversary A, AdvABCK
Π (A) is negligible.

4 Our Construction

We now give the description of the attribute based key agreement protocol and formally prove its security
in the next section.

Setup: It chooses a group G of prime order q. Let g be the generator of group G. The PKG picks s1, s2 ∈R
Zp
∗, where p divides q − 1, sets y1 = gs1 and y2 = gs2 . The master secret key is 〈s1, s2〉 and the master

public key is 〈y1, y2〉. It also defines the following hash functions: H1 : {0, 1}∗ → G, H2 : {0, 1}∗ ×G→ Zp
∗,

H3 : {0, 1}∗×G×G×G×G→ Zp
∗, H4 : {0, 1}∗×G×G×G×G→ Zp

∗, H5 : G×G×{0, 1}∗×{0, 1}∗ → Zp
∗

and H6 : G×G×G→ Zp
∗. It then makes params public and keeps msk to itself, where params and msk

are defined as follows:

params = 〈G, g, q, p, y1, y2, H1, H2, H3, H4, H5, H6〉 and msk = 〈s1, s2〉.

Key Generation: On input an attribute vector
−→
Si = (S1i ,S2i , · · · ,S

mi
i) corresponding to an user i the PKG

does the following to generate the private key of the user i :

– Chooses −→xi ∈R Zp∗
mi

.

– Computes −→ui1 = g
−→xi and sets

−→
hi = H1

(−→
Si
)

.

– Computes −→vi1 =
−→
hi
−→xi .

– Chooses −→ri ∈R Zp∗
mi

, computes −→ui2 = g
−→ri and −→vi2 =

−→
hi

−→ri
.

– Sets −→ci = H2 (−→ui1),
−→
bi = H3(−→ui1,−→vi1,−→ui2,−→vi2) and −→ei = H4(−→ui1,−→vi1,−→ui2,−→vi2).

– Computes
−→
di1 = −→xi + s1

−→ci where s1 is the master secret key. It also calculates
−→
di2 = −→xi +−→ri

−→
bi + s2

−→ei .
– Finally it sends 〈−→ui1,−→vi1,−→ui2,−→vi2,

−→
di1,
−→
di2,
−→
hi
s2〉 to the user i.

The user after receiving the private key components from the PKG performs the checks as described
(Key Sanity Check) to ensure the correctness of the components.

Secret Key Sanity Check: After receiving the private key from the PKG in the key extract phase, the
user performs the following check to ensure the correctness of the components of the private key. The user
first computes the following and then performs three checks as follows:

a. −→ci = H2 (−→ui1)

b.
−→
bi = H3 (−→ui1,−→vi1,−→ui2,−→vi2)

c. −→ei = H4 (−→ui1,−→vi1,−→ui2,−→vi2)

Test 1: Check if
g
−→
di1

y
H2(−→ui1)
1

?
= −→ui1.

This can be verified as
g
−→xi+s1·−→ci

gs1·H2(−→ui1)
where −→ci = H2 (−→ui1). This is equal to g

−→xi = −→ui1. This check ensures the

correctness of
−→
di1 and −→ui1.

Test 2: Check if
g
−→
di2

−→ui2
H3(−→ui1,−→vi1,−→ui2,−→vi2).y2

H4(−→ui1,−→vi1,−→ui2,−→vi2)

?
= −→ui1.

This can be verified as
g

(−→xi+−→ri ·−→bi+s2·−→ei)
g
−→ri ·H3(−→ui1,−→vi1,−→ui2,−→vi2) · gs2·H4(−→ui1,−→vi1,−→ui2,−→vi2)

?
= g

−→xi = −→ui1, as
−→
bi = H3 (−→ui1,−→vi1,−→ui2,−→vi2)

and −→ei = H4 (−→ui1,−→vi1,−→ui2,−→vi2).

This check ensures the correctness of
−→
di2,
−→ui2,−→vi1,−→vi2.

Test 3 : Check if

−→
hi
−→
di2

−→vi2
H3(−→ui1,−→vi1,−→ui2,−→vi2).

(−→
hi
s2
)H4(−→ui1,−→vi1,−→ui2,−→vi2)

= −→vi1.

This can be verified as

−→
hi
−→xi+−→ri .

−→
bi+s2.

−→ei(
−→
hi

−→ri
)H3(−→ui1,−→vi1,−→ui2,vi2)

.
(−→
hi
s2
)H4(−→ui1,−→vi1,−→ui2,−→vi2)

=
−→
hi

−→xi
= −→vi1 where

−→
bi = H3(

−→ui1,−→vi1,−→ui2,−→vi2) and −→ei = H4 (−→ui1,−→vi1,−→ui2,−→vi2).

Test 3 ensures the correctness of
−→
hi
s2

. Test 2 and Test 3 ensures that g and
−→
hi are raised to the same

exponent −→xi in −→ui1 and −→vi1 respectively.

If the received private key satisfies all the tests then it is valid.

Key Agreement: The two users i and j with attribute vectors
−→
S i and

−→
S j get their respective private

keys from the PKG. First, i decides an access structure Xi and he hopes that the set of attributes
−→
S j of j

satisfies Xi. Then, i derives the li × ni share generating matrix Mi and the injective labeling function ρi in
a LSSS for Xi. Similarly, j also decides an access structure Xj and he hopes that the set of attributes Si of
i satisfies Xj . It then derives the lj × nj share generating matrix Mj and the injective labeling function ρj
in a LSSS for Xj . i and j then choose ephemeral secret components

−→
ti ,
−→wi ∈R (Zp

∗)
li and

−→
tj ,
−→wj ∈R (Zp

∗)
lj

respectively. i (respectively j) also chooses a random vector −→σi ∈R Zp
∗li (respectively −→σj ∈R Zp

∗lj) and

engage in a session as described in Table 1. User k (k ∈ i, j) also computes the values
−→
c̃k = H2

(−→
Ak,−→uk1

)
,

−→
b̃k = H3

(−→
Ak, ,−→uk1,−→vk1,−→uk2,−→vk2

)
and
−→
ẽk = H4

(−→
Ak,−→uk1,−→vk1,−→uk2,−→vk2

)
, where

−→
Ak is the attribute vector that

user k wants its peer k′ to satisfy.

Note that user j (respectively i) does not know the corresponding attributes of i (j),i.e.,
−→
S i (respectively

−→
S j), but he can apply the function ρi (respectively ρj) to the rows of the share generating matrix Mi

(respectively Mj) sent by i (respectively j) to get back the corresponding attribute vector
−→
Ai corresponding

to the access structure Xi (respectively Xj) LSSS matrix if the attributes of user j satisfies Xi. It can

then proceed with the computation of our key agreement protocol with the attributes
−→
Ai (respectively

−→
Aj)

corresponding to the rows of Mi (respectively Mj).

Remark 1 : The values in
−→
Vi are freshly generated for every session in the following manner. In a prepro-

cessing or a setup stage, the user i generates a large number of
(
β, gβ

)
pairs and stores them in a table Ti.

User i User j

1. Send
−→
Fi =

〈
−→ui1,−→vi1,

−→
di2,
−→
bi ,
−→ei ,
−→
c̃i ,
−→
b̃i ,
−→
ẽi ,
−→
hi
s2
,Mi, ρi

〉
,

−→
Vi =

〈−→wi +
−→
di1 ·H5

(
g
−→
ti , g

−→wi ,Mi, ρi
)
, g
−→
ti , g

−→wi
〉
, X

(1)
i =

gσ
(1)
i , U

(ab)
i = gMiabσ

a
i to j.

1. Send
−→
Fj =

〈
−→uj1,−→vj1,

−→
dj2,
−→
bj ,
−→ej ,
−→
c̃i ,
−→
b̃j ,
−→
ẽj ,
−→
hj
s2
,Mj , ρj

〉
,

−→
Vj =

〈−→wj +
−→
dj1 ·H5

(
g
−→
tj , g

−→wj ,Mj , ρj
)
, g
−→
tj , g

−→wj
〉

,

X
(1)
j = gσ

(1)
j , U

(ab)
j = gMjabσ

a
j to i.

2. (a) Check for correctness of
−→
Fj:

Compute −→uj2 =

(
g
−→
dj2

−→uj1.y2
−→ej

)−→bj−1

Compute −→vj2 =

 −→
hj

−→
dj2

−→vj1 ·
(−→
hj
s2
)−→ej

−→
bj
−1

Check 1 : Check if−→
c̃j = H2

(−→
Aj ,−→uj1

)
−→
b̃j

?
= H3(

−→
A j ,
−→uj1,−→vj1,−→uj2,−→vj2)

−→
ẽj

?
= H4(

−→
A j ,
−→uj1,−→vj1,−→uj2,−→vj2)

If not equal abort, else proceed.

(b) Check for correctness of
−→
Vj:

Check 2 : Check if g

(
−→wj+

−→
dj1·H5

(
g
−→
tj ,g
−→wj ,Mj ,ρj

))

(
g
−→xj
)H5

(
g
−→
tj ,g
−→wj ,Mj ,ρj

)
(y1)

−→cj ·H5

(
g
−→
tj ,g
−→wj ,Mj ,ρj

)
 ?

= g
−→wj

where −→cj = H2 (−→uj1).

If not equal abort, else proceed.

Check 3 : Check if∏
a,b:ρj(a)∈Si(U

(ab)
j)λ

a
i

?
= X

(1)
j .

If equal proceed to step 3, else abort.

2. (a) Check for correctness of
−→
Fi:

Compute −→ui2 =

(
g
−→
di2

−→ui1 · y2
−→ei

)−→bi−1

Compute −→vi2 =

 −→
hi

−→
di2

−→vi1 ·
(−→
hi
s2
)−→ei

−→
bi
−1

Check 1 : Check if−→
c̃i = H2

(−→
Ai,−→ui1

)
−→
b̃i

?
= H3

(−→
A i,
−→ui1,−→vi1,−→ui2,−→vi2

)
−→
ẽi

?
= H4

(−→
A i,
−→ui1,−→vi1,−→ui2,−→vi2

)
If not equal abort, else proceed.

(b)Check for correctness of
−→
Vi:

Check 2 : Check if g

(
−→wi+
−→
di1.H5

(
g
−→
ti ,g
−→wi ,Mi,ρi

))
(
g
−→xi
)H5

(
g
−→
ti ,g
−→wi ,Mi,ρi

)
(y1)

−→ci ·H5

(
g
−→
ti ,g
−→wi ,Mi,ρi

)
 ?

= g
−→wi

where −→ci = H2 (−→ui1).

If not equal abort, else proceed.

Check 3 : Check if∏
a,b:ρi(a)∈Sj (U

(ab)
i)λ

a
j

?
= X

(1)
i .

If equal proceed to step 3, else abort.

3. Shared secret key generation:

Compute
−→
Z1 =

(−→uj1y1−→cj g−→tj)−→di1+−→ti
−→
Z2 = −→vi1−→vj1
−→
Z3 =

(
g
−→
tj
)−→ti

.

−→
Z = H6

(−→
Z1,
−→
Z2,
−→
Z3

)
.

3. Shared secret key generation:

Compute
−→
Z1 =

(−→ui1y1−→cig−→ti)−→dj1+−→tj
−→
Z2 = −→vj1−→vi1
−→
Z3 =

(
g
−→
ti
)−→tj

.

−→
Z = H6

(−→
Z1,
−→
Z2,
−→
Z3

)
.

−→
Z is the shared secret key that is established between User i and User j.

Table 1. Description of the Key Agreement protocol

For each session, user i extracts 2 fresh vectors each of length li from the table Ti and uses them to generate

components of
−→
Vi . For security reasons, we assume that

(a) immediately after generating the components of
−→
Vi ,
−→wi is erased from the system.

(b) −→wi +
−→
di1 · H5

(
g
−→
ti , g

−→wi ,Mi, ρi

)
is computed in a secured way so that −→wi and

−→
di1 are not leaked to the

adversary and only −→wi +
−→
di1 ·H5

(
g
−→
ti , g

−→wi ,Mi, ρi

)
is available to the adversary.

Remark 2 : The components in
−→
Fi,
−→
Vi and

−→
Fj ,
−→
Vj is required to be sent only for the first time key establish-

ment between users i and j. For subsequent key establishments between i and j, only
−→
c̃i ,
−→
b̃i ,
−→
ẽi ,
−→
Vi and

−→
c̃j ,

−→
b̃j ,
−→
ẽj ,
−→
Vj need to be exchanged since all other values in

−→
Fi are same for all sessions between a pair of users

and is independent of the session.

Remark 3 : The intuition behind using the component
−→
Z3 is to eliminate g

−→
ti ·
−→
tj from

−→
Z1 in the security

proof to obtain the solution to the hard problem.

Remark 4 : Note that none of the users need to know the attributes of its peer for running the key
agreement protocol. If the attributes of a user satisfies the access structure of its peer, then it can extract

those attributes that its peer wants it to be get satisfied namely the
−→
Ak values where k ∈ {i, j} (applying

the function ρk on the rows of the access matrix Mk) and then it perform Check 1 and Check 2 in our

construction. If the attributes of the peer indeed satisfies the access structure it can extract the
−→
Ak vector

and proceed with the checks.

Check 1 is done to ensure that g and
−→
hi are raised to the same exponent −→xi . This is a crucial security

requirement.

For valid components this check holds good. We prove it here. For the ease of understanding we will prove
it for one component of the corresponding vectors. The same check goes through for all the components of
the corresponding vectors.(

g
−→
di2

−→ui1.y2
−→ei

)−→bi−1

=

(
g
−→xi+−→ri ·

−→
bi+s2.

−→ei

g
−→xi · gs2·−→ei

)−→bi−1

=
(
g
−→ri ·
−→
bi
)−→bi−1

= g
−→ri = −→ui2.

 −→
hi

−→
di2

−→vi1 ·
(−→
hi
s2
)−→ei

−→
bi
−1

=

−→hi
−→xi+−→ri ·

−→
bi+s2·−→ei

−→
hi

−→xi
·
(−→
hi
s2
)−→ei


−→
bi
−1

=

(
−→
hi

−→ri ·
−→
bi
)−→bi−1

=
−→
hi

−→ri
= −→vi2

The components that are recomputed are valid and if the attributes of user j satisfies the access structure

of user i, it can get the attribute vector Ai and hence the computation of
−→
b̃i = H3

(−→
A i,
−→ui1,−→vi1,−→ui2,−→vi2

)
and

−→
ẽi = H3

(−→
A i,
−→ui1,−→vi1,−→ui2,−→vi2

)
will match the one obtained if not for any tampering during transfer.

Check 2 is done to ensure that a dynamic adversary cannot tamper the components exchanged and af-
fect the shared secret key generation. It verifies the signature wi + di1 ·H5 (gti , gwi ,Mi, ρi) on gti .

g

(−→wi+−→di1·H5

(
g
−→
ti ,g
−→wi ,Mi,ρi

))
(
g
−→xi
)H5

(
g
−→
ti ,g
−→wi ,Mi,ρi

)
.(y1)

−→ci ·H5

(
g
−→
ti ,g
−→wi ,Mi,ρi

) =
g

(−→wi+(−→xi+s1·−→ci)·H5

(
g
−→
ti ,g
−→wi ,Mi,ρi

))
(
g
−→xi
)H5

(
g
−→
ti ,g
−→wi ,
)
· (g)

s1·−→ci ·H5

(
g
−→
ti ,g
−→wi ,Mi,ρi

) = g
−→wi

Check 3 is done to ensure that a dynamic adversary cannot tamper with the access structure. If the adver-
sary tries to tamper with the acess structure, he will be caught since the share generating matrix and the
function ρi is bound to the hash function H5. If the attributes of user j i.e. Sj satisfies the access structure

of i, it can generate the constants λj ’s ∈ Zp such that for any valid shares {ωi}i∈I of a secret σ
(1)
i according

to the LSSS scheme Π, we have:
∑
i∈I ωiλi = σ

(1)
i where I = {i|ρi(a) ∈ S}. So:

∏
a,b:ρi(a)∈Sj (U

(ab)
i)λ

a
j =

∏
a,b:ρi(a)∈Sj

(
gMiab

σai
)λaj = g

∑
a,b:ρi(a)∈Sj

Miab
σai λ

a
j = gσ

(1)
i = X

(1)
i .

Lemma 1: The shared secret key computed by both the parties are identical.

Proof: User i computes :

−→
Z1 =

(−→uj1−→y1−→cj g−→tj)−→di1+−→ti =
(
g(−→xj+s1−→cj+

−→
tj)
)(−→di1+−→ti)

= g

(−→
dj1+

−→
tj
)(−→
di1+

−→
ti
)
, since−→uj1 = g

−→xj and−→xj+s1−→cj =
−→
dj1.

User j computes:

−→
Z1 =

(−→ui1y1−→ci gti)dj1+tj =
(
g(−→xi+s1−→ci+

−→
ti)
)(−→dj1+−→tj)

= g

(−→
di1+

−→
ti
)(−→
dj1+

−→
tj
)
, since −→ui1 = g

−→xi and −→xi +s1
−→ci =

−→
di1.

Thus
−→
Z1 computed by both the parties are identical.

−→
Z2 and

−→
Z3 are also consistent. Thus the final shared

secret key computed by both the parties are consistent. �

5 Security Proof

In this section, we present a formal security proof for the protocol described in the previous section. The
proof is based on the ABCK security model described in section 3. The scheme is proved secure under the
Gap Diffie-Hellman (GDH) assumption in the random oracle model. The security proof is modeled as a game
between the challenger and the adversary.

Theorem 1. Under the GDH assumption in G and the RO model,the protocol in section 4 is ABCK-
secure.

Proof of Theorem 1.

The proof of Theorem 1 is shown in the Appendix.

6 Additional Security Properties

The proposed protocol offers additional security properties which we discuss informally. Formal details of
these properties can be found in the full version of the paper.

Forward Secrecy: A key agreement protocol has forward secrecy, if after a session is completed and its
shared secret key is erased, the adversary cannot learn it even if it corrupts the parties involved in that
session. In other words, learning the private keys of parties should not affect the security of the shared secret
key. Relaxing the definition of forward secrecy, we assume that the past sessions with passive adversary are
the ones whose shared secret keys are not compromised. The proposed scheme offers forward secrecy.

Resistance to Key Compromise Impersonation attacks: Whenever a user i’s private key is learned
by the adversary, it can impersonate as i. A key compromise impersonation (KCI) attack can be carried out
when the knowledge of i’s private key allows the adversary to impersonate another party to i. Our scheme
is resistant to KCI attacks. This is because in the proof, when the adversary tries to impersonate i to user
j, the challenger is able to answer private key queries from the adversary corresponding to user j. Thus the
resistance to KCI attacks is inbuilt in the security proof.

Resistance to Ephemeral Key Compromise Impersonation: Generally the users pick the ephemeral

keys
(−→
ti , g

−→
ti
)

from a pre-computed list in order to minimize online computation cost. But the problem with

this approach is that the ephemeral components may be subjected to leakage. This attack considers the
case when the adversary can make state-reveal queries even in the test session. But our scheme is resistant

to that type of an attack because when an adversary tries to impersonate a user j without knowing the

private key of j, it cannot generate the components
−→
dj2 and the signature on g

−→
tj (We assume that −→wi is

erased immediately after the signature on g
−→
ti is computed and hence is not available to the adversary during

state-reveal queries). Thus it is secure and resists ephemeral key compromise impersonation attack.

7 Conclusion

The main advantages of our protocol is that it requires only one round of communication among the users
and the messages can be scheduled arbitarily. Moreover our scheme also provides protection against active
adversaries and also does not rely on any underlying attribute based encryption scheme as a key exchange
problem should be fundamentally more simpler than any encryption scheme. Also our scheme enjoys the
property of having constant size public parameters. Moreover our proof techniques can be easily modified to
achieve security in attribute based eCK model. We leave open the problem of designing ABAKE scheme in
more stronger model that allows arbitraly leakages of intermediate values as in seCK [SEVB10] model and
also designing ABAKE schemes in standard model.

References

[AKB07] Giuseppe Ateniese, Jonathan Kirsch, and Marina Blanton. Secret handshakes with dynamic and fuzzy
matching. In NDSS, volume 7, pages 1–19, 2007.

[AKO09] Masayuki Abe, Eike Kiltz, and Tatsuaki Okamoto. Compact cca-secure encryption for messages of arbi-
trary length. In Public Key Cryptography–PKC 2009, pages 377–392. Springer, 2009.

[Bei96] Amos Beimel. Secure schemes for secret sharing and key distribution. PhD thesis, Technion-Israel Institute
of technology, Faculty of computer science, 1996.

[BR94] Mihir Bellare and Phillip Rogaway. Entity authentication and key distribution. In Advances in Cryptolo-
gyCRYPTO93, pages 232–249. Springer, 1994.

[BS10] James Birkett and Douglas Stebila. Predicate-based key exchange. In Information Security and Privacy,
pages 282–299. Springer, 2010.

[BSW07] John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-policy attribute-based encryption. In
Security and Privacy, 2007. SP’07. IEEE Symposium on, pages 321–334. IEEE, 2007.

[GBN10] M Choudary Gorantla, Colin Boyd, and Juan Manuel González Nieto. Attribute-based authenticated key
exchange. In Information Security and Privacy, pages 300–317. Springer, 2010.

[GJPS08] Vipul Goyal, Abhishek Jain, Omkant Pandey, and Amit Sahai. Bounded ciphertext policy attribute based
encryption. In Automata, languages and programming, pages 579–591. Springer, 2008.

[GPSW06] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption for fine-grained
access control of encrypted data. In Proceedings of the 13th ACM conference on Computer and communi-
cations security, pages 89–98. Acm, 2006.

[LLM07] Brian LaMacchia, Kristin Lauter, and Anton Mityagin. Stronger security of authenticated key exchange.
In Provable Security, pages 1–16. Springer, 2007.

[LOS+10] Allison Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima, and Brent Waters. Fully secure
functional encryption: Attribute-based encryption and (hierarchical) inner product encryption. In Ad-
vances in Cryptology–EUROCRYPT 2010, pages 62–91. Springer, 2010.

[OP01] Tatsuaki Okamoto and David Pointcheval. The gap-problems: A new class of problems for the security of
cryptographic schemes. In Public Key Cryptography, pages 104–118. Springer, 2001.

[OSW07] Rafail Ostrovsky, Amit Sahai, and Brent Waters. Attribute-based encryption with non-monotonic access
structures. In Proceedings of the 14th ACM conference on Computer and communications security, pages
195–203. ACM, 2007.

[OT10] Tatsuaki Okamoto and Katsuyuki Takashima. Fully secure functional encryption with general relations
from the decisional linear assumption. In Advances in Cryptology–CRYPTO 2010, pages 191–208. Springer,
2010.

[SEVB10] Augustin P Sarr, Philippe Elbaz-Vincent, and Jean-Claude Bajard. A new security model for authenticated
key agreement. In Security and Cryptography for Networks, pages 219–234. Springer, 2010.

[SW05] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In Advances in Cryptology–EUROCRYPT
2005, pages 457–473. Springer, 2005.

[VSVR13] S Sree Vivek, S Sharmila Deva Selvi, Layamrudhaa Renganathan Venkatesan, and C Pandu Rangan.
Efficient, pairing-free, authenticated identity based key agreement in a single round. In Provable Security,
pages 38–58. Springer, 2013.

[Wat11] Brent Waters. Ciphertext-policy attribute-based encryption: An expressive, efficient, and provably secure
realization. In Public Key Cryptography–PKC 2011, pages 53–70. Springer, 2011.

[Yon10] Kazuki Yoneyama. Strongly secure two-pass attribute-based authenticated key exchange. In Pairing-Based
Cryptography-Pairing 2010, pages 147–166. Springer, 2010.

Appendix

Security Proof.
We now give the security proof for our protocol from section 4.

Setup: The challenger is given the SDH problem instance
〈
G, g, q, p, C = ga, D = gb

〉
and access to the Diffie

Hellman Oracle DH (y1, ., .). The challenger sets the master public key y1 = C and hence the master secret
key s1 is implicitly set as a. The challenger chooses s2 ∈R Zp

∗ and sets y2 = gs2 . The challenger gives the
tuple 〈G, g, q, p, y1, y2〉 to the adversary. The challenger simulates the hash oracles in the following way:

H1 Oracle: The challenger is queried by the adversary for the hash value of the attribute vector
−→
Si corre-

sponding to user i. If the H1 Oracle was already queried with
−→
Si as input, the challenger returns the value

computed before which is stored in the hash list Lh1 described below. Otherwise the challenger tosses a

coin τ
(γ)
i where the Pr

(
τ
(γ)
i = 0

)
= α. The output of this oracle is defined as:

∀γ, h
(γ)
i =

{
gki , if τ

(γ)
i = 0(

gb
)ki
, if τ

(γ)
i = 1

where
−→
ki ∈R Zp∗. The challenger makes an entry in the hash list Lh1 =

〈−→
hi ,
−→
Si ,−→τi ,

−→
ki

〉
for future use and

returns
−→
hi .

H2 Oracle : The adversary queries the challenger with inputs (−→ui1) or
(−→
Ai,−→ui1

)
. If the H2 Oracle was already

queried with
(−→
Ai,−→ui1

)
as input, the challenger extracts the value

−→
c̃i from the hash list Lh2 described below

and returns the value. If the H2 Oracle was already queried with (−→ui1) as input, the challenger extracts the
value −→ci from the hash list Lh2 described below and returns the value. Otherwise, the challenger chooses a

random vector
−→
c̃i ∈R Zp∗

mi
or−→ci ∈R Zp∗

mi
respectively. It makes an entry in the hash list Lh2 =

〈−→ci ,−→ui1,−→Ai〉
or Lh2 = 〈−→ci ,−→ui1〉 and returns

−→
c̃i or −→ci .

H3 Oracle : The adversary queries the challenger with inputs (−→ui1,−→vi1,−→ui2,−→vi2) or (
−→
Ai,−→ui1,−→vi1,−→ui2,−→vi2). If

the H3 Oracle was already queried with
(−→
Ai,−→ui1,−→vi1,−→ui2,−→vi2

)
as input, the challenger extracts the vector

−→
b̃i from the hash list Lh3 described below and returns the value. On the other hand if the H3 Oracle was

already queried with (−→ui1,−→vi1,−→ui2,−→vi2) as input, the challenger extracts the vector
−→
bi from the hash list Lh3.

Otherwise, the challenger chooses a random vector
−→
b̃i ∈R (Zp)∗

mi

or
−→
bi ∈R (Zp)∗

mi

respectively. It makes

an entry in the hash list Lh3 =
〈−→
bi ,
−→
Ai,−→ui1,−→vi1,−→ui2,−→vi2

〉
or Lh3 =

〈−→
bi ,
−→ui1,−→vi1,−→ui2,−→vi2

〉
and returns

−→
b̃i or

−→
bi

respectively.

H4 Oracle : The adversary queries the challenger with inputs (−→ui1,−→vi1,−→ui2,−→vi2) or (
−→
Ai,−→ui1,−→vi1,−→ui2,−→vi2). If

the H4 Oracle was already queried with
(−→
Ai,−→ui1,−→vi1,−→ui2,−→vi2

)
as input, the challenger extracts the vector

−→
ẽi from the hash list Lh4 described below and returns the value. On the other hand if the H4 Oracle was

already queried with (−→ui1,−→vi1,−→ui2,−→vi2) as input, the challenger extracts the vector
−→
bi from the hash list Lh4.

Otherwise, the challenger chooses a random vector
−→
ẽi ∈R (Zp)∗

mi

or
−→
bi ∈R (Zp)∗

mi

respectively. It makes

an entry in the hash list Lh4 =
〈−→ei ,−→Ai,−→ui1,−→vi1,−→ui2,−→vi2〉 or Lh4 = 〈−→ei ,−→ui1,−→vi1,−→ui2,−→vi2〉 and returns

−→
ẽi or −→ei

respectively.

H5 Oracle : The adversary queries the challenger with inputs
(
g
−→
ti , g

−→wi ,Mi, ρi

)
. If the H5 Oracle was already

queried with
(
g
−→
ti , g

−→wi ,Mi, ρi

)
as input, the challenger extracts the vector

−→
fi from the hash list Lh5 described

below and returns the value. Otherwise, the challenger chooses a random vector
−→
fi ∈R Zp∗

mi
. It makes an

entry in the hash list Lh5 =
〈−→
fi , g

−→
ti , g

−→wi ,Mi, ρi

〉
and returns

−→
fi .

H6 Oracle : The adversary queries the challenger with inputs
(−→
Z1,
−→
Z2,
−→
Z3

)
. If the H6 Oracle was already

queried with
(−→
Z1,
−→
Z2,
−→
Z3

)
as input, the challenger extracts the vector

−→
li from the hash list Lh6 described

below and returns the value. Otherwise, the challenger chooses a random vector
−→
li ∈R (Zp)∗

mi

. It makes an

entry in the hash list Lh6 =
〈−→
li ,
−→
Z1,
−→
Z2,
−→
Z3

〉
and returns

−→
li .

Party corruption: The adversary presents the challenger with an attribute vector
−→
Si and the challenger

should return the private key of that user i. The challenger proceeds in the following way:

The challenger checks if the H1 Oracle was already queried for
−→
Si . If yes and

∨
γ τ

(γ)
i = 1, it aborts. Otherwise

it extracts
−→
ki ,
−→
hi from the list Lh1 and proceeds to the next step. If

−→
Si was not queried before, the challenger

runs the H1 Oracle with
−→
Si as input. If

∨
γ τ

(γ)
i = 1, it aborts. Else the challenger chooses

−→
ki ∈R Z∗mip ,

computes
−→
hi = g

−→
ki , adds the tuple

〈−→
hi ,
−→
Si ,−→τi ,

−→
ki

〉
to the Lh1 list.

The challenger does not know the master secret key s1 as master public key y1 = ga setting s1 = a. Therefore
in order to generate the private key of users, the challenger makes use of the random oracles and generates
the private key as described below:

– The challenger chooses −→ci ,
−→
bi ,
−→ei ,
−→
xi
′,
−→
ri
′ ∈R Zp∗

mi
.

– It sets −→ui1 = g
−→
x′i .y1

−−→ci .
– It sets H2 (−→ui1) = −→ci and adds the tuple 〈−→ci ,−→ui1〉 the Lh2 list.

– It sets
−→
di1 =

−→
x′i ,
−→
di2 =

−→
x′i +

−→
r′i
−→
bi + s2

−→ei and −→ui2 = g
−→
r′i · y1

−→ci ·
−→
bi
−1

.

– It computes −→vi1 = g
−→
ki .x

′
i .y1
−
−→
ki .
−→ci and −→vi2 = g

−→
ki .r

′
i .y1
−→
ki .
−→ci .
−→
bi
−1

.

– It also sets the hash function values H3 (−→ui1,−→vi1,−→ui2,−→vi2) =
−→
bi , H4 (−→ui1,−→vi1,−→ui2,−→vi2) = −→ei and adds the

tuples
〈−→
bi ,
−→ui1,−→vi1,−→ui2,−→vi2

〉
, 〈−→ei ,−→ui1,−→vi1,−→ui2,−→vi2〉 to the lists Lh3 and Lh4 respectively.

– It computes
−→
hi
s2

.

– It returns the tuple
〈−→ui1,−→vi1,−→ui2,−→vi2,−→di1,−→di2,−→his2〉 as the private key of the user with attribute vector

−→
Si and makes an entry in the list LE =

〈−→ui1,−→vi1,−→ui2,−→vi2,−→di1,−→di2,−→Si〉.

Lemma 2: The private key returned by the challenger during the PartyCorruption query are consistent with
the system.

Proof: We now prove that the components returned by the challenger are consistent with that of the system.
The components returned by the challenger should satisfy the 3 checks given in Secret Key Sanity Check.

– Test 1 : Check if
g
−→
di1

y
H2(−→ui1)
1

?
= −→ui1.

This can be verified as
g
−→
x′i

ga.H2(−→ui1)
where −→ci = H2 (−→ui1). This is equal to g

−→
x′i−a.

−→ci = g
−→
x′i .y1

−−→ci = −→ui1.

– Test 2 : Check if
g
−→
di2

−→ui2H3(−→ui1,−→vi1,−→ui2,−→vi2).y2
H4(−→ui1,−→vi1,−→ui2,−→vi2)

?
= −→ui1.

This follows as
g
−→
x′i+r

′
i

−→
bi+s2

−→ei(
g
−→
r′i .y1

−→ci .
−→
bi
−1
)−→bi

.gs2.
−→ei

= g
−→
x′i−a.

−→ci = g
−→
x′i .y1

−−→ci = −→ui1, as
−→
bi = H3 (−→ui1,−→vi1,−→ui2,−→vi2) and

−→ei = H4 (−→ui2,−→vi2).

– Test 3 : Check if

−→
hi
−→
di2

−→vi2
H3(−→ui1,−→vi1,−→ui2,−→vi2).

(−→
hi
s2
)H4(−→ui1,−→vi1,−→ui2,−→vi2)

?
= −→vi1.

This follows as

−→
hi
−→
x′i+
−→
r′i .
−→
bi+s2.

−→ei(
g
−→
ki .
−→
r′i .y1

−→
ki .
−→ci .
−→
bi
−1
)−→bi

.
(−→
hi
s2
)−→ei =

−→
hi

−→
x′i
.y1
−
−→
ki .
−→ci = −→vi1 where

−→
bi = H3 (−→ui1,−→vi1,−→ui2,−→vi2)

and −→ei = H4 (−→ui1,−→vi1,−→ui2,−→vi2).

Thus the components generated by the challenger are consistent with the system as the tests 1, 2 and 3 are
satisfied. �
Session Simulation: The adversary requires the challenger to simulate shared secret keys. The challenger
simulates sessions other than the test session. Here we mention the party which initiates the session as the
owner of the session and the other party who responds to the request of the owner as the peer. We have to
consider the following cases during the session simulation phase.

Case 1: In this case, the adversary has executed the PartyCorruption query with respect to i. Hence the
adversary knows the secret key of i. The adversary treats i as owner and generates the tuple of values

given by

〈
−→ui1,−→vi1,

−→
di2,
−→
bi ,
−→ei ,
−→
hi
s2 , g

−→
ti ,−→wi +

−→
di1 ·H5

(
g
−→
ti , g

−→wi ,Mi, ρi

)
, g
−→wi , X

(1)
i ,
−→−→
Ui,Mi, ρi

〉
and passes it to

the challenger and asks the challenger to complete the session with j as the peer.

Case 1a: If
∨
γ τ

(γ)
j = 0, the challenger knows the secret key corresponding to all γ and hence executes the

actual protocol and delivers the session key to the adversary.

Case 1b: If
∨
γ τ

(γ)
j = 1, the challenger does not know the secret key corresponding to some γ and hence

simulates the session key as follows:

1. The challenger first performs the checks presented in the Step 2 of the Key Agreement protocol, on〈
−→ui1,−→vi1,

−→
di2,
−→
bi ,
−→ei ,
−→
hi
s2 , g

−→
ti ,−→wi +

−→
di1 ·H5

(
g
−→
ti , g

−→wi ,Mi, ρi

)
, g
−→wi , X

(1)
i ,
−→−→
Ui,Mi, ρi

〉
.

2. The challenger generates the parameters for the party j in the form of a similar tuple of values given by〈
−→uj1 = g

−→xj ,−→vj1 =
−→
hj

−→xj
,
−→
dj2 = −→xj +−→rj .

−→
bj + s2 · −→ej ,

−→
bj ,
−→ej ,
−→
hj
s2 , g

−→
tj ,
−→
w′j +−→xj ·

−→
fj , g

−→
w′j · y1−

−→cj ·
−→
fj , X

(1)
j ,
−→−→
Uj ,Mj , ρj

〉
,

where it computes −→rj ,−→xj ∈R Zp∗
mj

,
−→
tj ,
−→
w′j ,
−→
fj ,
−→σj ∈R Zp

∗lj ,
−→
hj = H1

(−→
Sj
)

,
−→
bj = H3

(−→uj1,−→vj1, g−→rj ,−→hj−→rj)
and −→ej = H4

(−→uj1,−→vj1, g−→rj ,−→hj−→rj).

3. If H5 was already queried with inputs

(
g
−→
tj , g

−→
w′j · y1−

−→cj ·
−→
fj ,Mj , ρj

)
, generate a fresh

−→
w′j and recompute

the last but two components. With very high probability, the new

(
g
−→
tj , g

−→
w′j · y1−

−→cj ·
−→
fj ,Mj , ρj

)
will not

result in a previously queried input set to H5. Set H5

(
g
−→
tj , g

−→
w′j · y1−

−→cj ·
−→
fj ,Mj , ρj

)
as
−→
fj .

4. The parameters generated by the challenger will satisfy Check 1 in Step 2 of Key Agreement. This is

because the parameters
〈−→uj1,−→vj1,−→dj2,−→bj ,−→ej ,−→hjs2〉 are generated in the same way as the original scheme.

5. The parameters generated by the challenger will satisfy Check 2 in the Step 2 of Key Agreement of
Section 5, on account of the following.

g
−→
w′j+
−→xj ·
−→
fj

(
g
−→xj
)H5

(
g
−→
tj ,g

−→
w′j ·y1−

−→cj ·
−→
fj ,Mj ,ρj

)
.(y1)

−→cj ·H5

(
g
−→
tj ,g

−→
w′j ·y1−

−→cj ·
−→
fj ,Mj ,ρj

) = g
−→
w′j · y1−

−→cj ·
−→
fj = g

−→wj

6. The parameters generated by the challenger will satisfy Check 3 in Step 2 of Key Agreement. This is

because the parameters

〈
X

(1)
j ,
−→−→
Uj

〉
are generated in the same way as the original scheme.

7. Thus the parameters generated by the challenger are consistent with that of the system.
8. The challenger sends the parameters to the adversary.

9. The challenger computes
−→
Z1 =

(
g
−→xi · y1

−→ci · g
−→
ti
)−→xj+−→tj

where −→ci = H2 (−→ui1). It also computes
−→
P1 =(−→ui1 · y1−→ci · g−→ti)−→cj and P2 = y1 where −→cj = H2 (−→uj1).

10. The challenger computes
−→
Z2 = −→vi1 · −→vj1 and

−→
Z3 =

(
g
−→
ti
)−→tj

.

11. The challenger is given access to the DH (y1, ·, ·) oracle, since we assume the hardness of Strong-Diffie
Hellman problem. The challenger makes use of the DH (y1, ·, ·) Oracle to answer the query as follows:

– The challenger finds a
−→
Z such that DH

(
P2,
−→
P1,
−→
Z1/
−→
Z1

)
(valid since P2 = y1) and

H6

(−→
Z1,
−→
Z2,
−→
Z3

)
=
−→
Z , where

−→
Z2 = −→vi1 · −→vj1 and

−→
Z3 =

(
g
−→
ti
)−→tj

.

– If a
−→
Z exists, the challenger returns

−→
Z as the shared secret key.

– Otherwise the challenger chooses
−→
Z ∈R Zp∗

mj and for any further query of the form
(−→
Z1,
−→
Z2,
−→
Z3

)
to the H6 Oracle, if DH

(
P2,
−→
P1,
−→
Z1/
−→
Z1

)
,
−→
Z2 = −→vi1 · −→vj1 and

−→
Z3 =

(
g
−→
ti
)−→tj

, the challenger returns

−→
Z as the result to the query.

Finally the challenger returns
−→
Z as the shared secret key.

Case 2: The adversary does not know the secret key of i, the owner of the session. Here the adversary
simply asks the challenger to generate a session with i as owner and j as peer.

Case 2a: The case where
∨
γ τ

(γ)
i = 0 and

∨
γ τ

(γ)
j = 0. In this case, the challenger can simulate the

computations of both the parties since the challenger knows the private key of the owner i and the peer j.

Case 2b: The case where either
∨
γ τ

(γ)
i = 0 or

∨
γ τ

(γ)
j = 0. Without loss of generality let us consider that∨

γ τ
(γ)
i = 0 and

∨
γ τ

(γ)
j = 1. Here the challenger knows the secret key of i but does not know the secret key

of j. Hence for i the challenger will generate the session secret key as per the algorithm. For j the challenger
has to simulate as follows:

1. The challenger generates the parameters for the party j in the form of a similar tuple of values given by〈
−→uj1 = g

−→xj ,−→vj1 =
−→
hj

−→xj
,
−→
dj2 = −→xj +−→rj .

−→
bj + s2 · −→ej ,

−→
bj ,
−→ej ,
−→
hj
s2 , g

−→
tj ,
−→
w′j +−→xj ·

−→
fj , g

−→
w′j · y1−

−→cj ·
−→
fj , X

(1)
j ,
−→−→
Uj ,Mj , ρj

〉
,

where it computes −→rj ,−→xj ∈R Zp
∗mj ,

−→
tj ,
−→
w′j ,
−→
fj ,
−→σj ∈R Zp

∗lj ,
−→
hj = H1

(−→
Sj
)

,
−→
bj = H3

(−→uj1,−→vj1, g−→rj ,−→hj−→rj)
and −→ej = H4

(−→uj1,−→vj1, g−→rj ,−→hj−→rj).

2. The challenger also generates the parameters for the party i in the form of a similar tuple of values given
by〈
−→ui1 = g

−→xi ,−→vi1 =
−→
hi

−→xi
,
−→
di2 = −→xi +−→ri .

−→
bi + s2 · −→ei ,

−→
bi ,
−→ei ,
−→
hi
s2 , g

−→
ti ,
−→
w′i +−→xi ·

−→
fi , g

−→
w′i · y1−

−→ci ·
−→
fi , X

(1)
i ,
−→−→
Ui,Mi, ρi

〉
with i’s private key for user i.

3. If H5 was already queried with inputs

(
g
−→
tj , g

−→
w′j · y1−

−→cj ·
−→
fj ,Mj , ρj

)
, generate a fresh

−→
w′j and recompute

the last but two components. With very high probability, the new

(
g
−→
tj , g

−→
w′j · y1−

−→cj ·
−→
fj ,Mj , ρj

)
will not

result in a previously queried input set to H5. Set H5

(
g
−→
tj , g

−→
w′j · y1−

−→cj ·
−→
fj ,Mj , ρj

)
as
−→
fj .

4. Similarly if H5 was already queried with inputs
(
g
−→
ti , g

−→
w′i · y1−

−→ci ·
−→
fi ,Mi, ρi

)
, generate a fresh

−→
w′i and

recompute the last but two components. With very high probability, the new
(
g
−→
ti , g

−→
w′i · y1−

−→ci ·
−→
fi ,Mi, ρi

)
will not result in a previously queried input set to H5. Set H5

(
g
−→
ti , g

−→
w′i · y1−

−→ci ·
−→
fi ,Mi, ρi

)
as
−→
fi .

5. The challenger computes
−→
Z1 =

(
g
−→xi · y1

−→ci · g
−→
ti
)−→xj+−→tj

where −→ci = H2 (−→ui1). It also computes
−→
P1 =(−→ui1 · y1−→ci · g−→ti)−→cj and P2 = y1 where −→cj = H2 (−→uj1).

6. The challenger computes
−→
Z2 = −→vi1 · −→vj1 and

−→
Z3 =

(
g
−→
ti
)−→tj

.

7. The challenger is given access to the DH (y1, ·, ·) oracle, since we assume the hardness of Strong-Diffie
Hellman problem. The challenger makes use of the DH (y1, ·, ·) Oracle to answer the query as follows:

– The challenger finds a
−→
Z such that DH

(
P2,
−→
P1,
−→
Z1/
−→
Z1

)
(valid since P2 = y1) and H6

(−→
Z1,
−→
Z2,
−→
Z3

)
=

−→
Z , where

−→
Z2 = −→vi1 · −→vj1 and

−→
Z3 =

(
g
−→
ti
)−→tj

.

– If a
−→
Z exists, the challenger returns

−→
Z as the shared secret key.

– Otherwise the challenger chooses
−→
Z ∈R Zp∗

mj
and for any further query of the form

(−→
Z1,
−→
Z2,
−→
Z3

)
to

the H6 Oracle, if DH

(
P2,
−→
P1,
−→
Z1/
−→
Z1

)
,
−→
Z2 = −→vi1 · −→vj1 and

−→
Z3 =

(
g
−→
ti
)−→tj

, the challenger returns
−→
Z

as the result to the query.

Finally the challenger returns
−→
Z as the shared secret key.

Case 2c: The case where
∨
γ τ

(γ)
i = 1 and

∨
γ τ

(γ)
j = 1. In this case the challenger does not know the secret

key of both i and j. Hence the challenger has to simulate the session values for both i and j, which is done
as follows:

1. The challenger generates the parameters for the party j in the form of a similar tuple of values given by〈
−→uj1 = g

−→xj ,−→vj1 =
−→
hj

−→xj
,
−→
dj2 = −→xj +−→rj .

−→
bj + s2 · −→ej ,

−→
bj ,
−→ej ,
−→
hj
s2 , g

−→
tj ,
−→
w′j +−→xj ·

−→
fj , g

−→
w′j · y1−

−→cj ·
−→
fj , X

(1)
j ,
−→−→
Uj ,Mj , ρj

〉
,

where it computes −→rj ,−→xj ∈R Zp∗
mj

,
−→
tj ,
−→
w′j ,
−→
fj ,
−→σj ∈R Zp

∗lj ,
−→
hj = H1

(−→
Sj
)

,
−→
bj = H3

(−→uj1,−→vj1, g−→rj ,−→hj−→rj)
and −→ej = H4

(−→uj1,−→vj1, g−→rj ,−→hj−→rj).

2. The challenger also generates the parameters for the party i in the form of a similar tuple of values given

by

〈
−→ui1 = g

−→xi ,−→vi1 =
−→
hi

−→xi
,
−→
di2 = −→xi +−→ri .

−→
bi + s2 · −→ei ,

−→
bi ,
−→ei ,
−→
hi
s2 , g

−→
ti ,
−→
w′i +−→xi ·

−→
fi , g

−→
w′i · y1−

−→ci ·
−→
fi , X

(1)
i ,
−→−→
Ui,Mi, ρi

〉
,

where it computes −→ri ,−→xi ∈R Zp∗
mi

,
−→
ti ,
−→
w′i,
−→
fi ,
−→σi ∈R Zp

∗li ,
−→
hi = H1

(−→
Si
)

,
−→
bi = H3

(−→ui1,−→vi1, g−→ri ,−→hi−→ri)
and −→ei = H4

(−→ui1,−→vi1, g−→ri ,−→hi−→ri).

3. If H5 was already queried with inputs

(
g
−→
tj , g

−→
w′j · y1−

−→cj ·
−→
fj ,Mj , ρj

)
, generate a fresh

−→
w′j and recompute

the last but two components. With very high probability, the new

(
g
−→
tj , g

−→
w′j · y1−

−→cj ·
−→
fj ,Mj , ρj

)
will not

result in a previously queried input set to H5. Set H5

(
g
−→
tj , g

−→
w′j · y1−

−→cj ·
−→
fj ,Mj , ρj

)
as
−→
fj .

4. Similarly if H5 was already queried with inputs
(
g
−→
ti , g

−→
w′i · y1−

−→ci ·
−→
fi ,Mi, ρi

)
, generate a fresh

−→
w′i and

recompute the last but two components. With very high probability, the new
(
g
−→
ti , g

−→
w′i · y1−

−→ci ·
−→
fi ,Mi, ρi

)
will not result in a previously queried input set to H5. Set H5

(
g
−→
ti , g

−→
w′i · y1−

−→ci ·
−→
fi ,Mi, ρi

)
as
−→
fi .

5. The challenger computes
−→
Z1 =

(
g
−→xi · y1

−→ci · g
−→
ti
)−→xj+−→tj

where −→ci = H2 (−→ui1). It also computes
−→
P1 =(−→ui1 · y1−→ci · g−→ti)−→cj and P2 = y1 where −→cj = H2 (−→uj1).

6. The challenger computes
−→
Z2 = −→vi1 · −→vj1 and

−→
Z3 =

(
g
−→
ti
)−→tj

.

7. The challenger is given access to the DH (y1, ·, ·) oracle, since we assume the hardness of Strong-Diffie
Hellman problem. The challenger makes use of the DH (y1, ·, ·) Oracle to answer the query as follows:

– The challenger finds a
−→
Z such that DH

(
P2,
−→
P1,
−→
Z1/
−→
Z1

)
(valid since P2 = y1) and H6

(−→
Z1,
−→
Z2,
−→
Z3

)
=

−→
Z , where

−→
Z2 = −→vi1 · −→vj1 and

−→
Z3 =

(
g
−→
ti
)−→tj

.

– If a
−→
Z exists, the challenger returns

−→
Z as the shared secret key.

– Otherwise the challenger chooses
−→
Z ∈R Zp∗

mj
and for any further query of the form

(−→
Z1,
−→
Z2,
−→
Z3

)
to

the H6 Oracle, if DH

(
P2,
−→
P1,
−→
Z1/
−→
Z1

)
,
−→
Z2 = −→vi1 · −→vj1 and

−→
Z3 =

(
g
−→
ti
)−→tj

, the challenger returns
−→
Z

as the result to the query.

Finally the challenger returns
−→
Z as the shared secret key.

Test Session: The adversary impersonates as user i and sends the parameters as the following tuple of

values

〈
−→ui1,−→vi1,

−→
di2,
−→
bi ,
−→ei ,
−→
hi
s2 , g

−→
ti ,−→wi +

−→
di1 ·H5

(
g
−→
ti , g

−→wi ,Mi, ρi

)
, g
−→wi , X

(1)
i ,
−→−→
Ui,Mi, ρi

〉
to the challenger

for session simulation. The challenger runs the H1 Oracle with input
−→
Si . The test session is assumed to run

between two users i and j, where adversary impersonates as i and challenger has to generate parameters for

user j. If
∨
γ τ

(γ)
i = 0, it aborts. Else it does the following:

– The challenger now passes on to the adversary, the parameters as being the following tuple of values〈
−→uj1 = g

−→xj ,−→vj1 =
−→
hj

−→xj
,
−→
dj2 = −→xj +−→rj ·

−→
bj + s2 · −→ej ,

−→
bj ,
−→ej ,
−→
hj
s2
, D · g−

−→
dj1 ,−→wj +

−→
dj1 ·H5

(
D · g−

−→
dj1 , g

−→wj ,Mj , ρj

)
, X

(1)
j ,
−→−→
Uj ,Mj , ρj

〉
,

where
−→
dj1 is the private key component associated with User j which is known to the challenger, −→rj ,−→xj ∈R

Zp∗
mj

, −→wj ,−→σj ∈R Zp
∗lj ,
−→
hj = H1

(−→
Sj
)

,
−→
bj = H3

(
−→uj1,−→vj1, g

−→rj ,
−→
hj

−→rj
)

and −→ej = H4

(
−→uj1,−→vj1, g

−→rj ,
−→
hj

−→rj
)

.

The parameters passed satisfy the checks as they are generated in the way similar to the scheme and

g
−→
tj = D · g−

−→
dj1 = gb·

−→
1 −
−→
dj1

– The challenger performs the checks specified in Step 2 of the Key Agreement algorithm described in

Section 5 on

〈
−→ui1,−→vi1,

−→
di2,
−→
bi ,
−→ei ,
−→
hi
s2 , g

−→
ti ,−→wi +

−→
di1 ·H5

(
g
−→
ti , g

−→wi ,Mi, ρi

)
, g
−→wi , X

(1)
i ,
−→−→
Ui,Mi, ρi

〉
. If the

checks pass, the challenger proceeds to next step. Else, it aborts.

– The challenger returns a
−→
Z ∈R Zp∗

mi
as the shared secret key. This won’t be a valid shared secret key.

But in order to find that this is invalid the adversary should have queried the H6 Oracle with a valid

tuple
(−→
Z1,
−→
Z2,
−→
Z3

)
. Thus the challenger computes

−→
Z2 =

(−→
Z2/
−→vj1
)−→ki−1

and
−→
Z 3 =

−→
Z3 ·

(
g
−→
ti
)−→dj1

. The

challenger also computes
−→
S =

(
−→
Z1/
−→
Z 2 ·

−→
Z 3

)−→ci−1

where −→ci = H2 (−→ui1).

– Finally the challenger can return the solution for the CDH hard problem as shown in the lemma below.

In particular, since
∨
γ τ

(γ)
i = 1, there exists a γ such that τ

(γ)
i = 1. The challenger returns the value

S(γ).

Lemma 3: The challenger returns the solution to the CDH instance of the SDH hard problem set in the
beginning.

Proof: The challenger computes
−→
S =

(
−→
Z1/
−→
Z 2 ·

−→
Z 3

)−→ci−1

where −→ci = H2 (−→ui1).

–
−→
S =

(
g

(−→
di1+

−→
ti
)(−→
dj1+b·

−→
1 −
−→
dj1
)−→
Z 2 ·

−→
Z 3

)−→ci−1

.

– Since
∨
γ τ

(γ)
i = 1, there exists a γ such that τ

(γ)
i = 1. Now, Z

(γ)

2 =
(
Z

(γ)
2 /v

(γ)
j1

)(k(γ)i

)−1

=
(
v
(γ)
i1 · v

(γ)
j1 /v

γ
j1

)(k(γ)i

)−1

=(
h
(γ)
i

x
(γ)
i

)(k(γ)i

)−1

=
(
gb·k

(γ)
i

)x(γ)
i ·
(
k
(γ)
i

)−1

= gb·x
(γ)
i . (Note: The component h

(γ)
i =

(
gb
)k(γ)i as τ

(γ)
i = 1.).

–
−→
Z 3 =

−→
Z3 ·

(
g
−→
ti
)−→dj1

=
(
g
−→
ti
)(b·−→1 −−→dj1)

·
(
g
−→
ti
)−→dj1

= gb·
−→
ti .

– Therefore S(γ) =

(
g

(
x
(γ)
i +a·c(γ)i +t

(γ)
i

)(
d
(γ)
j1 +b−d(γ)j1

)
/gb·x

(γ)
i · gb·t

(γ)
i

)c(γ)i

−1

= gab.

Thus we have proved that the challenger returns the solution to the CDH Problem. �

8 Probability Analysis

In this section we present the probability analysis of our scheme presented in Section 4.

Theorem 1 : If ε is the probability of the adversary in distinguishing between a random shared secret
key and a valid shared secret key, the probability of solving the underlying SDH problem, ε′ is given by

ε′ = ε.

(
1− 1

qE + 2

)qE+1

.

(
1

qE + 2

)
where qE = Number of key extract or Party Corruption queries.

Proof: A solution to the hard problem can be generated only if the following events hold good.

– S1 : The challenger is able to answer all the Party Corruption queries. In other words, the challenger
should not abort in the Party Corruption phase.

– S2 : In the test session, the private key of user that the adversary impersonates should not be computable.
– S3 : In the test session, the challenger should be able to compute the private key of the user it is

simulating.

– S4 : The challenger should choose the valid tuple
(−→
Z1,
−→
Z2,
−→
Z3

)
from the list Lh6 which has the hard

problem injected in it.

Therefore, a solution to SDH problem can be obtained if

(Adversary succeeds in the game in Section 3)
∧

S1

∧
S2

∧
S3

∧
S4.

Pr (breaking SDH) = Pr (Adversary′s success) .P r (S1) · Pr (S2) · Pr (S3) · Pr (S4).

Consider the H1 Oracle. Assume P
(
τ
(γ)
i = 0

)
= α. Let qE be the total number of key extract or Party

Corruption queries. Now qE can be divided into two mutually disjoint subsets Ā and B̄. Let Ā be a set of

queries for which H1

(−→
Si
)

resulted in τ
(γ)
i = 0 and hence the private keys can be computed as described

in Party Corruption phase and it will not abort in the Party corruption phase. Let B be the set for which

H1

(−→
Si
)

resulted in τ
(γ)
i = 1 and hence an abort in the Party Corruption phase. Therefore private keys cannot

be computed for identities in B. There are αmi .qE identities in A and remaining (1− αmi) .qE identities in
B.

– Pr (A1) = Pr
(−→
Si ∈ A

)
for all the qE queries. This is equal to

(
αmi .qE
qE

)qE
= αmi·qE .

– Pr (A2) = Pr
(−→
Si ∈ B

)
, where

−→
Si is the attribute vector of the user i that the adversary impersonates

in the Test Session. Therefore τ
(γ)
i = 1 in this case and hence hi =

(
gb
)kγi . This is needed to solve the

SDH problem. The probability is equal to
(1− αmi) .qE

qE
= 1− αmi .

– Pr (A3) = Pr
(−→
Sj ∈ A

)
,
−→
Sj is the attribute vector of the user j the challenger emulates in the Test

Session. This ensures that the private key of j is computable by the challenger. This is equal to αmi .

– Pr (A4) = Pr (a valid 〈Z1, Z2, Z3〉 ∈ Lh6
is chosen by the challenger) =

1

h6
, where h6 is the number

of queries made to the H6 Oracle.

Therefore the probability of solving the SDH problem, ε′ = ε.αqE . (1− α) .α.

ε′ = ε.
1

h6
.αmi·qE+1. (1− αmi).

By maximizing this probability with respect to α, we get α =

(
qE + 1

qE + 2

) 1

mi .

Therefore ε′ = ε. 1
h6

(
1− 1

qE + 2

)qE+1

.

(
1

qE + 2

)
.

